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Abstract

Rough sets have been studied for over 30 years, and the basic concepts of lower and

upper approximations have been analysed in detail, yet nowhere has the idea of an

‘optimal’ rough approximation been proposed or investigated. In this thesis, several

concepts are used in proposing a generalized definition: measures, rough sets, simi-

larity, and approximation are each surveyed. Measure Theory allows us to generalize

the definition of the ‘size’ for a set. Rough set theory is the foundation that we use

to define the term ‘optimal’ and what constitutes an ‘optimal rough set’. Similar-

ity indexes are used to compare two sets, and determine how alike or different they

are. These sets can be rough or exact. We use similarity indexes to compare sets

to intermediate approximations, and isolate the optimal rough sets. The historical

roots of these concepts are explored, and the foundations are formally defined. A

definition of an optimal rough set is proposed, as well as a simple algorithm to find

it. Properties of optimal approximations such as minimum, maximum, and symme-

try, are explored, and examples are provided to demonstrate algebraic properties and

illustrate the mechanics of the algorithm.
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Chapter 1

Introduction

Approximation is inherent in the capture of all data. If reference is made to anything

at all, the reference itself must be approximated in some way. Surely every detail of

an environment, and its context, cannot be fully captured, owing to limitations of

representation and storage.

If someone tried to specify exactly every detail of a situation, object, or concept,

a cunning devil’s advocate could surely list the ways in which that specification was

insufficient, inaccurate, or imprecise. For example, while a photograph does provide

some information about a scenario, it lacks multiple points of view, and so approxi-

mates a scene from only one perspective. Due to optical illusions and camera tricks

we cannot be truly certain how far each item is to the single point of view. Conversely,

a range finder could plot distance from itself to every point in the scene, record the

colour and simulate an environment precisely. But this is still only from one point

of view, meaning we have to deal with occlusion. So it could then be moved around

to provide multiple perspectives, but inevitably some part of a scene is not recorded,

nor are the contents (insides) of objects observed, so things like density are still not
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known. Robotic perception and representation at its most fundamental levels are

essentially approximation. Some level of truncation is involved in assigning value

to the continuous reality around us as machines have only limited storage capacity.

Even with what we can capture, the data recorded is inevitably only precise to a

certain number of digits stored in the electronic devices, and there is always a degree

of precision and accuracy associated with the detection and recording mechanisms.

Sometimes, we don’t even care about precision which could easily be specified.

If someone asks what time it is, your answer is surely rounded to some relevant

digits. Rarely do the number of seconds matter in our daily lives, so we approximate

our answer by rounding to the nearest fifteen or half hour. If we’re waiting for

the bus or train, we might care about the number of minutes. Exact time is rarely

specified, because the smallest units are so fleeting, so it is approximated by hours and

possibly minutes, yet in certain instances such as a competition setting, or the tracking

of satellites, both precision and accuracy are vital to tiny fractions of milliseconds.

We tend to approximate based on the granularity of the frame of reference. When

numerically representing the real world, the amount of precision and the size of storage

are always two opposing goals to be optimized, and since storage cannot be infinite, we

must always admit some non-zero compromise in precision and thus the representation

is necessarily an approximation of the true value.

In other cases, categories defined by attributes are given and the task is to find

which category or set of categories fits best. If one were to empty a filled garage

or storage unit they could start sorting things by colour, or size, but usually people

separate by category. Put tools together, liquids together, things for the car, holiday

decorations, etc. In a hospital, patients are separated by type of care they need, or

2
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by their symptoms, not by their attributes such as height, weight, or hair colour.

By grouping patients by common attributes, classes or granules are created as basic

building blocks. If we need to isolate which group of patients are most susceptible to a

newly occurring disease, we can use the known people diagnosed to form a target set,

and we can find the class of people based on symptoms or other gathered attributes

who are at highest risk to contract the disease. Of course, refinements would be

necessary, but it would prove invaluable to narrow an extremely large list to a class

that is a fraction of the size. With enough attributes it could even be done iteratively.

The ability to isolate the best set of classes of equivalent attributes to approximate a

target set is easily seen to be a valuable tool in any machine learning arsenal.

If a problem is continuous and lacks obvious classes, it can be analyzed by dis-

cretizing the problem using different category sizes which could be refined by testing

several sizes, and comparing which gives the largest optimal similarity. In any case,

this maximum similarity for a particular equivalence class and type of measurement

is referred to as the Optimal Approximation.

In what follows, it is shown how to efficiently determine the best group of classes

to approximate a particular target set.

1.1 Motivation and Rationale

Since Pawlak published the first papers on rough sets, the concepts of upper and lower

approximations have been fundamental to all works in the rough set context[21].

Given a continuous figure but discrete elements, then the approximation process

involves choosing which discrete elements should be included in devising the best

approximation. Those which we are sure will be included, since they satisfy all
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criteria, fall in the upper approximation. While those which we are unsure about

make up the border or boundary region. The concepts of strong and weak membership

naturally correspond to upper and lower approximations respectively. For more detail

see Section 3.2.1.

One obvious application was to group data, and at times there are often concepts

which can not be defined rigidly. There is still a need to express this using the

categories alone. The idea is to form a group of all of the possible ways the concept

might look based on the data which was available. So in its most basic sense, a

lower approximation is a representation of all the information we absolutely know

are true about something, and an upper approximation is a representation of all the

information that might possibly be true. What has lacked until now has been any

way of expressing the group of building blocks partitioned by the rough sets which is

most representative of a non-rigid set. This thesis seeks to introduce a way to express

and find this “best rough set approximation.”

The introduction of an algorithm to find an optimal rough approximation to a non-

exact target set will allow researchers in the field of rough sets to test for and compute

the ‘best’ comparison instead of the current possibilities which only include whether

a set is contained in an upper/lower approximation, or if sets are roughly equal.

Nowhere in the rough set literature has it been proposed to isolate the ‘most similar’

rough set to a given non-rough set, so this thesis not only developed a definition, but

also an algorithm to find it. The algorithm is actually quite fast in that it runs in

linear time, except that the sets must be sorted first so due to that requirement, the

algorithm proposed here will run in O(nlogn) (or optimal sorting) time.

4
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1.2 Contributions

The main contributions of this thesis are as follows:

1. A review of foundations of rough sets, similarity indexes, and measure theory.

2. Properties of comparison indexes are provided.

3. Specification of Measure Theory to require the null-free property.

4. Introduction of concepts called Borders (analogous to Pawlak’s Boundary Re-

gion) and Border Sets.

5. Definition of the concept of an optimal rough set approximation, an extension

of Rough Sets.

6. Definition of an algorithm to find the optimal rough set among a given universe

and prove correctness of this algorithm.

1.3 List of Publications

A list of publications which arose from this work:

1. Optimal Approximations with Rough Sets[13]

2. Optimal Approximations with Rough Sets and Similarities in Measure Spaces[14]

1.4 Outline of Thesis

In what follows the organization of this thesis is outlined. This chapter, introduces

the ideas behind this work. Chapter 2 is designed to be background reading, a sort of

5
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foundation from which the ideas of this work branched off. A literature review of the

most prominent papers, and other relevant works are provided. Chapter 3 contains

mathematical background which is required to proceed with our works. Definitions

from Measure Theory are provided in Section 3.1 along with a specification of Measure

Theory to require the null-free property. In section 3.2 the foundations of rough sets

are outlined, as well as several similarity indexes.

Chapter 4 and 5 contain the main contributions of this thesis. Chapter 4 examines

axioms of similarity, and presents all the similarity indexes that are used in this thesis.

Chapter 5 presents a definition of an optimal approximation within the foundation

of rough sets, as well as an algorithm to find it. It also contains a brief discussion on

asymmetry and the assumption that must be made about it to work in the context

of rough sets, which is picked up from the literature review. Within Chapter 5 there

is also a section discussing applications.
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Chapter 2

Literature Review

2.1 Measures of the Amount of Ecologic Associa-

tion between Species - Dice (1945)

When Lee Dice [5] noticed that no method had come into general use by ecologists

to quantitatively express how “associated” two species were to one another, he took

it upon himself to provide a method he judged to be superior to the alternatives. He

cited several proposals, but they were either unreliable, too complex, or impractical.

None were sufficient to express what he wished.

In ecology, sometimes multiple samples of an environment are taken in a standard-

ized way to determine how often species occur together. Each species is present in a

certain number of samples. When two species are being compared (i.e. their degree

of association is being measured), the number of samples in which each species occurs

(usually termed a and b), and the number of samples in which they occur together (h)

is recorded. Along with the total number of samples (n), this yields four numbers,

7



Ph.D. Thesis - Adam Lenarčič McMaster - Computing and Software

and two more which represent the number of occasions where each species occurs

alone may be derived by subtracting the number where they occur together from the

total numbers: a− h and b− h.

Though Dice did not express these numbers in set-theoretical terms, we could

translate the representation Dice used into set theoretical terms. The total number

of samples, would be the size of the universe, i.e. n → |U |. The locations in which

each species is detected would correspond to each set (items which are equivalent by

a ‘same species’ relation), (e.g. A,B). The variables used by Dice for the number

of samples where each species occurs, would then correspond to the magnitude/size

of each set, i.e. a → |A|, b → |B|, and the number where species occur together fits

nicely with the size of the intersection of the sets, i.e. h→ |A ∩ B|. We can also see

that the size of each set difference equates to the frequency with which each species

occurs alone: |A \B| → a− h, |B \ A| → b− h.

In devising his measure, Dice began with a coefficient of association as developed

by Forbes in 1907, given by the equation hn
ab

. This was based on the statistical

definition of “expectation”. This, unfortunately for Dice, incorporated an element of

probability as it was meant to express how much more or less often the species occur

together than would be expected by random chance. It is based on the assumption

of uniform distribution, so if this is shown invalid all calculated values are invalid

as well. Since reality is rarely uniform this assumption creates an oversimplification.

If there are n samples, and species A appeared in a of the samples, the chance of

species A to occur in any particular sample is a/n, and likewise with b/n. Probability

theory dictates that (given independence) the probability two events occur together

is the product of the probabilities each would be expected to occur, so the chance

8



Ph.D. Thesis - Adam Lenarčič McMaster - Computing and Software

they occur together is a/n× b/n = ab/n2. If we multiply this by the total number of

samples, the expected number of samples where the species occur together is ab/n.

The coefficient of association divides the actual number of recorded samples where

the species occur together by this number, i.e. h
ab/n

= hn
ab
. One positive was that it

could give an easily comprehensible indication of how close to expectation the species

occurred together, as values smaller than 1.0 show the species occur together less

than expected and values greater than 1.0 show they occurred together more than

expected.

The value of this measure, however, depends on the abundance of each species in

the sampled environment. As Dice noted, when both species are abundant, “both

will appear in a high proportion of the samples taken. The chance of both species

occurring together in any given sample is therefore high, and it will be impossible for

any great deviation from expectation to occur.” ([5],P.298) A similar situation occurs

when both species are sparsely present in the samples. If this factor must be consid-

ered, the coefficient of association is then not general enough for use in all situations.

He quoted this coefficient as, “...only a measure of the amount of deviation of the

number of occurrences together from the number expected by chance.” ([5],P.298)

So Dice next proposed the association index, which simply divided the number of

times a species occurred alone by the number of times two species occurred together.

He did note here that the association index,

“may differ depending on which species is used as the basis of comparison.

Such a difference may point out an important ecologic relation between the

two species. Frequently one species is dependent upon another, without

there being any reciprocal dependency.” ([5],P.298)

9
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This notion is also discussed in Section 5.3, since unlike this index, we deemed it

necessary for our purposes to require that our similarity function be symmetrical.

Though not by name, the symmetry requirement was noted by Dice, as he reported

that a measure which did not depend on a chosen base species, was needed for some

ecologic studies. He then refined the above by taking “a value intermediate between

the reciprocal association indexes A/B and B/A.” Given by the formula 2h
a+b

, it was

termed the coincidence index which has become known as the Dice, Sørensen, or Dice-

Sørensen index [4]. So the overskewing of commonality (compared to the alternative

Jaccard Index which would look like h
a+b−h) was not in fact purposeful. It seems Dice

did not consider using the average of A/B and B/A, possibly due to its complexity

(ah+bh
2ab

in its simplest form), or he could have simply overlooked the option. Yet in

modern scenarios when more focus is to be placed on common elements, this index

can be chosen intentionally.

Dice went on to note that values range from 0.0 to 1.0 which allows for easy

comprehension. He also mentioned that while there was no statistical test of the

reliability of the measures themselves, the chi-square test would indicate for any

given sample, if the results might be due to random chance. To perform this test, the

expected number of samples for each species alone is required (earlier we looked at all

samples, included those with both species). This could be calculated by subtracting

the expected number of samples where species occur together from the actual number

of samples in which each species was recorded, i.e. a−ab/n, b−ab/n. Chi-square also

requires the probabilities that each species will not occur in any particular sample,

given by (n−a)/n and (n−b)/n, and the chance that neither species would be found,

given by (n−a)/n×(n−b)/n. The expected number of samples where neither species

10
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is detected is then (n − a)(n − b)/n. For each of the four groups: A only, B only,

A + B, and neither, we divide the square of the difference between observed and

expected values by the expected value, i.e. deviation2

expectated
, and then we sum these 4 values.

The result must be compared to a Chi-square table using a degree of freedom of one

(because we used data from two species), and this will yield the probability the results

we obtained were due to random chance.

Dice concluded with the following comments on the reliability and usability of

these measures. The magnitude of the Chi-square test suffers from the same drawback

as the coefficient of association, in that it varies based on the scarcity or abundance of

the species being compared, so further interpretation must be done. The association

between three or more species can be determined by expansion of the formulas used

for two species, but it is difficult to obtain a sample size needed. To be reliable,

sample sizes for association between two species should be greater than 100; the

number of expected units in each of the four classes should exceed ten and values

less than five are unreliable. Other possible issues Dice listed, involve the omission

how many individuals of each species occur in each sample, or the tendency of some

individuals to be associated with larger groups such as families, packs, or swarms.

The way samples are drawn is also of relevance, as it is important to ensure that each

sample’s size and scope is appropriate, and the method of collection is fair to both

species.

It is also valuable to note that a high association index, coefficient index, or

coefficient of association value, do not necessarily explain or define an association

between species. Two species may be mutually attracted to – or dependent on –

another species or other factor in their environment. Thus, in some cases associated

11
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species may have no direct relationship beyond selection of the same habitat, while

in others, some more fundamental association may be found between the species such

as a predator-prey link where one animal feeds on another (even if there might be

another species between them), or some sort of symbiosis where both species benefit

from the others presence. �

2.2 Halmos - Measure Theory (1950)

Generally when the size of a set is judged, it is the number of elements within it

(cardinality) that is measured. This, however, is only one of the ways the size of a

set of items can be measured. We chose to review and use ideas presented in a grad-

uate textbook in Mathematics called Measure Theory [9], written by Paul Halmos in

1950 due to its generalized treatment of measure spaces, its extremely high citation

count, and the fact that much of the material remains relevant today. The book was

also reprinted several times by the Graduate Textbooks in Mathematics series demon-

strating its value in the field [10]. The book examined many aspects of generalizing

measurement, but this review focuses on measure functions and spaces, which are the

most relevant parts of the text.

Within the prerequisite reading, he defined a metric space as a set X and a real

valued distance function d on X × X with the following three basic requirements.

The distance between two elements can be zero, only if they are the same element

(d(x, y) = 0 ⇐⇒ x = y). The distance from one object to another, is the same as

the reverse distance, i.e. d is reflexive (d(x, y) = d(y, x)). The triangle inequality is

used to require that the distance between any two points is shorter than the sum of

the distances through an intermediate point.

12
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The first chapter of Measure Theory provided a background to familiarize the

reader with basic principles in sets and classes then chapter two was dedicated to

measures on structures such as rings, intervals, and of course sets. We did not use

material from chapter three which focuses on extensions of measures, but chapter

four outlined measure spaces, and measurable functions which play an important role

in this thesis.

In our section on measure theory (Section 3.1), we define a measure space as

a triple consisting of a universe, the universe’s power set, and a function/measure

satisfying three requirements, but this is a slight simplification. In Halmos definition,

like ours, a measure space triple also begins with a set and ends with a function.

Instead of the power set of the universe used here, Halmos used a more general σ-ring

S of subsets of the universe, requiring that
⋃
S = X, i.e. every point is contained

in some set, or no point exists that does not belong to any set. We do not need this

requirement since we only need to be able to compare any element in the universe

to any other, so we use the power set which trivially satisfies Halmos extra closure

requirement. Using a σ-ring instead would allow for more information to be expressed

when extra data is provided which partitions the universe, and is closed under union

and complementation. For us to use the more general σ-ring structure would mean-

among other things-that we would need 2 operations on the universe of elements U

(call them ∗ and ◦) where (U, ∗) forms an abelian group, and (U, ◦) forms a monoid

and ◦ distributes over ∗. We would need to show the existence of ∗ and ◦ and prove or

assume that ∗ is associative, commutative, and has a zero element and ◦ is associative,

and has an identity element. However, we wished for our work to be applicable in a

situations where these binary operations are not defined or do not satisfy the axioms.

13
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Essentially we want to be able to compare and judge the similarity of two sets of

items within a larger universe, regardless of the properties, or lack thereof.

This thesis uses measure theory to create a way of assigning values to each set of

items. It is then possible to define the function in a measure space to evaluate any

attributes of the elements in our universe. Most often, this thesis assigns the measure

to be cardinality, so that number of items in a set can be counted, but at times, it

may be needed to evaluate similarity based on other attributes such as size, weight,

price, etc. �

2.3 Marczewski - On a Certain Distance of Sets

and Corresponding Distance of Functions (1958)

This short paper by Marczewski and Steinhaus[18] was the inspiration for the author’s

idea of using a foundation of measure theory as a generalization technique. The

purpose of the paper was to study and report properties of the ‘distance between sets’

formula written below, and the corresponding ‘distance between functions’. Drawing

from both measure theory and distance between sets, the authors propose a new

metric they refer to as σµ (where µ : 2U → [0, 1] represents a function returning the

measure of the set) which is defined as the ratio of measures like so:

σµ(A,B) =


µ((A\B)∪(B\A))

µ(A∪B)
if µ(A ∪B) > 0

0 if µ(A ∪B) = 0

They then prove that the triangle inequality holds, and explain that the maximum

and minimum values of 1 and 0 respectively, follow directly from the definition. The

14
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maximum value occurs when the two sets have an empty intersection, since then

the symmetric difference and the union are equal. The minimum value is piece-wise

defined to be zero whenever the measure of the union is zero, to prevent an undefined

value (i.e. denominator zero). This definition of distance is equivalent to the Jaccard

similarity index if we subtract the result from 1.

The example which the authors provided at the end of their paper demonstrates

the contrast between evaluation using sets and evaluation using functions. This sug-

gested that it is not possible to accurately and completely define what it means for

one set to ‘best’ approximate another without somehow referring to which attributes

are used to define the size of a set. Essentially, how the set is to be measured must

be known, before it is possible to evaluate how similar/different two sets are with

respect to that measurement. This is the purpose of the µ function which is defined

in section 3.1 �

2.4 Zadeh - Fuzzy Sets (1965)

In 1965 Zadeh produced a foundational article with merely three citations[39]. Ref-

erencing only Lattice Theory by Birkhoff, Naive Set Theory by Halmos, and Intro-

duction to Metamathematics by Kleene, L. A. Zadeh characterized fuzzy sets as a

class of objects, each with a continuum of grade of membership. “Essentially,” Zadeh

wrote, “such a framework provides a natural way of dealing with problems in which

the source of imprecision is the absence of sharply defined criteria of class membership

rather than the presence of random variables.”

Formally, given a space of objects X, a fuzzy set A is defined by a membership

function fA(x) which maps each point x in X to a real number in the interval [0, 1].
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If A is an ordinary set, the function can only map to 0 or 1 according to whether x

belongs to A.

Important concepts outlined by Zadeh include complement, containment, union,

and intersection. The complement of fuzzy set A is simply fA′ = 1−fA. Containment,

defines that A is a subset of B if fA 5 fB. The union of two fuzzy sets is defined as

the maximum membership of each set for each point and the intersection is defined

as the minimum membership. Alternatively, the union/intersection of A and B can

be defined as the smallest/largest fuzzy set containing/contained in both A and B.

Zadeh observed that the notion of “belonging” does not have the same role in fuzzy

sets as in ordinary sets. It is only stated to be meaningful in the trivial sense of fA(x)

being positive. Zadeh noted, however, that one could define levels 0 < β < α < 1 and

declare that: (1) x belongs to A if fA(x) = α (2) x does not belong to A if fA(x) 5 β

and (3) x has an indeterminate status relative to A if β < fA(x) < α. “This leads to

a three-valued logic with three truth values.” Zadeh neglected to note that if we set

α = β in the above, we can obtain two value logic with α = β as the threshold above

which x belongs to A, and below it does not.

In his third chapter, Zadeh extended basic identities which hold for ordinary sets

to fuzzy sets. De Morgan’s laws and distributativity of union and intersection over

each other are fairly intuitive. A way of interpreting unions and intersections was

also proposed. Within the framework of ordinary sets, a set expressed in terms of a

family of sets A1, . . . , An and connectives ∪ and ∩, can be interpreted as a network of

switches with Ai ∩Aj and Ai ∪Aj corresponding to series and parallel combinations.

In fuzzy sets, sieves are used instead of switches. A quote is the most succinct way

of describing it:
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“Specifically, let fi(x), i = 1, . . . , n denote the value of the membership

function of Ai at x. Associate with fi(x) a sieve Si(x) whose meshes are of

size fi(x). Then, fi(x) ∨ fj(x) and fi(x) ∧ fj(x) correspond, respectively,

to parallel and series combinations of Si(x) and Sj(x).”

Chapter Four was dedicated to algebraic operations. The algebraic product of A

and B denoted by AB is defined in terms of the membership functions of A and B

by fAB = fAfB, and clearly AB ⊂ A∩B. Unlike the algebraic product, the algebraic

sum has an associated condition. The algebraic sum of A and B denoted by A + B

is defined by fA+B = fA + fB, if and only if fA + fB 5 1 is satisfied for all x. The

absolute difference of A and B denoted by |A− B| is defined by f|A−B| = |fA − fB|.

The concept of a relation was also extended to fuzzy relations. While a relation in

ordinary sets is defined as a set of ordered pairs, a fuzzy relation in X is a fuzzy set

in the product space X ×X. Essentially each ordered pair has an associated degree

of membership in the relation.

A notion called convexity was discussed in Chapter Five, but the material is

outside the scope of this thesis, and so is omitted from this review. �

2.5 Tversky - Features of Similarity (1977)

In one publication examining similarity, Amos Tversky published Features of Similarity[34]

in the Psychological Review Journal. In the paper, he examined “metric and dimen-

sional assumptions underlying geometric representation of similarity.” The major

contribution of the paper however, is the development of a new process termed feature-

matching. It is interesting to note that when the paper was written, similarity was
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primarily cited as useful for individuals making classifications, forming concepts, and

generalizing. Tversky wrote:

“the concept of similarity is ubiquitous in psychological theory. It under-

lies the accounts of stimulus and response generalization in learning, it is

employed to explain errors in memory and pattern recognition, and it is

central to the analysis of connotative meaning.”

At the present time, this statement contains renewed validity in the field of ma-

chine learning. An entire branch of research called metric learning has emerged which

uses machine learning in an attempt to produce an optimized distance function be-

tween elements where the distance is the inverse of similarity [16]. Much of the

research surrounding theoretical analysis of similarity relations had regarded dissimi-

larity as a metric distance between geometric points. Using this framework, Tversky

references the following three axioms with regard to distance between points. (1)

Minimality - the notion that an item has zero distance from itself, and some positive

distance to all distinct items; (2) Symmetry - that one point is the same distance from

a second point as the second point is from the first; and (3) the Triangle Inequality -

which dictates that the distance directly from one point to another is always shorter

or equal to the sum of the distances from each point to any intermediate point. While

these axioms may be valid for geometric points, Tversky argued that they do not hold

for similarity. For example, he noted that in recognition experiments objects are more

frequently identified as other objects than as themselves, so if we take identification

probability as a measure of similarity, then the axiom of minimality is violated, and

thus shows the incompatibility with the distance model.
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Tversky also takes the opportunity in this paper to point out a flaw in the tra-

ditional assumption that similarity is symmetric. He explained how similarity can

be taken in the form “a is like b” which is directional. “...it has a subject a, and a

referent, b, and it is not equivalent in general to the converse statement ‘b is like a’.”

Having provided explanations why the first two axioms are not valid in a psycho-

logical similarity setting, he focused next on the triangle inequality. Using similarity

among countries as an example, he showed that even if one item is similar to a second

for some reason, and that second item is similar to a third for another reason, the first

and third items may not be at all similar. Not only does this express that a ‘similar-

ity’ relation would not be transitive, but the triangle inequality is not valid either. It

is easier to see by replacing similarity with distance. Contrary to intuition, items one

and three may be farther apart than the sum of the distances from each item to the

second item. Violation of the triangle inequality also shows that a geometric point

representation of distance as an inverse to similarity is not always valid.

It seems he was using the idea that similarity can be measured in a variety of ways

to justify his claims. He also cited variability of the reasoning for his justification.

Since he interpreted similarity as a judgment by an individual, room must be left for

subjectivity, and so absolute rules may not be applicable at all.

As an alternative, the approach proposed instead was termed feature matching.

Given a universe of objects denoted by lower case letters, each is assumed to be

represented by a set of attributes or features, the set of which is given by respective

upper case letters. So A is the set of features of object a. Tversky then elaborated

five assumptions he based his theory on. The first called matching expressed that

similarity is a function on three inputs. The common features, and the two sets of
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features unique to each object. The second, monotonicity, expresses that similarity

increases with addition of common features and/or deletion of distinctive features. A

function satisfying these two assumptions is called a matching function.

Regarding the third assumption, Tversky stated that independence was the major

assumption associated with his theory. This showed the distance between each of two

pairs of objects is the same if the difference between each pair of objects is the same

set of features.

Two more assumptions were made, but rigorous formulations were left for the

Appendix. Solvability required that the feature space be rich enough that certain

similarity equations could be solved, and invariance ensured preservation of equiva-

lence of intervals.

With these five assumptions, the representation theorem dictates that there exists

some similarity scale S, and non-negative scale f, and defines the value of the former

based on the value of the latter applied to the union and set differences of pairs of

attribute sets. Called the contrast model, it expressed “similarity between objects

as a weighted difference of the measures of their common and distinctive features,

thereby allowing for a variety of similarity relations over the same domain.”

Tversky next defined the ratio model which generalized set-theoretical models of

similarity from the literature. The model essentially normalized the contrast model

so that values lie between 0 and 1. It also specified parameters α and β to vary the

value of elements unique to each set.

A review of the asymmetry in similarity models was a valuable portion of this

publication. Tversky noted that though the model itself suggests that the similarity of

A to B should be the same as B to A, there are indeed instances where they are deemed
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to be different. The example given was pairs of countries. In an experiment Tversky

conducted, an overwhelming majority of participants preferred to use the phrase,

“North Korea is similar to Red China” over the alternative, “Red China is similar to

North Korea” which demonstrated one example of asymmetry in similarity. A further

asymmetry experiment also indicated that subjects preferred to judge similarities by

comparing the more complex object as the referent to a simpler subject. In some

sense, it seems that a complex object is more similar to a simple object than that

simple object is to the same complex object.

Tversky also noted that Rosch [27] had also performed experiments supporting

the notion that “prototypes” (taken as the more simple object) are preferred to be

the item compared to. For example, subjects preferred “103 is virtually 100”, to the

phrase “100 is virtually 103”. Tversky continued to support his asymmetry claim by

discussing another study where Garner [8] asked subjects to select a pattern of dots

similar but not identical to a given one. Subjects usually chose “good” patterns as

responses to “bad” patterns, but the converse was rare. One thought from this author

might be to dynamically define α and β according to which item being compared is

more ‘prototypical’. If these values are allowed to vary, even if asymmetry is allowed,

it can be compensated for.

Tversky went on to give evidence supporting his hypothesis that similarity and

difference are complements. This is of course a generalization, so Tversky noted that

when assessing similarity subjects tend to assign more importance to the common

elements, and the same is true for judging difference. Related to this notion, he also

explained how similarity depends on context, and provided corresponding rationale.

One strange consequence of Tversky’s look at features in similarity, is that a pair of
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objects with many common and many distinctive features can be judged to be both

more similar and more different than another pair of objects with fewer similar and

distinctive features. Experiments were also conducted supporting the claim that the

universe of choices significantly impacts how similar objects are judged to be.

The paper concluded with a discussion of the role similarity plays in classifica-

tion, and a brief look at comparisons in similes and metaphors. “It appears,” Tversky

wrote, “that people interpret similes by [...] scanning the feature space of the referent

that are applicable to the subject.” It is important to mention this limitation in

the rough set setting. Without the symmetry axiom, there could be a case where

sim(A,B) > sim(B,A) which means that it is impossible to isolate an optimal

approximation using any of the measures which are naturally symmetric, but the

Tversky index allows for the exploration of properties of a non-symmetric similarity

relation when α 6= β. �

2.6 Tversky & Gati - Studies of Similarity (1978)

Amos Tversky and Itamar Gati wrote a chapter in Cognition and Categorization

outlining their new theoretical analysis of similarity in which they also look at some

empirical consequences[35]. They began their chapter by declaring how fundamental

similarity is to life. Since, as they begin, “any event in the history of an organism is,

in a sense, unique,” when an organism demonstrates the ability to recognize, learn,

and judge, it suggests that the organism can categorize stimuli and classify situations

by similarity ([35],p.75).

Tversky and Gati observed that “the theoretical analysis of similarity relations

[had] been dominated by geometric models,” where each object is represented by a
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point in some coordinate space, usually assumed to be Euclidean ([35],p.75). Analysis

is generally done to embed the objects in a space of minimum dimensionality based

on the observed similarities.

The authors then reviewed the feature-theoretical approach to analysis of sim-

ilarity relations proposed by Tversky in [34]. This view was said to challenge the

geometric approach as the measurement of similarity is quite different. It seems that

the main difference was that the new feature-based approach did not try to restrict

the number of dimensions at all. In some sense, although the authors do not discuss

this explicitly, the new approach allows for any number of dimensions, if we regard

each possible feature as a dimension and the possible attributes as the values in that

dimension.

A brief comment on notation defined s(a, b) as the observed similarity of a to b.

It is expressed as a function of three arguments: A ∩ B (common features), A − B

(features of A but not B), and B − A (features of B but not A). Also of note is

that the feature-theoretical approach does not require subjective judgments based on

functions of each feature like the euclidean approach, which must define the extent

to which each feature should contribute to the final euclidean point.

The authors defined the contrast model, based on an interval similarity scale S,

which preserves the observed similarity order, and a scale f defined on the relevant

feature space such that S(a, b) = θf(A∩B)−αf(A−B)−βf(B−A) where θ, α, β ≥ 0.

They note that this defines a family of indicies defined by the three parameters rather

than a unique index.

The remainder of the chapter analyzed problems using the contrast model and five

studies they performed. The problems, all concern the impact on measured similarity
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from the judgment of the task (similarity vs. difference), the direction of comparison

(a vs. b or b vs. a), and the effective context (the whole set of objects). Actually,

these are impacts that must be ignored in the main thesis contribution because of

the rough set setting, and the need to begin with a simple theory that can be revised

and improved.

Judgments of similarity and judgments of difference can be regarded as concep-

tually independent, but the authors cited that previous data appears to support the

notion that they are perfectly correlated in many-though not all-cases. The authors

explain that “the instruction to consider similarity may lead the subject to focus

primarily on the features that contribute to the similarity of the stimuli, whereas

the instruction to consider difference may lead the subject to focus primarily on the

features that contribute to the difference between stimuli” ([35],p.77-78). They per-

formed a study asking subjects to either judge the more similar or the more different

pairs from two pairs of countries. The results obtained supported their claim (with

t = 3.27, df = 59, p < .01).

The discussion on symmetry was continued from Tversky’s previous paper [34],

as the authors explain that “similarity judgments can be regarded as extensions of

similarity statements” (e.g. “A is like B”) ([35],p.80), and that this statement is

directional. Thus more weight would be given to the features of the subject than the

features of the referent which corresponds to α > β within the contrast model. It

was shown algebraically that s(a, b) > s(b, a) ⇐⇒ f(B − A) > f(A − B) implying

“that the direction of symmetry is determined by the relative salience of the stimuli so

that the less salient stimulus is more similar to the salient stimulus than vice versa.”

([35],p.81) The authors ran an experiment in which two groups participants were
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Ph.D. Thesis - Adam Lenarčič McMaster - Computing and Software

asked to assess how different (or similar) countries are from one another, with each

group getting the countries in opposite orders. The results supported the authors

predictions.

While the first two problems were related to the parameters (θ, α, β), the third

problem, dealing with contextual effects, describes how the function f is impacted

by changing context. The example given, from when Germany was divided, was that

East Germany and West Germany may be judged as very similar in a geographical or

cultural context, but vastly different in a political context. Among a group of Asian

and African countries the two Germanys would likely be viewed as more similar than

among a group of European countries. An experiment was run to test the hypothesis

that the same pair of objects are judged more similar among a larger group of varying

objects with no commonalities, than among a smaller group of objects with features

in common. Countries were used as objects, with their geographic continent as the

common feature. Results the authors obtained, and results they cited from a paper

written by Sjoberg [31], supported their conclusion. It seems that a complete measure

of similarity should not ignore context though in certain settings the data are not

provided to be able to consider it.

The context issue Tversky and Gati raised is one which should be explored in the

rough set setting. The author observes that adding the same feature to all objects

in a universe would skew similarity evaluations which are based on cardinality alone.

Thus, it would seem that to provide a fully accurate measure of similarity, not only

the objects being compared must be evaluated, but all objects in the universe under

consideration. The extent to which objects not being compared to one another should

be evaluated is an open problem (for example, they may just be checked to have
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certain features or not, thus skipping some parts of a full evaluation). This adds

several layers of complexity, so exactly how changing context could be incorporated

into the measurement of similarity is an open problem for future work. It must be

noted though, that by generalizing the distance function using measure theory, one

type of context in our evaluation of similarity is inherently present, since the particular

attributes of an object to measure and compare can be selected.

Finally, one of Tversky and Gati’s conclusions should be reiterated. They re-

minded the reader that “there is no unitary concept of similarity that is applicable to

all different experimental procedures used to elicit proximity data.” With regard to

the present work, this means that to increase the accuracy of any similarity measure,

more functions and possibly more variables are needed to capture more information

about the subject, referent, universe, and type of comparison being made. �

2.7 Tversky & Gati - Similarity, Separability, and

the Triangle Inequality (1982)

In this Psychological Review article, Tversky and his coauthor Gati examined the

triangle inequality with respect to similarity in several contexts[36]. The triangle

inequality D(i, j) + D(j, k) ≥ D(i, k) algebraically dictates that total distance from

one object to a third increases (or stays constant) if instead of finding the direct

distance, we instead evaluate it through an intermediate second point. Inherently

visually obvious in geometry, we can simply draw any triangle and observe that the

lengths of two sides of a triangle cannot sum to less than the length of the third

side. The degenerate case where two sides equal the third results in a line instead
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of a triangle. Somewhat counter-intuitively this property is not guaranteed in all

algebraic settings.

The authors of the paper restrict their attention to monotone proximity struc-

tures thus requiring three elementary ordinal properties: dominance, consistency,

and transitivity. These are abstracted algebraic versions of properties we can visual-

ize geometrically in a right triangle. Dominance simplifies in the context of a right

triangle to simply mean that the longest side is longer than either of the other two,

or as the authors write: “a two-dimensional difference exceeds its one-dimensional

components.” Consistency, meaning dimensions are assumed to be independent, can

be visualized geometrically by noting that any line can be translated linearly, and

the x and y components maintain the same ordering. Their third condition, tran-

sitivity, is required of a betweenness relation on pairs. It is thus the only example

here which refers to four points of reference. To visualize a simplistic geometric ex-

ample, we need to imagine four points. The property forces it to form a non-reflex

quadrilateral (or two triangles sharing a single side if we connect either diagonal).

If we label the farthest two points a and d, and the other two points b and c, we

will find that the triangle formed by points a, b, c has longest edge (a, c), and the

triangle formed by points b, c, d has longest edge (b, d). Given the above two condi-

tions, transitivity states that the triangles a, b, d and a, c, d must have longest edge

(a, d). Of course this is a simplification, but it serves to illustrate the conditions

above for the Euclidean model. Tversky and Gati however, use the assumption that

the distance between points δ(ap, bq) is related monotonically to the metric distance

D(ap, bq) = (|ȧ− ḃ|γ + |ṗ− q̇|γ)1−γ where ȧ, ḃ, ṗ, q̇ represent the one dimensional com-

ponents or coordinates of each respective element, and γ ≥ 1. This model is called
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the Minkowski γ-metric, and classifies families of distances functions for each value

of γ ≥ 1. The Euclidean model has γ = 2, and for γ = 1 the distance between two

points will always be exactly the same as it would be calculated through intermediate

points. It is interesting to observe non-metric models where γ < 1. As this variable

increases so does the distance saved in the model by computing directly between

points instead of through an intermediate. For fractional values of γ in some abstract

sense, the shortest distance between two points is not a straight line.

Metric models must also satisfy a property Tversky and Gati cited from (Beals et

al., 1968) called segmental additivity, which breaks down to requiring that distance

between any two points can be found. A condition called the corner inequality requires

that the sum of the distances in each dimension is greater than or equal to the distance

taken across all dimensions. They are equal only if γ = 1.

To contrast this model the authors outlined an approach based on feature match-

ing and the contrast model previously proposed by Tversky[34]. A valuable mention

of how the authors chose to represent quantitative attributes such as length or loud-

ness, with smaller values given as subsets of larger values, was attributed to Guttman

(1954), and Restle (1959,1961). The authors go on to define these nested sets in which

smaller sets share all attributes of larger sets, and contrast them with chains of sets

which share some but not all attributes. Of note, is their coincidence hypothesis in

the contrast model which contradicts the corner inequality whenever more weight is

given to common attributes of elements than to attributes unique to either set. The

remaining contents of the article pertain to experiments illustrating the above proper-

ties. The authors asked subjects to rate (dis)similarity in many studies with different

controlled variables, and analyzed the resulting data with their proposed equations.
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The data from subjects who were asked to rate similarity between pictures of objects

which had specific differences, strongly violated the corner hypothesis. This implies

that when a sequence of pictures is arranged so that the difference between them is

incremental and equal between adjacent pictures, subjects still perceive non-adjacent

pictures as more similar than the sum of all similarities in adjacent pairs of picture in

the chain. Only for colours, when hue and chroma are tested, is the corner equality

strongly supported.

When the corner equality does not hold, the authors noted that while more di-

mensions could be introduced to compensate, in their experiments a third dimension

did not fit data better than two dimensions, and so they suggest that dominance, con-

sistency, and transitivity are not expected to hold in three dimensions. The corner

equality is satisfied less often in certain conditions such as when attributes are more

separable, when the structure of the dimensions is more obvious, or when common

attributes of stimuli are weighted more than distinctive features. Stimuli are sepa-

rable if one attribute can be examined ignoring the other. For example, color and

shape are considered separable, while chroma and hue are not.

Tversky and Gati recall from earlier work that subjects tend to focus more on

common attributes than distinct ones when judging similarity. This fact could be

integrated into a similarity equation by requiring that attributes common to both

elements be regarded as more important.

Strangely, when they studied proximate distance, they found that when items

coincide on one dimension, bringing them closer increases their similarity, but when

items differed in both dimensions, the same action decreases their perceived similarity.

Additionally, they note that attributes common to all elements of the domain

29
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convey no information, so it may be desirable to eliminate them. This observation

could be applied in situations where several items being compared pairwise have

common attributes which could be ignored to modify pairwise comparison values.

The coincidence effect implies that either distances along straight lines are not

additive, or the shortest path between points is not a straight line. Thus the existence

of such an effect has not fully been explained. Several possible interpretations have

been given though. The authors cited Krumhansl(1978), as suggesting that spatial

density around a point may increase measured distance. In this view, the distance

along two adjacent sides of a rectangle could be shorter than the diagonal if there

exists a higher density of points near the values along the diagonal. Tversky and Gati

ran another experiment however, in which the results detracted from this proposal.

The paper concluded with the claim that since, for example, the triangle inequality

and segmental additivity are sometimes shown to be incorrect, basic properties of the

geometric model cannot be universally applied as valid principles of psychological

similarity. �

2.8 Pawlak - Rough Sets (1982)

The article Rough Sets [21] in the International Journal of Computer and Information

Sciences, is routinely cited in any work involving rough sets. It is often cited as the

foundational paper of rough set theory as it is the first published article, though in

it Pawlak states that he first introduced Rough Sets in his 1981 report of the same

name. In this paper, Zdzis law Pawlak introduced the now well known concepts of

upper and lower approximations. He formalized rough sets as a pair of crisp sets

giving the upper and lower boundaries. One result being that the lower must be a
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subset of the upper, and if the rough set is not also crisp, the subset is proper.

In addition to defining the upper and lower approximations, Pawlak also defined

30 laws governing them. The laws dictate how negation, union, intersection, and the

boundary region relate to one another. As part of rough approximations, Pawlak

defined what it means for sets to be roughly equal, roughly bottom-equal, or roughly

top-equal. Roughly equal refers to two sets having the same upper and lower approx-

imations, while the other two define cases where only one approximation is equal.

Even without equality, two sets without any equal approximations, can still be

compared, or related with Pawlak’s rough inclusion. A set X is roughly bottom-

included (top-included) in Y if the lower (upper) approximation of X is contained

in the lower (upper) approximation of Y and roughly included if it is both bottom-

included and top-included.

A small section of the paper was devoted to expressing the “quality” of an approx-

imation. Pawlak defined the accuracy of an approximation by a ratio. He divided

the number of elements in the lower approximation by the number of elements in the

upper approximation to obtain a value between 0 and 1. For any crisp set, the upper

approximation equals the lower approximation, so the accuracy is 1. If our target set

contains some part of every equivalence class, but does not contain every element in

any class, the accuracy is 0.

Obviously there are limitations with this definition. For any non-empty set where

the lower approximation is the empty set, the accuracy is always zero. This leads to

counter-intuitive situations where two sets are not equal, have the same approximation

of zero, yet the accuracy of both is equal (to zero). For two different sets with the

same approximation the accuracies of each are expected to be different. �
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2.9 Pawlak - Rough Sets and Fuzzy Sets (1985)

Only a few years after introducing rough sets, Pawlak wrote this short communication

comparing rough sets to fuzzy sets[22]. First, he reviewed rough set definitions, in-

cluding the upper and lower approximations, and the boundary region corresponding

to what this thesis refers to as a border set. He also noted that the approxima-

tion space uniquely determines a topological space using the elementary sets as a

base. This led to 11 intuitive properties. Among them are the fact that the lower

approximation is a subset of the target set, which is itself a subset of the upper ap-

proximation. Also, the fact that the lower and upper approximations of the entire

universe of elements is the universe itself, and the empty set is also its own upper and

lower approximation. The remaining properties involved the intersection and union

of sets and upper/lower approximations as well as results of taking the upper/lower

approximation twice or taking both approximations in sequence.

Pawlak briefly reviewed the definition of fuzzy sets from Zadeh [39] then defined

a membership function that evaluates if an element is in the lower approximation,

the boundary region, or outside the upper approximation altogether. It was shown

that this membership function cannot be extended to union and intersection of sets,

by deriving a contradiction using some of the properties defined earlier.

Finally, he noted that “the concept of rough set is wider than the concept of

fuzzy set.” Rough sets can be reduced to fuzzy sets in the following scenario: given

two sets, the union of their lower approximations is not merely a subset of the lower

approximation of the union but they are exactly equal, and the upper approximation

of the intersection of two sets is, instead of a subset, equal to the union of upper

approximations.
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Essentially, the reduction can only occur when the union and intersection of two

fuzzy sets are equal to the union and intersection if the sets were regarded as rough,

and degree of membership is ignored. Since Pawlak first analyzed both types of sets,

there have been several comparative studies to investigate similarities and differences

[37]. They seem to conclude that whether rough set theory is regarded as a deviation

or an extension of classical set theory depends on the view adopted; namely set-

oriented, or operator-oriented. �

2.10 Pawlak - Rough Sets Approach to Knowledge-

Based Decision Support (1997)

For the European Journal of Operational Research, Pawlak produced a paper in

which he described possible applications of rough set theory[24]. He explained that

the indiscernibility relation is the mathematical foundation of rough set theory. It

expresses that the information we have defines objects, but due to a lack of knowl-

edge, we are unable to distinguish between certain objects or groups of objects. The

principle of rough set theory is that if we are unable to distinguish objects, but still

require further analysis on the entire set of objects, we can define each object by

the group it is in, and perform analysis on the groups instead of on the individual

objects. As Pawlawk wrote, “any set of all indiscernible (similar) objects is called an

elementary set, and forms the basic granule (atom) of knowledge about the universe.

Any union of some elementary sets is referred to as crisp (precise) set - otherwise a

set is rough (imprecise, vague).”([24],P.48) Another way to envision a set which is

rough or imprecise, is as a group of items where some item is similar or indiscernible
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to an item not in the group. This very fact is what makes the set rough. Since we are

unable to describe the group using only a set of indiscernible items or classes-which

may significantly reduce the size of the description-we must instead use the items

themselves.

One disadvantage of vague or rough concepts Pawlak noted, was that while precise

concepts can be characterized in terms of information about their elements, this is

not possible for vague concepts. So, a rough set can be replaced/approximated by

a pair of precise concepts called the upper and lower approximations. The lower

approximation includes all objects that must belong to the concept, and the upper

approximation contains all objects which might possibly belong to the concept. The

difference between them Pawlak called the boundary region.

According to the Pawlak, at the time of writing, the rough set method branched

into disciplinary fields including machine learning, knowledge discovery, statistics,

and inductive inference, but the interpretation of results lies outside the theory. This

seems logical since there is usually a wide variety of possible explanations for numer-

ical or set-theoretical results.

For a more general understanding, Pawlak chose to define the framework refer-

ring to an information table, or attribute-value table first, instead of the mathemat-

ical relation definition, which followed. In such a table, each possible group of at-

tributes/columns divides the objects into groups or ‘classes’ which have the same

attribute values. To refer to a class containing an element x, we reference I(B)(x)

(meaning the indiscernibility relation based on the set B of attributes) or just B(x).

Using the set of attributes B to partition the elements, the groups formed are called

B–elementary sets.
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Ph.D. Thesis - Adam Lenarčič McMaster - Computing and Software

Pawlak defined the framework formally as follows:

“Let U be a finite set of objects - called the universe - and let A be a

finite set of attributes. With every attribute a ∈ A set of its values Va is

associated. Each attribute a determines a function fA : U → Va. With

every subset B of attributes A we associate an indiscernibility relation on

U , denoted I(B) and defined thus: I(B) = {(x, y) ∈ U × U : fa(x) =

fa(y), ∀a ∈ B}” [24, p.49]

This definition allows for different sets of equivalence classes to be formed from

the universe, by selecting different sets of attributes, and thus using a different indis-

cernibility relation. In this thesis, however, only one attribute or equivalence relation

is considered so the universe is only divided up in one way, though it could be easily

extended by restricting attention to a subset of attributes as Pawlak did here.

Pawlak went on to define the B–lower and B–upper approximations. These are

simply versions of the lower and upper approximations which explicitly specify the

group of attributes B being used to partition the universe. The B–lower approxi-

mation of a target set X includes every object class B(x) where all objects in the

class are within the set X. The B–upper approximation is similar but includes all

object classes which contain one or more objects from the target set. Their difference

is called the B–Boundary region.

Almost as a side note, Pawlak mentioned that a rough set can be characterized

numerically by dividing the size (cardinality) of lower approximation by the size of

the upper approximation to yield the coefficient αB(X) which he called the accuracy

of approximation. This coefficient could be used to check if a set X is crisp, since it

is only crisp if αB(X) = 1. Values less than one obviously mean the set is rough.
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Next the author defined rough membership. We recall the authors explanation

that “vagueness is related to sets, while uncertainty is related to elements of sets”

([24],p.51) To discuss uncertainty in the rough set framework, Pawlak defined the

rough membership function as µBX(x) = |X∩B(x)|
|B(x)| . Seen as the degree of certainty to

which x belongs to X, the function is simply a ratio which divides the number of

objects common to X and the equivalence class containing x, by the total number of

objects in the equivalence class containing x. A value of one shows that X = B(x) so

this function can also be interpreted as an evaluation of what portion of the objects

indiscernible from x (the class B(x)) are in the target set X. Pawlak pointed out

that values of the membership function are computed from given data, as opposed to

being assumed like the fuzzy membership function.

The dependency of attributes was explored next, though the notion is not used

in this thesis, and so is explored only briefly. If it is found that we can determine

the value of a certain attribute for all objects in a universe using other attributes, we

call this a functional dependency in the relational databases sense. In dealing with

rough sets, Pawlak also defined partial dependency of attributes which evaluates the

portion of the universe in which one group of attributes uniquely determines another

group.

If we derive a total dependency, the dependent attributes could be considered

unneeded since they can be uniquely determined by others. These attributes are called

superfluous while all others are called indispensable. A set of attributes is independent

(orthogonal) if all the attributes are indispensable. Pawlak defined a subset B′ of B

as a reduct of B if B′ is independent and both partition the universe equally. The core

of a set of attributes is the set of indispensable attributes. To connect the notions of
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core and reduct, Pawlak reported that the core of a subset of attributes B is equal

to the intersection of all reducts of B, i.e. Core(B) =
⋂
Reducts(B).

Pawlak distinguished between two types of attributes: condition and decision

attributes. If all attributes in an information table are classified as one of the above,

the table becomes a decision table. Decision attributes specify decisions to be made

based on condition attributes. When reducing condition attributes, one goal is to

preserve the dependency between condition and decision attributes. Pawlak reported

that it is easy to generalize the concept of a reduct so that features other than

partitions, such as a degree of partial dependency, are preserved. He elaborated that

if we regard condition attributes as a premise, and decision attributes as a conclusion,

we can easily convert a decision table into a list of rules, with a 1–to–1 correspondence

between rules and objects. Then, using a rough set technique, the rules can be merged

to yield a minimal set of decision rules.

Decision problems involve a set of objects which could be actions, states, processes,

opinions, or anything else. The goal of decision analysis is to explain a decision based

on the cause of it being made, and to give guidelines how to make a decision depending

on the situation. The rough set model provides techniques to create minimal sets of

decision rules from decision tables, or a set of decision rules. To conclude, Pawlak

cited numerous applications of the rough set theory, including medicine, engineering,

and finance, and listed advantages of the rough set approach, including its simplicity

and ability for data reduction. �
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Chapter 3

Mathematical Background

3.1 Measures

In its most general sense, measure theory is quite literally the study of measurement

and sizes. When defining an optimal set, we require a way to express multiple methods

of measuring the size of a set. To think about this in a basic sense, imagine we might

have a collection of a few large objects we wish to measure. If we measure the number

of objects(cardinality), the size is small, but if we measure based on the total sizes,

we get a different result. If we were comparing this set to a large group of small

objects, the type measurement used will obviously impact how we judge these sets.

The comparison could be made based on weight, colour, etc.

Measure theory essentially generalizes the concept of ‘size’. When the size of an

object or group of objects is measured, it can be done in various ways. For example,

sometimes a measurement of length is enough (rarely do you hear about the width

of a boat, because the length defines the size), but in other occasions width may be

required so that the area can be calculated such as defining the amount of floor space

38
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in a room. In this case, the length and width may be important to ensure the room

is not excessively long and narrow. In other cases, only the final calculated area is

of any value such as when the fire department assigns a maximum occupancy. In

still other cases, we may desire the additional dimension of height if we are seeking

volume. These all refer to physical size in one, two, and three spatial dimensions

respectively.

While spatial measurements are valuable in some circumstances, there are often

other measurements, observations, judgments, or facts which can be expressed only

in non-spatial terms. An item or group of items will have a physical size, but also

properties such as cost, weight, or quantity. We could even use subjective judgments

such as how strongly someone ‘prefers’ things. Measure theory allows us to abstract

the type of measurement so that we can make claims about all types of measurements.

The only fundamental rule in measure theory says that if everything in set A is also

in set B then set B is larger or equal to set A in whatever way we are measuring (and

strictly larger, if B also contains at least one item not in A). For example, if a person

‘likes’ a set of items a certain amount, we assume they ‘like’ any set with all these

items at least as much. Then, since we will assume a null-free universe, the addition

of a new (non-null) item to a set requires that the measurement increase, i.e. if we

add more stuff to the set, we assume the measurement of the set will be ‘bigger’ on

whatever scale we use. There are obvious counterexamples, such as when negative

weights are permitted, but this thesis restricts attention to the properties required.

In what follows, the word size is taken to mean the measurement of an element, i.e.

the evaluation of µ.

Since the field of study is so vast, only some basic results from measure theory are
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outlined which have been adapted for the purpose of this thesis (c.f. [9, 20]).

Given a (not necessarily finite) set U , define a function µ : 2U → R, (R is the set

of real numbers) that satisfies the following properties:

1. for all X ⊆ U , 0 ≤ µ(X) <∞,

2. µ(∅) = 0,

3. if Xi ⊆ U for i = 1, . . . ,∞ and Xi ∩Xj = ∅ if i 6= j, then

µ(
∞⋃
i=1

Xi) =
∞∑
i=1

µ(Xi).

Descriptively, the measurement of anything cannot be negative and must be finite,

the empty set always has size zero, and the size of anything is equal to the sum of

the sizes of its parts.

Any function which satisfies the above three criteria is called a finite measure over

2U , and a triple (U, 2U , µ) is a measure space (c.f. [9, 20]).

One can show that µ also satisfies:

• for all X, Y ⊆ U , if X ⊆ Y then µ(X) ≤ µ(Y ),

• for all Xi ⊆ U , where i = 1, . . . ,∞ (and Xi are not necessarily disjoint), we

have

µ(
∞⋃
i=1

Xi) ≤
∞∑
i=1

µ(Xi).

As just noted, the empty set must have size zero. From the perspective of measure

theory, a set is called negligible when its size is insignificant enough to be ignored
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in certain settings. In a rigorous sense, “define a subset A of U to be negligible if

for each positive ε there exists a finite or countable collection I1, I2, . . . of intervals

satisfying A ⊂
⋃
k Ik and Σk|Ik| < ε.” [1]

It should be addressed that the triple used here does contain the power set of U

which is of course derivable from U , but this convention is used to conform to the

same format as the measure space that Halmos used. As mentioned in the review

of his paper (Section 2.2), instead of 2U , he assumed a σ-ring S of subsets of the

universe with
⋃
S = X [9].

All sets whose size is zero are clearly negligible. If a continuous universe is used,

any set with a single element would be regarded as negligible, and thus any finite

set would also be negligible. In the finite rough set setting, however any non-zero

measurements can not be ignored.

In the standard version of measure theory, the property of null set freeness is not

defined and not discussed (c.f. [9, 20]), so it is technically possible to have other items

measuring zero. This creates a bit of mathematical trouble later so this thesis creates

a specification for measure spaces. If and only if the measurement of a set is zero,

that set is the empty set. With this change, we can now assume that there will be

no elements in any negligible set, and if a set is negligible, we know it is the empty

set. Formally, define a set X such that µ(X) = 0 as µ-null set and all µ-null sets as

negligible. Observe that cardinality, is a null set free measure since the only set with

size zero, is the null set.

• A measure space (U, 2U , µ) is null set free if the empty set, ∅, is the only µ-null

set, i.e. if µ(X) = 0 ⇐⇒ X = ∅.

If a set U is finite, the definition of a measure can be simplified.
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• From (3) of the measure definition, we have that if X = {x1, . . . , xm}, then

µ(X) = µ({x1}) + . . .+ µ({xm}).

This means that for finite sets a measure can be defined element-wise, as µ : U →

R and then just extend it for sets in a standard way as, for every X ⊆ U ,

µ(X) =
∑
x∈X

µ(x).

Assume that if a set U is finite, a measure µ is element-wise defined. Discrete

probability is an element-wise defined measure, with µ(U) = 1.

• If U is finite than a measure space is null-free if for every x ∈ U , µ(x) > 0.

Again, the most simplistic measure of a set, cardinality, is an example of a null-free

element-wise defined measure given by µ(x) = 1 for all x ∈ U .

3.1.1 Algebraic foundation

Next, a brief algebraic background is provided. From Halmos second chapter, a ring

of sets (in the measure sense) is defined as a non empty class R of sets which is

closed under unions and differences. i.e. if E ∈ R and F ∈ R then E ∪ F ∈ R and

E − F ∈ R. Similarly, an algebra is a ring of sets which is also closed under union

and complement operations[9]. Throughout this work, when we write that we have

an algebra A, this is to what we are referring. Essentially, a collection of distinct

entities, which may or may not overlap, but if they do, the overlap is clearly defined.
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3.2 Rough Set Foundations

When Rough Sets were introduced by Pawlak, he credited fuzzy set theory pro-

posed by Zadeh[39] as the most successful approach to the problem of imperfect

knowledge[21]. While he admitted an overlap with many other theories, this thesis

will follow Pawlak’s initial work, and consider rough set theory as an independent

discipline.

First some terms must be defined. To begin, imagine that we have group of items,

alternatively called a space, or universe, and use U to represent it. The items in

the universe may be called elements, objects, entities, etc., and will be represented

by lower class characters, usually x, and are sometimes enumerated (although no

ordering is implied). The most basic concept at the heart of rough set theory is an

indiscernibility relation.

Imagine the universe of elements is duplicated so now there are two copies of our

original universe. Then compare every element in the first version to every element in

the duplicate. If every element in the universe is different, the result should get only

one match for each element, since it will not be possible to tell the difference between

the two duplicate elements. These two items could then be called indiscernible, that

is, we are unable to tell the difference. This is a basic assumption of our universe of

elements, that they are all distinct and discernible from one another. Sometimes how-

ever, elements can be grouped either by some commonality, or by some other means.

If then, we try to compare groups, but only compare based on one measurement, then

multiple groups may be indiscernible.

For example, if a group is discussing options to eat, the number of choices is

essentially infinite but they can be grouped by differences, similarities, or arbitrarily,
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perhaps by first letter, or type of food. Any grouping we form could be considered an

equivalence relation. Choices in the same group, should be exactly the same according

to the criteria we used to group them. So then, if a specific fast food chain is ruled out

as an option because this chain is disliked by some, it is still discernible from other

fast food chains. That is, we would not place it in the same group as fast food chains

which are not disliked by anyone. But if a fast food chain is ruled out specifically

because it is fast food, all other fast food chains are indiscernible in this situation.

According to the situation at hand, all fast food chains are equivalent (in that they

are excluded as choices). All similar choices, though not identical in every way, can

still be said to be equivalent as they would be ruled out for the same reason. This

group’s opinions and choices could be said to partition the universe of elements into

equivalence relations.

In general, if there is a finite non-empty universe of elements U , then let E ⊆

U×U be an equivalence relation, denote the equivalence class E containing x as [x]E,

and use U/E to represent the set of all equivalence classes of E. This is a kind of

quotient space, but it cannot be called a quotient group since no inverse operations

are assumed. It is not even a quotient structure because there is no assumption that

there exists some operation defined to take two elements and return a single element.

To be precise, the set itself cannot even be called an algebraic structure also due to

lacking any (non-trivial) binary operations.

Since each equivalence relation creates sets of items which are indiscernible from

one another, this work often refers to 1an entire class without wishing to reference

a specific item within it. We may also reference classes without wishing to make

or imply assumptions about what might be inside them. If all sets of indiscernible
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elements are considered classes, we are left with elementary sets, components, or atoms

which can be interpreted as basic observable, measurable, or definable sets. Denote

this space Comp = U/E, and the elements within it by bold symbols, and write for

example x ∈ B ⊆ Comp.

A pair AS = (U,E) of universe and equivalence relation, is referred to as a Pawlak

approximation space. When working with rough sets one must minimally have the

universe of elements and an equivalence class partitioning them. These are assumed

to be given in subsequent sections.

3.2.1 Upper and Lower Approximations

If a non-empty set X of items cannot be represented accurately by equivalence classes,

it would be because some item is in X, but a different item in the same equivalence

class is not. We call a set like this non-definable, non-exact, or vague. This is the

situation around which, this thesis is based. In traditional rough set theory, only

two approximations of X can be taken: the lower approximation and the upper

approximation, denoted A(X) and A(X), respectively.

Informally, the lower approximation of X consists of all of the equivalence classes

(components) which have all of its elements in X, while the upper approximation of

X consists of all the equivalence relations (components) that have any of its elements

in X. An alternative way of looking at this is if an equivalence class from the lower

approximation is provided, it is guaranteed that every element of that class is a part

of the lower approximation. Alternatively, if an equivalence class from the upper

approximation is provided, we can only guarantee that at least one element from the

class is part of the upper approximation. A formal definition follows:
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Definition 1 ([21, 23]). For each X ⊆ U ,

1. A(X) =
⋃
{x | x ∈ Comp ∧ x ⊆ X},

2. A(X) =
⋃
{x | x ∈ Comp ∧ x ∩X 6= ∅}. �

It is obvious that all elements in the lower approximation of X, are in the set X,

and all elements in the set X are in the upper approximation of X. i.e. A(X) ⊆ X ⊆

A(X). It is also important to mention the existence of many extensions and versions

of this basic model [12, 38, 32, 25, 6].

A set A ⊆ U is definable (or exact) [21] if it is a union of some equivalence classes

of the equivalence relation E. Let D denote the family of all definable sets defined by

the space (U,E). Formally

A ∈ D ⇐⇒ ∃C ⊆ Comp. A =
⋃
x∈C

x,

or, equivalently, as the universe U is finite,

A ∈ D ⇐⇒ ∃x1, . . . ,xn ⊆ Comp. A = x1 ∪ . . . ∪ xn.

We would like to point out the duality of Comp and D. Each set of components

C ⊆ Comp uniquely defines the definable set dset(C) ∈ D, as dset(C) =
⋃

x∈C x, and

each definable set A ∈ D uniquely defines the set of components comp(A) ⊆ Comp,

by comp(A) = {x | x ⊆ A}.

Moreover, for each set of components C ⊆ Comp, comp(dset(C)) = C, and for each

definable set A ∈ D, dset(comp(A)) = A.
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It follows that every lower and upper approximation is a definable set, i.e. A(X) ∈

D and A(X) ∈ D for every X ⊆ U . Furthermore, all definable sets are equal to their

lower and upper approximations, as the corollary below shows.

Corollary 1. For every X ⊆ U , X ∈ D ⇐⇒ A(X) = A(X) = X. �

3.2.2 Borders

Since the definable sets in the area between the upper and lower approximations will

play an important role in our model, we need to precisely define this area.

Definition 2. For every X ⊆ U , we define the set of components B(X) ⊆ Comp

called the border of X, and the set of border sets of X called B(X) ⊆ D, as

follows:

1. x ∈ B(X) ⇐⇒ x ∈ comp(A(X)) \ comp(A(X)),

2. A ∈ B(X) ⇐⇒ A ⊆ A(X) \A(X) ∧ A ∈ D. �

The border and border sets (or boundary as Pawlak called it[21]) are building

blocks for the optimal approximation defined later. The corollary below describes

basic properties of borders and border sets.

Corollary 2. For every X ⊆ U ,

1. dset(B(X)) = A(X) \A(X) ∈ B(X) and B(X) ⊆ B(X),

2. A ∈ B(X) ⇐⇒ ∃x1, . . . ,xn ⊆ B(X). A = x1 ∪ . . . ∪ xn,

3. if A ∈ B(X) then A ∩X 6= ∅ and A \X 6= ∅.

4. if X ∈ D then B(X) = ∅. �
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Corollary 2(3) will often be used later in proofs of many important results of this

thesis. It states that any element (set) in the set of border sets overlaps, or shares

at least one element with the target set, and itself contains an item which is not

part of the target set. This makes sense, otherwise the set would be outside the

upper approximation or entirely contained in the lower approximation, which means

in either case it would not be part of the set of border sets. Combined with corollary

2(4) they state that if X is not definable, then it overlaps with each element of its set

of border sets.

48



Chapter 4

Similarity

From the chapter on measures and Measure Theory, recall that there are many ways

to judge size. There are, likewise, various alternatives to measuring how alike two

sets of items are. The amount of similarity can be regarded as a form of size, and so

it has various methods of measurement that can be used. Among these possibilities,

there must be some constant properties and this thesis refers to them as axioms.

4.1 Axioms

To express the axioms, assume that we have a set U (not necessarily finite) and

a finite measure space (U, 2U , µ). Suppose that we have a (total) function sim :

2U ×2U → [0, 1] that measures similarity between sets. These types of functions have

been known since at least the beginning of the twentieth century [11], but they do not

have standard indisputable axiomatization [4]. Depending on the area of application,

some desirable properties may vary [4, 26, 34].

This work assumes that any valid similarity function sim satisfies the following
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five, intuitive axioms. Namely, for all sets A,B ⊆ U , we have:

(Maximum): sim(A,B) = 1 ⇐⇒ A = B,S1

(Symmetry): sim(A,B) = sim(B,A),S2

(Minimum): sim(A,B) = 0 ⇐⇒ A ∩B = ∅,S3

(Inclusion): if a ∈ B \ A then sim(A,B) < sim(A ∪ {a}, B),S4

(Exclusion): if a /∈A ∪B and A ∩B 6= ∅

then sim(A,B) > sim(A ∪ {a}, B).

S5

We have also proposed a weakened version of S5, namely:

(Weak Exclusion) : if a /∈ B then sim(A,B) ≥ sim(A ∪ {a}, B)S5′

The first axiom, maximum similarity, simply forces a similarity measurements to

be at most 1. This can be easily achieved for any measure by rescaling values as a

fraction of the highest possible value. Consider for example, a measurement function

that returned values between 0 and 50, it could be scaled to divide all returned values

by 50 so that the maximum similarity axiom is satisfied.

The symmetrical similarity axiom is a property we assume because of our context,

but it is admittedly not valid in all practical cases, and the Tversky index was, in a

way, created in objection to the axiom being assumed[34]. It is, however, required to

obtain a metrical measure. In one sense, because the rough set setting is a context

where dealing with having limited information is essentially fundamental, it is nat-

ural to assume that the information given does not make it possible to differentiate
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between how similar A is to B, and how similar B is to A. Another aspect that

must be mentioned is the assumption that objective similarity is being measured, not

subjective judgments of how similar one set is to another, as in Tversky. This thesis

must then assume the ‘dimensionally organized space’ that Tversky objected to in

[34].

The third axiom, called minimum similarity, when coupled with S1, organizes the

possible similarity values into the range [0, 1]. It is meant to define when sets are

least similar, and it ensures that two sets are not minimally similar when they have

any items in common. Without S3, there might be a case with some measure where

two sets have a common element and have similarity zero. In this case, the first set

can be duplicated only removing the common element(s) and this new set should be

less similar to the second than the original. It should be less similar because it now

has fewer common elements, but to be less than zero, the value would need to be

negative. To correct this in general, the measure is scaled by subtracting the smallest

possible returned value from every returned value. Most indexes assume the axioms

S1–S3 either explicitly or implicitly, as any specific index could easily be scaled to fit

S1 and S3, and S2 is required to obtain a metric space from the approximation values

where distance between two points is a valid measurement of how dissimilar they are.

The axioms S4 and S5, although satisfied by many known similarities, were only

explicitly proposed recently in [13]. They deal with changing sizes of sets. Here they

are called monotonicity axioms. The axiom S4, referred to as inclusion is intuitive.

If part of B is added to A, the result is closer to B than A alone. This is expected

since A now contains more of B than it did before, so it should be more similar to it.

The axiom S5 however, produces a few more issues. It can be reduced to the notion
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that if some new element not in B is added to A, then the result is more different

from B than A alone. This makes sense, since adding something that is not in either

set clearly should make them less similar.

Notice the restriction to axiom S5, so it is only applicable when the sets being

compared have at least one common element. If these two sets were mutually exclu-

sive, there may be a case where sim(A,B) = sim(A∪ {a}, B) = 0 which violates the

‘greater than’ inequality. This leads to a weakened fifth axiom, in which adding an

element to A which was not in B, may decrease the similarity between them, but not

necessarily. Since the weakened version, S5′ allows for equality, the common element

requirement may also be removed. We still must require the element not to be a

member of set B, or adding it to A would make it more similar. Note, that if a ∈ A

the axiom is trivially true. Thus S5′ requires only a 6∈ B instead of a 6∈ A ∪ B. All

the axioms formulated above follow from [13].

Recall that a measure of similarity sim is said to be metrical (i.e. it is a suitable

tool to evaluate distance between two sets), if the function diff (A,B) = 1−sim(A,B)

is a proper metric or distance which holds for all A,B ⊆ U . For a distance function

f to be metrical, it must satisfy the following four requirements: [3, 4]

1. f (A,B) ≥ 0,

2. f (A,B) = 0 ⇐⇒ A = B,

3. f (A,B) = f (B,A),

4. f (A,C) ≤ f (A,B) + f (B,C), i.e triangle inequality.

The first axiom can actually be neglected, since it follows from the other three. These

axioms are those which govern metric spaces. According to [29], Metric Spaces were
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originally proposed in 1906 by M. Fréchet in [7].

4.2 Similarity Indexes

The first similarity measure was proposed in 1901 by P. Jaccard [11]. It is still one

of the most popular, possibly due to its simplicity. Notice that it only uses the

magnitudes of union and intersection, and they are each only used once with no

mathematical modifications. There are, however, other similarity measures which

are still prominent in the literature. They are used, and were developed, for varying

reasons which were investigated in Chapter 2.

• Jaccard index [11]: simJ(X, Y ) = |X∩Y |
|X∪Y | ,

• Dice-Sørensen index [5, 33]: simDS(X, Y ) = 2|X∩Y |
|X|+|Y | = 2|X∩Y |

|X∪Y |+|X∩Y | ,

• Marczewski-Steinhaus µ-index [18, 19]: simMS(X, Y ) = µ(X∩Y )
µ(X∪Y )

, where µ is a

finite measure on some U such that X, Y ⊆ U ,

• Tversky index [34]: simα,β
T (X, Y ) = |X∩Y |

|X∩Y |+α|X\Y |+β|Y \X| ,

where α, β ≥ 0 are parameters. Note that for α = β = 1, simα,β
T (X, Y ) =

simJ(X, Y ) and for α = β = 0.5, simα,β
T (X, Y ) = simDS(X, Y ).

• Braun-Blanquet index[2, 4]: simBB(X, Y ) = |X∩Y |
max(|X|,|Y |) .

The Jaccard index is a simple fraction of common elements divided by the total

number of elements. The quite similar Dice-Sørensen (DS) index adds a slight bit

of complexity due to the additions involved, but uses essentially the same tools. It

divides twice the number of common elements by the sum of the number of elements in
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each set. If the sizes of each set (for whatever reason) are more difficult to determine

or work with algebraically than the sizes of the intersection and union, notice that

an equivalent denominator is the sum of the sizes of the union and intersection of

the sets. In the DS index, those elements in both sets are counted twice in both

the numerator and denominator. Simple algebra on the measures can show that the

DS index will produce larger values than the Jaccard index whenever the union of

the sets is larger than intersection, i.e. in all cases except trivially when the sets are

equal, so both measures return value one.

The Marczewski-Steinhaus (MS) µ-index is a more generalized version of the Jac-

card index. If µ(X) = |X|, then simJ(X, Y ) = simMS(X, Y ) showing the Jaccard

index is a special case of the Marczewski-Steinhaus µ-index. If instead of using the

number of elements in the union and intersection, the total combined mass, volume,

surface area, or cost of all elements in the union and intersection was used, it would

require using the Marczewski-Steinhaus index rather than the Jaccard index. Given

that there are a multitude of ways to measure size, it is quite helpful to note this gen-

eralization. We will develop our algorithm using the Jaccard index, but it is valuable

to be able to generalize all formulas to work with the MS index so other types of size,

rather than simple counting of elements, can be used.

The Tversky index, as detailed in Section 2.5, is similar to the Jaccard index, but

makes it possible to define the weight of elements exclusive to each set separately.

The Braun-Blanquet (BB) index was recently reinvented and analyzed in [26] in the

context of Fuzzy Sets. 1 The index divides the number of common elements by

the size of the larger set. This index does indeed maintain maximum and minimum

axiomatic properties, although the values returned are larger than Jaccard or DS

1The authors were probably unaware of its long existence.
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indexes, since by definition the denominator is smaller. Compared to the Jaccard

index, the denominator of the BB index excludes the elements unique to the smaller

set.

It is also useful to mention a special version of the Tversky index, when α = β.

Refer to it as the Symmetric Tversky index, and define it formally as

• Symmetric Tversky index: simα
sT (X, Y ) = |X∩Y |

|X∩Y |+α|X\Y |+α|Y \X| = |X∩Y |
|X∩Y |+α|(X∪Y )\(X∩Y )| .

Similarly as the Jaccard index can be generalized by substituting finite measures

instead of cardinality, the same can be done with the other indexes to create the

following corresponding µ-indexes:

• Dice-Sørensen µ-index : simµDS(X, Y ) = 2µ(X∩Y )
µ(X)+µ(Y )

,

• Tversky µ-index: simα,β
µT (X, Y ) = µ(X∩Y )

µ(X∩Y )+αµ(X\Y )+βµ(Y \X)
,

• Symmetric Tversky µ-index:

simα
µT (X, Y ) = µ(X∩Y )

µ(X∩Y )+αµ(X\Y )+αµ(Y \X)
= µ(X∩Y )

µ(X∩Y )+αµ((X∪Y )\(X∩Y ))
,

• Braun-Blanquet µ-index: simµBB(X, Y ) = µ(X∩Y )
max(µ(X),µ(Y ))

.

So, based on the terminology introduced above, the Jaccard µ-index and the

Marczewski-Steinhaus µ-index are the same formula.

All the similarity indexes above clearly have values between 0 and 1 and all, except

(general) Tversky index and Tversky µ-index, satisfy the similarity axioms S1–S4.

The Tversky index is not symmetric, in general, so it may not satisfy S2. The Tversky

index is an asymmetric (by design) similarity index on sets that compares a variant

to a prototype. If we consider X to be the prototype and Y to be the variant, then

α corresponds to the weight of the prototype and β corresponds to the weight of the
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variant. For the interpretation of X and Y as prototype and variant, α usually differs

from β [34]. However for the interpretations used in this thesis, the case α 6= β does

not make much sense. The Jaccard and Dice-Sørensen indexes satisfy S5, but the

Braun-Blanquet index only satisfies the weaker axiom S5′.

Proposition 1 (Similarity Axioms and Similarity Indexes).

1. Marczewski-Steinhaus µ-index, Dice-Sørensen µ-index and Symmetric Tversky

µ-index satisfy axioms S1–S5.

2. Tversky µ-index satisfies axioms S1 and S3–S5. It satisfies S2 if and only if

α = β. Tversky index also satisfies S2 if and only if α = β.

3. Braun-Blanquet µ-index satisfies axioms S1–S4 and S5′.

Proof. In the proof below we require a finite Universe, and a measure µ which

must be finite and null-free. Note that none of our results are guaranteed to hold if

the measure µ is not finite and null-free.

(Marczewski-Steinhaus µ-index) For S1, simMS(A,B) = 1 ⇐⇒ µ(A∩B)
µ(A∪B)

= 1 ⇐⇒

µ(A ∩B) = µ(A ∪B) ⇐⇒ A = B.

The reflexivity axiom S2 is trivial since both intersection and union of sets are

commutative. Put algebraically: simMS(A,B) = µ(A∩B)
µ(A∪B)

= µ(B∩A)
µ(B∪A) = simMS(B,A).

For S3, simMS(A,B) = 0 ⇐⇒ µ(A∩B)
µ(A∪B)

= 0 ⇐⇒ µ(A ∩ B) = 0. Since any set

with a measure of zero must be the empty set (due to null set freeness), we have that

A ∩B = ∅.

The axioms S4 and S5 require a bit of algebra. If a ∈ B \ A, then a /∈ A ∩ B, so

µ((A∪{a})∩B) = µ(A∩B) +µ({a}). On the other hand A∪B = (A∪{a})∪B, so

simMS(A,B) = µ(A∩B)
µ(A∪B)

< µ(A∩B)+µ({a})
µ(A∪B)

= µ((A∪{a})∩B)
µ((A∪{a})∪B)

= simMS(A ∪ {a}, B). Hence
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S4 does hold.

If a /∈ A ∪ B then A ∩ B = (A ∪ {a}) ∩ B and (A ∪ {a}) ∪ B = (A ∪ B) ∪ {a}, so

µ((A ∪ {a}) ∪B) = µ(A ∪B) + µ({a}).

Thus, simMS(A,B) = µ(A∩B)
µ(A∪B)

> µ(A∩B)
µ(A∪B)+µ({a}) = simMS(A ∪ {a}, B), so S5 holds too.

(Dice-Sørensen µ-index) For S1, simDS(A,B) = 1 ⇐⇒ 2µ(A∩B)
µ(A)+µ(B)

= 1 ⇐⇒

2µ(A ∩ B) = µ(A) + µ(B) ⇐⇒ A = B. This is due to the set-theoretical fact that

X = Y ⇐⇒ X = Y = X ∩ Y and all items must have positive measure weight.

Axiom S2 is again trivial because both set-intersection and addition are commu-

tative. So simDS(A,B) = 2µ(A∩B)
µ(A)+µ(B)

= 2µ(B∩A)
µ(B)+µ(A)

= simDS(B,A).

For S3, simDS(A,B) = 0 ⇐⇒ 2µ(A∩B)
µ(A)+µ(B)

= 0 ⇐⇒ 2µ(A ∩ B) = 0 ⇐⇒

µ(A ∩ B) = 0 and since we are assuming that µ is a null-free measure, A ∩ B must

be empty.

For S4, as in the MS index, we have again µ((A∪{a})∩B) = µ(A∩B) +µ({a}).

Define n = µ(A ∩ B), m = µ(A) + µ(B). Since we have an element in B which

is not in A, we know that A 6= B so clearly n < m. Also notice that due to

a being disjoint with A, µ(A ∪ {a}) = µ(A) + µ({a}). Hence: n < m ⇐⇒

2nm + 2nµ({a}) < 2nm + 2mµ({a}) ⇐⇒ simµDS(A,B) = 2n
m

< 2n+2µ({a})
m+µ({a}) =

2µ((A∪{a})∩B)
µ(A∪{a})+µ(B)

= simµDS(A ∪ {a}, B), which means that S4 holds.

If a /∈ A∪B, and assuming a 6= ∅, then simµDS(A,B) = 2n
m
> 2n

m+µ({a}) = simµDS(A∪

{a}, B), so S5 holds too.
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(Tversky and Symmetric Tversky µ-indexes)2 We begin for S1 with simα,β
µT (A,B) =

1 ⇐⇒ µ(A∩B)
µ(A∩B)+αµ(A\B)+βµ(B\A) = 1 ⇐⇒ µ(A∩B) = µ(A∩B) +αµ(A\B) +βµ(B \

A) ⇐⇒ αµ(A \ B) = βµ(B \ A) = 0 ⇐⇒ A = B. Since weight cannot be

negative, both set differences must have size measured to be zero, and because the

measure is null-free, these set differences can only evaluate to the empty set. Only if

two sets are equal are both set differences empty, and thus their similarity must have

the maximum value of one.

The general Tversky µ-index does not satisfy S2 (due to possible assignments of α

and β), but if we restrict attention to the symmetric version, it is trivial, due to com-

mutative properties as above. Observe that simα,α
µT (A,B) = µ(A∩B)

µ(A∩B)+αµ(A\B)+αµ(B\A) =

µ(B∩A)
µ(B∩A)+αµ(B\A)+αµ(A\B)

= simα,α
µT (B,A).

For S3, we return to using the general Tversky µ-index. Observe that simα,β
µT (A,B) =

0 ⇐⇒ µ(A∩B)
µ(A∩B)+αµ(A\B)+βµ(B\A) = 0 ⇐⇒ µ(A ∩ B) = 0 ⇐⇒ A ∩ B = ∅, again due

to positive weights, and null set freeness.

To show S4, if X = Y then simα,β
µT (X, Y ) = simα,β

µT (Y,X). If X 6= Y then

simα,β
µT (X, Y ) = simα,β

µT (Y,X) ⇐⇒ α = β. Let n = µ(A ∩ B), k = µ(A \ B) and

l = µ(B \ A). If a ∈ B \ A then µ(A ∪ {a}) ∩B = µ(A ∩B) + µ({a}) = n+ µ({a}),

(A ∪ {a}) \B = A \B, and B \ A = (B \ (A ∪ {a})) ∪ {a}. Hence

simα,β
µT (A,B) = n

n+αk+βl
< n+µ({a})

n+αk+β(l−µ({a})) = simα,β
µT (A ∪ {a}, B),

so S4 must be valid.

If a /∈ A∪B, assign n, k, and l as above, then simα,β
µT (A,B) = n

n+αk+βl
> n

n+α(k+µ({a}))+βl =

simα,β
µT (A ∪ {a}, B), so S5 holds too.

2Note that if the general Tversky µ-index satisfies an axiom, the symmetric index must also
satisfy it (but the reverse is not necessarily true).
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(Braun-Blanquet index) It is easy to show how it satisfies S1–S3. For S1, sim(A,B) =

1 ⇐⇒ µ(A∩B)
max(µ(A),µ(B))

= 1 ⇐⇒ µ(A ∩B) = max(µ(A), µ(B)) which can only be true

if A = B. The second axiom can be shown using the same commutative reasoning as

the previous indexes like so: sim(A,B) = µ(A∩B)
max(µ(A),µ(B))

= µ(B∩A)
max(µ(B),µ(A))

= sim(B,A).

For S3, observe the following equivalence: sim(A,B) = 1 ⇐⇒ µ(A∩B)
max(µ(A),µ(B))

=

0 ⇐⇒ µ(A ∩ B) = 0. Due to null set freeness, the intersection must be the empty

set, so this is proved.

The last two axioms are once again more involved. First, break them down into

cases due to the max function. Validity must be proven for three cases: (1) µ(A) ≥

µ(B), (2) µ(A) + µ({a}) < µ(B), and (3) µ(A) < µ(B) < µ(A) + µ({a}). First, to

show (1) let n = µ(A ∩ B), r = µ(A) and s = µ(B). If a ∈ B \ A and µ(A) ≥

µ(B), then n < r (since the sets are not equal) so simµBB(A,B) = n
r
< n+µ({a})

r+µ({a}) =

simµBB(A∪{a}, B) and thus the first case holds. For (2) if µ(A)+µ({a}) < µ(B), then

simµBB(A,B) = n
s
< n+µ({a})

s
= simµBB(A∪{a}, B), showing the second case is valid.

Then for the final case (3), if µ(A) < µ(B) < µ(A) + µ({a}), then simµBB(A,B) =

n
s
< n+µ({a})

r+µ({a}) = simµBB(A ∪ {a}, B) since r < s so the third case is valid too. Hence

S4 does hold in this case.

The last axiom for this index causes some trouble. Assign n, r, and s as above. For

the first case, if a /∈ A ∪ B and µ(B) ≤ µ(A), then simµBB(A,B) = n
r
> n

r+µ({a}) =

simµBB(A ∪ {a}, B). The second case is if µ(A) + µ({a}) > µ(B) > µ(A), then

simµBB(A,B) = n
r
> n

s+µ({a}) = simµBB(A∪ {a}, B) because s > r. However, for the

third case, if µ(B) > µ(A) + µ({a}), then simµBB(A,B) = n
s

= simµBB(A ∪ {a}, B).

Though two cases hold, since they are equal in one case, this means that for the

BB-index only S5′ is satisfied, and S5 is not. �
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From all the indexes analyzed above, only the Marczewski-Steinhaus µ-index (i.e.

also Jaccard index) is metrical since only the MS index (subtracted from 1) satisfies

all metric space axioms[18]. Assuming we have a set X of items which can be regarded

as ‘points’, for an index to be metric, it must satisfy the four conditions of a metric

space[17, 9]:

1. For any two points, a positive real number is assigned (to represent distance)

2. The difference (distance) between two points is zero if and only if the points are

equal

3. The difference from one point to a second point is the same as the difference

from the second point back to the first

4. The triangle inequality is satisfied for all points: meaning that the distance

directly between two points must be smaller than the sum of the distances from

each point to a third.

Also diffMS(X, Y ) = µ((X\Y )∪(Y \X))
µ(X∪Y )

, appears to have a natural interpretation, while

the other differences, diffµDS(X, Y ), diff α,β
µT (X, Y ), and diffµBB(X, Y ) look rather ar-

tificial.

The Symmetric Tversky index and µ-index are useful when one wants to express

the difference of importance (w.r.t. similarity) between the intersection X ∩ Y and

the rest of X ∪ Y , i.e. (X ∪ Y ) \ (X ∩ Y ). If α < 1, the measured size of X ∩ Y is

more influential than that of the rest of X ∪ Y , i.e. (X ∪ Y ) \ (X ∩ Y ), if α > 1 it is

less influential. Both Marczewski-Steinhaus and Dice-Sørensen µ-indexes are special

cases of the Symmetric Tversky µ-index, the former with α = 1 and the latter with

α = 0.5.

60
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The Tversky µ-index with α 6= β implies that simα,β
µT (X, Y ) = simα,β

µT (Y,X) will

not hold for all X = Y , which is hard to justify and interpret in the setting of this

thesis. It will be shown that the concept of optimal approximation proposed later

does not work for the Tversky µ-index with α 6= β.
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Chapter 5

Optimal Approximations

It is generally easy to identify whether two finite groups are equal even though in

general equality is undecidable[30]. In this thesis however, all sets of data are finite. If

each group contains the exact same elements they are equal, and if they do not, they

are not equal. But this is very limiting when comparing groups which are seldom

exactly equal because it yields almost no information at all! The only derivable

fact is that the groups are not identical according to a particular equality measure.

Measure theory shows that two groups could be equal according to a certain type of

measurement, without containing the same elements. It would be very helpful to be

able to quantify how ‘close to equal’ (or distant) two sets are, so we take advantage

of similarity measures discussed in the previous chapter.

For example, if we use weight as the type of size evaluation (µ = weight) then

we would find a 5 kg bag of feathers to be equal to a 5 kg bowling ball. Obviously

the sets are not identical, but from the perspective of weight, they are equal. Using

another measurement such as size, or quantity of items in the set, the equality of the

sets could change.
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There are many methods of comparing sets of items. From the most simplistic

comparisons which count the number of items in the intersection of sets, to the more

complex comparisons that rely on weights or even item attributes. Comparing mea-

surements of entire sets is not useful in general as the above example demonstrates.

It neglects important and easily obtainable information, such as the measurement of

the set of items common to both sets, and the measurement of items unique to each

set.

Instead of comparing entire sets, we might also want to find an approximation of

a single set, or if we are given an approximation, we might want to check how well

it approximates the target set. It is easy to check two simple cases. If the two sets

are exactly equal we assign a similarity of 100%, or restricted to the interval [0, 1],

a value of 1. If we determine that not a single item is common to both sets, this

should correspond to a similarity of 0. Every other possibility lies between these two

extremes.

In the field of rough sets, the concepts of upper and lower approximation which

we explained in Section 3.2.1, are intrinsic. What has been neglected, and what we

present here, is a method to determine the ‘best’ or ‘optimal’ approximation.

5.1 What is ‘Optimal?’

Even though we know informally that the word optimal refers to being the ‘best’, it

is not rigorous. So before properties of an optimal approximation can be discussed

what it means to be ‘optimal’ must first be defined. Since optimal approximations

will be explored in the context of rough sets, we can say that one rough set better

approximates a target set, with respect to a given similarity measure, if its similarity
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is greater than another. So it is possible to define what it means for one rough

set to be better than all others at approximating some general set, by taking the

largest similarity value. To ensure a valid context, let AS = (U,E) be a Pawlak

approximation space where U is a finite and non-empty set, called the universe, and

E ⊆ U × U is an equivalence relation on U .

A general definition of optimal approximation follows:

Definition 3. For every set X ⊆ U , a definable set O ∈ D is an optimal approxi-

mation of X (w.r.t. a given similarity measure sim that satisfies the axiom S2) if and

only if:

sim(X,O) = max
A∈D

(sim(X,A))

The set of all optimal approximations of X will be denoted by Optsim(X). �

Defining what it means for an approximation to be optimal makes it possible

to begin comparing approximations, and each time two approximations of a set are

compared, the less precise approximation is shown to not be optimal so it can be

disregarded. A specific optimal approximation depends on the definition of the sim-

ilarity measure sim. Of course if a different similarity measure is used, a different

optimal approximation may be obtained even if the approximating and target set are

the same in both cases, i.e. if sim1 6= sim2 then clearly Optsim1
(X) might differ from

Optsim2
(X) for some X ⊆ U .

It is also prudent to point out that definition 3 does not make much sense for the

Tversky µ-index with α 6= β. This is because assuming X 6= A, then simα,β
µT (X,A) >

simα,β
µT (A, X) ⇐⇒ α < β. In the rough sets approach there is no reason why the set

X \A should be treated differently than A \X. While similarities without the axiom

S2 have some applications (for example to make a distinction between prototypes and
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variants, c.f. [34]), they are not part of this thesis. Future work might examine how

to use this index by fixing, or bounding the variables α and β. For more discussion

on this issue, see Section 5.3.

Now to move toward an algorithm for determining the optimal approximation,

first restrict the domain for the possible optimal rough approximating sets. From

the axioms presented in Chapter 4, S4 and S5 imply that all optimal approximations

reside between lower and upper approximations (inclusive), for all similarity indexes

that satisfy them.

Proposition 2. Assume that a similarity index sim(...) satisfies the axioms S4–S5.

Then, for every set X ⊆ U , and every O ∈ Optsim(X):

A(X) ⊆ O ⊆ A(X)

Proof. Suppose that A(X) 6⊆ O, i.e. C = A(X) \ O 6= ∅. Since C ⊆ X, then by

axiom S4, sim(O, X) < sim(O∪C,X), so O must not be optimal. Now suppose that

O 6⊆ A(X), i.e. C = O \A(X) 6= ∅. By axiom S5, sim(O \ C,X) > sim(O, X), so O

must not be optimal again. �

We have to note here that the above result depends on the axiom S5 and its

weakened version S5′ does not suffice, so Proposition 2 cannot be applied for Braun-

Blanquet µ-index. Observe the following example.

Example 1. Consider the universe of elements U = {a1, a2, b1, b2, b3, c1, c2, c3, c4,

c5, c6, c7, d1} with equivalence classes Comp = {A,B,C,D}, where A = {a1, a2}, B =

{b1, b2, b3}, C = {c1, c2, c3, c4, c5, c6, c7}, D = {d1} and select the set X = {a1, b1, b2, c1,
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c2, c3}. Also assume that µ(Y ) = |Y | for all Y ⊆ U . When we compare X to

all definable sets using the Braun-Blanquet index, the maximum similarity value we

obtain is 1
2
. We can get this by evaluating simFS(X,A ∪ B), or simBB(X,B ∪ C),

or simBB(X,A ∪ B ∪ C). By our definition for the definable set A ∪ B ∪ D we get

simBB(X,A∪B∪D) = 1
2

which makes it an optimal approximation, but A∪B∪D 6⊆

A(X) = A ∪B ∪ C.

The above demonstrates that optimal approximations using the Braun-Blanquet

index cannot be bounded to be between the upper and lower approximations. So, the

difficulty with this index is that there may be optimal approximations which cannot

be determined except through an exhaustive search, which is not always viable.

The above proposition leads to the following trivial corollary.

Corollary 3. For every X ⊆ U , and O ∈ Optsim(X),

sim(X,A(X)) ≤ sim(X,O), and sim(X,A(X)) ≤ sim(X,O). �

Since the similarity between X and O is at a maximum, the similarity must be

smaller between X and either the upper or lower approximations. With the possible

optimal approximations now bounded to be between the lower and upper approxima-

tions, we define this region, and the rough sets within it.

Definition 4. Let X ⊆ U , and O ∈ D. We say that O is an intermediate approx-

imation of X, if

A(X) ⊆ O ⊆ A(X)

The set of all intermediate approximations of X will be denoted by IA(X).

i.e. IA(X) = {O|O ∈ D ∧A(X) ⊆ O ⊆ A(X)} �
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Note that the intermediate approximation is independent of a similarity index

that is used to find an optimal approximation Optsim(X) since neither the lower nor

upper approximations depend on a similarity index, but it is assumed that axioms S4

and S5 are satisfied.

For indexes which satisfy it, one of the consequences of Proposition 2 is that any

optimal approximation of X, is the union of the lower approximation of X and some

element A ∈ B(X) ∪ {∅}. It could also be represented as the upper approximation

with some A ∈ B(X) ∪ {∅} cut from it. For this and upcoming sections, recall the

definitions of B(X) and B(X) from Section 3.2.2 as they will be useful here.

From Proposition 2 we have:

Corollary 4. For each set X ⊆ U ,

1. Optsim(X) ⊆ IAsim(X).

2. If O ∈ Optsim(X) then ∃A ∈ B(X) ∪ {∅} such that O = A(X) ∪ A.

3. If O ∈ Optsim(X) then ∃B ∈ B(X) ∪ {∅} such that O = A(X) \ B. �

These are properties of optimal approximations. The first simply states that every

optimal approximation is also an intermediate approximation. The last two explain

formally what was mentioned above. Any optimal approximation must be the union

of the lower approximation with some definable set which is in the Border (or is the

empty set itself). Equivalently, it must also be possible to represent any optimal

approximation by the upper approximation with some border set removed from it (or

the empty set itself if the upper approximation is already optimal).
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The notion of optimal approximation also introduces some structure to the current

available field of similarity measures, as certain different similarity indexes may gen-

erate the same optimal approximations. Beginning more generally, we define a sort

of equivalency among similarity measures. When we are looking for an optimal ap-

proximation we may not care what the result of the similarity evaluation yields, only

which rough set satisfies the maximum similarity criteria, so in case an alternative

measure will allow faster or easier computation, it can be substituted.

Definition 5. We say that two similarity indexes sim1 and sim2 are consistent if

for all sets A,B,C,

sim1(A,B) < sim1(A,C) ⇐⇒ sim2(A,B) < sim2(A,C). �

Essentially, from the perspective of only comparing which gives a larger result,

the indexes are equivalent. This clearly leads to the following result.

Corollary 5. If sim1 and sim2 are consistent then for each X ⊆ U ,

1. Optsim1
(X) = Optsim2

(X).

2. sim1 satisfies the axioms S4 and S5 if and only if sim2 satisfies them. �

If two similarity measures are consistent, they will agree on the relative sizes of

all pairs of similarity evaluations. This means that the set of optimal rough sets will

be the same for all consistent measures. We can also conclude that measures which

are consistent with each other, either all satisfy our monotonicity axioms, or none of

them do. These concepts will allow us to extend results and algorithms designed for

specific similarity indexes, to larger classes of consistent indexes.
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First we will show that the Marczewski-Steinhaus µ-index and the Symmetric

Tversky µ-index are consistent.

Proposition 3 (Consistency of Marczewski-Steinhaus and Sym. Tversky µ-indexes).

For all A,B,C and α > 0

simMS(A,B) < simMS(A,C) ⇐⇒ simα
µsT (A,B) < simα

µsT (A,C).

Proof. If A = C then simMS(A,C) = simα
µsT (A,C) = 1, so the equivalence holds.

Assume A 6= C. Since simMS(A,C) > 0, then A ∩ C 6= ∅. Moreover A \ C 6= ∅ or

C \ A 6= ∅. Hence: simMS(A,B) < simMS(A,C) ⇐⇒ µ(A∩B)
µ(A∪B)

< µ(A∩C)
µ(A∪C)

⇐⇒
µ(A∩B)

µ(A∩B)+µ(A\B)+µ(B\A) <
µ(A∩C)

µ(A∩C)+µ(A\C)+µ(C\A) ⇐⇒

µ(A ∩B)(µ(A \ C) + µ(C \ A)) < µ(A ∩ C)(µ(A \B) + µ(B \ A)) ⇐⇒
µ(A∩B)
µ(A∩C)

< µ(A\B)+µ(B\A)
µ(A\C)+µ(C\A) ⇐⇒

µ(A∩B)
µ(A∩C)

< αµ(A\B)+αµ(B\A)
αµ(A\C)+αµ(C\A) ⇐⇒

µ(A∩B)
µ(A∩B)+αµ(A\B)+αµ(B\A) <

µ(A∩C)
µ(A∩C)+αµ(A\C)+αµ(C\A) ⇐⇒

simα
µsT (A,B) < simα

µsT (A,C). �

Since the Dice-Sørensen index is exactly the same as the symmetric Tversky µ-

index with α = 0.5, the above proposition immediately implies that the Dice-Sørensen

and Marczewski-Steinhaus µ-indexes are consistent too. Thus we can begin to create

a sort of equivalence class of similarity relations. With the following corollary the

µMS, µDS, and µsT indexes are all consistent.

Corollary 6 (Consistency of Marczewski-Steinhaus and Dice-Sørensen µ-indexes).

For all A,B,C,

simMS(A,B) < simMS(A,C) ⇐⇒ simµDS(A,B) < simµDS(A,C).
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Proof. Since simµDS(A,B) = sim0.5
µsT (A,B). �

In general the Braun-Blanquet µ-index is not consistent with the Marczewski-

Steinhaus index. To demonstrate this, consider the following example:

Example 2. Consider a universe of 32 elements, with the following defined sets:

A = {a1, a2, a3, a4}, B = {a1, a2, a3, a5, ..., a21}, C = {a1, a4, a22, ..., a32}, and µ is

cardinality, so µ(X) = |X| (so the Marczewski-Steinhaus µ-index is exactly the Jac-

card index, and Fuzzy Sets µ-index is simply the Fuzzy Sets index). We can easily

count the sizes of the sets: |A| = 4, |B| = 20, |C| = 13, |A ∩ B| = 3 and |A ∩ C| = 2.

Hence simMS(A,B) = 3
21

= 1
7
> simMS(A,C) = 2

15
, while simBB(A,B) = 3

20
<

simBB(A,C) = 2
13

.

In this example, if we evaluate similarity using the MS index, B is more similar

to A than C is to A, but if we use the BB index C is more similar. Thus, we clearly

cannot substitute these indexes for one another.

The similarity indexes that do not satisfy the axiom S2 are not covered by the

theory presented in this thesis, however for the sake of completeness, it is shown with

the following example, that the Tversky index with α 6= β is not consistent with the

Jaccard index.

Example 3. Begin with a universe of 12 elements, and three sets. A = {a1, a2, a3, a4},

B = {a1, a2, a3, a4, a6, ..., a12}, and C = {a3, a4, a5}. The sizes of each set are as fol-

lows: |A| = 4, |B| = 11, |C| = 3, |A ∩ B| = 4, |A ∩ C| = 2, |A ∪ B| = 12, and

|A ∪ C| = 5. So in this case simJ(A,B) = 4
11
< simJ(A,C) = 2

5
, but for any α and
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β such that α
β
> 5

4
, we have simα,β

T (A,B) > simα,β
T (A,C). For example for α = 1.5

and β = 1.0 we have simα,β
T (A,B) = 4

11
> simα,β

T (A,C) = 1
3
. �

So in general, the Marczewski-Steinhaus µ-index and the Tversky µ-index are not

consistent for α 6= β.

Until now, the concept of optimal approximation has not been applied to any

specific similarity measure. It was only assumed that whichever index is chosen as

the function sim, it will satisfy the axioms S1–S5. However, to show more specific and

detailed properties of optimal approximations, and in particular an efficient algorithm

to find them, we choose a specific similarity measure for evaluation purposes. Due to

Corollary 5(1), the results will hold for all other consistent similarity indexes.

5.2 Optimal Approximations using the Marczewski-

Steinhaus Similarity Index

We chose to begin by using the Marczewski-Steinhaus µ-index because it is metrical,

and has a natural and regular definition. This makes it perfect for discovering and

proving mathematical results. However, we more often used the more specific Jac-

card index to explore algebraic properties, and then verified that the results could be

extended to the general case.

It is assumed going forward, that a Pawlak approximation space AS = (U,E)

(i.e. U is finite) is available, as is a finite and null-free measure on U (defined

element-wise) called µ : U → R.
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Definition 6. For every X, Y ⊆ U , such that X \Y 6= ∅, we define an index ρ(X, Y ),

called the similarity ratio, or the ratio of common to distinct elements, as follows

ρ(X, Y ) =
µ(X ∩ Y )

µ(X \ Y )
.

Note that ρ(X, Y ) is sound only if µ is finite and null-free.

By Proposition 1, the Marczewski-Steinhaus µ-index satisfies the axioms S1–S5,

so the property specified by Proposition 2 and Definition 4 is satisfied.

With this index, we now have the necessary tools to define and prove a Lemma

which will be central to this thesis. Given a non-definable target set X, and any

definable set O which is known to be part of the upper approximation, but not

part of the lower approximation, we can first infer that O ∈ IA(X) and call it an

intermediate approximation of X. Essentially this is the starting point. Now two

situations may arise. If we are given an additional component x ∈ B(X)(or set of

components) from the border of X which has no common element with O, i.e.

O ∩ x = ∅ we can determine which whether O or O ∪ x is a better approximation

of X, using part (1) of the lemma below. If instead of being disjoint, the additional

(set of) component(s) is(are) completely contained within our intermediate set,

instead use part (2) of the lemma to determine if a better approximation would be

obtained using O or O\x. So, beginning with any intermediate approximation, check

if adding or subtracting any other definable set results in a better approximation.
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Lemma 1. Let X ⊆ U , O ∈ IA(X), A,B ∈ B(X), A ∩ O = ∅, and B ⊆ O. Then

1. simMS(X,O ∪ A) ≥ simMS(X,O) ⇐⇒ ρ(A, X) ≥ µ(X∩O)
µ(X∪O)

= simMS(X,O)

2. simMS(X,O \ B) ≤ simMS(X,O) ⇐⇒ ρ(B, X) ≥ µ(X∩O)
µ(X∪O)

= simMS(X,O)

Proof. (1) To begin assign variables to make the algebra more clear. Let µ(X ∩

O) = n, µ(X ∪ O) = m, µ(A \ X) = l, and µ(A ∩ X) = k. So the similarity ratio

ρ(A, X) = k
l
. By Corollary 2(3) and the fact that µ is null-free, the values of n,m, l, k

are all bigger than zero. It is known that simMS(X,O) = µ(X∩O)
µ(X∪O)

and simMS(X,O ∪

A) = µ(X∩(O∪A))
µ(X∪(O∪A)) . Because A∩O = ∅, µ(X ∩ (O∪A)) = µ(X ∩O) +µ(X ∩A) = n+ k

and µ(X ∪ (O∪A)) = µ(X ∪O) + µ(A \X) = m+ l. Now arrange a simple algebraic

cancellation: simMS(X,O ∪ A) ≥ simMS(X,O) ⇐⇒ n+k
m+l
≥ n

m
⇐⇒ k

l
≥ n

m
⇐⇒

ρ(A, X) ≥ µ(X∩O)
µ(X∪O)

= simMS(X,O).

(2) Similar to the above, first assign µ(X ∩ O)=n, µ(X ∪ O)=m, µ(B \X)= l,

and µ(B ∩ X) = k, so our similarity ratio is again ρ(B, X) = k
l
. By Corollary 2(3)

and the definition of a null-free measure µ, the values of n,m, l, k are all bigger than

zero. We have here simMS(X,O) = µ(X∩O)
µ(X∪O)

and simMS(X,O \ B) = µ(X∩(O\B))
µ(X∪(O\B)) .

Because B ⊆ O, µ(X ∩ (O\B)) = µ(X ∩O)−µ(X ∩B) = n−k and µ(X ∪ (O\B)) =

µ(X ∪ O)− µ(B \X) = m− l. Thus, simMS(X,O \ B) ≤ simMS(X,O) ⇐⇒ n−k
m−l ≤

n
m
⇐⇒ k

l
≥ n

m
⇐⇒ ρ(B, X) ≥ µ(X∩O)

µ(X∪O)
= simMS(X,O). �

Note that we cannot replace equations (1) and (2) of Lemma 1 by one equation,

as the assumptions about A and B are entirely different. Moreover Lemma 1 does not

hold if the measure µ is not null-free, as then the values of n,m, l, k from the proof

of Lemma 1 are no longer bigger than zero. Since the above lemma is true for rough

sets A and B, it clearly also holds for A = x ∈ B(X) or B = x ∈ B(X).
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Intuitively, if we are trying to accurately approximate a target set and we are

faced with a decision of whether to include a group, if more than half of the elements

in the group under consideration are part of the target set then we would expect to

need to include this group in the approximation. It is very convenient that we can

define the corollary below to support this notion.

For a target set X if more than half of the elements of x also belong to X, (or

equivalently, if more elements of x belong to X than do not) the rough set O∪x will

approximate X better than O.

Corollary 7 (‘Majority Rule’). Let X ⊆ U , O ∈ IA(X), x ∈ B(X), and x∩O = ∅.

Then: µ(x ∩ X) ≥ µ(x \ X) ⇐⇒ µ(x∩X)
µ(x)

≥ 1
2

=⇒ simMS(X,O ∪ x) ≥

simMS(X,O).

Proof. Clearly µ(x ∩ X) ≥ µ(x \ X) ⇐⇒ ρ(x, X) = µ(x∩X)
µ(x\X)

≥ 1. But

simMS(X,O) = µ(X∩O)
µ(X∪O)

≤ 1 because the Marczewski-Steinhaus µ-index satisfies ax-

iom S1 as proven in Proposition 1. So, by using Lemma 1(1) reading right to left,

conclude that simMS(X,O ∪ x) ≥ simMS(X,O). �

However, one must be cautious about even such simple claims because the converse

of Corollary 7 does not hold. It may happen that µ(x∩X)
µ(x)

< 1
2
, i.e. fewer than half of

the elements in the set under consideration are part of the target set, but the rough

set O ∪ x still approximates X better than O. Consider the following example:

Example 4. Let O = {a1, a2, a3, a4, a5}, x = {b1, b2, b3, b4, b5}, and

X = {a1, a2, a3, a4, a5, b1, b2, c1}. Assume that the measure µ is cardinality, i.e.

µ(A) = |A| for all finite A. Then |x∩X|
|x| = 2

5
= 0.4 < 1

2
, but

simJ(X,O ∪ x) = 7
11

= 0.636 > simJ(X,O) = 5
8

= 0.6254. �
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From Proposition 2 notice that if O ∈ Opt(X), then O = A(X) ∪ x1 ∪ . . . ∪ xk,

for some k ≥ 0, where each xi ∈ B(X), i = 1, . . . , k and k = 0 corresponds to the

case where O = A(X). Lemma 1 allows these xi ∈ B(X) components to be explicitly

defined.

Theorem 1. For every X ⊆ U , the following two statements are equivalent:

1. O ∈ Opt(X)

2. O ∈ IA(X)∧
(
∀x ∈ B(X). x ⊆ O ⇐⇒ ρ(x, X) = µ(x∩X)

µ(x\X)
≥ µ(X∩O)

µ(X∪O)
= simMS(X,O)

)
.

Proof. (1)⇒(2) By Proposition 2, O ∈ IA(X). Let x ∈ B(X) and x ⊆ O.

To form a contradiction, suppose that µ(x∩X)
µ(x\X)

< µ(X∩O)
µ(X∪O)

. Then by Lemma 1(2),

simMS(X,O \ x) > simMS(X,O), so O is not optimal. Next, assign x ∈ B(X)

and x ∩ O = ∅ and try µ(x∩X)
µ(x\X)

≥ µ(X∩O)
µ(X∪O)

. By Corollary 2(3), we have x ∩X 6= ∅, so

let a ∈ x∩X. Since x∩O = ∅, then a ∈ X \O. Then by Proposition 1(1) and axiom

S4, simMS(X,O ∪ {a}) > simMS(X,O), so O is not optimal. Note that Lemma 1

gives only simMS(X,O ∪ x) ≥ simMS(X,O) which is not strong enough.

(2)⇒(1) Suppose O satisfies (2) but O /∈ Opt(X). Let Q ∈ Opt(X). Hence,

by the proof (1)⇒(2), Q satisfies (2). We have to consider two cases Q \ O 6= ∅ and

O \ Q 6= ∅.

(Case 1 ) Let Q \ O 6= ∅ and let y ∈ B(X) be such that y ⊆ Q \ O. Since Q

satisfies (2), we have µ(y∩X)
µ(y\X)

≥ µ(X∩Q)
µ(X∪Q)

= simMS(X,Q), and because Q ∈ Opt(X),

simMS(X,Q) ≥ simMS(X,O). But by Lemma 1 this means that µ(y∩X)
µ(y\X)

≥ µ(X∩O)
µ(X∪O)

.

However O also satisfies (2) and y ∈ B(X), so by (2), y ⊆ O, a contradiction. Hence

Q \ O = ∅.

(Case 2 ) Now we suppose that O \Q 6= ∅ and let O \Q = {y1, . . . ,yp} ⊆ B(X).

For clarity, we assign variables, so let µ(X∩O) = n, µ(X∪O) = m, and µ(yi\X) = li,
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µ(yi ∩X) = ki, for i = 1, . . . , p. Since O satisfies (2), for each i = 1, . . . , p, we have

µ(yi∩X)
µ(yi\X)

≥ |X∩O|
|X∪O| , or equivalently ki

li
≥ n

m
. Since it is valid for all i we can get

(k1 + . . .+ kp)m ≥ (l1 + . . .+ lp)n.

On the other hand, since Q is optimal and we suppose O is not, simMS(X,Q) >

simMS(X,O). From case 1, we know that there are no elements in Q which are not

in O (Q \ O = ∅) so simMS(X,Q) = simMS(X,O \ (y1 ∪ . . . ∪ yp)), then if we assign

B = {y1 ∪ . . . ∪ yp} by Lemma 1(2) we get µ((y1∪...∪yp)∩X)

µ((y1∪...∪yp)\X)
< µ(X∩O)

µ(X∪O)
. Because yi

are components, we have yi ∩ yj = ∅ when i 6= j. Thus µ((y1 ∪ . . . ∪ yp) ∩ X) =

µ(y1 ∩X) + . . .+µ(yp ∩X) = k1 + . . .+ kp, and µ((y1 ∪ . . .∪yp) \X) = µ(y1 \X) +

. . .+ µ(yp \X) = l1 + . . .+ lp. This means that we have

µ((y1 ∪ . . . ∪ yp) ∩X)

µ((y1 ∪ . . . ∪ yp) \X)
<
µ(X ∩ O)

µ(X ∪ O)
⇐⇒ k1 + . . .+ kp

l1 + . . .+ lp
<

n

m
,

and since we have the left side as valid above, then cross multiplying the right side

yields

(k1 + . . .+ kp)m < (l1 + . . .+ lp)n,

which is a contradiction, i.e. O \Q = ∅. Thus, Q \O = ∅ and O \Q = ∅, i.e., Q = O,

so O ∈ Opt(X).

Theorem 1 gives the necessary and sufficient conditions for optimal approximations

of X (with respect to the Marczewski-Steinhaus index and a given measure µ : U →

R) in terms of the elements of B(X). We will use it to build an efficient algorithm

for finding optimal approximations.
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By Theorem 1, the value of ρ(x, X) will indicate if x ∈ B(X) is a part of an opti-

mal approximation of X, or not. Since B(X) is finite, its elements can be enumerated

by natural numbers 1, . . . , |B(X)|.

• Assume that r = |B(X)|, B(X) = {x1, . . . ,xr} and also

i ≤ j ⇐⇒ ρ(xi, X) ≥ ρ(xj, X).

In other words, sort B(X) by decreasing values of ρ(x, X). This sorting will be used

to build a special sequence of intermediate approximations.

Let O0,O1, . . . ,Or ∈ IA(X) be the sequence of intermediate approximations of X

defined for i = 0, . . . , r − 1 as follows: O0 = A(X) and

Oi+1 =

 Oi ∪ xi+1 if simMS(X,Oi ∪ xi+1) ≥ simMS(X,Oi)

Oi otherwise.

Note that usually Or 6= A(X) = A(X) ∪ x1 ∪ . . . ∪ xr, since Or = x1 ∪ . . . ∪ xr,

only if simMS(X,Oi ∪ xi+1) ≥ simMS(X,Oi) for all i = 0, . . . , r − 1, or equivalently,

if Oi = x1 ∪ . . . ∪ xi for i = 1, . . . , r.

We claim that at least one of these Oi’s is an optimal approximation. The following

technical result is needed to prove this claim.

Lemma 2. Let k1, . . . , kn and l1, . . . , ln be positive numbers such that k1
l1
≥ ki

li
for

i = 1, . . . , n. Then k1
l1
≥ k1+...+kn

l1+...+ln
.

Proof. k1
l1
≥ ki

li
implies k1li ≥ kil1 for i = 1, . . . , n. Hence k1l1 + k1l2 + . . .+ k1ln ≥
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k1l1 + k2l1 + . . .+ knl1 ⇐⇒ k1
l1
≥ k1+...+kn

l1+...+ln
, which ends the proof. �

The essential properties of the sequence O0,O1, . . . ,Or are provided by the follow-

ing theorem.

Theorem 2. For every X ⊆ U , we set r = |B(X)|, and we have

1. simMS(X,Oi+1) ≥ simMS(X,Oi), for i = 0, . . . , r − 1.

2. If ρ(x1, X) ≤ simMS(X,A(X)) then A(X) ∈ Opt(X).

3. If ρ(xr, X) ≥ simMS(X,A(X)) then A(X) ∈ Opt(X).

4. If simMS(X,Op) ≤ ρ(xp, X) and simMS(X,Op+1) > ρ(xp+1, X), then Op ∈

Opt(X), for p = 1, . . . , r − 1.

5. If simMS(X,Or) ≤ ρ(xr, X) then Or = A(X) ∈ Opt(X).

6. If Op ∈ Opt(X), then Oi = Op for all i = p + 1, . . . , r. In particular Or ∈

Opt(X).

7. O ∈ Opt(X) =⇒ O ⊆ Op, where p is the smallest one from (6).

Proof.(1) Immediately from Lemma 1 and the definition of the sequence O0, . . . ,Or.

(2) From Proposition 2 we have that if O ∈ Opt(X), then O = A(X) ∪ xi1 ∪

. . . ∪ xis for some ij ∈ {1, . . . , r}. Since ρ(x1, X) ≥ ρ(xij , X) for j = 1, . . . , s, by

Lemma 2, ρ(x1, X) ≥ µ((xi1
∪...∪xis )∩X)

µ((xi1
∪...∪xis )\X)

. Hence simMS(X,A(X)) ≥ µ((xi1
∪...∪xis )∩X)

µ((xi1
∪...∪xis )\X)

, so

by Lemma 1, simMS(X,A(X)) ≥ simMS(X,O), which means A(X) ∈ Opt(X).

(3) Note that ρ(xr, X) ≥ simMS(X,A(X)) implies ρ(xi, X) ≥ simMS(X,A(X))

for all i = 1, . . . , r. Hence by Theorem 1, A(X) ∈ Opt(X).
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(4) We have simMS(X,O0) ≤ simMS(X,O1) ≤ . . . ≤ simMS(X,Or) and

ρ(x1, X) ≥ ρ(x2, X) ≥ . . . ≥ ρ(xr, X). Hence the property simMS(X,Op) ≤ ρ(xp, X)

implies Oi = A(X) ∪ x1 ∪ . . . ∪ xi for all i = 1, . . . , p. Adding the property

simMS(X,Op+1) > ρ(xp+1, X) implies Oi = Op for all i = p + 1, . . . , r, which meant

that Op = A(X) ∪ x1 ∪ . . . ∪ xp satisfies (2) of Theorem 1. Hence Op ∈ Opt(X).

(5) Again the property simMS(X,Or) ≤ ρ(xr, X) implies Or = A(X)∪x1∪ . . .∪

xr, so Or = A(X). Additionally Or = A(X) ∪ x1 ∪ . . . ∪ xr satisfies (2) of Theorem

1, so Or ∈ Opt(X).

(6) From the proofs of (4) and (5).

(7) We have to show that if O = A(X) ∪ A ∈ Opt(X), where A ∈ B(X), then

A ⊆ x1 ∪ . . . ∪ xp. Suppose xj ⊆ A and j > p. Then ρ(xj, X) < simMS(X,Op) =

simMS(X,O), so O does not satisfy (2) of Theorem 1. Hence A ⊆ x1 ∪ . . . ∪ xp. �

Point (1) of Theorem 2 states that Oi+1 is a better (or equal) approximation

of X than Oi, (2) and (3) characterize the cases when either A(X) or A(X) are

optimal approximations, while (4) shows conditions when some Op is an optimal

approximation. Point (6) states that once Op is found to be optimal, calculations can

be stopped as the remaining Op+i are the same as Op, and the last point, (6) indicates

that Op is the greatest optimal approximation.

Algorithm 1 (Finding the Greatest Optimal Approximation). Let X ⊆ U .

1. Construct A(X), A(X), and B(X). Assume r = |B(X)|.

2. For each x ∈ B(X), calculate ρ(x, X) = µ(x∩X)
µ(x\X)

.

3. Order ρ(x, X) in decreasing order and number the elements of B(X) by this
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order, so B(X) = {x1, . . . ,xr} and i ≤ j ⇐⇒ ρ(xi, X) ≥ ρ(xj, X).

4. If ρ(x1, X) ≤ simMS(X,A(X)) then O = A(X).

5. If ρ(xr, X) ≥ simMS(X,A(X)) then O = A(X).

6. If neither (4) nor (5) is applied, calculate Op, starting from p = 1 and increasing

p by 1, until simMS(X,Op+1) > ρ(xp+1, X). If simMS(X,Op+1) > ρ(xp+1, X)

holds, set O = Op. �

Note that the biggest p in (6) of the above algorithm is r − 1. However, due to

Theorem 2, step (5) of the above algorithm covers the case O = Or. Theorem 2 also

guarantees that one of (4), (5), or (6) with 1 ≤ p < r always holds. The case (4) of

the above algorithm means that the optimal approximation O satisfies O = O0, the

case (5) corresponds to O = Or = A(X) = A(X) ∪ x1 ∪ . . . ∪ xr, and the case (6)

corresponds to all other cases.

From Theorem 2, O must be the greatest optimal approximation, i.e. O ∈

Opt(X), and for all O′ ∈ Opt(X), O′ ⊆ O. It is also known that simMS(X,O′) =

simMS(X,O)

This greedy algorithm (because of the choice of ρ(x, X), c.f. [15]) has a complexity

of C1 +C2 + O(rlogr), where C1 is the complexity of constructing A(X), A(X), and

B(X); while C2 is the complexity to assign µ(x) for each x ∈ U . Algorithms with

C = O(|U |2) can be found for example in [28], and clearly C2 = O(|U |).

The most crucial line of the algorithm, line (6), runs in O(r), but line (3) involves

sorting which has complexity O(rlogr). Since r < |U |, the total complexity is O(|U |2).

Algorithm 1 gives us the greatest optimal approximation O, however the whole
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set Opt(X) can easily be derived from O just by subtracting appropriate elements of

B(X).

Note that because of Corollary 5(1), Algorithm 1 is also effective for any similarity

measure sim that is consistent with the Marczewski-Steinhaus µ-index simMS, for

any finite and null-free measure µ. In particular, by Proposition 3 and Corollary 6

we can use it for Symmetric Tversky µ-index simµT , Dice-Sørensen µ-index simµDS,

and of course the classical Jaccard index simJ .

Algorithm 1 requires the measure µ to be finite and null-free. The assumption of

finiteness of µ is essential (c.f. [18]), but null-freeness is merely technical. If µ is not

null-free, we can use the algorithm presented below.

Algorithm 2 (µ is not null-free). Let AS = (U,E) be a Pawlak approximation space,

µ : U → R be a given measure that is finite but not null-free, and X ⊆ U .

1. Define U ′ = U \ {x | µ(x) = 0}, E ′ = E ∩ (U ′ × U ′), X ′ = X \ {x | µ(x) = 0}

and AS ′ = (U ′, E ′).

2. Apply Algorithm 1 for X ′ and AS ′. Let O′ be the outcome of this application.

3. Pick any O ∈ IA(X) such that O′ ⊆ O.

Since O′ ∈ Opt(X ′) then O ∈ Opt(X). Moreover µ(X \X ′) = µ(O \ O′) = 0. �

5.3 Asymmetry

It is appropriate here to pause to discuss the assumption of symmetry. The most

fundamental reason for this restriction is that without it, one could not define what

81
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it means for a rough set to be the optimal approximation. Although, it might be

possible to distinguish somehow between the rough set most similar to a target set,

and the rough set to which a target set is most similar (the seemingly trivial difference

only being directionality) it has traditionally been assumed that these are equal, and

so sim(X, Y ) = sim(Y,X). Without this assumption, the triangle inequality axiom is

not valid, and without the axiom, it is not possible to determine if adding a particular

equivalence class to an approximation will make the approximation better or worse.

In addition, the Jaccard, Dice-Sørensen, Marczewski-Steinhaus, and Braun-Blanquet

indexes are all symmetric, and the Tversky index is symmetric if α = β. So, only

with the Tversky index would it be possible to investigate non-symmetric properties,

although we admit possible causes for such. One idea might be to define α and β to be

proportional to the size of the sets, or their relative difference in size. If enough data

are available, one could use other features than those which partitioned the universe

to define the values.

As mentioned in the background review (see Sections 2.5 and 2.6), Tversky took

issue with the assumption that similarity is symmetric. In Features of Similarity [34]

he explained that geometric models representing objects as points in coordinate space

had been the focus of theoretical analysis of similarity relations. From the geomet-

ric approach, a metric distance function is only logical. This function assigns a

non-negative number representing distance, to every pair of points, and satisfies the

axioms of minimality, symmetry, and the triangle inequality (see Sec. 2.5 for more).

This could be one underlying reason that symmetry is so often assumed. Another

speculative reason could be the perceived relative usefulness and need (or lack thereof)

for the study of asymmetric properties. Nonetheless, Tversky wanted to illustrate to
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the scientific community the ubiquity of asymmetric judgments of similarity. “[T]he

present paper,” he wrote, “provides empirical evidence for asymmetric similarities

and argues that similarity should not be treated as a symmetric relation.” [34]

The Tversky Index, originally proposed as the ratio model by Tversky in [34], gen-

eralizes other similarity indexes (as was illustrated in the introduction to them) and

still allows for asymmetry when α 6= β. Tversky conducted studies which surveyed

students’ opinions regarding distances between certain entities, including countries,

figures, and letters, where he showed that asymmetry was common in judgments of

similarity.

Tversky stressed that “this asymmetry in the choice of similarity statements is

associated with asymmetry in judgments of similarity.” [34] He also noted that this

asymmetry is highlighted in the context of simile and metaphor. These situations are

opinion, and language based. According to this author, the most useful applications

of optimal rough sets lie in the field of pattern recognition. Areas which involve

approximation due to either visual object recognition, or categorical data where a

‘best’ group is sought.

When Lee Dice produced the coincidence index[5], he was looking for a measure-

ment of how associated two species were, and began with the association index, which

was certainly not symmetric since it divided the number of samples where two species

occurred together by the number where one occurred alone. Dice rationalized that

there are many cases where one species is more dependent on another than the re-

verse, though one might counter that this is not a valid application for measuring

similarity or distance.
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5.4 Application

Due to the high level nature of Algorithm 1 and the field of rough sets in general,

the algorithm would have almost endless possible applications. Whenever data are

collected, and can be partitioned into classes of objects which can be distinguished

by certain features, our algorithm could potentially be applied.

For example, in the fields of medicine and genomics, there are numerous reasons

to compare DNA sequences, symptoms, or other attributes of patients. Determining

the best match for transplants, or ideal candidates to derive virus treatments, or to

isolate the most important patients to screen for diseases are all examples of possible

applications. While the algorithm presented here may not isolate a single donor or

recipient, it could quickly narrow down the scope of people to search through using

traditional means. In the area of medicine, often each patient corresponds to a list of

attributes regarding their current health and medical history. If a doctor or researcher

wishes to isolate the best group to administer a trial drug, or figure out the patients

who have similar or intersection histories which led them to similar conditions, they

can develop their own algorithms or conduct a search manually. The field of rough

sets using the upper and lower approximations can narrow down selection criteria to

those patients that should be ruled out, and those that should certainly be included

because all criteria are satisfied. However, the notion of an optimal rough set would

allow a quick isolation down to the most relevant set of classes of patients, or the

group of patients which best correspond to desired criteria. It may still be required

for the group to be checked for how close each individual fits within the class but

isolating a small group from a much larger population is often quite valuable when

working with extremely large sets of data.
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While it is true that certain human assumptions must be made, such as which

features to use to determine the class of each item, these can be chosen to guide

our algorithm into providing relevant results. The unfortunate part of trying to use

Algorithm 2 in a brute force sense, is that it relies highly on the equivalence classes

formed to partition the universe, as well as the evaluation of size, which are chosen by

the researcher using the algorithm. This seems like a compelling opportunity to use

appropriate machine learning techniques (e.g.neural networks, decision trees, support

vector machines, etc.) or multiple size evaluation measures to derive an optimal

partition of the universe. The machine learning could also be applied to multiple

size evaluation mechanisms to determine which partition results in the most similar

optimal approximation to the target set. This suggests the possibility that similarity

relations should be written, for example, simE
J where J is the similarity index, and

E is the equivalence relation used to partition the universe.

5.5 The Case of Fuzzy Set/Braun-Blanquet Index

The Fuzzy set index [26], defined as simFS (X, Y ) = |X∩Y |
max(|X|,|Y |) , is inconsistent with

the Jaccard index and our algorithm has only limited use with it because its natural

(naive) extension does not work in general. One may be tempted just to use Algorithm

1 with simMS replaced by simFS, especially that it may actually work for ‘regular’

random cases. However it does not always work as the equivalence of Lemma 1,

namely:

• Let X ⊆ U , O ∈ IA(X), A,B ∈ B(X), A ∩ O = ∅, and B ⊆ O. Then

1. simFS(X,O ∪ A) ≥ simFS(X,O) ⇐⇒ |A∩X|
|A\X| ≥ simFS(X,O)
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2. simFS(X,O \ B) ≤ simFS(X,O) ⇐⇒ |B∩X|
|B\X| ≥ simFS(X,O)

is not true in general. Some additional assumptions are required.

Consider the following two examples.

Example 5. We begin with a universe U = {a1, a2, b1, b2, . . . , b9, c1, c2, . . . , c11}, three

equivalence classes covering U , A1 = {a1, a2}, A2 = {b1, b2, . . . , b9}, A3 = {c1, c2, . . . , c11},

and the target set we wish to approximate is X = {a1, a2, b1, b2, c1, c2}. The lower and

upper approximations are A(X) = A1 = {a1, a2} and A(X) = A1 ∪ A2 ∪ A3 = U

respectively. One may check by inspection that OptsimJ
(X) = A(X) = A1, while

OptsimFS
(X) = A1 ∪ A2. When applying Algorithm 1 with simJ replaced by simFS

we will get A1 as an optimal approximation. The reason is that simFS(X,A1 ∪A2) =

|X∩(A1∪A2)|
max(|X|,|A1∪A2|) = 4

11
= 0.364 > simFS(X,A1) = |X∩A1|

max(|X|,|A1|) = 2
6

= 0.333, but

|A2∩X|
|A2\X| = 2

7
= 0.286 < simFS(X,A1) = 0.333, so the equivalent of Lemma 1 is

not satisfied. Hence the first step of a modified Algorithm 1 would be faulty. Note

also that simFS(X,A1 ∪ A2) > simFS(X,A1) while simJ(X,A1 ∪ A2) = 4
11

= 0.364 <

simJ(X,A1) = 2
5

= 0.4, so this illustrates the weak inconsistency between the Jaccard

and Fuzzy Sets indexes. �

Example 6. Consider a universe U = {a1, a2, b1, b2, . . . , b6, c1, c2, . . . , c30}, three equiv-

alence classes covering U , A1 = {a1, a2}, A2 = {b1, b2, . . . , b6} and A3 = {c1, c2, . . . , c25},

and the set X = {a1, a2, b1, c1, c2, . . . , c5}. We have A(X) = A1 = {a1, a2}, A(X) =

A1 ∪ A2 ∪ A3 = U . One may check by inspection that OptsimJ
(X) = A(X) = A1,

while OptsimFS
(X) = A1 ∪ A2. When applying Algorithm 1 with simJ replaced by

simFS we will get A1 as an optimal approximation. The reason is that simFS(X,A1∪

A2) = |X∩(A1∪A2)|
max(|X|,|A1∪A2|) = 3

9
= 0.333 > simFS(X,A1) = |X∩A1|

max(|X|,|A1|) = 2
9

= 0.222,

but |A2∩X|
|A2\X| = 1

5
= 0.2 < simFS(X,A1) = 0.222, so the equivalent of Lemma 1
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is not satisfied either. Hence the first step of a modified Algorithm 1 would be

faulty in this case as well. Note also that simFS(X,A1 ∪ A2) > simFS(X,A1) while

simJ(X,A1 ∪ A2) = 3
14

= 0.214 < simJ(X,A1) = 2
9

= 0.222, so this is another

example of weak inconsistency between Jaccard and Fuzzy Sets indexes. �

For the Fuzzy Set index we can show the following result.

Lemma 3. Let X ⊆ U , O ∈ IA(X), A,B ∈ B(X), A ∩ O = ∅, and B ⊆ O.

1. If |X| < |O| or |O ∪ (A ∩X)| > |X| > |O|, then

simFS(X,O ∪ A) ≥ simFS(X,O) ⇐⇒ |A∩X|
|A\X| ≥ simFS(X,O)

2. simFS(X,O \ B) ≤ simFS(X,O) ⇐⇒ |B∩X|
|B\X| ≥ simFS(X,O)

Proof. (1) First define |X| = r, |O| = s, |X ∩ O| = n, |X ∪ O| = m, |A \X| = l

and |A∩X| = k. Clearly r, s are bigger than zero, and additionally, by Corollary 2(3),

n,m, l, k are all bigger than zero. Also note that |A| = l + k, and, since A ∩ O = ∅,

|O ∪ A| = |O|+ |A| = s+ l + k and |X ∩ (O ∪ A)| = |X ∩ O|+ |X ∩ A| = n+ k.

Case: |X| < |O|. Here we have simFS(X,O ∪ A) = |X∩(O∪A)|
max(|X|,|O∪A|) = n+k

s+l+k
and

simFS(X,O) = |X∩O|
max(|X|,|O|) = n

s
, so simFS(X,O∪A) ≥ simFS(X,O) means n+k

s+l+k
≥ n

s
.

Simple algebra yields n+k
s+l+k

≥ n
s
⇐⇒ ks ≥ nl + kn. Since all values are positive, if

ks is greater than the sum, it must be greater than each term, so ks ≥ nl + kn ⇐⇒

ks ≥ nl ⇐⇒ k
l
≥ n

s
= simFS(X,O) and thus we have proven the first case.

Case: |O| < |X| < |O ∪ (A ∩ X)|. Again we begin with simFS(X,O ∪ A) =

|X∩(O∪A)|
max(|X|,|O∪A|) = n+k

s+l+k
and slightly modified (due to r > s), simFS(X,O) = |X∩O|

max(|X|,|O|) =

n
r
, so simFS(X,O ∪ A) ≥ simFS(X,O) means n+k

s+l+k
≥ n

r
.

Now we use the condition |O∪(A∩X)| > |X| > |O| which implies s < r < s+k <

s+k+l, i.e. s+k−r > 0. Simple algebra yields n+k
s+l+k

≥ n
r
⇐⇒ kr ≥ nl+n(s+k−r).
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Similarly to the first case, ks is greater than the sum, and both terms are positive,

so ks must be greater than nl alone. nl + n(s+ k − r) ⇐⇒ ks > nl ⇐⇒ k
l
> n

r
=

simFS(X,O).

(2) First define |X| = r, |O| = s, |X ∩ O| = n, |X ∪ O| = m, |B \ X| = l and

|B ∩ X| = k. Clearly r, s are bigger than zero, and additionally, by Corollary 2(3),

n,m, l, k are all bigger than zero.

Also note that |B| = l+ k. Three cases emerge depending on the relative sizes of

X, O, and X \ O because of the maximum function.

Case 1: |X| ≤ |O \ B| < |O|. We begin with simFS(X,O \ B) = |X∩(O\B)|
max(|X|,|O\B|) =

n−k
s−l−k and simFS(X,O) = |X∩O|

max(|X|,|O|) = n
s
, so simFS(X,O \ B) ≤ simFS(X,O) means

n−k
s−l−k ≤

n
s
. Cross multiplying and canceling terms yields nl + nk ≤ sk. Since both

terms are positive, we have nl ≤ sk ⇐⇒ k
l
≥ n

s
= simFS(X,O) so this case is

proved.

Case 2: |O \ B| < |X| < |O|. Start with simFS(X,O \ B) = |X∩(O\B)|
max(|X|,|O\B|) = n−k

s−l−k =

n−k
s+r−s = n−k

r
and simFS(X,O) = |X∩O|

max(|X|,|O|) = n
s
. In this case though, we can only

reduce our equations to the following equivalent formulations: 2sn < n2 +mn+ sk ≡

sn < sk+ rn and then no further reductions can be done. It seems however, that we

could eliminate the requirement that B ∈ B, so that we can restrict B to a singleton

component set. Then since |O \ B| could only be |O| − 1, we could use the first case

instead.

Case 3: |O \ B| < |O| < |X|. Again we start with simFS(X,O \ B) = |X∩(O\B)|
max(|X|,|O\B|) =

n−k
s−l−k = n−k

r
and now simFS(X,O) = |X∩O|

max(|X|,|O|) = n
r
, and actually since k is positive,

this becomes trivial as it reduces to n−k
r
< n

r
, so this case is proved.
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�

Example 5 illustrates the case |O ∪ (A ∩ X)| < |X| < |O ∪ A|, while Example 6

illustrates the case |O ∪ A| < |X|. However the ‘Majority Rule’, i.e. an equivalence

of Corollary 7, is valid for the Fuzzy Set index.

Corollary 8. Let X ⊆ U , O ∈ IA(X), x ∈ B(X), and x ∩ O = ∅. Then:

|x ∩X| ≥ |x \X| ⇐⇒ |x∩X|
|x| ≥

1
2

=⇒ simFS(X,O ∪ x) ≥ simFS(X,O).

Proof. If |X| < |O| or |O∪ (A∩X)| > |X| > |O|, then it is a direct consequence of

Lemma 3. If |O ∪ A| < |X|, then simFS(X,O ∪ x) ≥ simFS(X,O), regardless of the

value of the ratio |x∩X||x| . The only remaining case is |O ∪ (A ∩X)| < |X| < |O ∪ A|.

Assume again that |X| = r, |O| = s, |X ∩ O| = n, |X ∪ O| = m, |A \ X| = l and

|A ∩ X| = k. Clearly r, s are bigger than zero, and additionally, by Corollary 2(3),

n,m, l, k are all bigger than zero. Also note that |A| = l + k, and, since A ∩ O = ∅,

|O ∪ A| = |O| + |A| = s + l + k and |X ∩ (O ∪ A)| = |X ∩ O| + |X ∩ A| = n + k.

Furthermore r > n. If |O ∪ (A ∩ X)| < |X| < |O ∪ A|, then s + k < r < s + k + l.

We also assume that k = |A ∩X| > l = |A \X|. Hence nr > n(s+ k) = ns+ nk and

kr > ln, which implies nr + kr > ns + nk + nl. But nr + kr > ns + nk + nl ⇐⇒
n+k
s+k+l

> n
r
⇐⇒ simFS(X,O ∪ x) ≥ simFS(X,O). �

5.6 Examples

In this section we provide several more examples which illustrate how our algorithm

functions.
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House Price ($) Equiv. class Qual. Index µ Class Elements Range ($)

h1 289, 000 e1 502 e1 h1, h6 280-299,999

h2 389, 000 e5 869 e2 h3, h10, h11, h12 300-319,999

h3 319, 000 e2 611 e3 h4, h7, h8 320-339,999

h4 333, 000 e3 723 e4 h9 340-359,999

h5 388, 000 e5 937 360-379,999

h6 284, 000 e1 399 e5 h2, h5 380-400,000

h7 339, 000 e3 585

h8 336, 000 e3 650

h9 345, 000 e4 834

h10 311, 000 e2 366

h11 319, 000 e2 512

h12 312, 000 e2 622

Table 5.1: Pawlak’s space of houses and their prices. The column ‘Quality Index’ is
used only in Example 8.

Our first example will use the Jaccard index, i.e. a special case of Marczewski-

Steinhaus index with µ(X) = |X|.

Example 7. We define our universe of elements labeled U = {h1, . . . , h12} to be an

assortment of houses, each with a price or value associated with it, as shown in Table

5.1. Based on its price, each house belongs to a representative equivalence class as

demonstrated in the second table. Our classes will be defined by each range of $20, 000,

starting from $280, 000 and ending with $400, 000 (empty classes are excluded because

∅ /∈ Comp). We could say that all of the houses in each class are roughly equivalent

in price.

Suppose we wish to select a subset which we are interested in. If houses H =

{h1, h3, h8, h9} meet our requirements we could say that we have the financing available

for each of the equivalence classes that those houses belong to. The upper and lower

approximations are easy to see: A(H) = e4 and A(H) = e1∪e2∪e3∪e4. Additionally,
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the border set is B(H) = comp(A(H)) \ comp(A(H)) = {e1, e2, e3}, and the set of

intermediate approximations is IA(H) = {A(H), A1, A2, A3, A4, A5, A6,A(H)} where

A1 = e1∪e4, A2 = e2∪e4, A3 = e3∪e4, A4 = e1∪e2∪e4, A5 = e1∪e3∪e4, and A6 = e2∪

e3∪e4. The similarity between each of these sets and H is as follows: simJ(H,A(H)) =

|H∩A(H)|
|H∪A(H)| = 1

4
, simJ(H,A(H)) = |H∩A(H)|

|H∪A(H)| = 2
5
, and simJ(H, A1) = 2

5
, simJ(H, A2) = 2

7
,

simJ(H, A3) = 1
3
, simJ(H, A4) = 3

8
, simJ(H, A5) = 3

7
, simJ(H, A6) = 2

7
. From all

these Jaccard index values, 3
7

is the biggest number, so Opt(H) = {A5} = {e1∪e3∪e4}.

What about our algorithm? We have B(H) = {e1, e2, e3}, and ρ(e1,H) = 1,

ρ(e2,H) = 1
3
, and ρ(e3,H) = 1

2
. Hence ρ(e1,H) > ρ(e3,H) > ρ(e2,H), so we re-

name the elements of B(H) as e1 = x1, e3 = x2, e2 = x3. Clearly ρ(x1,H) = 1 >

simJ(H,A(H)) = 1
4

and ρ(x3,H) = 1
3
< simJ(H,A(H)) = 2

5
, so neither step (4) nor

(5) hold, so we go to the step (6), which is the most involved.

We begin by setting O0 = A(H) = e4. Since simJ(H,O0) = 1
4
< simJ(H,O0∪x1) =

2
5
, we have O1 = O0∪x1 = e1∪e4, and since simJ(H,O1) = 2

5
< simJ(H,O1∪x2) = 3

7
,

we have O2 = O1 ∪ x2 = e1 ∪ e3 ∪ e4. However simJ(H,O2) = 3
7
< ρ(x2,H) = 1

2
,

so O1 /∈ Opt(H). Since simJ(H,O2) = 3
7
> simJ(H,O2 ∪ x3) = 2

5
, we set O3 = O2.

Now we have simJ(H,O3) = simJ(H,O2) = 3
7
> ρ(x3,H) = 1

3
, which means that

O2 = {h1, h4, h6, h7, h8, h9} ∈ Opt(H).

Note also that O1 = A1, and O2 = A5, and Opt(H) = {O2}. �

The second example uses the Marczewski-Steinhaus µ-index where µ is not cardi-

nality.

Example 8. Consider the same universe U = {h1, . . . , h12}, the same equivalence
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classes {e1, e2, e3, e4}, and the same set H = {h1, h3, h8, h9} as in the previous exam-

ple. Realizing that price is only one of the factors (even though often the most impor-

tant), a real estate agency, ‘Best Choice,’ introduced a service for customers where

they will determine a quality index µ ranging from 0 to 100, which takes into account

price, age, type of house, style, appearance, and special customer preferences. Suppose

that the index values for a particular customer are described in the right column of

the left part of Table 5.1. The index µ is extended to sets of houses X so we can use

it to calculate the intermediate similarity values. It is defined as µ(X) =
∑

h∈X µ(h).

Clearly the index µ is an element-wise null-free measure as discussed in Chapter 3,

so it can be used in formulas describing similarity indexes.

What is an optimal approximation of H with Marczewski-Steinhause index

simMS(X, Y ) = µ(X∩Y )
µ(X∪Y )

? To measure the similarity between H and its lower approxi-

mation, we have simMS(H,A(H)) = µ(H∩A(H))
µ(H∪A(H))

= µ(h9)
µ({h1,h3,h8,h9}) = µ(h9)

µ(h1)+µ(h3)+µ(h8)+µ(h9)
=

834
2897

= 0.28788. The rest of the similarity values calculated in the same manner are

as follows: sim(H, A1) = 0.49636, sim(H, A2) = 0.32863, sim(H, A3) = 0.33689,

sim(H, A4) = 0.468515, sim(H, A5) = 0.47585, sim(H, A6) = 0.35478, and sim(H,A(H)) =

0.4595. By inspection, we see the largest value is a result of comparing H to A1 =

e1 ∪ e4, which is clearly different from our previous example where A5 returned the

largest value.

Returning to the proposed algorithm, we have B(H) = {e1, e2, e3}, and now with

a different measure µ we calculate ρ for each element e in the border as

ρ(e,H) =
µ(e ∩ H)

µ(e \ H)
=

Σh∈e∩Hµ(h)

Σh∈e\Hµ(h)
.

We get ρ(e1,H) = µ(h1)
µ(h6)

= 2.0100, ρ(e2,H) = µ(h3)
µ(h10)+µ(h11)+µ(h12)

= 0.4073, and
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ρ(e3,H) = µ(h4)
µ(h7)+µ(h8)

= 0.5038. Hence, ρ(e1,H) > ρ(e3,H) > ρ(e2,H), as in the

previous example so we again rename the elements of B(H) as e1 = x1, e3 = x2,

e2 = x3. Since ρ(x1,H) > simMS(H,A(H)) and ρ(x3,H) < simMS(H,A(H)), steps

(4) and (5) are not satisfied, so we move to step (6).

We begin with O0 = A(H) = e4 , and O1 = O0 ∪ x1 = e1 ∪ e4. Note ρ(x1,H) =

2.0100 > simMS(H,O1) = 0.49636. So we stop here.

If we continued, we would examine O2 = O1 ∪ x2 = e1 ∪ e3 ∪ e4 and find

simMS(H,O2) = 0.47585 and ρ(x2,H) = 0.5038, so the outcome would be the same.

Hence for this measure µ, Opt(H) = {O1}.

So it is apparent that we can use any method to evaluate size provided the range

of values returned can be mapped to the natural numbers.

�
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Chapter 6

Conclusion and Future Work

In this thesis, we have reviewed literature regarding rough set theory, studies in

similarity, and measure theory. A definition of an Optimal Appoximation was pro-

vided, and generalizations of current popular similarity theories were explored. These

theories were then used to craft an algorithm to determine the optimal rough set ap-

proximation(s) to a given non-exact or non-definable set. To prove this algorithm

works, axioms of similarity were defined, several similarity indexes were used and in-

vestigated, and then which indexes are consistent was shown. Then the indexes were

generalized to be applicable using any measurement of size instead of only number

of elements. This generalization required a specification of Measure Theory where

everything that is measured to have size zero is the empty set. The border and

border sets were defined, as well as similarity ratio ρ, all of which led to Lemma 1.

Then, Lemma 1 was used as a crucial part of the proof of correctness of Theorem 1

which validated the usefulness of the function ρ in determining an optimal approxi-

mation. Next, the vital results of Theorem 1 were used (as well as Lemma 1, and an
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algebraically trivial Lemma 2) to prove that Theorem 2 does indeed find the great-

est optimal approximations to a target set. If equal optimal approximations exist,

the theorem can show these by retracing each previous intermediate approximation

until the similarity decreases. Lastly, the Theorem 2 was transformed into a set of

instructions forming Algorithm 1.

While studying the properties of similarity measures and optimal approxima-

tions, several possible open avenues of research arose. One topic to investigate is

whether any version of the Triangle Inequality applies. If sim(A,B) < sim(B,C) and

sim(B,C) < sim(C,D) then there might be some relationship between sim(A,B)

and sim(C,D) beyond the obvious transitivity fact that sim(A,B) < sim(C,D) or

possibly some relation between similarity of the other sets sim(A,C), sim(B,D), and

sim(A,D). Alternatively, the fact that sim(A,B) < sim(B,C), might imply some

value for sim(A,C).

As mentioned in [35], to extend any similarity measure, the accuracy could be

increased by adding more functions and possibly more variables to capture more

information about the subject, referent, universe, and type of comparison being made.

This is certainly an area rich in properties to investigate.

There is also Pawlak’s notion of rough inclusion that could be investigated with

respect to optimal approximations. If one set is roughly included in another, is there

a relationship between the optimal approximations of each set? Or a relationship

between an optimal approximation and a roughly included set?

The idea of special inclusion operators leads to the idea of an optimal inclusion

operator, which could represent if a set is a part of all optimal approximations which

involve it, or if a set is a part of the optimal approximation of another set. Knowledge
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of the results of these operators could be used to accelerate our algorithm, but this

exploration is left for future study.

The assumption of similarity should also be examined. There are both instances

in which our assumption of symmetry is not valid, and a variety of applications

which assume symmetry, such as any example where elements of the universe can

be regarded as euclidean points. If only numerical data are present, a euclidean

foundation is natural, though dimensions can still be regarded as attributes, and

arbitrary equivalence classes created from them.

In another vein, the concept of measures was used to generalize the evaluation

of the size of a set. Another generalization could be used to refer to the granularity

of which we are focused on. Using the example of similarity of organisms in their

environments, we could find that two types of animal are very similar at a high level

due to having similar prey, eating habits, activity, routines, but if we look much

closer, we might find large differences between the species, and each is more similar

to another type based on different criteria. This could alternatively be done by using

a different equivalence relation on the universe to induce difference classes.

Another idea that should be checked, is if the algorithm is still applicable when

using measures to evaluate the size of each element of a set individually instead of

using the size of the whole set. It is expected to remain useful since additivity is

assumed in the geometric setting. Alternatively, measuring the similarity between

all elements pairwise, rather than evaluating the size of an entire set or similarity

between sets could lead to further insight.

In conclusion, the pursuit of new approximation algorithms, or refinements to this

one seems like a vast expanse of open problems to investigate. Topics such as these
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could yield some very useful data organization or filtration techniques.

97



Bibliography

[1] Patrick Billingsley. Probability and measure. John Wiley & Sons, 3rd edition,

1995. ISBN 0-471-00710-2.

[2] Josias Braun-Blanquet. Pflanzensoziologie. Springer, 1928.

[3] Victor Bryant. Metric spaces: iteration and application. Cambridge University

Press, 1985.

[4] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer, 2012.

[5] Lee R. Dice. Measures of the amount of ecologic association between species.

Ecology, 26(3):297–302, 1945.

[6] Ivo Düntsch. Rough sets and algebras of relations. Incomplete Information:

Rough Set Analysis, 13:95, 2013.

[7] Maurice René Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del

Circolo Matematico di Palermo(1884-1940), 22(1):1–72, 1906.

[8] Wendell Garner and Donna Sutliff. The effect of goodness onencoding time in

visual pattern discrimination. Perception & Psychophysics, 16(3):426–430, 1974.

[9] Paul Halmos. Measure Theory. Van Nostrand, 1950.

98
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Ph.D. Thesis - Adam Lenarčič McMaster - Computing and Software

[20] Marshall E. Munroe. Introduction to measure and integration. AMC, 10:12,

1953.

[21] Zdzis law Pawlak. Rough sets. International Journal of Computer & Information

Sciences, 11(5):341–356, 1982.

[22] Zdzis law Pawlak. Rough sets and fuzzy sets. Fuzzy sets and Systems, 17(1):

99–102, 1985.

[23] Zdzis law Pawlak. Rough sets: Theoretical aspects of reasoning about data, vol-

ume 9. Kluwer, Dordrecht, 1991.

[24] Zdzis law Pawlak. Rough set approach to knowledge-based decision support.

European journal of operational research, 99(1):48–57, 1997.

[25] James F Peters, Andrzej Skowron, Piotr Synak, and Sheela Ramanna. Rough

sets and information granulation. In International Fuzzy Systems Association

World Congress, volume 2715, pages 370–377. Springer, 2003.

[26] Hassan Rezaei, Masashi Emoto, and Masao Mukaidono. New similarity measure

between two fuzzy sets. JACIII, 10(6):946–953, 2006.

[27] Eleanor Rosch. Cognitive reference points. Cognitive psychology, 7(4):532–547,

1975.

[28] Jamil Saquer and Jitender S Deogun. Concept approximations based on rough

sets and similarity measures. Applied Mathematics and Computer Science, 11

(3):655–674, 2001.

100
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