Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21904
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorde Bruin, H.-
dc.contributor.authorSalvador, Jillian-
dc.date.accessioned2017-09-06T20:27:49Z-
dc.date.available2017-09-06T20:27:49Z-
dc.date.issued2006-10-
dc.identifier.urihttp://hdl.handle.net/11375/21904-
dc.description.abstract<p> An investigation as to the appropriateness of the wavelet transform for surface electromyography (EMG) M-wave pattern recognition is described. The M-waves are obtained by stimulating the median nerve at the wrist to activate the motor units. Surface electrodes and a graded stimulus amplitude are used. The resulting M-waves are classified using both wavelet vectors and the traditional power spectral coefficients as features sets in the pattern recognition scheme. A novel system was developed to obtain M-wave collections from subjects in the laboratory and to perform both real-time and offline analysis.</p> <p> The results obtained from the left and right thenar muscles of 4 healthy females and 2 healthy males are presented. These results are further analyzed offline to determine the effects of a changing discriminatory threshold for both wavelet and power spectral pattern recognition techniques. In addition, intra-class and inter-class Euclidean distances are shown for the set of unique M-waves derived from using the different feature sets. A time-invariant wavelet transform is implemented to improve classification by eliminating errors due to latency shifts.</p> <p> The results show that the number of unique M-waves obtained usmg wavelet features is less sensitive to a variation in discriminatory threshold. It may be concluded that a wavelet based feature set shows slight improvement in M-wave pattern classification. The time-invariant wavelet offers further accuracy.</p>en_US
dc.language.isoen_USen_US
dc.subjectwavelet transform, EMG M-Wave pattern recognition, application, power spectral coefficients, Euclidean distancesen_US
dc.titleApplication of the Wavelet Transform for EMG M-Wave Pattern Recognitionen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Salvador_Jillian_2006Oct_Masters..pdf
Open Access
4.98 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue