Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22317
Title: Discriminant Analysis for Longitudinal Data
Authors: Matira, Kevin
Advisor: McNicholas, Paul
Department: Mathematics and Statistics
Keywords: mixture models;supervised learning;longitudinal data;classification;statistical learning
Publication Date: 2017
Abstract: Various approaches for discriminant analysis of longitudinal data are investigated, with some focus on model-based approaches. The latter are typically based on the modi ed Cholesky decomposition of the covariance matrix in a Gaussian mixture; however, non-Gaussian mixtures are also considered. Where applicable, the Bayesian information criterion is used to select the number of components per class. The various approaches are demonstrated on real and simulated data.
URI: http://hdl.handle.net/11375/22317
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
matira_kevin_2017August_MSc.pdf
Open Access
597.75 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue