Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21884
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKumar, Shiva-
dc.contributor.authorYang, Dong-
dc.date.accessioned2017-08-23T18:17:51Z-
dc.date.available2017-08-23T18:17:51Z-
dc.date.issued2006-08-
dc.identifier.urihttp://hdl.handle.net/11375/21884-
dc.description.abstract<p> With the increasing demand for data rate and transmission distance, the trend in fiber-optic communications is to build an ultra-high, long-haul transmission system. One of the challenges in this kind of systems comes from the fiber dispersion and dispersion slope. For the wide-band wavelength-division multiplexing (WDM) system or ultra-high bit rate optical time-division multiplexing (OTDM) system, the dispersion slope could be a serious problem to impair the system performance.</p> <p> Many studies have shown that the dispersion and dispersion slope affect the long-haul fiber transmission dramatically, especially for the high-capacity systems. Most of them recommend to totally compensate the dispersion and the dispersion slope simultaneously. And a lot of compensating techniques are proposed. However, it is not easy to realize the simultaneous compensation for the dispersion and dispersion slope in the practical systems. Therefore, the necessity of compensating the dispersion slope in wide-bandwidth systems should be verified.</p> <p> We focus on the study of ultra-high bit rate (160-Gb/s) single-channel fiber-optic transmission. The results show that the dispersion slope is not necessary for the dispersion-managed system when the optimal launch parameters are given. Then we present how to find out the optimum in fiber-optic systems and a novel optimizing technology, space mapping technology (SM) is introduced, which has been successfully applied to the electromagnetic area. An application of SM in optical systems is implemented. By using this smart optimization technique, lots of computational efforts for evaluating the fine model in optimization process are saved.</p>en_US
dc.language.isoen_USen_US
dc.subjecthigh-speed, long-haul, fiber, optic, transmission, wavelength, dispersion, optimizationen_US
dc.titleInvestigation of High-Speed Long-Haul Fiber-Optic Transmissionen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Yang_Dong_2006Aug_Masters..pdf
Open Access
2.46 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue