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ABSTRACT 

An investigation as to the appropriateness of the wavelet transform for surface 

electromyography (EMG) M-wave pattern recognition is described. The M-waves are 

obtained by stimulating the median nerve at the wrist to activate the motor units. Surface 

electrodes and a graded stimulus amplitude are used. The resulting M-waves are 

classified using both wavelet vectors and the traditional power spectral coefficients as 

features sets in the pattern recognition scheme. A novel system was developed to obtain 

M-wave collections from subjects in the laboratory and to perform both real-time and off­

line analysis. 

The results obtained from the left and right thenar muscles of 4 healthy females and 2 

healthy males are presented. These results are further analyzed offline to determine the 

effects of a changing discriminatory threshold for both wavelet and power spectral pattern 

recognition techniques. In addition, intra-class and inter-class Euclidean distances are 

shown for the set of unique M-waves derived from using the different feature sets. A 

time-invariant wavelet transform is implemented to improve classification by eliminating 

errors due to latency shifts. 

The results show that the number of unique M-waves obtained usmg wavelet 

features is less sensitive to a variation in discriminatory threshold. It may be concluded 

that a wavelet based feature set shows slight improvement in M-wave pattern 

classification. The time-invariant wavelet offers further accuracy. 
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CHAPTER! 
INTRODUCTION 

1.1 Introduction 

The smallest functional unit of skeletal muscle contraction is the motor unit (MU), 

consisting of the motor neuron (MN) and the muscle fibres innervated by it. Muscle 

contraction occurs with the asynchronized recruitment of individual MUs. Additionally, 

MU excitation can occur through the application of an electromagnetic stimulus. In the 

study of neuromuscular disease, the number of functional MUs gives relevant information 

concerning the progression of the disease. Moreover, MU number is important for 

diagnosis, monitoring effects of treatments, and in research studies such as age related 

changes. 

In the past, different motor unit number estimation (MUNE) techniques have been 

developed. Most of these techniques require some form of pattern recognition, whether 

automated or manual, to extract unique M-wave templates from recorded evoked muscle 

responses. In automated pattern recognition, either power spectral coefficients or time-

based measure were used as the features in the classification. These feature sets are not 

optimal and their inherent drawbacks affect the accuracy of the MUNE. 

This thesis investigates the use of different feature sets for M-wave pattern 

recognition. Specifically, the applicability of the wavelet transform to M-wave 

classification is examined. In addition, a novel data collection computer interface was 

designed to record up to 20 unique M-waves per subject. This interface was equipped to 

perform real-time M-wave pattern recognition with both power spectral and wavelet 
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feature sets. The system and classification approaches were developed and tested using 

the thenar muscles of a number of subjects. This necessitated the development of noise 

reduction algorithms to remove stimulus artifact and power line noise. Moreover, post­

processing algorithms are applied to further investigate the various aspects of the wavelet 

transform. The results are compared with results in the literature obtained using 

alternative MUNE techniques. 

1.2 Summary of Chapters 

The following chapter describes the physiology of the MU, detailing its anatomy and 

the manner in which its electrical properties may be measured. The mathematical 

background for the different feature extractors used in this thesis is given in Chapter 3. 

Chapter 4 describes both the hardware and software designed for this research. 

Algorithms forM-wave pattern classification are also presented. In Chapter 5, the use of 

different feature sets forM-wave classification is thoroughly examined. The results for 

the left and right thenar muscles of 6 subjects are presented. Lastly, Chapter 6 

summarizes the results obtained in this work and gives the direction for future research. 

2 
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CHAPTER2 
BACKGROUND 

The following chapter outlines the physiological and anatomical background 

necessary for a full understanding of the work presented in this thesis. First, a detailed 

. look at the properties of skeletal muscle, including the associated motor nerves, provides 

a background for motor unit number estimation (MUNE). Following, the progression of 

MUNE techniques and their inherent problems gives motivation for the research topic 

discussed in the remainder of this thesis. 

2.2 Skeletal Muscle 

The following outlines the electrophysiology of human skeletal muscle. A more 

detailed description may be found in references such as Guyton and Hall (2000). 

Skeletal muscle is comprised of numerous fibres ranging in diameter from 10 to 

80 micrometers that stretch the entire length of the muscle. Each fibre contains 

specialized intracellular components to facilitate muscle contraction and is innervated by 

a single nerve ending located near its center. The term motor unit (MU) is used to 

collectively describe the motor neuron (MN), whose cell body is located in the spinal 

column, a motor axon and its terminal branches, and the muscle fibres which the terminal 

branches innervate. The MU is the smallest functional unit of contraction in the human 

skeletal muscular system. A MU is depicted in Figure 2.1. As seen in this figure the 

motor axon is protected by a myelin sheath. These cells serve to insulate the conducting 
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axon thus increasing the velocity of the electrical transmission along the nerve as 

discussed later. The MU size refers to the number and type of muscle fibres innervated 

by that MN. A given muscle may have a few to several hundred MUs of varying size. 

Feinstein et. al. (1955) used cadaveric studies to develop a database for the number of 

MUs in different human muscles. The range was large, with the thenar muscle found to 

have 203 MUs, while estimates for muscles such as the platysma (1096) and anterior 

tibalis (445) were much higher. The size of a MU correlates to the contribution of that 

MU to a muscle contraction. Thus, larger MUs will have a greater contribution to a 

skeletal muscle contraction than smaller units. 

The event responsible for initiating muscle contraction is the action potential 

(AP). Both nerve and muscle cells are excitable. That is, a potential difference exists 

between the intra-cellular and extra-cellular media, and changes in this potential can 

result in an electrical signal that propagates along the cellular membrane. A MN in its 

resting state typically has a potential difference of -70m V across its cellular membrane. 

This potential difference is due to stationary intra-cellular anions and is maintained at 

equilibrium through selective membrane permeability to the positive ions potassium (K+) 

and sodium (Na+). An AP begins in the MN with a localized depolarization of the 

cellular membrane. This results in increased membrane permeability to Na+ causing Na+ 

to enter and the cell potential to increase and upon reaching a characteristic threshold 

level, becoming a positive feedback system. At this threshold, a mass influx of Na+ 

results in the generation of an AP. An AP is an ali-or-nothing event in that it occurs with 
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certainty once the threshold value is reached but otherwise does not occur. When the 

threshold value is reached and an AP is generated the nerve is said to have "fired". APs 

are generated in muscle fibres as well as in nerve fibres, using the same mechanism. 

In natural, voluntary muscle contraction input from the brain and spinal cord of 

the central nervous system causes an AP to be generated in the MN of a MU. This AP 

propagates down the motor nerve axon, through the terminal branches and across the 

synaptic junctions to the muscle fibres of the motor unit. The firing of the muscle fibres 

creates a short contraction called a "twitch". Smooth, continuous contraction of the 

muscle occurs when the individual motor units are fired asynchronously and the resulting 

twitches are summed. 

The location where the motor axon branches enter the muscle is termed the end 

plate zone and for most muscles is situated at the center of the muscle known as the 

muscle belly. An important anatomical property is that the muscle fibres of a given MU 

are not all adjacent. Instead, the muscle fibres innervated by one MN are overlapped with 

fibres of other MUs. Thus, the terminal branches of the MN are spatially dispersed 

through the end plate zone. 

2.3 Surface Stimulation and Recording 

The discussion to this point has described muscle contraction initiated voluntarily. 

In experimental situations it is difficult for an individual to control and maintain the force 

of a muscle contraction so quantitative measures can be recorded and reproduced. There 

are two methods to electrically stimulate a muscle contraction overriding conscious 
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commands and enabling sufficient control and repeatability for experimental purposes. 

These are through extra-cellular surface stimulation or intra-cellular stimulation via a 

micro-electrode. The former approach is applicable to this thesis and will be discussed 

here. 

The peripheral nervous system is structured such that MN fibres are bundled 

together with afferent sensory fibres in a nerve trunk. The nerve trunk is surrounded by a 

tough layer of high impedance connective tissue called the epineurium as shown in Figure 

2.2. Surrounding the nerve trunk is a bath of body fluids that acts as a volume conductor 

through which an electric field can penetrate. 

When two electrodes placed on the surface of the skin are supplied with a voltage 

difference, an electric field is generated and penetrates through the skin and into the body 

tissues. The electric field diminishes as the distance into the body away from the skin 

surface increases. However, the field establishes a potential difference and causes ion 

movement in the extra-cellular fluids. If the electric field is strong enough at the point 

where a nerve trunk is located, the field will penetrate the high impedance epineurium. 

The ions in the extra-cellular fluid within the nerve trunk will then experience a force 

causing their movement. This ion movement will result in a local depolarization of the 

nerve fibres in the region. This depolarization will only occur at the nodes of Ranvier in 

the myelinated motor nerve fibres (see Figure 2.1 ). If ion movement progresses to a great 

extent an AP in the affected nerve fibres will result. Moreover, if the electric field is 

increased it will penetrate deeper into the nerve trunk and additional fibres will fire. 

7 
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----Epineurium 

----Perineurium 

Blood vessels 

Figure 2.2. Cross-section of a nerve trunk contammg 
myelinated and unmyelinated fibres (Guyton and Hall, 1996) 

It is recognized that electric field depth alone does not determine the order in which 

MNs fire. The issue of preferential recruitment of MUs in surface stimulation has been 

one of dispute for many years. There is some debate as to whether the stimulus threshold 

of MN axons is only related to axon size or conduction velocity (Chan et al, 1998). 

Recent research has given evidence that recruitment depends on the depth of a fibre in a 

nerve bundle and other tissues as well as the fibre's axon size and the internal fibre state 

(Szlavik and deBruin, 1999). Axon size is deemed important because larger axons have 
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longer distances between adjacent nodes of Ranvier and thus, a greater difference m 

external potential resulting from the same applied stimulus. 

In this thesis, surface recordings of excited muscle fibre activities are examined. A 

recording can also be explained using a volume conductor. However, in contrast to 

stimulation, the source of electrical activity is the excited cell membrane, in this case a 

muscle fibre. When a nerve is stimulated to generate an AP, the potential travels along 

the axon to the muscle fibres it innervates, causing them to depolarize. The excited 

muscle fibre is a bioelectric source and can be approximated as a moving constant current 

source that delivers current to the extra-cellular bathing medium. This current produces a 

potential field in the volume conductor which can be measured by surface electrodes. 

Again, the potential field decreases with distance between the excited muscle fibre and 

the skin. When surface electrodes are placed over the muscle, the recording is the sum of 

all electrical activity occurring in the volume conductor as it affects potentials at the skin 

interface. Thus, the recording is comprised of electrical signals (APs) from all muscle 

fibres that are firing. As the muscle fibres are at varying distances from the recording 

electrode, the AP's are attenuated by varying amounts. Further, they are temporally 

dispersed because of the dispersion of synapses in the end plate regions. The sum of the 

temporally displaced APs is called an M-wave. When only one motor unit fires, the 

record is known as a motor unit action potential (MUAP). Therefore the shape of a 

MUAP is dependent on the spatial dispersion of MN terminal branches, the number of 

muscle fibres in the MU, their relative positions to the recording electrodes, and the sizes 

and distance of the two recording electrodes. If the recording electrode position remains 
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unaltered the shape of the MUAP remains relatively constant, thus making MU pattern 

recognition possible. 

2.4 Disorders of the Motor Unit 

Muscle strength will be reduced should some of the MUs become diseased. 

When a neuropathy occurs, the problem in the MU is with the MN. This results in a loss 

of working MUs. Alternatively, the MU defect could be in the muscle fibre. This is a 

myopathy. Several diseases such as amyotrophic lateral sclerosis, spinal muscular 

atrophy and poliomyelitis are characterized by a loss of healthy motor units. 

In the case of a neuropathy, healthy muscle fibres, still capable of contracting, 

have lost their MN. The nervous system compensates for this by re-innervating the 

healthy muscle fibres. The result is that the number of MUs is less but the number of 

working muscle fibres remains the same. Though the maximum muscle force is 

unaffected, the gradation of force is hindered because of the reduced MU population and 

the increased size of the MUs. 

The health of the MUs can be used to distinguish between neuropathies and 

myopathies. Thus, the technique for accurately estimating the number of functional MUs 

and their characteristics presented in this thesis has value as both a research and a 

diagnostic tool. It can provide valuable information to aid in diagnosis or to monitor the 

progression of a muscle denervating disorder. Furthermore, MU numbers may 

demonstrate characteristics of a disease that are as of yet unsuspected by physicians. 
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2.5 Motor Unit Number Estimation 

When stimulating electrodes placed over a nerve trunk are supplied with an 

electric pulse, some of the motor nerves are depolarized to produce an AP. As described 

above, this AP will propagate to the muscle fibres innervated by these motor nerves 

causing MUAPs. An additional recording electrode placed over the end plate region of 

the muscle that the stimulated nerve bundle controls measures the summation of all the 

evoked MUAPs. The data recorded by this electrode can be used to produce an estimate 

of the motor unit number in a process that is further outlined below. 

The incremental motor unit number estimation (MUNE) technique originally 

proposed by McComas et. al. (1971) makes use of the patient instrumentation shown in 

Figure 4.1. In this technique an operator manually increases the stimulus to produce a set 

of evoked responses or M-waves known as the composite response (CR). The CR is a 

series of M-waves separated by discrete increments as illustrated in Figure 4.9. 

McComas assumed that each increment in the CR is the result of the addition of an 

MUAP due to the excitation of one more MN with the slight increase in stimulus. The 

maximum evoked potential (MEP) occurs when the stimulus pulse amplitude is increased 

so that all of the motor units within the muscle are firing. The MEP is a summation of the 

MUAPs from all of the motor units in the muscle. 

McComas et. al. reasoned that if many individual summed MUAPs could be 

recorded and an average MUAP value calculated then an estimate for the number of 

motor units in a muscle is given by 

MUNE = MEP amplitude 
Average MUAP amplitude 

11 
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In this manual technique, which used an oscilloscope and visual pattern 

recognition, the amplitude feature selected was the peak-to-peak amplitude of the M­

wave. The average MUAP amplitude could be ascertained by performing successive 

subtractions of the M-waves in the CR to give the contributing MUAPs and averaging 

their amplitude feature. However, since MUAPs have different shapes and time 

durations, the MUAP amplitude features such as peak-to-peak amplitude do not add 

linearly. This can be compensated for by determining the average MUAP contribution to 

theM-wave amplitude feature. This contribution is simply the amplitude feature of the 

largest M-wave in the CR divided by the number of members in the CR. The assumption, 

therefore, is that the MUAPs in the total population of motor units in a muscle add in the 

same manner to form the MEP as they do in the much smaller sample that adds to form 

the CR. 

This particular MUNE technique requires the stimulating and recording electrodes 

to have access to the nerve bundle and the associated muscle. Thus, muscles whose nerve 

supply is buried within body tissue, such as the biceps brachii are difficult to apply to this 

test. Muscles that are readily available for MUNE include the thenar, the hypothenar, the 

extensor digitorum brevis, the soleus, the first dorsal interosseus and the deltoid. The 

present research makes use of the thenar muscle as both its nerve bundle and its end plate 

region are readily accessibly for surface stimulation and recording. Moreover, there is a 

large research base concerning the properties of the human thenar muscle. 

A typical thenar response for rectangular current pulse stimulation is shown in 

Figure 4.6 (A). This response consists of a stimulus artefact which is no longer 

12 
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rectangular but instead is exponentially decaying due to the filtering properties of the 

tissues and electrodes. Also present in the recorded response is a propagation delay due 

to the time required for the AP to travel along the axon and across the synaptic junction. 

Finally the response shows theM-wave which is the summated MUAPs. 

2.6 Downfalls of the McComas Technique 

Unfortunately, the incremental technique relies on several basic assumptions 

which limit the confidence level in MUNE achieved this way. The first underlying 

assumption of this technique is that each increment in the CR results from the recruitment 

of one additional MU. There are several conditions that may violate this assumption. 

First, there may be very small MUs, or MUs that are far beneath the surface recording 

electrodes that produce MUAPs on the same order of magnitude as the noise in the 

recording system. If this is the case it will be difficult, if not impossible, to determine 

these as increments in the CR. Thus, the number of MUAPs determined by the 

incremental technique will be low and the average MUAP value will be high. This results 

in an under-estimation of the MU number. 

Secondly, it may be possible that two motor nerves have stimulation thresholds 

that are very close in value. Thus, the two MUs may repetitively fire together and 

separate MUAPs will not be discernable. Again, the number of MUAPs will be under­

estimated causing an under-estimation of the MU number. 

The most common point for criticism of the incremental technique is in relation to 

alternation. Alternation results from the fact that MU stimulation thresholds vary slightly 
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over time. Thus, in the incremental technique there is a probability associated with the 

firing of a MU at specific stimuli amplitudes rather than a certainty of firing (Slawnych · 

et. al., 1996). This probability curve is shown in Figure 2.3 (A). At stimulus level S1, 

MU 1 will fire 0% of the time while at stimulus level S2, MU 1 will fire 100% of the time. 

Alternation occurs when multiple MUs have overlapping probabilities of firing. For 

example in Figure 2.3 (A) at stimlus level S3 both MU3 and MU4 have a probability of 

firing. Thus, there are three possible M-waves that may be seen at any given time at this 

stimlus level as shown if Figure 2.3 (B). When the number of MUs with overlapping 

probabilities of activation increases, the number of possible M-waves increases 

significantly. If these cases of alternation remain undetected the CR will contain too 

many increments resulting in an overestimate of the MUNE. 

2.7 Improvements to the McComas Technique 

McComas et. al., developed specific procedures for determining the MEP and the 

average MUAP which were carried out manually using a fully trained operator and 

storage oscilloscope. However, the semi-automation of these procedures by Ballantyne 

and Hansen (1974; 1975) improved reliability of the MU estimate. This system provided 

the operator with displays to aid in creating the CR. In addition the CR was stored in a 

computer as templates. The individual MUAPs could then be found by subtracting each 

template from the next largest. Ballantyne and Hansen also proposed ranking M-wave 

size by the area under the curve rather than the amplitude. 
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Figure 2.3. Probability of a motor unit firing (Orsi, 2000) 
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They reasoned this was valid because areas should sum more linearly than MUAP peak 

amplitudes. 

In 1987, Jashenko further automated incremental MUNE by creating a computer 

controlled stimulator and a computer executed classification algorithm to classify M­

waves. In this automated system, subjectivity was eliminated by removing the operator 

from determining what constitutes an increment in the CR. In the automatic system a 

sub-threshold stimulating pulse was applied to the nerve bundle and the response was 

recorded and stored in the computer as "template 1". The stimulus amplitude was 

automatically increased to record successive evoked muscle responses. The algorithm 

used to determine a new evoked response calculated the absolute area between response 

curves and found the Euclidean distance (see Section 4.2.5) between time samples of the 

responses. This system considerably improved response classification and reduced 

chances of missing increments in the CR when compared to manual methods. 

Further improvements to the automated system were made by Cavasin (1989). 

Cavasin developed a more efficient algorithm for stimulation control as well as a more 

accurate pattern classification scheme for classifying M-wave responses. His algorithm 

made use of power spectral coefficients using the fast Fourier transform. As the stimulus 

incremented, the spectral coefficients of each recorded waveform were calculated and 

compared with the spectral coefficients of all the stored templates. The Euclidean 

distances of the spectral coefficients from the new waveform and the spectral coefficients 

from each template were then compared to a pre-determined minimum distance, known 

as the threshold. If the calculated Euclidean distances were larger than the threshold it 
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was assumed a new motor unit had been recruited and the evoked response was stored as 

a new template in the EMG computer. The use of the power spectral coefficients enabled 

both time domain and phase information to be discarded. This eliminated problems 

associated with latency shifting which will be discussed later. 

In Cavasin's automated system the stimulus amplitude was varied slightly around 

the value required for each new increment in the CR in an attempt to repeat the 

waveform. It was only when the waveform was repeated a minimum of three times, that 

it was stored as a valid new template. Once sufficient templates had been saved the 

individual MUAPs were extracted by a computer algorithm that ranked the stored 

templates in order of absolute area. Each template was subtracted from the next largest, 

thus producing a family of MUAPs. The Cavasin technique examined the method of 

using the average MUAP feature rather than the average MUAP contribution and found 

that this resulted in underestimation of the MUNE. He concluded that the average 

contribution as described earlier in this thesis is the best method. It was estimated that 

200 to 400 stimuli were applied to the subject throughout the test which usually lasted 2 

to 3 minutes. 

2.8 Summary 

In this chapter some of the anatomical and physiological aspects of MUAP 

generation have been discussed. MUNE, specifically the McComas technique, has been 

introduced, including assumptions and limitations. MUNE is still an ongoing area of 

research and development and several different techniques have been proposed (e.g. 
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Daube, 2003). In all these techniques, M-wave features have been recognized and 

compared either visually or automatically. The remaining chapters of this thesis address 

the issue of feature selection in M-wave classification in order to make the McComas 

technique more reliable. 
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CHAPTER3 
SIGNAL PROCESSING BACKGROUND 

3.1 Introduction 

As described in Section 2.6, MUNE has historically progressed from manual 

construction of the CR, to automated classification performed by a computer. The 

recorded M-waves used in the creation of the CR are often contaminated by physiological 

or environmental noise. An experienced operator is capable of recognizing these noise 

sources and thus, classifying M-waves into appropriate clusters to form the CR. 

However, an automated system using signal processing tools such as Fourier and wavelet 

analysis can greatly improve the efficiency of M-wave pattern recognition and removes 

operator subjectivity in the selection of M-waves. 

Classification of recorded M-waves into a CR, whether performed manually or 

automatically, follows a typical pattern recognition scheme. 

1) Feature Extraction: First the features of the signal that are known to contain 

information that separates one group of M-waves from another must be 

defined. 

2) Discriminator Value: Next, the features must be mapped into a numerical 

vector that is in a particular range for different M -wave clusters. A 

discriminatory threshold must be defined as the separator between the vectors 

of different clusters. 
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3) Classification: Finally, a newly recorded M-wave may be classed into one of 

the pre-defined clusters or into a new cluster, by comparing the mapped 

numerical vector with the discriminatory threshold. 

This thesis investigates all three steps in the pattern recognition scheme. Feature 

selection is of primary importance in pattern classification as it is directly linked to the 

speed and the accuracy with which the classification may be performed. In other words 

the feature set should be minimally dependent on additive noise and maximally sensitive 

to theM-wave characteristics. 

Often in the past, M-wave pattern classification schemes have made use of time 

domain features to form the CR. However, frequency domain analysis with the Fourier 

transform and time-scale analysis with wavelets enable a clearer distinction between M­

wave clusters. This thesis investigates M -wave pattern classification using of both power 

spectral features as obtained through Fourier analysis and wavelet vectors as obtained 

from a dyadic approach to signal decomposition. This chapter gives the necessary 

mathematical background to understand both power spectral and wavelet based analysis. 

3.2 Power Spectral Features 

The power spectrum of a signal is obtained by taking the square of the magnitude of 

the Fourier coefficients. Fourier analysis separates a signal into sinusoids of different 

frequencies. This is a tool for mathematically transforming a signal from a time-domain 

representation to a frequency-domain representation. The frequency spectrum of a signal 

can be viewed as a unique characteristic that may serve to match or distinguish one signal 

from another. 
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The Fourier transform is mathematically defined through the following equation: 

00 

F(OJ) = J f(t)e-jax dt 

The signal, f(t) is multiplied by a complex exponential and summed over all time to 

give a series of Fourier coefficients F(ro). Each Fourier coefficient has a certain 

magnitude and phase associated with a sinusoid of particular frequency ro that is a 

component of the original signal. The larger the magnitude of a Fourier coefficient at a 

particular ro, the more significant contribution a sinusoid of that frequency makes to the 

signal. 

The transform defined above requires integration. Thus, the signal f(t) must be 

describable by elementary functions such as sinusoidal functions, exponential functions 

or terms from a power series. In most practical situations, this is not the case and the 

Fourier coefficients must be computed through a numerical algorithm. For discrete time, 

or sampled signals, such as those presented in this thesis, the discrete-time Fourier 

transform (DFT) may be used to calculate the frequency spectrum. This transform 

operates on the sampled signal to produce an approximate frequency spectrum of the 

original analog signal. The frequency ( ro) axis is then discretized. For a bandlimited 

signal with sampling frequency n, the ro axis is discretized as follows: 

2JZQn 

N 

-N N 
n=--, .... ,-

2 2 

where N is the number of data samples. The integral in the Fourier transform defined 

above is now approximated as a sum: 
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A more efficient algorithm for computing the DFf is known as the fast Fourier 

transform (FFT). This algorithm works on the premise that N is continuously divisible by 

2. A DFT of length N is written as the sum of two DFTs of length N/2. This is done 

recursively until the DFT of only two data points is remaining. If N is not an integer 

power of 2 it can be made so by padding the signal with zeroes. When padding is 

applied, the signal is generally multiplied by a smoothing window such as the Hamming 

window to ensure a smooth transition from the actual data points in the signal to the 

additional padded zeroes. 

In MATLAB the FFT is computed using the Cooley-Tukey (1965) algorithm. 

This algorithm assumes that the signal length N can be written in composite form as 

N=N1N2. The algorithm then computes N1 transforms of size N2 and N2 transforms of 

size N1. This process is performed recursively for both the N1 and N2 DFTs until a point 

is reached where the problem can be solved using machine generated "codelets". The 

execution time for this algorithm depends on the length of the signal and is fastest when 

the number of data points, N is a power of 2. 

Though the Fourier transform is applied m many practical signal processing 

applications, there is an important characteristic of the transform that needs to be 

recognized. This is that the Fourier transform is reversible. The transform allows time 

information to be converted to frequency information and vice versa. However, only one 

set of information is available at any given instance. For example, when the frequency 
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information of a signal is known through the Fourier transform, no information about the 

signal in time is known. This potential drawback is of no consequence if the signal in 

question is stationary or if frequency information alone is sufficient. Yet if the signal is 

contains important transient characteristics or is non-stationary, Fourier analysis is not 

suitable. TheM-waves examined in this thesis, are both transient and non-stationary. For 

this reason, alternate feature extraction techniques, primarily wavelet analysis are 

examined. 

3.3 Short-Time Fourier Transform 

The Short-Time Fourier Transform (STFT) introduced by Gabor (1946) is a 

modification of the Fourier transform in an attempt to retain both time and frequency 

information for a signal under analysis. The STFT produces a two dimensional function 

with time and frequency as variables. Thus, the STFT gives information about when in 

time a given frequency component occurs. However, the precision of this information is 

limited and in effect a compromise between time and frequency information exists. 

The STFT premise is that, while a signal may not be stationary, small segments of the 

signal can be assumed stationary. These segments are captured by a window with a width 

equal to the segment of the signal where stationarity is valid. The signal and the window 

are multiplied to extract the stationary segment. The Fourier transform of the segment is 

then computed. 

In the STFT, the window length is of utmost importance. Longer window lengths 

provide greater frequency resolution while narrow lengths provide greater time 
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information. The downfall is that once a window length is chosen for a particular signal 

it is fixed for all frequencies. Most practical signals contain high frequency components 

for a short duration and low frequency components for long duration. Representing such 

a signal using the STFT, when a narrow window is chosen there is adequate time 

resolution at the higher frequencies but limited the frequency resolution in the lower 

ranges. Conversely, if a wider window is chosen, the higher frequency components will 

not be resolved. A more desirable approach is one in which the window size can be 

varied. This is captured in wavelet analysis. 

3.4 Wavelet Analysis 

In wavelet analysis, the spectral components are not resolved equally as in the STFT. 

Instead, wavelets are designed to yield enhanced time resolution and reduced frequency 

resolution at high frequencies and enhanced frequency resolution and reduced time 

resolution at lower frequencies. This is the optimal approach for signals that have low 

frequency components for long durations and high frequency components for short 

durations. 

The term wavelet describes a waveform of limited duration that has an average 

value of zero. Wavelets are generally asymmetric and irregular as opposed to the 

continuous smooth sinusoids used in Fourier analysis. Figure 3.1 shows a typical wavelet 

derived from a family of mother wavelets known as the Daubechies family. 

In Fourier analysis, the signal under investigation is decomposed into a series of 

sine waves at different frequencies. In wavelet analysis the signal is decomposed into a 
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series of scaled and shifted versions of a mother wavelet. The wavelet transform is 

defined mathematically as: 

00 

C(scale, position)= J f(t)'P(scale, position,t)dt 

The transform results in a series of wavelet coefficients that are dependent on the scale 

and position of the mother wavelet. The coefficients, when multiplied by a wavelet of the 

correct scale and position yield the wavelets composing the original signal. The wavelet 

transform effectively acts as a correlator between the shifted, scaled mother wavelet and 

segments of the signal. For shifted and scaled values where the correlation with the 

signal segment is high, the coefficient will be large whereas for shifted and scaled values 

where the signal segment and the wavelet remain uncorrelated the coefficient will be low. 

The scaling factor corresponds to stretching or compressing the mother wavelet and is 

thus responsible for deriving the frequency characteristics of the signal. When the scaling 

factor is large, the mother wavelet is stretched and is compared to a longer segment of the 

signal. In this case, the coefficients represent the lower frequency components of the 

signal. For low scaling values, the more compressed the mother wavelet and the smaller 

the segment of the signal that is compared. In this case, the coefficients represent the 

higher frequency components of the signal. The shifting factor merely delays the onset of 

the wavelet enabling different segments of the signal to be compared to the wavelet. 

The continuous wavelet transform calculates the wavelet coefficients at every 

possible scale and position and is not a practical approach to wavelet decomposition. A 

more efficient analysis is achieved by computing the coefficients at a subset of scales and 
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positions that are based around powers of 2. These are known as dyadic scales and 

positions and when used, yield the discrete wavelet transform (DWT) as given by: 

1 OOJ (t-bJ C(a,b) = ..Ja -=f(t)'P ---;;- dt 

where, 

This dyadic DWT can be efficiently implemented using the Mallat algorithm (Mallat, 

1989). This algorithm builds on a two-channel sub-band coder using quadrature mirror 

filters. This implementation is shown schematically in Figure 3.2. The coefficients 

representing the low frequency components of the signal are known as the approximation 

coefficients while those representing the higher frequency components are termed the 

detail coefficients. Figure 3.1 (A) shows the filter coefficients used for Mallat 

decomposition with a Daubechies 5 mother wavelet. 

In the implementation shown in Figure 3.2 the signal, S, is passed through high 

and low pass filters to produce two new signals. Each of the new signals contains as 

many data points as the original and so is down-sampled to correct for doubling in the 

data. In Figure 3.2, the length of the resulting approximation (cA) and detail (cD) signals 

is greater than half the length of the original signal due to the extra samples included as a 

direct result of the filter convolution. 
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A 

B 

Figure· 3.1. Daubechies 'db5 ' (A) filter representation 
and (B) wavelet function (Orsi, 2000) 
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The decomposition process is iterative with each successive level, decomposing 

the low frequency components of the signal into smaller frequency bands. The 

decomposition can continue until the details band consists of a single sample. In practice 

a suitable number of decomposition levels can be determined by examining the nature of 

the signal using either an entropy measure or by examining the power spectral density as 

described in Section 5.5. 

3.5 Time-Invariant Wavelet Analysis 

As discussed above, the wavelet transform has distinct advantages over the Fourier 

transform for the analysis of transient signals. However, the wavelet transform is still far 

from ideal. One inherent difficulty presenting problems forM-wave pattern recognition 

is the wavelet transform's sensitivity to translations. In practice, the wavelet coefficients 

of two signals may differ greatly even when the two signals are merely time shifted 

versions of each other. This complicates pattern recognition when the signals are to be 

clustered based on shape and amplitude and not on time delays. Several algorithms exist 

to correct this problem by creating a wavelet that is time-invariant. 

It is intuitive that a modification introducing circular shifts to the Mallat algorithm 

will eliminate the sensitivity to translations felt by the wavelet transform. Specifically, if 

for each level of decomposition the input to the filter bank is circularly shifted by 1, the 

output will be a set of vectors, differing because of the shifted input. Identical but time­

shifted signals will result in identical sets of vectors at each level as they will both be 

circularly shifted at the input. If all of these output vectors are retained, identical 
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translated signals will have matching wavelet coefficients. However, this process is not 

efficient as many of the computations produce results that are redundant. The algorithm 

used for a shift-invariant wavelet in this thesis eliminates this redundancy while still 

retaining the shift-invariant property. This algorithm is known as the multi-scale wavelet 

representation or MSW AR (Sari-Sarraf and Brzakovic, 1990). Essentially the algorithm 

serves to modify the Mallat implementation as shown in Figure 3.3. 

In MSW AR, in the first level of decomposition the signal is passed through the 

wavelet high and low pass filters. In addition, the original signal undergoes a circular 

shift by 1 and this shifted version is passed through the same filters. The resulting two 

outputs from the high pass filter are down-sampled. Down-sampling is subsequently 

followed by each of the signals being stretched to double their length. Lastly, one of the 

two high pass filter outputs is shifted by 1 and added to the other. The result is a signal 

approximating a 1st level detail coefficient and containing information from both the 

original signal decomposition and the decomposition of a circularly shifted version of the 

original signal. The approximation vectors on the other hand, are not stretched, shifted 

and added, but are instead passed to the next iteration where the circular shift occurs 

again. The process is repeated for all levels of decomposition. Though this algorithm is 

computationally more involved than the traditional wavelet transform it is invaluable for 

the pattern recognition of translated signals. 

In the following chapters, the mathematical transforms described above are used to 

extract M-wave features for pattern recognition. The relative success of the classifiers is 

determined and insight is given into the best performing feature extractor. 

30 



Master's Thesis - J. Salvador McMaster University- Electrical Engineering 

-{]:-

• : Circular shift by one. 

: Interpolate, shift and add. 

Figure 3.3. Implementation of a shift-invariant wavelet (Sari-Sarraf and Brzak:ovic, 1990) 
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CHAPTER4 
MEASUREMENT AND ANALYSIS SYSTEM 

4.1 Introduction 

To evaluate the benefits of the wavelet transform in M-wave pattern recognition a 

system capable of measuring and analyzing single channel EMG recordings was 

designed. The initial processing algorithms were developed offline using MATLAB 7.0 

and pre-recorded M-wave files. This allowed for preliminary testing to develop optimal 

noise reduction and classification schemes used later to create a real-time Lab VIEW 

system for signal collection and pattern recognition. The system enables the user to select 

between Fourier or wavelet pattern recognition techniques for real-time classification of 

M-waves recorded from a subject. In addition, all M-waves are stored for later off-line 

analysis. Furthermore the system is equipped with an adjustable threshold setting to 

evaluate the effects of different discriminators to enable muscles other than the thenar to 

be tested. The main hardware components are electrodes, an amplifier and a stimulator, a 

National Instruments NI 6024E (Austin, Texas, United States) data acquisition board with 

AID and D/ A capabilities and a personal computer with Lab VIEW software. An 

overview of the hardware set-up is shown in Figure 4.2. The software is discussed in 

further detail in Section 4.2. 

4.1.1 Subject Set-up 

The subjects were seated comfortably with the hand resting on a table and forearm 

comfortably supported on the table. The hand was further supported with sand bags to 
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minimize subject movement and increase comfort level. The comfort of the patient was 

found to be important as patients that were not relaxed demonstrated a higher level of 

voluntary MU activity that interfered with the desired evoked M -wave recording. 

4.1.2 Electrodes 

The recording electrodes were made from disposable self adhesive ECG 

electrodes (Product No: 30807732, Tyco Healthcare Group, Mansfield, MA). The 

recording electrode was constructed by cutting the 25mm by 23mm electrode 

longitudinally. The halves were placed end to end over the thenar eminence to cross the 

first metacarpal bone perpendicularly at the junction of its proximal and middle thirds as 

shown in Figure 4.1. An additional half of an ECG electrode, used for reference, was 

attached to the proximal phalanx of the thumb. A ground electrode was located at the 

dorsum of the. hand. All connections were made using lightweight alligator clips for 

flexibility. Moreover, the stigmatic and reference electrodes were connected to the 

amplifier via a shielded cable to reduce the effect of external noise. 

4.1.3 EMG Amplifier 

All recorded signals were amplified and band-passed filtered usmg an A-M 

Systems 1700 differential amplifier (A-M Systems, Sequim, W A) with high-pass and 

low-pass settings at 10 Hz and 500 Hz respectively. The gain of the amplifier was 

typically set at 1000 for subject collections. 
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4.1.4 Stimulator 

The stimulator used for this system was a Digitimer DS7 (AM Systems, Sequim, 

W A) constant current isolated stimulator. A trigger pulse was invoked by the software 

through one of the digital outputs on the data acquisition board at a rate of 1· Hz. The 

stimulating pulse width was set to 100 microseconds to minimize patient discomfort. The 

stimuli were delivered through 6 mm diameter stainless steel electrodes mounted 1.8 em 

apart on a plastic bar. The plastic bar was strapped over the median nerve proximal to the 

wrist. The bar position was moved slightly on initial set-up to find the optimal 

placement. This was the position where there was little lumbrical or forearm muscle co­

stimulation. The stimulus amplitude level was manually controlled during this 

experiment. With the help of the software displays the operator was efficient in 

determining which levels of stimulation needed to be further explored to obtain all levels 

of the composite response while keeping alternation at a minimum. 

4.2 Software 

The software for this thesis was created using Lab VIEW 8.0 Full Development 

System (National Instruments, Austin, Texas, United States). Lab VIEW was chosen for 

this project as it is especially created by National Instruments to interface with their 

development boards. Additionally, Lab VIEW is an intuitive graphically oriented 

programming language equipped with a built-in library of pre-programmed functions 

called visual interfaces (VIs). The VIs are capable of handling 1!0, signal processing, 

statistics, mathematics, file manipulation and graphing functions while at the same time 
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allowing the programmer access to the code thus increasing LabVIEW's versatility. The 

graphical user interface displayed during a typical recording session is shown in Figure 

4.3 

The MUNE implemented in the software in this system is based on the McComas 

incremental technique which was automated first by Jasechko (1987) and later improved 

by Cavasin (1989). Some of the concepts in this thesis are modified versions of those 

used in these automated systems (e.g. baseline correction). Figure 4.4 shows the software 

flowchart while Figure 4.5 describes theM-wave pattern classification method in detail. 

4.2.1 System Parameters 

The parameters needed for the software program to execute are selectable by the 

user. These parameters cannot be changed during a recording session and thus must be 

set appropriately before a recording session is started. The default values were 

determined empirically for the thenar muscle and are automatically loaded when the 

program is called. However, these values can be altered before the START button is 

pressed. This feature enables the software to be easily adapted for studying alternate 

muscles. 
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4.2.2 Synch AIAO 

A sub VI named Synch AIAO was created to trigger the stimulator and collect 

data. Parameters from the main program are passed to Synch AIAO. These include 

sampling rate (default 3600 Hz), amplification (default 1000), pre-stimulus length (50 

ms) and post-stimulus length. The Synch AIAO sub VI is then initiated and collection 

begins. Two segments of EMG data are collected by the Synch AIAO routine. The first 

is collected before the application of the stimulus and is known as the pre-stimulus data. 

The pre-stimulus window is a fixed length of 50 ms and the data is used to determine 

external sources of noise and background EMG. The second segment of collected data 

occurs immediately after the stimulus. This is the post-stimulus data and contains the 

stimulus artifact and the evoked muscle response as shown in Figure 4.6 (A). The post­

stimulus window may be of varying length and is dependent on how the user configures 

the Maximum Evoked Potential collection routine as explained later. 

The Synch AIAO routine is designed to send a triggering waveform to the 

stimulator along Analog Output 0 (AOO) while simultaneously collecting data along 

Analog Input 0 (AIO) on the National Instruments data acquisition board. The timing is 

such that the collection will occur only for the duration of the triggering waveform. Thus, 

the length of the triggering waveform is important and the waveform must be created 

after the user-defined parameters such as post-stimulus length and sampling frequency are 

determined. In Figure 4.6 (B), the triggering waveform corresponding to the collected 

data is shown. As seen the figure the trigger pulse is delayed within the waveform. This 

enables the pre-stimulus data segment to be collected. The trigger pulse itself remains 
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high for 5 ms. Though the stimulating box is positive edge triggered it was found that the 

pulse must remain high for a sufficient period of time for proper operation. 

Once the post-stimulus data is collected a timer prevents the next data collection 

from occurring for a specified duration. The duration is specified by the user defined 

parameter Stimulus Rate, whose default value is 1 Hz. During this waiting period the 

trigger line is held at 0 and no data is recorded or displayed. Also during this time the 

data that was just recorded passes through signal processing, feature extraction and 

classification routines. 

The Synch AIAO routine serves only to trigger the stimulator and not to control 

the amplitude of the stimulating pulse. Automated stimulator amplitude controls were 

implemented by Jasechko (1987) and Cavasin (1989). However, in this experiment, 

greater flexibility was needed and it was therefore decided that the stimulator be under 

manual control by an experienced operator. 

4.2.3 Signal Processing 

The processing algorithms described here were developed off-line using 

MATLAB 7.0. They were then implemented in LabVIEW 8.0 and applied to all on-line 

data collections that passed a pre-stimulus variance check defined in detail below. The 

original MATLAB 7.0 algorithms were retained and augmented to simulate the real-time 

Lab VIEW system. These algorithms are useful for off-line experimentation with pre­

recorded data. 
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4.2.3.1 Differential 60 Hz Noise Reduction 

A common problem in biological signal recordings is 60 Hz noise caused by a 

capacitive coupling of power sources to a subject's skin and recording leads. In EMG, 

this source of noise is particularly troublesome because the M-Wave responses contain 

information in the 60 Hz frequency range. For this reason most filtering techniques, 

while removing the 60Hz noise, cause a distortion of the desired M-wave signal. 

For this system, it was determined that 60 Hz noise could be most successfully 

reduced by coherent detection and elimination. Figure 4.7 (A) shows a typical recording 

before processing. In most physiological recordings, the 60Hz noise presents as a 60 Hz 

sine wave and this can be removed by simply adding a 60Hz signal with the same 

amplitude and phase shifted 180°. In the earlier recordings, this was the case. However, 

since then, the hospital (McMaster University Medical Center) implemented its own 

generating plant, attached to the power grid, and the capacitively coupled noise, shown in 

Figure 4.7 (A). now has a more complex form. The signal has a fundamental 60 Hz 

frequency and is highly periodic. This required a modified coherent detector. 

Figure 4.7 (B) shows the signal after the coherent detection and elimination 

algorithm is applied. This algorithm first extracts the pre-stimulus data and uses this to 

detect the presence of periodic noise and to determine its amplitude and phase. The pre­

stimulus data is smoothed by passing it through a band pass filter with pass band range 

20-100 Hz. Next, the locations of the peaks and troughs are found. The presence of 60 

Hz noise is determined by an algorithm that determines the time between the first and 

second peaks and the first and second troughs in the pre-stimulus data. If this time 
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difference is within 6% of the period for 60 Hz, it is presumed that this type of noise is 

present. 

Once the presence of periodic noise with 60 Hz fundamental frequency is verified, 

a template that has the same amplitude, phase and shape as that contaminating the signal 

is created. This template can then be subtracted from the entire recording to coherently 

remove the 60 Hz noise. The template is created by capturing one 16.6 ms period of 

noise from the pre-stimulus data. The captured period is then repeated to form a template 

of sufficient length. The phase difference between the noise in the pre-stimulus data and 

the created template is found and the created waveform is shifted to align with the 

recorded noise. To finally remove the 60 Hz, the created waveform is subtracted from the 

entire recorded signal. 

This method was chosen because synch pulses on the power lines in the recording 

environment cause the 60Hz noise in the data collection to have a distinctive shape that is 

not perfectly sinusoidal. Although based on 60 Hz periodicity, this noise reduction 

approach can be used to remove any periodic noise from physiological recordings. 

4.2.3.2 Stimulus Artifact Removal 

The post-stimulus data segment which contains the desired M-wave response and 

the stimulus artefact must be further processed before pattern classification can be 

performed. This further processing consists of removing the stimulus artifact. In 

addition, the descending baseline that is attributed to the stimulus artifact and that 
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underlies the M-wave response must be adjusted. Both the stimulus artifact and the 

descending baseline are evident in figure 4.7 (B). 

The stimulus artefact is easily removed by re-segmenting the post-stimulus 

window and ignoring the remaining data. In a sub VI called Eliminate Stimulus Artifact, 

the post-stimulus window is shortened by ignoring the first 3 ms. The first 3 ms of the 

post-stimulus window is where the stimulus artifact occurs. Thus, ignoring the data 

during this time effectively removes the stimulus artifact. 

Correcting for the descending baseline is slightly more complex. It is necessary 

that this descending baseline be removed since the automated pattern recognition 

technique makes use of Fourier or wavelets to classify M-waves. The descending 

baseline will affect the Fourier and wavelet coefficients, whose values are essential in the 

pattern classification scheme. As the baseline in different collections may descend 

differently, it introduces additional features aside from the M-wave features that will be 

used to classify the responses. This will introduce errors in the results. 

The descending baseline is removed by performing a linear correction. The 

baseline descent is approximately linear over the 20-30 ms of theM-wave duration. A 

line is created by interpolating between the first and last point of the data segment created 

by Eliminate Stimulus Artifact sub VI. This line is then subtracted from the data segment 

to remove the baseline. Figure 4.7 (C) shows theM-wave response after removing both 

the stimulus artefact and the descending baseline. It was found that this method produces 

little signal distortion and effectively isolates the M-wave response which can now be 

used in a pattern classification scheme. 

47 



Master's Thesis- J. Salvador McMaster University- Electrical Engineering 

4.2.3.3 Response Rejection 

Occasionally during a data collection background EMG noise, other than 60Hz or 

motion artifact, may contaminate theM-wave response. As it is not possible to design 

algorithms that effectively remove these sources of interference, these situations must be 

detected and the responses rejected. To detect occurrences of such interference, the pre­

stimulus data, after removal of any 60 Hz noise, is subject to a variance test. This 

algorithm calculates the variance of the 50 ms of pre-stimulus data. If this variance is 

above a specified threshold the data collection is rejected and an indicator appears on the 

front panel display of the program on the computer screen to notify the operator. The 

Lab VIEW program then proceeds to give another stimulus and check the variance of the 

next recording. Only those data collections that pass the variance test are processed and 

stored as M-wave responses to be used in the pattern classification scheme. 

The variance threshold was determined experimentally with the aid of an 

experienced operator. Once determined, the threshold was fixed for all subjects in the 

study. 

4.2.3.4 Signal Feature Extraction 

The Lab VIEW interface shown in Figure 4.3 is equipped with a toggle switch 

allowing the operator to select either the Fourier or wavelet transforms to extract the 

features used for automatically classifying M-waves during a real-time data collection. 

Feature extraction is performed on each· response directly after the response has been 

noise reduced and the stimulus artifact and baseline drift have been eliminated. 
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4.2.3.5 Fourier Transforms 

When the operator sets the toggle switch on the front panel display to FOURIER, 

the Fourier transform is applied to the processed M-wave and the power spectral 

coefficients are used as response classification features. After pre-processing, the isolated 

M-wave response is stored in an array. Due to the fact that the post-stimulus window (see 

Figure 4.6) is user defined, the length of the isolated M-wave response may be different 

in different experimental sessions. For this reason, and for the sake of designing a robust 

program, the number of points used in the Fourier transform is variable and calculated 

automatically. The automatic calculation begins with determining the length of the 

isolated M-wave response. TheM-wave response is then resized to the next higher valid 

power of 2 by setting the new trailing elements to zero and leaving the first elements 

unchanged. The newly sized waveform is input to the LabVIEW sub VI called FFT to 

calculate the fast Fourier transform. Typically, the isolated M-wave response is 20 ms. 

At a sampling rate of 3600Hz, theM-wave response is then 72 points. This response is 

zero-padded to 128 points which are fed to the LabVIEW FFT producing 128 complex 

Fourier coefficients. The Fourier power coefficients are then calculated. 

Though the M-wave responses are band-limited, all power spectral coefficients 

calculated by the Lab VIEW FFT were retained and used in the pattern classification 

scheme. The reasoning is that coefficients representing the higher frequencies would be 

low values and thus, not effect the pattern classification. Moreover, the use of additional 

coefficients does not sufficiently increase computations and the speed of the program is 

not compromised. 
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4.2.3.6 Wavelet Transforms 

Alternatively, the operator may set the toggle switch on the front panel of the 

Lab VIEW program to WAVELET. When this is the case, the wavelet transform is 

applied to the pre-processed and isolated M-wave response and the coefficients are used 

as the spectral features forM-wave pattern classification. To begin, theM-wave response 

is re-sized to the next highest power of 2 as explained above for the case of the Fourier 

transform. Typically, re-sized responses are 128 points. The online Lab VIEW program 

makes use of the sub VI called Wavelet Transform that implements a 3-level 

decomposition using the Daubechies 4 mother wavelet. A study examining the effects of 

different wavelet families as well as different levels of decomposition is presented in 

Chapter 5. 

4.2.4 Experimental Protocol 

The experiment begins by preparing the subject as shown in Figure 4.1. The 

stimulating electrode placement is tested with the stimulator under manual control by an 

experienced operator and the aid of a graphical display provided by the Lab VIEW 

program. The optimal stimulating electrode placement is such that the thenar is 

stimulated without effecting lumbrical or forearm muscles. When the proper placement is 

found, the electrode bar is held in position with an adjustable strap. Next the operator 

increases the stimulus amplitude to reach the MEP which is subsequently stored. 

Following MEP recording, the sub-threshold responses are acquired by gradually 
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increasing the stimulus amplitude. All subjects gave informed consent prior to the 

experiment. 

4.2.4.1 MEP Collection 

The front panel of the Lab VIEW program is shown in Figure 4.3. The user begins 

by pressing the START button which calls the MEP collection window shown in figure 

4.8. In this routine Synch AIAO is called at a rate of 1 Hz. Thus, the patient is subjected 

to stimuli every second and the response is captured on the screen. The operator 

increases the stimulus amplitude with a manual control until the maximum response has 

been reached. That is, the operator increases the stimulus amplitude until the peak-to­

peak value of theM-wave response no longer changes. 

The peak-to-peak value is calculated using only the portion of data located 

between the two vertical cursors as shown in Figure 4.8. The operator must ensure the 

cursors surround only theM-wave response and do not capture the stimulus artifact. The 

cursor position also determines the length of the post-stimulus window used later in the 

collection of sub-maximal responses. 

Once the maximum M-wave has been found and the cursors set appropriately the 

user may press SELECT MEP to save the MEP and cursor position. If QUIT MEP is 

selected the MEP is disregarded and the cursor position is ignored. In this case, the 

cursor position is not used later to determine the post-stimulus window length for the sub­

maximal collections. Instead the default post-stimulus length is 50 ms. 
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It was decided that the MEP be collected first during the experiment for several 

reasons noted by Cavasin ( 1989) and others. The MEP collection is the most 

uncomfortable part of the experiment and collecting it first allows subjects to relax during 

the lower stimulus amplitudes used for collecting the sub-maximal M-waves. Moreover, 

collection of the .MEP allows for the post-stimulus window length to be defined 

accurately. An optimal post-stimulus window length is one that is long enough to collect 

the entire duration of the M-waves but short enough to limit noisy tails that may interfere 

with pattern recognition later. The MEP defines the largest necessary post-stimulus 

window length and collecting it first reduces tail end noise during sub-maximal M-wave 

collection. The MEP collection also enables the operator to easily detect a poor recording 

electrode or stimulating electrode placement. The placement can then be corrected before 

the M-waves are recorded. 

4.2.4.2 Sub-maximal Collection 

When the MEP has been selected, the program returns to the main window shown 

m Figure 4.3. The operator then selects START MUAP COLLECTION to begin 

collecting sub-maximal M-waves .. As the operator gradually increases the stimulus 

. amplitude, the raw data responses are displayed by the Lab VIEW program in the graphs 

shown in figure 4.3 (A). Each response is subject to the 60 Hz noise reduction and if the 

variance check is passed, stimulus artifact elimination and baseline correction are done 

before the M-wave features are extracted. The current noise reduced response is 

displayed in the window of Figure 4.3 (B). The extracted features are used to determine 
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whether the response is a new M-wave template or whether it belongs to a previously 

defined template. The details of this classification are presented in Figure 4.5 and 

discussed in subsequent sections. Once 3 recorded M-waves are found to belong to the 

same template, they are averaged and the template is displayed in the center display 

window superimposed on the live data collection as shown in Figure 4.3 (B). 

Additionally, the templates are displayed in the template windows along the right side of 

the program panel as shown in Figure 4.3 (C). The template windows are equipped with 

counters to show the number of recorded M-waves contributing to that template. 

The collection of sub-maximal M-waves is a careful process. Thus, a 

knowledgeable operator is required to run the Lab VIEW system. The operator begins 

sub-maximal M-wave collection by leaving the stimulus amplitude below threshold such 

that several instances of the baseline may be detected. The stimulus amplitude is then 

gradually increased or decreased so that several instances of each level of the CR are 

collected. An experienced operator is careful not to miss any levels of the CR. 

The graphical displays on the Lab VIEW front panel are designed to aid the 

operator in determining the CR increments. Especially helpful are the displays of the 

templates both in the template windows shown in Figure 4.3 (C) and the center display 

shown in Figure 4.3 (B). Using these displays, the operator can determine if more 

instances of a given template need to be recorded or whether any repeatable M-waves 

between existing templates are missing. 
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4.2.5 M-Wave Classification 

The pattern classification makes use of Fourier or wavelet coefficients and serves 

to cluster M-waves produced by identical MU firing combinations. Due to additive noise, 

a given combination of firing MUs may not produce identical M-waves. The scheme 

shown in Figure 4.5 effectively decides when M-waves are sufficiently similar to assume 

they result from the same MU firing combination. As described above, all responses are 

subject to signal processing before classification. 

When a new response is collected it may be the result of a unique MU firing 

combination or it may be the result of a MU firing combination that occurred to give a 

previous response. Uniqueness is determined in one of two ways. The first method 

makes use of the spectral coefficients obtained through the Fourier transform. The 

spectral coefficients of the newly recorded waveform are compared to the coefficients of 

all the previously recorded waveforms using a Euclidean distance measure. In the 

Lab VIEW program all coefficients (typically 128 coefficients were calculated as 

explained above) are used in the distance measure. The Euclidean distance is given by 

N 

DE L[CR(i)- Cp(i)]
2 

i=l 

where, N= number of coefficients 

CR(i) =features (either spectral or wavelet) of new response 

Cp(i) = features (either spectral or wavelet) of previous recorded response 

If the Euclidean distance between a new response and a given previous response is less 

than a certain discrimination threshold, the new response is similar enough to that 
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previous response to assume they both result from the same MU firing combination. The 

new response is then averaged with the previous response and the result is saved in a 

storage array. If the Euclidean distance is larger than the discrimination threshold for all 

previously recorded responses, the new M-wave is deemed unique and is saved in a 

separate storage array. The discriminating threshold is discussed further in Chapter 5. A 

template is created when an array storing similar responses contains 3 M-waves. 

Responses collected later that match a certain template are included in the average. 

Templates are displayed along the right side of the program window as shown in Figure 

4.3 (C). 

The second method of classification is identical except that wavelet features are 

used in place of spectral coefficients. The Lab VIEW program makes use of the 

Daubechies 4 wavelet transform and all coefficients from a 3-level decomposition are 

used in the distance measure. When wavelet features are selected, the discriminating 

threshold is different from that in the power spectral analysis. Further exploration of 

appropriate wavelet transforms and decomposition levels was performed off-line in 

MA TLAB and is discussed in Chapter 5. 

4.2.6 Program Termination 

The data collection may be terminated at any time by the user. The operator can 

press the STOP button as shown in Figure 4.3 (A) to stop the stimuli and the recordings. 
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Alternatively the program terminates automatically once 20 templates have been created. 

Figure 4.9 shows an example of 20 templates created during a recording session. 

4.2. 7 Storage 

When the Lab VIEW program terminates, several files are created to store the 

results of the recording session. The files are in .xis format so that they may be opened in 

Microsoft Excel. The first output file contains all the raw data signals that were collected 

during the recording session. This file is important as it can be used for post-processing 

with the MATLAB algorithms. In this way, different signal processing techniques and 

feature extraction sets can be tried on the same data and a valid comparison made. 

Additionally, a file is created to store the processed M-waves that contribute to 

each increment of the CR. The M -waves corresponding to the same increment in the CR 

are averaged to form the templates. Another .xis file stores only the templates. This file 

contains a header describing the number of M-waves that were averaged to form each 

template. Finally, the MEP that was selected by the operator at the start of the experiment 

is saved in .xis format. 
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CHAPTERS 
M-WAVE PATTERN RECOGNITION 

5.1 Introduction 

A study was conducted using the left and right thenar muscles of 2 healthy males 

and 4 healthy females, age ranging from 21 to 60. The objective of the study was to 

evaluate the aspects of wavelet pattern recognition as a successful classification scheme 

forM-waves. Moreover, the study was used to investigate the effects of a characteristic 

discriminatory threshold to be used for all subjects in either the wavelet or power spectral 

pattern recognition techniques. Though this threshold must be different for different 

feature extractors, the issues surrounding the choice of a characteristic threshold to be 

applied universally are the same. 

5.2 Evaluating and Comparing M-wave Pattern Recognition Schemes 

To accurately evaluate and compare wavelets and power spectral coefficients as 

feature sets in M-wave pattern classification, it is first necessary to define the 

characteristics of an ideal classifier for this particular data. A successful M-wave pattern 

recognition scheme is one in which all true M-waves are extracted without creating 

clusters of additional signals that are not unique M-waves, but M-waves plus noise. A 

classifier that is insensitive will place different M-waves in the same cluster resulting in 

an underestimate of the true number of M-waves. However, a classifier that is too 

sensitive will fail to cluster signals that represent the same M-wave and differ only by a 

variation in additive noise. This classifier will overestimate the number of M-waves. As 

the number of M-waves is a key component in MUNE calculations, it is essential for a 
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reliable clinical diagnostic technique that the number of calculated M-waves represents 

the true number of unique M-waves recorded from the patient. 

The aim of this thesis is to investigate the sensitivity of an M-wave classifier 

using different feature sets. The goal is to draw a comparison for different feature sets for 

M-wave pattern classification so as to determine which set best extracts the true M­

waves. However, the success of a classifier does not solely depend on the feature set 

used. The feature set merely isolates the characteristics used to evaluate the different M­

waves. These characteristics must be separable. The discriminator, in this case, a 

Euclidean distance threshold value, is the means to separate the M-waves based on the 

extracted features. For this reason, the work presented here includes an analysis of the 

discriminatory threshold values alongside the different feature sets. Furthermore, the 

response of the different feature sets to different discriminatory threshold values is used 

as a measurement for the applicability of that feature set to M-wave pattern recognition as 

described further below. 

5.3 Motivation for a Characteristic Discriminator 

In practice, different subjects yield quite different M-waves during a data 

recording. This is due to anatomical differences between subjects and also variations in 

electrode placement as described in Section 2.2. Thus, for a given feature set, optimal 

discriminatory thresholds will vary from subject to subject. 

There are advanced techniques to train classifiers to produce an automated system 

with a threshold discriminator optimized for each subject. However, these techniques are 
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not practical for the experiments outlined here and for clinical MUNE. The reason for 

this is that the algorithms for training a classifier require approximately double the 

amount of data, due to the additional signals required for the training. This process is 

time consuming and affects a subject's comfort. In clinical MUNE these are important 

drawbacks because a physician generally favours diagnostic tests that are efficient. In 

addition, a subject often experiences difficulty remaining still and calm for additional 

electric stimuli. In this case, there is increased chance that the subject may change 

position causing either the stimulating bar or the recording electrodes to move slightly 

thus, recruiting and recording a different distribution of MUAPs. The effects of electrode 

placement on surface recordings were described in Section 2.2. An agitated patient may 

also experience increased levels of background EMG. This adds significantly to the noise 

in M-wave recordings. 

Adding further to the drawbacks of a trained M -wave pattern classifier are the 

physiological implications of additional stimuli. Continuous stimuli alter the ionic 

concentrations in the body tissues after a prolonged period of time. This affects the 

strength of stimulus needed to generate an AP and additionally could introduce latency 

shifts in the recorded signals as discussed further in Section 5.10. Changes in blood 

supply also occur and this effectively alters the field distribution for the body tissue in the 

vicinity of both the stimulating and recording electrodes. Thus, it is imperative that 

MUNE is performed with a minimum number of applied stimuli. 

The reasons stated above motivate the need for a universal discriminatory 

threshold value regardless of the method used to extract M-wave features. In the previous 
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automated MUNE techniques, described in Section 2.6, M-wave pattern classification 

was carried out using power spectral coefficients as the feature set and a Euclidean 

distance measure with an empirically determined universal discrimination threshold. 

However, no detailed investigation as to the effects of the empirically determined 

threshold was performed and there is no justification presented in the literature for the 

chosen value. 

In this thesis, a thorough examination of theM-wave data is performed to find a 

universal discriminatory threshold that gives the most accurate results over the largest 

subject range when used with a given feature set. Although each feature set will require a 

different characteristic discriminatory threshold, comparisons can be drawn between 

feature sets based on their relative sensitivity to the threshold. An ideal feature set will be 

one that yields the same number of M-waves over a range of discriminatory threshold 

values. This ensures that if the optimal discriminatory threshold for a given subject is 

different than the chosen universal threshold, the resulting M-wave number will not be 

significantly altered, thus the MUNE will remain accurate. For feature sets demonstrating 

high sensitivity to discriminatory threshold, subjects with optimal thresholds different 

from the universal threshold will have inaccurate M-wave numbers. The clinical issue 

then is that the MUNE will be imprecise and an erroneous diagnosis may be made. 

The remaining sections of this chapter outline how a universal discriminatory 

threshold was determined for each of the feature sets examined in this thesis. In addition, 

a comparison of the different feature sets is made using threshold sensitivity as a measure 

for success. 
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5.4 Threshold Determination 

The investigation into the response of feature sets to discriminatory threshold 

values was carried out with the MATLAB routines described in Section 4.2.3 on 

previously stored data collections. However, an initial estimate of the best universal 

discriminatory threshold was necessary to first collect the data using the real-time 

Lab VIEW program. Although it is the raw data collected by the Lab VIEW program that 

is used for post-processing, the discriminatory threshold enabled the creation of M-wave 

template displays during the experimental data collections. The template displays on the 

Lab VIEW program were responsible for aiding the operator in controlling the stimulator 

to ensure .that all occurring M-waves were captured. Thus, the data collected from the 6 

subjects was collected using a rough estimate of the ideal universal discriminator merely 

for the purpose of aiding the operator. This rough estimate of the universal discriminator 

also gave a starting point when investigating the threshold sensitivity of the different 

feature sets with MATLAB as described in Section 5.6. 

The rough estimate of the universal discriminatory threshold was determined 

empirically using three subjects' data collected in real-time with the LabVIEW program 

created for this thesis. The Lab VIEW program was set to FOURIER and the parameter 

"Threshold" was set to an arbitrary low value. These parameters are seen on the 

LabVIEW program front panel in Figure 4.3. With the aid of an experienced MUNE 

operator the sub-maximal collection began. The operator used the displays provided with 

the LabVIEW interface shown in Figure 4.3 to determine whether the automated 

classification scheme was classifying the recorded sub-maximal M-waves correctly. 
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At extremely low threshold values, the design of the Lab VIEW program resulted 

in the number of determined templates to be low. This is because the low discriminatory 

threshold makes the classifier very sensitive. Thus, most recorded signals were not found 

to match any of the previous recorded signals because the Euclidean distance between 

them was greater than the discriminatory threshold. Since the Lab VIEW program 

requires a minimum of three signals clustered together before the definition of a template, 

very few templates were created. If the operator determined that the automated classifier 

was identifying too few M-waves at a low discriminatory threshold the collection was 

halted and the threshold parameter increased slightly. 

As the threshold parameter increased the number of M-wave templates 

determined by the Lab VIEW program increased also. The operator collected, halted, 

increased the threshold and re-started sub-maximal collection until the number of M­

wave templates determined by the Lab VIEW program began to decrease. This decrease 

occurred because the discriminatory threshold reached a value too high, making the 

classifier insensitive. In this case, the Euclidean distance between recorded waveforms 

was often less than the discriminatory threshold and the waveforms were clustered 

together in fewer inaccurate groups. The process was then repeated with the Lab VIEW 

program set to WAVELET. Recall from Section 4.2.3.6 that the LabVIEW interface 

applies a Daubechies 5 3-level wavelet decomposition. The results for the three subjects 

over the varying discriminatory threshold values are shown in Figure 5.1. The rough 

estimate of the universal threshold for each of the two feature sets was calculated by 

determining the range of thresholds for each subject that gave an M-Wave number within 
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20% of the maximum M-wave number. The middle of this range for each subject was 

then taken and averaged with the middle of the range for the other subjects to determine a 

rough universal discriminatory threshold value. The results were a universal 

discriminatory value of 1.52 when power spectral features were used as the feature set 

and a universal discriminatory value of 0.26 when wavelet features were used as the 

feature set. These thresholds were then used to aid the operator in data collections for the 

6 subjects presented in this thesis. 

5.5 Choice of the Wavelet Transform 

In Section 3.4, the wavelet transform IS discussed and a variety of mother 

wavelets are mentioned. The Lab VIEW program and the offline MA TLAB algorithms in 

this thesis, make use of a mother wavelet from the Daubechies family with the depth of 

decomposition being three levels. This wavelet family and decomposition level 

combination is commonly used in MUAP feature extraction (Zhou and Rymer, 2003, Hu 

and Wang, 2004). However, there are several other justifications for this choice of 

wavelet. 

First, recall from Section 3.4 that the wavelet transform is by definition a 

correlator. The transform correlates the signal with scaled and shifted versions of the 

mother wavelet. When the signal and the wavelet overlap, the coefficient will be large. 

When the signal and the wavelet are distinct the coefficient will be small. Thus, an ideal 

wavelet, one that will yield the largest coefficients when correlated to the signal, is one 

that has similar characteristics to the signal with respect to smoothness, symmetry and 
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Figure 5 .2. Daubechies family of mother wavelets (Matlab Version 7.0 help files) 

phases. Figure 5.2 shows a plot of the Daubechies family of mother wavelets. As seen 

from this figure, the Daubechies 2 mother wavelet has similar characteristics to the 

maximum M-wave. However, due to alternation, only a limited number of unique M­

waves can be recorded. As these are generated by the activity of only a few MUs, it is 

intuitive that the correlator should more closely match the characteristics of MUAPs then 

those of the maximum M-wave. Thus, the Daubechies 5 mother wavelet was chosen for 

the offline MATLAB analysis because it allows for high correlation at the correct shift 

and scaling values for the low amplitude M-waves. The Daubechies 4 mother wavelet 

was chosen for the real-time Lab VIEW system for simplicity. The Lab VIEW software 

has a built in Daubechies 4 transform but not a Daubechies 5 transform. Moreover, as 

presented in Section 5.8, the results for M-wave pattern classification are the same for 
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both Daubechies 4 and Daubechies 5 mother wavelets. For these reasons, it was decided 

that Daubechies 4 would generate sufficient results for real-time data collection. 

The wavelet transform in both the MATLAB algorithms and the Lab VIEW 

software were implemented using a dyadic approach with the Mallat algorithms as 

explained in Section 3.4. The number of decomposition levels for this algorithm was 

determined based on a frequency characteristic analysis of the M-wave data. An 

algorithm was programmed to calculate the power spectral density for the entire set of 

recorded M-waves from each subject. The power spectral density measurement was 

made by taking the Fourier transform of each M-wave in the data set then averaging the 

coefficients of all M-waves at each frequency. The result for a set of M-waves collected 

from 1 of the 6 subjects is shown in Figure 5.3. This figure shows the frequencies within 

the M-waves corresponding to the greatest power. These frequencies are where the 

information or features of the signal exist and this is what must be captured by the M­

wave pattern classifier. Figure 5.3 also shows the sub-bands captured in the 

approximation and detail coefficients during the Mallat decomposition process. From 

here, it is evident that the majority of the M-wave signal power and hence, signal 

information, is captured in the third level approximation and detail coefficient vectors. 

Therefore, the standard Lab VIEW and MATLAB algorithms created for this thesis use a 

3-level decomposition. Section 5.8 provides a further investigation into the choice of 

mother wavelet and decomposition level and the effect this has on M-wave pattern 

recognition. 
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5.6 Comparison of Power Spectral and Wavelet Features 

As described in Section 5.3, the use of the wavelet transform for feature extraction 

in M-wave pattern recognition can be compared to the traditional power spectral features 

by looking at the sensitivity of the feature set to threshold changes. As stated above, the 

more applicable a feature set is toM-wave pattern recognition, the less sensitive it will be 

to threshold variations. 

The raw data collected from 6 subjects by the Lab VIEW program was used to 

calculate threshold sensitivity for both the wavelet and spectral feature set. For each 

subject, the collected responses were subjected to the post-processing MATLAB 

algorithms. As mentioned in Section 4.2.3 the MATLAB program simulates the real-time 

Lab VIEW interface but operates on previously recorded data. This enables different 

system parameters to be applied to the same data set. Each subject's collected data was 

passed through the MATLAB program multiple times, each pass using a different 

threshold discriminator. For each value of the discriminatory threshold, the number of 

automatically determined M-waves was saved. For both wavelet and spectral feature sets 

the set of rough estimate of the universal discriminatory threshold, found as described in 

Section 5.4, was used as a starting point. The MATLAB program was designed to use 

10% of the rough threshold estimate as an increment number, then increase and decrease 

the rough threshold estimate by multiples of this increment calculating the number of M­

waves for each unique value. The results for 1 of the 6 subjects are shown in Figure 5.4 

and represent the typical case. Note that the data in Figure 5.4 (B) was created using a 3-

level Daubechies 5 traditional wavelet decomposition. Although power spectral and 
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wavelet features require thresholds that are quite different, both show the same general 

trends in M-wave number over threshold changes. Figure 5.4 shows there exists a 

maximum number of M-waves at a distinctive threshold value. From the discussion in 

Section 5.4 a discriminatory threshold that is either too low or too high will yield an M­

wave number that is lower than the true number. To further examine this property, 

successive subtractions of the set of unique M-wave templates obtained with the largest 

number of members was carried out. That is, each M-wave template is subtracted from 

the next largest. If the pattern recognition is correct the resulting waveforms should all 

have the shape of MUAPs. If the number of templates in the CR is too large some of the 

resulting signals would just be additive noise. The analysis for all subject results showed 

that no resultant waveforms resembled noise. Thus, it is reasonable to assume that the 

discriminatory threshold value that generates the largest number of M-waves is the most 

accurate for that given data set. For the remainder of this thesis, the term characteristic 

threshold is used to describe the threshold at which the maximum number of M-waves 

occurs for individual subjects. When the numbers of M-waves at each threshold are 

averaged over all subjects, the threshold at which the average maximum M-wave occurs 

is termed the average characteristic threshold. 

TheM-wave numbers for all subjects at each threshold were averaged to produce 

Figure 5.5. This figure shows that the average M-wave number for both wavelet and 

power spectral features has a specific maximum. As discussed earlier it is reasonable to 

use the threshold at this maximum as a characteristic discriminatory threshold for all 

subjects when performing real-time M-wave pattern recognition with either power 
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spectral or wavelet coefficients. Ideally, for a clinical system, the results of a large 

number of subjects would be included to find the average characteristic threshold 

applicable for real-time data. However, the average characteristic threshold shown in 

Figure 5.5 is the result of only 6 subjects. For the purposes of this thesis, this is taken to 

be a sufficient indication of the average characteristic threshold had more subjects been 

considered. 
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Because the spectral and wavelet feature sets operate for different thresholds, the 

plots in Figure 5.5 were manipulated for a meaningful comparison to be drawn. Figure 

5.6 shows the average M-wave numbers greater than 10 as derived from both feature sets. 

In this figure, the number of M-waves is plotted against an index as opposed to actual 

threshold value such that the results for power spectral and wavelet features may be 

contrasted. This index is simply determined from the two ranges of threshold values 

giving M-wave numbers greater than or equal to 10. For the purposes of the following 

discussion, the index at which the averaged maximum M-wave number occurs for either 

power spectral or wavelet analysis will be termed the average characteristic index. 

Section 5.3 explains that an ideal feature set is one where the maximum M-wave 

number is least sensitive to threshold changes. Thus, Figure 5.6 can be used to assess 

how the M-wave number changes, in both power spectral and wavelet based pattern 

recognition, as the threshold index deviates from the average characteristic index. From 

Figure 5.6, it is evident that when the threshold index is only slightly deviated from the 

characteristic index, the power spectral based pattern recognition exhibits only small 

changes in the maximum M-wave number while the wavelet based pattern recognition 

shows marked changes. This is shown in Figure 5.7, when the index is varied from the 

average characteristic index by a value of 2. Table 5.1 summarizes these results, and 

includes results for when the index is varied by 3, 4 and 5 around the average 

characteristic index. The results, here suggest that the power spectral feature set is less 

sensitive than the wavelet feature set to threshold variations. 
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Table 5.1: Deviations from maximum M-wave 
number for specific deviations from characteristic 
index 

Index Distance Average Decrease in 
from Characteristic M-Wave Number 

Threshold 

Power Spectral Wavelets 
2 1.39 2.52 
3 1.43 2.61 
4 2.27 3.25 
5 3.08 3.18 

However, this only holds true when the index is varied slightly around the 

characteristic value. To make accurate judgements about threshold sensitivity, it is first 

necessary to examine the individual data for each subject to determine typical deviations 

from the average characteristic threshold. For each subject, the characteristic threshold 

was found and the distance between it and the average characteristic threshold shown in 

Figure 5.5 was calculated. Next, the distances for each subject were combined to 

calculate an average distance from the average characteristic thresholds. Finally, because 

the thresholds for power spectral and wavelet features are different, the average distance 

is expressed as a percentage of average characteristic threshold value. This is 

summarized in Table 5.2. 

The average distance between individual characteristic thresholds and the average 

characteristic threshold for each feature set was then used to determine how theM-wave 

number changed. For example, when the threshold differed by 0.64 from the average 

characteristic threshold in Figure 5.5 (A), the average number of M-waves was 5 less than 

the maximum. Table 5.3 summarizes these results. When all subjects were included, the 
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average M-Wave deviation was just over 20% of the maximum value. Thus, 20% was 

taken as the maximum acceptable error in M-wave numbers. Figure 5.8 shows the index 

range for which the M-Wave number is within 20% of the maximum value for both 

power spectral and wavelet based feature sets. For power spectral based feature sets the 

M-wave number is within 20% of the maximum for an index range of approximately 8 

while for wavelet based feature sets the M-wave number is within 20% of the maximum 

for an index range of approximately 10. This measure is more significant than those 

Table 5 2 Distance between individual and average characteristic thresholds 
Distance from Average 

Subject Characteristic Characteristic 
Threshold Threshold 

Subject 1 (Right Thenar) 
Subject 1 (Left Thenar) 
Subject 2 (Right Thenar) 
Subject 2 (Left Thenar) 
Subject 3 (Right Thenar) 
Subject 3 (Left Thenar) 
Subject 4 (Right Thenar) 
Subject 4 (Left Thenar) 
Subject 5 (Right Thenar) 
Subject 5 (Left Thenar) 
Subject 6 (Right Thenar) 
Subject 6 (Left Thenar) 

Power 
Spectral 

3.50 
2.25 
1.25 
1.00 
0.50 
0.75 
1.25 
0.75 
1.25 
1.75 
2.25 
1.25 

Average distance between individual 
and average characteristic thresholds: 

Wavelets 

0.58 
0.33 
0.20 
0.20 
0.08 
0.13 
0.20 
0.20 
0.25 
0.25 
0.33 
0.18 

Average distance between individual and 
average characteristic thresholds as a 
percentage of universal characteristic threshold: 

78 

Power 
Spectral 

2.02 
0.77 
0.23 
0.48 
0.98 
0.73 
0.23 
0.73 
0.23 
0.27 
0.77 
0.23 

0.64 

51.11% 

Wavelets 

0.33 
0.08 
0.04 
0.04 
0.17 
0.12 
0.04 
0.04 
0.01 
0.01 
0.08 
0.07 

0.09 

43.08% 
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shown in Table 5.1 because it takes into consideration the subject variability from the 

average characteristic discriminatory threshold that is experienced in practice. The 

measure presented in Figure 5.8 shows that over the range of typical subject variations 

from the characteristic threshold, the wavelet based feature set provides a more constant 

M-wave number. This indicates that the third level approximation and detail coefficients 

from wavelet decomposition provide a feature set forM-wave pattern recognition that is 

somewhat less sensitive to variations in threshold than a feature set obtained through 

power spectral coefficients. 

Table 5.3: Average variations in M-wave number with threshold 

Power Spectral Wavelets 

A vg distance between individual and 51.11% 43.08% 
average characteristic thresholds 

Expressed as a percentage of universal 
characteristic threshold 

Avg decrease in M-wave number at end 4.9 4.93 
points of range 

Avg decrease in M-wave number 24.0% 23.6% 
Expressed as a percentage of maximum 

M-wave number 

5.7 Intra- and Inter-Class Distances 

In addition to threshold sensitivity measurements, wavelet and power spectral feature 

sets can be compared by examining the intra- and inter-class distances for the M-wave 

clusters. To perform this measurement, a data set collected from 1 of the 6 subjects was 
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visually evaluated and the recorded M-waves were clustered into templates offline, by an 

experienced MUNE operator. A MATLAB algorithm was designed to extract the 

features of each M-wave, either through wavelet or power spectral analysis, then calculate 

the Euclidean distance between the feature sets of M-waves previously grouped in the 

same cluster, the intra-class distance, and between the feature sets of M-waves previously 

grouped in different clusters, the inter-class distance. For each template comparison, the 

calculated intra- and inter-class distances were averaged and the standard deviation 

calculated as shown in Figure 5.9. For example, the point at BB is the average Euclidean 

intra-class distance between M··waves classified in the baseline template. The point at B 1 

is the average Euclidean inter-class distance between members of the baseline template 

and members of the first or lowest amplitude true M-wave template. 

As discussed in Section 5.2, a robust pattern recognition scheme requires that the 

feature sets be separable. Therefore, the greater the distance between intra- and inter­

class average Euclidean distance the more separable are the distinct M-wave templates. 

Figure 5.9 shows that when power spectral coefficients are used as the feature set, the 

Euclidean distance between two M-waves of the same class is sometimes close in value to 

the distances between two M-waves of different classes. This is captured by the 

overlapping error bars for intra- and inter-class calculations. Contrarily, when the A3 and 

D3 vectors of a Daubechies 5 wavelet composition are used as the feature set, the intra­

and inter-class Euclidean distances are separate. This further demonstrates the 

improvement in M-wave pattern recognition when wavelets are used for feature 

extraction. This analysis was not carried out exhaustively, as to do so would be very time 

82 



Master's Thesis- J. Salvador McMaster University- Electrical Engineering 

consuming and difficult for 200 M-waves, thus the results could be the reverse for 

another subject. 

5.8 Motor Unit Number Estimates 

Sections 5.6 and 5.7 establish that wavelet based feature extraction performs better 

than power spectral based feature extraction in M-wave pattern recognition. However, to 

verify that theM-waves collected by both pattern classification schemes designed for this 

thesis are in fact valid, MUNEs were calculated for the 6 subjects. As demonstrated in 

Chapter 2, MUNE is a well-established technique and there exists a large research 

database detailing estimates obtained for many different muscles. This database can be 

used as a comparison for the MUNEs obtained for each subject using the M-wave 

numbers found by both the power spectral and wavelet feature sets. 

Table 5 4 Thenar MUNEs for 6 subjects 

Subject 

Subject 1 (Right Thenar) 

Subject 1 (Left Thenar) 
Subject 2 (Right Thenar) 
Subject 2 (Left Thenar) 
Subject 3 (Right Thenar) 
Subect 3 (Left Thenar) 
Subject 4 (Right Thenar) 
Subect 4 (Left Thenar) 
Subject 5 (Right Thenar) 
Subect 5 (Left Thenar) 
Subject 6 (Right Thenar) 

Subject 6 (Left Thenar) 

MUNE 

Power Spectral 

83 

145 

128 
54 

112 
107 
62 
90 
200 
47 
76 
85 

52 

Wavelets 

100 

49 

57 
107 

102 

61 
103 
177 
37 
76 
78 
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Table 5.4 shows the calculated MUNEs for the left and right thenar muscles of the 

6 subjects studied in this thesis. These MUNEs were calculated using the equation 

described in Section 2.4, with an area measurement. The M-wave number used in the 

equation for each subject was that found when the average characteristic discriminatory 

threshold from Figure 5.5 was used for both power spectral and wavelet based analysis. 

Recall from the discussion in Section 5.6 that the ideal characteristic threshold for each 

subject varies from the average characteristic discriminatory threshold. Thus, for some 

subjects the M-wave number obtained at the average characteristic threshold is lower than 

the true M-wave number. This skews the MUNE results. From the equation presented in 

Section 2.4, a low M-wave number will result in a larger value for the average 

contribution of a MUAP to the maximum M-wave. Ultimately, this causes a lower than 

true estimate. Additionally, there are two sources of error associated with the accuracy 

imposed by the operator. First, the maximum M-wave obtained during the recording 

session may not have been the true maximum. Secondly, the operator may not have 

delivered enough stimuli at each amplitude level to capture all the sub-threshold M­

waves. These errors, if occurring, also result in a lower than expected MUNE. 

From Table 5.5, the average MUNE obtained from the 6 subjects in this experiment 

is lower than those obtained in other research. As explained, this is attributed to the 

choice of average characteristic threshold. The experiment outlined in here based the 

average characteristic threshold on the data from only 6 subjects. A larger study is 

necessary to determine a truly universal threshold and is beyond the scope of this thesis. 
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Though the MUNE results for this experiment were low, they were reproducible and as 

such, the investigation into different feature sets presented in Sections 5.6 and 5.7 is valid. 

Table 5.5. Summary of thenar MUNEs in recent studies 

Methods 

MUAP extraction methods: 
Automated McComas 
Multiple Point Stimulation, Pk-Pk 

area 
Spike Triggered Averaging 
Micro-stimulation 
Manual Incremental McComas 
Automated McComas 
Automated McComas, power spectral 

wavelet 

Force/ Acceleration methods: 
Spike-Triggered Averaging, Force 
Micro-stimulation, Force 

Automated McComas, acceleration 

5.9 Alternate Wavelets 

MUNE Investigator 
Mean±SD 

228 ± 93 Galea et al., 1991 
206 ±58 Doherty and Brown, 1993 
288 ± 95 Doherty and Brown, 1993 
135 ± 27 Stein and Yang, 1990 
122 ± 38 Stein and Yang, 1990 
170 ± 62 Stein and Yang, 1990 
198 ± 109 Orsi, 2000 
97 ±45 Salvador (current study) 
82 ± 39 Salvador (current study) 

130 ± 39 Stein and Yang, 1990 
135 ± 45 Stein and Yang, 1990 

122 ± 114 Orsi, 2000 

In the previous comparison of wavelet features to power spectral features, the 

wavelet coefficients were the third level approximation and detail coefficients obtained 

using a Daubechies 5 mother wavelet. This section investigates the wavelet transform as 

applied to M-Wave pattern recognition, by looking at alternate mother wavelets and 

decomposition levels for the analysis. 

The discussion in Section 5.5 justifies the choice of the Daubechies 5 mother 

wavelet. This wavelet has similar characteristics to the M-waves. However, as 

mentioned, the real-time LabVIEW program makes use of the Daubechies 4 mother 
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wavelet for convenience. Figure 5.2 shows that Daubechies 4 and Daubechies 5 differ 

only slightly in their respective characteristics. 

An off-line test was performed to ensure that alternating between these two mother 

wavelets produced no change in theM-wave pattern recognition. This test consisted of 

using the off-line MATLAB routines to perform pattern recognition on the data for each 

of the 6 subjects. The first pattern recognition was performed using a 3-level 

decomposition with a Daubechies 4 mother wavelet, while the second pattern recognition 

used a 3-level decomposition with a Daubechies 5 mother wavelet. 

Figure 5.10 shows the M-wave number when greater than 10, plotted against an 

index value to compare the Daubechies 4 and Daubechies 5 mother wavelets when using 

a wavelet based feature set forM-wave pattern recognition. This comparison is similar to 

that performed in section 5.6. For reasons justified in Section 5.6, the two feature sets can 

be compared by examining the index range over which the M-Wave number is within 

20% of the maximum value. From the data used to generate Figure 5 .10, it is evident that 

the index range for which the M-wave number is within 20% of the maximum value is I 0 

for wavelet pattern recognition with the Daubechies 4 mother wavelet and 10 when the 

Daubechies 5 mother wavelet is used. As expected, the Daubechies 4 and Daubechies 5 

mother wavelet are equally sensitive to deviations from the average characteristic 

threshold. 

To further explore the effects of an appropriate mother wavelet, pattern 

recognition-was again performed using the data from the 6 subjects. In this case, the Haar 

mother wavelet was used in a 3-level wavelet decomposition. The Haar mother wavelet 
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Figure 5.10. Average number of distinct M-waves greater than 10, 
when using the Daubechies 5 and the Daubechies 4 mother wavelets 
for feature extraction. The two curves are identical. 
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is actually the Daubechies 1 mother wavelet and from Figure 5.2 it is obvious that this 

mother wavelet does not share the same characteristics as the recorded M-waves. For this 

reason, it is expected that the Haar mother wavelet will not perform as well as the 

Daubechies 5 mother wavelet in M-Wave pattern recognition. The results of M-wave 

number over varying threshold indices for both Haar and Daubechies 5 wavelet pattern 

recognition schemes are shown in Figure 5.11. It is evident that as the threshold varies 

away from the average characteristic value, the Haar wavelet produces slightly different 

results than the Daubechies 5 wavelet. For the Haar mother wavelet, theM-wave number 

is within 20% of the maximum value for an index range of 9, whereas the index range is 

10 for a Daubechies mother wavelet. Moreover, a comparison between Figure 5.12 and 

Figure 5.9 (B) shows that the intra- and inter-class distances are not as separable when a 

Haar wavelet was used to extract the M-wave features. However, these differences are 

not pronounced and the two mother wavelets perform similarly. This is because surface 

recorded MUAPs and M-waves have predominantly biphasic shapes with mostly low 

frequency content. The ideal mother wavelet should have a shape between that of the 

Haar and Daubechies 5. A comparison of the Daubechies wavelets in Figure 5.2 and the 

M-wave responses of Figure 4.9 shows that although Daubechies 2 is basically biphasic it 

has much sharper features than theM-wave shape and consequently has higher frequency 

components. The Daubechies 5 mother wavelet has been shown to be very applicable in 

classifying needle recorded MUAPs which have more complex shapes. 

In addition to choice of mother wavelet, the number of levels of decomposition has 

effects when using wavelets in M-Wave pattern recognition. Section 5.5 justifies the 
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5 M-wave templates using a Haar mother wavelet for feature extraction 
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choice of a 3-level decomposition. However, Figure 5.13, which gives the power 

spectrum for a different subject gives reason to suspect that a 4-level decomposition may 

offer improved performance. This figure shows that the frequency band in which theM­

wave signals have the maximum power can be captured by wavelet vectors a4 and d4. 

While, the wavelet vector d3 captures some relevant signal information, Figure 5.13 

suggests this information may be unnecessary for clustering the M-waves. Figure 5.14 

shows the resulting M-wave numbers when the wavelets vectors a4/d4 as opposed to 

a3/d3 are used as the feature set in a Daubechies 5 wavelet pattern recognition scheme. 

This figure shows that when the vectors a4 and d4 are used as the features for the 

classifier to act on, the resulting maximum M-wave number is less. The implication is 

that the a4/d4 pattern classification scheme fails· to differentiate between several clusters 

of M-waves. Thus, the information captured in the third level detail vector, d3, is 

relevant for M-wave pattern recognition. Contrarily, for a 3-level decomposition when 

the vectors d1 and d2 are included in the analysis along with a3 and d3, the resulting M­

wave numbers over varying thresholds remain unchanged. This proves that the 

information contained in the high frequency bands captured by d 1 and d2 is not 

descriptive of the M-wave signal features and thus, may be disregarded in the pattern 

recognition. High frequency content of larger M-waves probably decreases because of 

the summation effect of many MUAPs. 
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5.10 Time Invariant Wavelet 

When an electrical. stimulus is applied to elicit an evoked response in a muscle, 

AP generation is most likely to occur at the nodes of Ranvier (see Figure 2.1). The 

voltage field in the tissue under the stimulating electrodes determines whether the AP will 

initiate simultaneously at several adjacent nodes of Ranvier. If the AP does initiate at 

several nodes of Ranvier under the cathode, it is the most distal node that determines the 

latency between stimulus application and the arrival of the MUAP. When the distal node 

is hovering around the activation threshold, AP generation may alternate between this 

node and the adjacent node closer to the cathode on successive stimulations. Therefore, 

for repetitive stimuli, the resulting M-wave responses may be time-shifted versions of 

each other. This situation is shown in Figure 5.15. 

Latency shifting is an important occurrence to be aware of in pattern recognition. 

While a fully trained manual operator can recognize time-shifted waveforms as belonging 

to the same M-wave cluster, automated pattern recognition techniques may not. As 

discussed in Section 3.5 one of the inherent problems with the wavelet transform is its 

inability to recognize time-shifted waveforms. Power spectral analysis does not have this 

problem because the Fourier transform disregards all time information in a signal and is 

concerned only with the frequency components that exist. Due to wavelets sensitivity to 

translation, a shift-invariant wavelet transform is more optimal for M-wave pattern 

recognition than the traditional transform. 

The shift-invariant wavelet transform described in Section 3.5 offers a solution for 

M-wave pattern recognition when latency shifts affect the data. To analyze the effects of 
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a shift-invariant wavelet on M-wave pattern recognition, the intra- and inter-class 

distances for the 1 subject's data were calculated and compared to Figure 5.8. Figure 

5.16, shows the intra- and inter-class distances for the time-shifted wavelet based 

recognition. When compared to Figure 5.9 (B), it is evident that the time-shifted wavelet 

generates features that are more separable than the traditional wavelet. This makes sense 

intuitively. When two recorded M-waves are identical but translated, the traditional 

wavelet transform generates different coefficients for each. Thus, the Euclidean distance 

calculated between these two M-waves will be large. Depending on the nature of the 

waveforms and the value of the discriminatory threshold, this Euclidean distance will be 

an outlier. That is, it will be close to the threshold value and the waveforms may either be 

classed as the same or different. However, regardless of the class, the Euclidean distance 

will be largely different from either the intra-, if clustered together, or inter-class, if 

clustered separately, averages. The standard deviation for both the intra- and inter-class 

distances will be larger when translation is recognized. Contrarily, the shift-invariant 

wavelet does not generate largely different coefficients for translated M-waves. The 

resulting Euclidean distance between two such recordings will be minimal. The shift­

invariant wavelet will cluster translated waveforms together and because the Euclidean 

distance is not an outlier, the standard deviation will be smaller. 

It appears then, that a shift-invariant wavelet transform should be employed when 

extracting features for automatic M-wave pattern recognition. However, the shift­

invariant wavelet transform is computationally more involved than the traditional wavelet 

and its use must therefore provide significant improvements for clustering M-waves. 
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Further investigation of the shift-invariant wavelet transform was beyond the scope of this 

thesis. 
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CHAPTER6 
CONCLUSIONS 

This study investigates the use of different feature sets for M-wave pattern 

classification. The real-time Lab VIEW system developed for this work provides a 

practical and reliable approach for collecting and recognizing evoked M-wave responses. 

The computer interface is user-friendly and provides appropriate displays to aid an 

experienced operator in M-wave collection. Furthermore, the necessary instrumentation 

is easy to apply and is comfortable for the subject. Additionally, the process is non-

invasive and time-efficient so the subject experiences a minimum number of electrical 

stimuli. This results in less anxiety of the subject and thus, less background EMG during 

the recording. 

Results were obtained from the right and left thenar muscles of 4 healthy females 

and 2 healthy males. Pattern recognition to determine M-wave templates from the 

recorded data was performed using various methods to extract features. For all valid 

extractors, separability between the feature sets of unique M-wave templates must exist. 

A boundary or threshold between unique M-waves must be determined empirically from 

a large range of subjects. This universal threshold greatly affects the performance of 

different feature extractors in M-wave pattern recognition. Analysis of the 6 subjects 

showed that a universal threshold is one where the average number of unique M-wave 

templates is a maximum. For the 6 subjects, the average distance between the individual 

optimal threshold and the universal threshold was 51% of the universal threshold for 

power spectral based features and 43% of the universal threshold for wavelet features. 
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This corresponded to a range of M-wave number values from 20% of the average 

maximum value to the maximum value. It was then determined that the best feature set is 

that which gives an M-wave number within 20% of the maximum average number over 

the largest discriminatory threshold range. This feature set would be least sensitive to 

threshold ranges and thus, provide the most robust pattern recognition scheme. 

The 3-level Daubechies 5 wavelet vectors A3 and D3 were found to provide a 

pattern recognition technique that is less sensitive to threshold changes than a power 

spectral approach. Furthermore, intra- and inter-class distance measures show power 

spectral features to be less separable than wavelet features. The choice of mother wavelet 

and decomposition level largely impacts the success of a wavelet based feature extractor. 

The Haar mother wavelet was found to generate features that are less separable than those 

generated by a Daubechies 5 mother wavelet. In addition, for typical M-wave data sets, 

the wavelet vectors A3 and D3 gave a feature set that led to accurate M-wave numbers 

while being relatively insensitive to threshold changes. Contrarily, the wavelet vectors 

A4 and D4 produced feature sets that resulted in low M-wave numbers. Initial analysis 

with a shift-invariant wavelet feature extractor showed that this tool generates features 

that are more separable than traditional wavelet features. 

Although the virtual instrument developed for this thesis is very flexible and user 

friendly, the analog instrumentation, cabling and electromagnetic environment were not 

ideal. This resulted in a high level of additive noise in the recorded responses. A number 

of noise reduction algorithms were developed that were able to remove most of the noise. 

The pattern recognition test results were therefore obtained in a "worst case" 
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environment. Since clinical signal acquisition hardware and labs are higher quality as 

regards to noise, it is safe to conclude that the wavelet pattern recognition scheme should 

work successfully in the clinical environment. The only remaining source of noise that is 

not hardware dependent is background EMG. This could possibly be reduced by better 

supporting the subjects' limbs or having them lie in bed. 

6.2 Future Research 

Implementation of an advanced alternation algorithm should be examined. Though 

alternation may always be present due to the nature of the McComas method, techniques 

to reduce its effects are available and should be included in the real-time Lab VIEW 

program. 

Further investigation into the shift-invariant wavelet is warranted. Also the 

possibility of using a varying threshold in wavelet pattern recognition should be 

examined. 

The present system provides a means for determining unique M-wave templates 

from recorded evoked responses. With simple modifications this system could be 

programmed to calculate MUNEs in real-time. This would then allow the system to be 

used in tracking functional MU populations, both in healthy and diseased individuals. 

Moreover, the system may be used to monitor and assess motor-neural diseases. Finally, 

the modified system may also contribute to research purposes by studying the effects of 

aging on a MU population. 
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