Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22245
Title: Rough Sets, Similarity, and Optimal Approximations
Authors: Lenarcic, Adam
Advisor: Janicki, Ryszard
Department: Computing and Software
Keywords: Approximation;Rough Sets;Similarity;Optimal Approximation
Publication Date: Nov-2017
Abstract: Rough sets have been studied for over 30 years, and the basic concepts of lower and upper approximations have been analysed in detail, yet nowhere has the idea of an `optimal' rough approximation been proposed or investigated. In this thesis, several concepts are used in proposing a generalized definition: measures, rough sets, similarity, and approximation are each surveyed. Measure Theory allows us to generalize the definition of the `size' for a set. Rough set theory is the foundation that we use to define the term `optimal' and what constitutes an `optimal rough set'. Similarity indexes are used to compare two sets, and determine how alike or different they are. These sets can be rough or exact. We use similarity indexes to compare sets to intermediate approximations, and isolate the optimal rough sets. The historical roots of these concepts are explored, and the foundations are formally defined. A definition of an optimal rough set is proposed, as well as a simple algorithm to find it. Properties of optimal approximations such as minimum, maximum, and symmetry, are explored, and examples are provided to demonstrate algebraic properties and illustrate the mechanics of the algorithm.
URI: http://hdl.handle.net/11375/22245
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lenarcic_Adam_J_2017October_PhD.pdf
Open Access
595.65 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue