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Abstract 

With the increasing demand for data rate and transmission distance, the trend in fiber

optic communications is to build an ultra-high, long-haul transmission system. One of 

the challenges in this kind of systems comes from the fiber dispersion and dispersion 

slope. For the wide-band wavelength-division multiplexing (WDM) system or ultra-high 

bit rate optical time-division multiplexing (OTDM) system, the dispersion slope could be 

a serious problem to impair the system performance. 

Many studies have shown that the dispersion and dispersion slope affect the long-haul 

fiber transmission dramatically, especially for the high-capacity systems. Most of them 

recommend to totally compensate the dispersion and the dispersion slope simultaneously. 

And a lot of compensating techniques are proposed. However, it is not easy to realize 

the simultaneous compensation for the dispersion and dispersion slope in the practical 

systems. Therefore, the necessity of compensating the dispersion slope in wide-bandwidth 

systems should be verified. 

We focus on the study of ultra-high bit rate (160-Gb/ s) single-channel fiber-optic trans

mission. The results show that the dispersion slope is not necessary for the dispersion

managed system when the optimal launch parameters are given. Then we present how 

to find out the optimum in fiber-optic systems and a novel optimizing technology, space 

mapping technology (SM) is introduced, which has been successfully applied to the elec

tromagnetic area. An application of SM in optical systems is implemented. By using this 

smart optimization technique, lots of computational efforts for evaluating the fine model 

in optimization process are saved. 
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Chapter 1 

Introduction 

With the rapid progress of optical communications, many new types of fibers and optical 

fiber based devices are laid. All these make fiber-optic transmission reach a higher stage. 

In particular, the advent of the optical amplifier, such as erbium-doped fiber amplifier 

(EDFA), allows longer transmission distance in optical systems. The gain of the optical 

amplifier compensate the fiber loss and hence, the loss was not a limiting factor for 

the optical fiber communication systems any more. Thereafter, higher capacity system 

became the new focus. As the bandwidth increases, the higher-order dispersion could be a 

major limiting factor. Many dispersion compensation techniques have been proposed and 

their advantages and disadvantage were discussed. Until now, the perfect compensation 

for the dispersion and dispersion slope simultaneously is still an uncomplete task. 

Generally, the compensation for dispersion slope is recommended for the high-speed 

systems due to the wider bandwidth. The standard single-mode transmission fiber has an 

anomalous dispersion with a positive dispersion slope, however, it is very hard to design 

a dispersion compensating fiber with a normal dispersion and negative dispersion slope. 

Thus, we need to verify that if it is a must to compensate the dispersion slope in practical 

optical communication systems. 

The purpose of this work is to investigate the impact of dispersion and dispersion 

slope for a 160-Gb/ s single-channel fiber-optic transmission system. We compare different 
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system schemes and find out that dispersion slope is not necessary to be compensated 

for a dispersion-managed optical fiber system if the optimal launch parameters are given. 

Considering that the direct optimization is a time-consuming work, we then introduce 

space mapping technology, an advanced optimization method, into optical communication 

system. An application of SM in fiber-optic transmission is implemented. The results 

show that the optimization time can be effectively reduced by using SM. 

A brief outline of this thesis is as follows: in chapter 2, we review the dispersion com

pensation techniques in long-haul fiber-optic systems. The impact of dispersion slope and 

compensation schemes for higher-order dispersion are investigated. Chapter 3 presents 

our simulation results for 160-Gb/ s single-channel fiber-optic transmission systems and 

the system performance for different system schemes is compared. Chapter 4 implements 

space mapping (SM) technique in long-haul, high-speed optical communication systems. 

Lastly, the conclusions drawn from this work are summarized in chapter 5. 
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Chapter 2 

Background 

In this chapter, we will review the evolution of the fiber-optic communication in the past 

couples of years, especially focusing on the limiting factors, such as fiber dispersion and 

dispersion slope, when the bit rate goes up to 40-Gb/ 8 or higher in the long-haul fiber 

links. Thereafter, we will introduce a novel optimization technology - Space Mapping 

Technology (SM), which has been successfully used in microwave areas. The basic concept 

of SM is given and some typical SM algorithms are presented. 

2.1 Evolution and Limitation of High-Speed, Long

Haul Fiber-Optic Links 

During the past 20 years, the single-channel bit rate for the fiber-optic transmission sys

tems has moved from 2.5-Gb/ 8 to 10-Gb/ 8. And recently, 40-Gb/ 8 and even higher bit rate 

like 160-Gb/ 8 systems are investigated. With the increasing of the bit rate, the disper

sion (the second-order dispersion, SOD) and dispersion slope (the third-order dispersion, 

TOD) along with the nonlinearity of optical fibers become the leading limiting factors in 

fiber-optic transmission systems. Therefore, the particular fibers manufactured to com

pensate SOD and TOD appear and the different compensation schemes are reported. 
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2.1.1 Review of Dispersion Compensation in Long-Haul Fiber

Optic Systems 

Due to the shorter pulse duration in ultrahigh bit rate systems, the output signal will be 

broadened rapidly and widely after fiber propagation, which leads to overlapped intra

channel pulses. Combined with the nonlinearity of optical fiber, the system performance 

will degrade drastically. Hence, in the high-speed, long-haul fiber-optic transmission sys

tems, the chromatic dispersion must be compensated. A variety of techniques of compen

sating chromatic dispersion have been proposed. Basically, the dispersion compensation 

can be classified as transmitter-based compensation, receiver-based compensation and 

fiber-based compensation. The first two compensating techniques, which use electrical 

processing in the transmitter and receiver respectively, are not widely utilized in the 

practical systems because they are not quite flexible to various optical networks. The 

fiber-based compensation, which uses a single-mode dispersion compensating fiber (DCF) 

with the negative dispersion to compensate the dispersion caused by the conventional 

transmission fiber with the positive dispersion, is the most reliable and widely imple

mented technique nowadays [1]. 

After fixing the dispersion compensation technique, how to set up the compensation 

scheme is the consequent problem. In [2] and [3], two different dispersion compensa

tion schemes were compared, one is sequential dispersion compensation and the other is 

compact dispersion compensation (See Fig. 2.1). Scheme 1 shows the sequential com

pensation, which has a dispersion compensation span after each transmission span and 

scheme 2 depicts the compact dispersion compensation, which only consists of pre- and 

post- compensation spans. The results in [2] and [3] showed that the compact dispersion 

compensation scheme has better system performance than does the sequential dispersion 

compensation scheme. Also in these two references, it has been shown that high dispersive 

fiber like the standard single-mode fiber (SSMF) with dispersion 17psjnmjkm is superior 

to low dispersive fiber like the nonzero dispersion-shifted fiber (NZDSF) with dispersion 

4.25psjnmjkm. Besides these two dispersion compensation schemes, there is another one 

4 
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named dispersion-managed scheme, which comprises a positive dispersion fiber (PDF) 

followed by a negative dispersion fiber (NDF) in each transmission span and the pre- and 

post- compensation fibers are set up at both ends of the total transmission link (See Fig. 

2.2). Four-wave mixing (FWM) is one of the dominant nonlinear effects in high-speed 

optical communication systems, which leads to amplitude jitter in bit '1' slot and gener

ates ghost pulse in bit '0' slots. By using dispersion-managed transmission scheme, it can 

be effectively reduced [4]. In each compensation interval, the local dispersion should be 

chosen as large as possible to reduce fiber nonlinearity while the average dispersion should 

be small to avoid the waveform distortion caused by the interaction between dispersion 

and SPM. 

SSMF 
/ 

Scheme 1 

Scheme 2 

Figure 2.1: Setup of the different dispersion compensation schemes 

PDF 

DCF NDF NDF DCF 

Figure 2.2: Dispersion-managed transmission system 
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2.1.2 Impact of Dispersion Slope in High-Speed, Long-Haul Fiber

Optic Transmission Systems 

Advances in high-capacity, long-distance fiber-optic transmission makes the third-order 

dispersion (TOD) an important limiting factor. For example, for a wavelength-division 

multiplexing (WDM) system, with increasing bandwidth, it is not enough only to com

pensate the SOD at the particular channel, but also the TOD. Supposing that complete 

dispersion compensation is achieved for certain channel of the WDM system, other wave

length channels experience different amount of accumulative dispersion proportion to 

their wavelength separation from the zero average-dispersion wavelength channel. Con

sequently, the total bandwidth of the long-haul WDM system is severely limited by the 

fiber dispersion slope. Even if the transmission bandwidth is restricted to a single channel 

in high-speed (?:: 160-Gb/ s) optical time-division multiplexing (OTDM) systems, because 

of the quite broad signal bandwidth, the dispersion slope should still be taken into ac

count. Several techniques have been proposed for the compensation of TOD. In [5], 

an arrayed waveguide grating (AWG)-based dispersion slope compensator (DSC) is de

scribed and long-distance WDM transmission experiments using DSC are implemented. 

In the experiment, the averaged zero-dispersion wavelength of fiber is set up to the center 

of the 10-channel WDM transmission window. The results show that the transmission 

performances of 10 WDM channels with the DSC are pretty much uniform. Whereas, 

the transmission performances are degraded at the edge of the WDM channels without 

the DSC. As a result, the adoption of the DSC can effectively improve the system per

formance. In [6], a technique based on the diameter-dependent shift of the dispersion 

minimum to realize a dispersion compensation module (DCM) in a predefined bandwidth 

has been proposed and this module can match arbitrary dispersion and dispersion slope 

requirements. Another method using a phase modulator as a DSC is studied in [7]. This 

dispersion slope compensator consists of a DCF, a SMF with opposite sign of the disper

sion compared with the prior DCF and a phase modulator positioned between them (See 

Fig. 2.3). At the output of this DSC, the signal was pre-chirped and had a characteristic 

6 
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Dispersion Slope Compensator 
Transmission Fiber 

Figure 2.3: Transmission system with dispersion slope compensator. DCF: dispersion 

compensating fiber; PM: phase modulator; SMF: single-mode fiber. (!)input pulse, 

(II)linearly dispersed pulse, (III)pre-compensated pulse, (IV)fully compensated pulse. 

tail induced by this chirp. Ideally, the phase shift in frequency domain induced by the 

third-order dispersion could be completely canceled out and hence, the dispersion slope 

is fully compensated at the end of fiber link. There are many other techniques or devices 

proposed to compensate the dispersion slope for high-speed, long-haul fiber-optic links, 

such as a chirped fiber Bragg grating used as a tunable DSC for a 160-Gb/ s system [8], a 

pulse shaper with a programmable phase-modulator array used as a DSC [9], a dispersion 

slope equalizer using the property of fiber bending in coiled pure-silica fiber [10], and 

another dispersion slope equalizer using a lattice-form programmable optical filter on a 

planar lightwave circuit [11]. Even though so many techniques and devices have been 

studied for DSC, some of them are too complicated to be employed in practical systems 

and some are inflexible against changes in system parameters such as the number of WDM 

channels, the channel spacing and the signal data rate at single channel, etc .. The advent 

of dispersion slope compensation fiber (DSCF) made the perfect compensation for the 

dispersion and dispersion slope simultaneously possible and easier. This kind of DSCF 

7 
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has a large normal dispersion with a negative dispersion slope [12]. 

On the whole, with the increasing of the bandwidth and data rate, the earliest dis

persion compensation devices, with a constant dispersion across the entire transmission 

window, are not suitable now. The advanced devices should compensate the dispersion 

and dispersion slope simultaneously. Many different techniques have been proposed and 

these include: dispersion compensating fiber, fiber Bragg gratings based device, virtual 

imaged phased array based device and higher order mode dispersion compensating de

vice [13]. Among them, the dispersion compensating fiber technique is most extensively 

employed nowadays. 

2.2 Space-Mapping Technology 

To compare various system configurations and optimize the performance, extensive nu

merical simulations of NLS need to be carried out. This takes several weeks to find the 

optimum system parameters. Therefore, in this thesis, the possibility of using space

mapping technology for optimization is explored. 

Up to now, many optimization techniques for device, component, and system model

ing and computer-aided design (CAD) have been used. The target of system design is 

to determine a set of physical parameters to satisfy certain design specifications. Tradi

tional optimization techniques directly utilize the simulated system responses and possibly 

available derivatives to drive the responses to meet the design specification. However, the 

higher accuracy, the more expensive direct optimization is expected to be. For some 

complicated problems, this cost may be prohibitive. Therefore, the novel design schemes 

combining the accuracy with the speed in optimization are desirable and this alternative 

design schemes should aim for achieving a satisfactory design specification with a mini

mal number of computationally expensive "fine" model evaluation. Space mapping (SM) 

method just addressed this issue. 

8 
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2.2.1 Basic SM Concept 

Space-mapping technique was firstly proposed by Dr. Bandler in 1993 for design and 

modeling of engineering devices and systems, such as RF and microwave components by 

using electromagnetic (EM) simulators. The SM approach utilizes a physically based 

"coarse" model, which is calibrated by "fine" model, to accelerate design optimization. 

Here, the "coarse" model is a ideal, fast but low accuracy model, such as a low-fidelity 

EM simulator or an analytical model, and the "fine" model is a practical, high accuracy 

but computationally expensive model, such as a numerical solver based model. By con

structing a SM, a proper surrogate is achieved. This surrogate is a enhanced or improved 

"coarse" model, which is iteratively updated and optimized in the SM procedure. The 

surrogate is faster than the "fine" model and more accurate than the underlying "coarse" 

model so that we can save a lot of efforts on evaluating the "fine" model. 

L~L XC= P(xf) XC 

such that 
Qc(P(xf)) = Qf(xf) 

- Coarse Model -
xc Qc(xc) 

Figure 2.4: Description of the basic idea of SM 

A design optimization problem to be solved can be written as [15]: 

x* ~ argminQ(x) (2.1) 
X 

where xis a vector of design parameters and Q is a suitable objective function. x* is the 

optimal solution to be found out and it is assumed to be unique. As shown in Fig. 2.4, 

Xc and Xf denote the vectors of coarse and fine model design parameters, respectively. Qc 

and Q1 are the corresponding objective functions or responses of coarse and fine models. 

9 
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We intend to find a mapping P relating the coarse and fine model parameters as 

such that (2.2) 

Then we can avoid directly optimizing the fine model, i.e., solving 2.1. Instead, we define 

- l!. p-1( *) Xj = Xc (2.3) 

as a good estimation of the fine-model optimum xj, where x~ is the coarse-model optimum. 

Further, we assume a linear mapping is constructed between coarse and fine model design 

parameter spaces, i.e., 

(2.4) 

where B(j) and c(j) are mapping parameters at the jth iteration. A key step in SM 

procedure is the parameter extraction (PE) and it can be mathematically expressed as 

(2.5) 

Then, we can obtain the optimal design parameter vector by using SM at certain iteration 

j+1, i.e., 

In general, we can summarize the SM-based optimization algorithm as follows: 

step-1: 

step-2: 

step-3: 

step-4: 

Fine model evaluation. 

Parameter extraction of a surrogate. 

Updating the surrogate. 

Optimizing the surrogate. 

2.2.2 Family of Space Mapping Technology 

(2.6) 

The original SM-based optimization algorithm was proposed in 1994 [14] by Dr. Bandler, 

where the parameter spaces of the coarse model and fine models were linked by a linear 

mapping. The parameter extraction was implemented by a least square solution of the 

10 
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linear equations arising from corresponding response points in the two spaces. Besides the 

original SM approach, there are many other enhanced or improved approaches appearing 

afterwards, such as Aggressive SM (ASM), Implicit SM (ISM), Neural SM (NSM) and 

Output SM ( OSM) etc.. Considering that ISM and OSM are implemented in this work, 

we give particular elucidation for these two kinds of SM approaches. 

2.2.2.1 Implicit Space Mapping 

Generally, SM can be classified as explicit SM and implicit SM. Explicit SM constructs the 

mapping between the design parameter spaces of coarse and fine models, while the physical 

coarse model is kept fixed all the time. In contrast, implicit SM extracts the selected 

parameters related to the physical coarse model to match it with the fine model. Here, the 

mapping is established not between the design parameter spaces, but for an set of auxiliary 

parameters preassigned as certain physical senses. These selected preassigned parameters 

could be physical constants, geometrical dimensions, or mathematical concepts [16]. 

Given the auxiliary parameters, denoted by s, the corresponding coarse model response 

is Qc(xc, s) then. At the jth iteration, the coarse-model optimal point x~ is given by 

(2.7) 

Then we set xy) = x~(j), the PE is used to find out the next iterative preassigned param

eters, 

(2.8) 

Lastly, at some iteration, like the kth iteration, we may obtain the mapped coarse model 

or surrogate that meets 

(2.9) 

over a interested region in the design parameter space. Thus, the surrogate is finally 

established as Qs(XJ) = Qc(Xf, s(k)). 

11 
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2.2.2.2 Output Space Mapping 

If there is a misalignment between the optimal coarse-model response Qc(x~) and the 

fine-model optimum R1(xj), it is impossible to obtain an exact match between them. 

For instance, given a coarse model such as Qc(xc) = x~ and a fine model QJ(x1) = 

(2x f - 3)2 + 4, we can only get a mapping Xc = P(x f) = 2x f - 3 to align them in design 

parameter spaces but the bias "4" between their responses is still there and can never be 

eliminated by any mapping P. Output space mapping (OSM) can overcome this defect by 

introducing a response mapping or output mapping, which is based on a Taylor extension 

of the coarse-model response [17]. 

First, we assume a linear mapping P given by 

(2.10) 

where x f is an n-dimensional vector of fine-model design parameters, B is a n x n matrix 

and c is an n-dimensional vector. B and c are input mapping parameters. Second, we 

define the output mapping as 

Op(z) = a(z- z) + d (2.11) 

where a and dare OSM parameters, z is Qc(P(xJ )), z is a constant, defined as Qc(P(x1 )). 

Assume we have reached jth iteration, let x 1 = xy), and d(j) = Q 1( xy)), then the jth 

surrogate can be written as 

(2.12) 

Considering that d(i) = QJ(xy)), at xyl, the surrogate QV) must match the fine-model 

response, i.e., 

(2.13) 

Third, we align the current surrogate with the fine-model responses at previous iterative 

points by adjusting the mapping parameters {a, B, c, d}. Thus, we define a residual vector 

at jth iteration as 

resUl(a, B, c)= [res(i)(a, B, c)i] (2.14) 

12 
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where res( a, B, c)i stands for the ith component of the vector, given by 

res(j)(a B c)· ~ R(j)(x(i) a B c)- R 1(x(i)) 
' ' ' s f ' ' ' f 

(2.15) 

i 1,2, ... ,j-1 

Finally, the residual (2.14) is used in the parameter extraction (PE) process to extract 

the mapping parameters for the next iteration, 

{aU), B(j), c(j)} = arg min llres(j)( a, B, c) II 
a,B,c 

(2.16) 

13 



Chapter 3 

Study of High-Speed Long Haul 

Fiber-Optic Links 

With the increased demand for data transmission rate, the high-speed, cost-efficient fiber

optic communication systems are becoming more necessary in future optical communica

tions. One of the usual approaches is to increase the channel count in wavelength-division

multiplexed systems (WDM). An attractive alternative is to enhance the single-channel 

data rate to 160-Gb/ s. With the wider bandwidth at such a high bit rate, the dispersion 

slope has to be taken into account [21]. In general, it is recognized that the compensation 

for dispersion slope is required. However, considering that the dispersion slope compen

sating fiber is so hard to design, so we need to examine if it is definitely indispensable to 

compensate the dispersion slope. 

Based on this concern, we numerically investigate the impact of the dispersion slope 

among different dispersion maps and for each map we compare the system performances 

between the cases with and without dispersion slope compensation. The dispersion map 

consisting of a single transmission fiber and the map consisting of a dispersion managed 

fiber are compared. It has been shown that dispersion slope compensation is not crucial 

for the system with dispersion managed fibers whereas, there is a significant performance 

degradation for the system with single transmission fiber if the dispersion slope is not 
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compensated. In addition, the impact of the local dispersion on fiber-optic transmission 

systems has also been studied. The results show that system performance improves around 

0.8dB in Q with higherlocal dispersion (D+ = 17psj(km·nm), D_ = -14.5psj(km·nm)). 

3.1 System Modeling and Simulations 

The basic system model consists of a 160-Gb/ s transmitter(Tx), transmission fiber, lumped 

amplifiers with a spacing of 80km, pre- and post-compensation fibers of dispersion -lOOps/ ( km· 

nm) and a receiver(Rx). The operating wavelength is 1550nm and total transmission dis

tance is 800km excluding the pre- and post-compensation fibers. In the simulation, we 

implement two different system schemes. In scheme 1, the transmission fiber is a dis

persion managed fiber consisting of an anomalous fiber (D+) of length 40km, followed 

by a normal dispersion fiber (D_) of the same length between amplifiers (See Fig. 3.1). 

The scheme 2 has only the standard single mode fiber of dispersion 17psj(km · nm) in 

every amplifier span (See Fig. 3.2). The pre- and post-compensations are done by us-

ing normal dispersion fibers of dispersion -lOOps/ ( km · nm). The lengths of pre- and 

post-compensation fibers are optimized to have the best performance. 

1024-bit, chirp-free, RZ gaussian pulses with duty cycle 0.5 are used as the input 

signals. To study the impact of local dispersion, we further divide the scheme 1 into 

scheme lA and scheme lB. For scheme IA, we choose D+ = 17psj(km · nm), D_ = 

-14.5psj(km · nm) and for scheme lB, D+ = 4psj(km · nm), D_ = -1.5psj(km · nm). 

For scheme 2, the transmission fiber is a standard single mode fiber with dispersion 

D+ = I7psj(km · nm). 

At the receiver, the signal is detected by a photo-diode and filtered by an electrical 

filter whose bandwidth is optimized. In our simulation, the amplifier noise is taken into 

account and the noise figure is 5.5dB for all amplifiers. We have used the Q factor defined 

by [22] 

Q(dB) = lOlogw (
h- Io) 
a1 + ao 

(3.1) 

15 
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as the measure of system performance. Here, h and 10 are the mean currents of bit '1' 

and bit '0', respectively. 0"1 and O"o are the standard deviations of bit '1' and bit '0', 

respectively. 

Pre-Compensation Anomalous Fiber 

----------1 

:.. ~~: .. 
: 40km i 40km 

~-
~ 

Normal Fiber 

Post -Compensation 

Figure 3.1: System scheme 1, the trans

mission fiber is a dispersion managed 

fiber consisting of an anomalous fiber of 

length 40km, followed by a normal dis

persion fiber of the same length between 

amplifiers. 

3.2 Results and Discussion 

Pre-Compensation 
Anomalous Fiber 

X J>-
... 

80km 

Post-Compensation 

Figure 3.2: System scheme 2, with only 

the standard single mode fiber of length 

80km between amplifiers. 

To determine if the dispersion slope compensation is necessary, we have compared two 

kinds of system schemes. For each scheme, we first find out the optimal pre-compensation 

fiber length at first by fixing the launch power, then around the vicinity of this optimal 

value, the optimal launch power is determined. 

The transmission fibers such as Single Mode Fiber (SMF) or Large Effective Area 

16 
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Fiber (LEAF) have anomalous dispersion and positive dispersion slope. Since it is hard 

to design a normal dispersion fiber with negative dispersion slope, we first consider the 

dispersion slope only for the anomalous fiber, i.e., the third order order dispersion f33anom =1-

0, f33norm = 0, in the other words, the dispersion slope is not compensated. Then, we 

investigate the case where the dispersion slope is fully compensated, i.e., the third order 

dispersion f33anom = -f33norm =/= 0. Fig. 3.3(a) shows the Q factor as a function of the 

launch power at the optimal pre-compensation fiber length for the scheme 1 with higher 

local dispersion (Scheme 1A). In this picture, we can see that Q increases initially with 

launch power and then decreases. This can be understood by considering the relation 

between the launch power and noises. In our system, the noises include ASE noise and 

nonlinearity induced noise. aAsE is proportional to YPo and aNL is proportional toP~. 

When the launch power is small, the ASE noise dominates so that Q "" VP0 . As the 

launch power increases, the noise due to fiber nonlinearity will play a dominant role and 

therefore Q scales as 1/ P0 . We find that the optimal launch power becomes larger for the 

(33 uncompensated case. This uncompensated dispersion slope leads to more broadened 

pulse than the (33 compensated case so that the nonlinear effect is reduced [23]. Moreover, 

at the optimal point of the launch power, nearly the same Q factors are achieved. That 

means even if there is no compensation for the dispersion slope, we can still obtain roughly 

the same system performance as that with dispersion slope compensation. Considering 

that it is difficult to make the dispersion slope compensating fiber, our results imply that 

the dispersion slope compensation is not necessary if dispersion managed fibers are used. 

Fig. 3.3(b) shows the variations of Q as a function of pre-compensation fiber length at 

the optimized launch power. The optimum dispersion compensation at the transmitter 

for the /33 compensated case is 80% and it decreases to 50% for the (33 uncompensated 

case. This can be explained by noting that the extra high order dispersion changes the 

dispersion map so that the compensation scheme changes accordingly. Fig. 3.4 shows 

numerical results for scheme 1 with lower local dispersion (Scheme 1B) and we can find 

that there is a small drop in Q ("" 0.8dB) when the local dispersion is lower. 

17 
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Fig. 3.5 shows the effect of third order dispersion on the scheme 2. For the /33 

compensated case in scheme 2, the dispersion slope is fully compensated by pre- and 

post-compensation fibers. This is implemented by setting /33pre = /33post and /33pre * Lpre + 
/33post * Lpost = - f33anom * L, where Lpre and Lpost are lengths of pre- and post-compensation 

fibers and L is the total transmission fiber length. In this case, we find that the system 

performance degrades remarkably for the /33 uncompensated case (1.8dB drop in Q) com

pared with the /33 compensated case whereas, for scheme 1, there is no much difference in 

the performance between the cases with and without dispersion slope compensation. In 

order to explain this phenomenon clearly, we introduce three parameters [18]: 

T? 
Lv = l/3~1' 

I TJ 
Lv = l/331' (3.2) 

where Lv is dispersion length, L'v is third-order dispersion length and LNL is nonlinear 

length, these are the length scales over which the dispersive or nonlinear effects become 

important for pulse evolution along a fiber of length L. Based on our 160-Gb/ s system 

with bit period, T = 6.25ps and duty cycle 0.5, we can get T0 = (0.5*T)/1.665 = 1.877ps. 

In the simulation, we use a typical value /33 = O.llps3 
/ km, then L'v = 60km. For scheme 

2, the fiber length L of every segment is 80km so that L > L'v, while for scheme 1, L 

is 40km, then L < L'v. Moreover, the accumulated third-order dispersion for scheme 

2 is /33 * 80km * 10, much larger than /33 * 40km * 10 for scheme 1. Hence, for the /33 

uncompensated case of scheme 2, the performance decreases more than that in scheme 1. 

Lastly, we study the impact of local dispersion on the transmission performance and 

find that the system performance improve slightly for the schemes with higher local dis

persion. This can be seen by comparing Q between scheme lA and scheme lB. Since 

the lower local dispersion corresponds to larger Lv and therefore, nonlinear impairments 

increase which degrades the system performance [20]. 

18 
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Figure 3.3: Scheme 1 with higher local dispersion, D+ = 17psj(km · nm), D_ 

-14.5psj(km·nm). (a)Q vs. launch power, optimal pre-compensation fiber length=8km, 

5km for the {33 compensated and {33 uncompensated cases respectively. (b )Q vs. pre

compensation fiber length, optimal launch powers are OdBm and 3dBm for the {33 com

pensated and /33 uncompensated cases respectively. 
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Figure 3.4: Scheme 1 with lower local dispersion, D+ = 4psj(km·nm), D_ = -1.5psj(km· 

nm). (a)Q vs. launch power, optimal pre-compensation fiber length=6km, 3km for the 

(33 compensated and (33 uncompensated cases respectively. (b )Q vs. pre-compensation 

fiber length, optimal launch powers are -1.25dBm and 3dBm for the (33 compensated and 

(33 uncompensated cases respectively. 
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Figure 3.5: Scheme 2 with dispersion, D+ = 17psj(km · nm). (a)Q vs. launch power, 

optimal pre-compensation fiber length=50km, 70km for the (33 compensated and (33 un

compensated cases respectively. (b )Q vs. pre-compensation fiber length, optimal launch 

powers are -1.25dBm and 0.97dBm for the (33 compensated and (33 uncompensated cases 

respectively. 
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3.3 Optimization Problem 

In this chapter, we have found that for the system scheme 1, if the optimal input design pa

rameters (here, they are the launch power and pre-compensation fiber length) are initially 

given, nearly the same system performances for the third-order dispersion compensated 

and uncompensated cases can be obtained. Therefore, before the simulation to get the 

Q factor, we first have to find the optimal design parameters, which is a optimization 

problem. 

In our simulations, all the numerical results are obtained based on a simulator that 

numerically solves Nonlinear Schrodinger Equation (NLS) and we call it "fine model". 

And the split-step Fourier algorithm is used in this solver. The step size ~z must be less 

than c/Jmax/bPo) to guarantee the computational accuracy, where ¢max is the maximal

allowed nonlinear phase shift, "f is the nonlinear coefficient and P0 is the launched peak 

power. Normally, with the practical fiber transmission parameters, ~z is very small 

compared with the transmission length and hence, the evaluation of the fine model takes 

so much time. Therefore, the direct optimization of the fine model to get the optimal 

design parameters is computationally expensive. 

In chapter 4, we apply the Space-Mapping (SM) technology to the fiber-optic trans

mission systems to solve this time-consuming optimization problem. The elapsed opti

mization time can be dramatically reduced by this technique while comparatively accurate 

optima can be obtained. 
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Chapter 4 

Optimization Of the Long Haul 

Fiber-Optic Transmission Systems 

Using Space-Mapping Technology 

In Chapter 3, it has been shown that the system performance for the third-order dispersion 

((33) uncompensated fiber-optic transmission system is as good as that of (33 compensated 

case if the optimal input parameters are given initially. However, it is an arduous task to 

get the optimum of the fine model. In this chapter, we will implement a trial application 

by using space-mapping technology on fiber-optic transmission systems to solve the time

consuming problem when directly optimizing the fine model. 

4.1 Motivations 

The direct optimization of the fine model will consume lots of time and with increasing 

of the number of design parameters, it could be a prohibitive task to get the optima by 

directly optimizing the fine model. Considering such a tough time-consuming problem, 

we need to find an alternative way to avoid optimizing the fine model directly while 

getting the accurate optima. Space-mapping technology provides us a good solution to 
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this problem. First, space-mapping method has high efficiency to converge to optimal 

values by reducing evaluations of the fine model. Second, if the algorithm used in space 

mapping is stable enough, it will give comparatively accurate results that are nearly same 

as those got from direct optimization of the fine model. Even at the worst case, space

mapping method can give a good initial guess for direct optimization, which will also save 

much searching time. 

4.2 Coarse Model 

To implement the space-mapping technique, we should have a fine model (slow but high 

fidelity) and a coarse model (fast but low fidelity) beforehand. The fine model can be set 

up by a simulator that numerically solves Nonlinear Schrodinger Equation (NLS) and it 

gives a rigorous description of the optical signal evolution along fibers. Correspondingly, 

we have a coarse model as a counterpart, which is obtained based on the first-order 

perturbation technique. 

4.2.1 First-Order Perturbation Theory 

We develop a first-order perturbation technology for the study of self-phase modulation 

(SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) effects in optical 

fibers. It is assumed that the pulse is linear to the leading order and nonlinearity is 

treated as a perturbation. The pulse propagation in optical fiber is described by Nonlinear 

Schrodinger Equation (NLS) [20] 

.aq fJ2(z) 82q 2 .a(z) 
J 8z- -2-8T2 +l'olql q = -J-2-q, (4.1) 

where q is the electric field envelope, {32 ( z) is the dispersion profile, /'o is nonlinear coeffi

cient and a(z) is the fiber loss/gain profile. Using the transformation, 

q(z, T) = exp (-w;z)) u(z, T), (4.2) 

24 



M.A.Sc: Dong Yang McMaster - Electrical and Computer Engineering 

where w(z) = J; o:(s)ds. (4.1) can be rewritten in the lossless form as 

. au f32(z) a2u 2 

J az - -2-8T2 + r(z)iui u = 0 (4.3) 

where r(z) = ro exp[-w(z)]. Without loss of generality, we consider the interaction 

between a pulse in bit slot 0 and a pulse in bit slot -1 to derive perturbation solutions for 

SPM and XPM effects. The total field can be expressed as 

u = uo + u_l (4.4) 

where u 0 and u_1 are the pulses in bit slot 0 and bit slot -1 respectively. Substituting 

(4.4) in (4.3) and ignoring the four-wave mixing terms, we obtain 

.Gum f32(z) 82um 2 2 
J az - -2- f)T2 = -r(z) [luml + 2lunll Um, 

m=0,-1, and n=-1-m. (4.5) 

We assume that the leading order solution of ( 4.5) is linear and treat the nonlinear terms 

appearing on the righ-hand side as perturbations. When fiber nonlinearity is ignored in 

( 4.5), the field u0 is given by [18] 

(o) ffoTo [ T
2 

] u0 ( z, T) = ----y;;- exp - 2T'f (4.6) 

where 

(4.7) 

S ( z) is the accumulated dispersion given by 

S(z) = 1z f32(s)ds (4.8) 

T0 is the half-width at the 1/e-intensity point [18], P0 is the peak power oflaunched signals 

and the superscript "(0)" indicates that this is the zeroth-order solution. Similarly, we 

take the unperturbed field of a pulse in bit slot -1 as 

(o)( T) _ ffoTo [ _ (T + n)
2

] 
u_l z, - Tl exp 2T'f (4.9) 
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where Tb is the bit period. 

We take 'Yo as a small parameter and expand the field Um into a series 

(4.10) 

where u~) denotes that the kth-order solution at bit slot m. The zeroth-order solutions 

given by (4.6) and (4.9) satisfy the linear part of (4.5). Substituting (4.10) into (4.5) and 

collecting all the items that proportional to ')'o, we obtain 

8u(l) /3 (z) 8 2u(l) 
j 

8
; -ToT; = -exp[-w(z)] x [lu~)l 2 +2lu~0)1 2] u~), 

m = 0, -1, and n =-1-m. (4.11) 

To solve ( 4.11), we first derive the following identity. Consider a differential equation 

.of _ f32(z) 02 f = F( T) (4.12) 
J oz 2 8T2 z, 

where the forcing function F(z, T) is of the form 

F(z, T) ~ ~(z) x exp { - t,[T- C,(z)]' R,(z) - jK(z)T} (4.13) 

The solution of (4.13) is given by (see Appenix A) 

f(z, T) ·jz rJ(s) 
-] 

o J8(z, s)R(s) 

[ R-(C C )2 1-\;A(f\; + j4CR)] x exp - 1 - 2 + ---'---
4
-R-

8
:-----'-

[ 
(T - C)2 R + j 1-\;T] d 

xexp - R
8 

s (4.14) 

where 

R R1 +R2 

R R1R2 
R1 +R2 

c C1R1 + C2R2 
R1 +R2 

(4.15) 

8 
1-jRA 

R 
A = 2[S(z)- S(s)] 
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To find the first-order correction for u0 due to the XPM term, lu~{lu6°) in (4.11), we 

make use of the result given by (4.14). The forcing function F(z, T) in this case is 

F(z, T) -2 exp[-w(z)]lu~{l 2u6°), 
2 

2Po#o1J(z) exp { - tt[T- Cz(z)]2 Rz(z)} 

where 
-TJ exp[-w(z)] 

1J(z) = T
1
(z)IT

1
(z)l2 , C1(z) = 0, C2(z) = -n 

1 1 T.2 

Rl = 2Tf' R2 = 2T? = IT1(~)14 
Using (4.14), the first-order correction for u 0 due to XPM is given by 

where 

u61),XPM (z, T) = 2p~/2 t G1(s) 
Jo J5(z, s)R(s) 

[ r; 1 ( - Tb ) 2] 
x exp - 2(Ti + Tf) - 6 T - 2RTi ds 

R(s) 

8(z,s) 

jTJ exp[-w(s)] 

T1 (s )IT1 (s) 1
2 

T'f(s) + Ti(s) 
= Rl(s) + R2(s) = 2Tf(s)Ti(s) 

1- 2j[S(z)- S(s)]R(s) 
R(s) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The first-order correction for u 0 due to the SPM term, iu6°) l2u6°), can be easily obtained 

from (4.19) by setting n to 0 and by replacing the XPM factor 2 with SPM factor 1, i.e., 

u(l),SPM(z T) = p,3/2 t Gl(s) ex (- T2)ds (4.21) 
0 

' 
0 

} 0 J8(z, s)R(s) P 5 

Total first-order solution for u0 is obtained by adding the SPM and XPM contributions 

1 

p~/2 L)k + 1) G1(s) 
k=O J5(z, s)R(s) 

[ 
kT; 1( k(-Tb))

2
] 

x exp - 2(Ti + Tf) - 6 T- 2RTi ds (4.22) 

Similarly, the first-order correction for u_1 can be obtained in the same way. 
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4.2.2 General Analytical Formula for the FWM Effect 

So far, we have obtained the explicit solutions for SPM and XPM effects by using the 

perturbation theory, now we will derive the general analytical formula for the FWM effect. 

Considering that the input data sequences can be expressed as: 

u(O,T) =Lui ( 4.23) 

where 

(4.24) 

is the input signal at the i-th bit slot. The signal evolution when propagating along fibers 

will be governed by Nonlinear SchrOdinger Equation (NLS) (lossless form), 

.au fJ2(z) a2u ( )I 12 0 J-- ---- + 1 z u u = az 2 aT2 
(4.25) 

where 1(z) = /o exp[-w(z)]. And by using the series of the field u with respect to /o, 

(4.26) 

firstly, ignore the nonlinear part in ( 4.25), we can obtain the leading order solution for 

i-th bit, 

where 

Tf = Tg- jS(z) and S(z) = 1z f32(s)ds 

Then the total zeroth order solution can be expressed as: 

( 4.27) 

(4.28) 

(4.29) 

Inserting (4.29) and (4.26) into (4.25), ignoring the second-order and other higher order 

terms and collecting all the terms that proportional to /o, we obtain 

ja~:l) - f32~z) a;;~) =- exp[-w(z)] L u~o) 2 L u~o) 
i i 

(4.30) 
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This equation can also be rewritten as: 

(4.31) 

Then, combine these three factors, we obtain: 

Without loss of generality, we just consider the field in the bit slot 0. Because only the 

terms that meet m + n- k = 0 will contribute to bit slot 0, (4.32) can be rewritten as 

(1) ( ) 2 (1) ( ) . 8uo fJ2 Z 8 Uo _ [ ( )] "' (0) (0) (0)* JTz- -2- 8T2 - -exp -w z ~ um un uk 

m+n-k=O 

Contrast (4.33) with (4.12), we have 

where 

f(z, T) 

F(z, T) 

u61)(z, T) 

- exp[-w(z)] x 
m+n-k=O 

VPoTo exp [- (T- mTb)
2

] 

T1 2Tf 
rnTo [ (T- nn) 2

] 
Y .roT1 exp - 2T'f 

rnTo [ (T- kn)
2

] 
y .ro T1 exp - 2T'f 

( 4.33) 

(4.34) 

(4.35) 

( 4.36) 

Substituting (4.36) into (4.35), for a group of definite (m,n,k), after some algebraic 

combination and reduction, we can obtain 

( 4.37) 
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where, 

rJ(z) 

R1(z) 

K:(z) 

[ 
3/2 TJ [ (m- n)

2T;; 2 *] 
- exp -w(z)]· Po . IT112Tl . exp - 4IT114 . (Tl) 

m+n 
-

2
-Tb C2(z) = kn 

(T'f)* 1 
= 

IT114 T[ 
0 

Lastly, we obtain the first-order correction for the field in bit slot 0 by (4.14) 

/:),.u(z T) --. r rJ(s) 
' (m,n,k)- J Jo y'J(z, s)R(s) 

X exp [- R(C1- C2 )
2

] x exp [- (T ~ C)
2

] ds 

where 

R R1 +R2 

R R1R2 
R1 +R2 

c C1R1 +C2R2 
R1 +R2 

6 
1-jRA 

R 
A 2[S(z)- S(s)] 

(4.38) 

(4.39) 

( 4.40) 

(4.39) give us a general form for nonlinear effects in the fiber propagation, which are 

contributed by the fields at bit slot m, n and k. If m = n = k, it stands for SPM effect; 

if m = k or n = k but m =f- n, it gives intrachannel XPM effect; excluding these two 

cases, it presents intrachannel FWM (IFWM) effect. As shown in Fig. 4.1, the nonlinear 

interaction of closely spaced pulse pairs generates temporal side bands or ghost pulses due 

to intrachannel FWM. The ghost pulse falling on the bit "1" slots causes amplitude jitter. 

Assume we have three consecutive bits of" 1", centered at -2n, -Tb and 0 respectively. 

The ghost pulse generated by the nonlinear mixing of pulses at -2n and -n interferes 

with the pulse at slot 0. This interference is added on the field on bit slot 0 and incudes 

amplitude jitter. 
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Figure 4.1: Illustration of Intrachannel FWM 

Then, from (4.35), the total intrachannel FWM correction at bit slot 0 can be obtained 

by summing up the contributions from all the possible combinations of (m, n, k), i.e., 

~u(z, T){,t;WM = L ~u(z, T)[/::~,tj ( 4.41) 
m+n-k=O 

4.2.3 Examining the Validity Of the First-Order Perturbation 

When the dispersion length is much shorter than the nonlinear distance, we find that the 

first-order solution can adequately describe the nonlinear effects and so we can ignore the 

second and the other higher order corrections for the leading order solution. 

Fig. 4.2 shows the optical power of a single pulse after 5 spans. In this case, there is a 

standard single mode fiber of dispersion (D+) 4ps/(km · nm) in each amplifier span and 

the amplifier spacing is 80 km. The dashed with dotted, the dashed only and the solid 

lines show the numerical simulation result, first-order and zeroth-order solutions. 

Fig. 4.3 shows the ghost pulse appearing at bit slot 0 when input two-bit signals at bit 

slot -1 and bit slot -2. In this case, the transmission fiber is a dispersion managed fiber, 

consisting of an anomalous fiber (D+) followed by a normal fiber (D_). And the resid

ual dispersion is fully compensated by pre- and post- compensation fibers of dispersion 

-lOOps/(km·nm). The dashed with dotted and the dashed only lines show the numerical 

simulation result and the first-order solution. 

For 160-Gb/s RZ systems, the pulsewidth is in the range of 1.5 to 3.1 ps. If 1,821 is in 
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Figure 4.2: Optical power as a function of time due to SPM alone. Peak power= 2m W , 

D+= 4 psj (km · nm), , bit rate= 160 Gb/s, 5 spans. 
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Figure 4.3: Optical power as a function of time due to IFWM. Launched two input bits 

at bit slot -1 and bit slot -1 , watch the ghost pulse at bit slot 0. Peak power= 2mW, 

D+ = 17ps j (km · nm) , D_ = -14.5ps/ (km · nm), bit rate= 160 Gb/ s, 10 spans. 
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the range of 4-21ps2 jkm and the dispersion length is given by 

(4.42) 

then the typical dispersion length is in the range of 0.04km to 0.9km. We define the 

nonlinear length as 
1 

LNL = -
'YoPo 

(4.43) 

where 'Yo is the nonlinear coefficient and P0 is launched peak power. If taking the typical 

nonlinear coefficient as 2.5W-1km-1, the nonlinear length is 200km when the launched 

peak power equals to 2m W. Thus, we can find that the dispersion length is much less 

than the nonlinear length for 160-Gb/ s RZ systems and hence, the first-order theory is 

adequate to describe the nonlinear effects. Fig. 4.2 and Fig. 4.3 are just showing the 

validity of first-order theory for SPM and IFWM effects, respectively. 

4.2.4 Calculation Of the Nonlinear Noise 

As for the 160-Gb/ s, RZ, dispersion-managed systems, because of the smaller dispersion 

length, the pulses will be broadened rapidly and hence, the adjacent pulses are overlapped 

strongly each other. In this case, the limiting factors for the fiber transmission are the 

amplitude fluctuations in bit '1' slots and the ghost pulse generation in bit '0' slots, 

induced by intrachannel four-wave mixing (IFWM) [23]. 

Based on perturbation theory, we can express the field as 

u = uo+~u (4.44) 

where u 0 is the linear part solution of NLS and ~u can be treated as a perturbation 

caused by nonlinearity. Here, we only focus on the IFWM effect, so ~u = ~uiFWM and 

it is given by ( 4.41). Assume hi is the probability of having bit '1' in bit slot i, which is 

taken as 1/2, then NLS given by (4.33) can be rewritten as 

(1) ( ) 2 (1) ( ) . 8uo _ /32 Z 8 Uo = _ [- ( )] """"' (h h h ) (0) (0) (0)• 
J 8z 2 8T2 exp w z ~ m n k um un uk 

m+n-k=O 
(4.45) 
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Further, ( 4.41) can be rewritten as 

~u(z, T){,;';WM = L (hmhnhk) ~u(z, T){!~M 
m+n-k=O 

and then, 

(~u(z, T){,;';WM) 2 = ( L (hmhnhk) ~u(z, T){!~M) · 
m+n-k=O 

C~_, (h,h,h,) L'.u(z, T)/!:':.1') 

L L (hmhnhkhohqhq) · ~u(z, T){!~M · ~u(z, T){:,~r 
m+n-k=O o+p-q=O 

At the end of the link, the output optical power can be written as 

Pout= luo + ~ul 2 = luol 2 + u~~u + uo~u* + l~ul 2 

Assume l~ul ~ luol, ignore l~ul 2 , we obtain 

Pout= Po+ 8P = luol 2 + (u~~u + uo~u*) 

The variance of the nonlinear noise is 

where< · > denotes taking mean value. 

< 8P >= u~ < ~u > +uo < ~u* > 

and 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

< 8P2 >= u~2 < ~u2 > +u~ < ~u*2 > +2luol 2 < l~ul 2 > (4.52) 

Then, by using (4.45) and (4.47) [19], we obtain 

if i i= j i= k 
( 4.53) 

if any r indices are equal 

if i i= j i= k i= 0 i= p i= q 
(4.54) 

if any r indices are equal 

Insert (4.53), (4.54) into (4.51) and (4.52), < 8P >and< 8P2 >are achieved. Then, the 

nonlinear noise variance caused by IFWM can be obtained by (4.50). 
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4.2.5 Calculation Of the ASE Noise 

Besides the noise induced by the fiber nonlinearity, the lumped amplifiers in the trans

mission link introduce another noise - ASE noise. ASE noise variance is 

( 4.55) 

where R is the responsivity of a photodiode, Ps and PN are signal power and noise power 

respectively. 

( 4.56) 

where j = 0,1 for bit '0' or bit '1'. 

pN = PASE · f:lj (4.57) 

where i:lf is the electrical filter bandwidth and 

PASE = hf(GF- 1) ( 4.58) 

where f is the Planck constant, f is the operation frequency, G is the amplifier gain and 

F is the noise figure. 

4.2.6 Establishment Of the Coarse Model 

In our simulation, Q factor is taken as a measurement of system performance and the 

higher Q factor, the better system performance. Therefore, the objective of our optimiza

tion is to get the maximal Q factor at certain design parameters. For the coarse model, 

we have 

(4.59) 

where 

a1 = V aJ-n1 + a~SEl is the standard deviation of bit '1' (4.60) 

and 

ao = V o-'Jv.Lo + a~sEo is the standard deviation of bit '0' (4.61) 
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Figure 4.4: ASE noise as a function of the launched peak power 
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Insert (4.50) and (4.55) into (4.60) and (4.61), we can obtain the standard deviations of 

bit '1' and bit '0' for the coarse model. Considering that usually h » Io and h ~ RPo, 

we can ignore 10 in (4.59). Ultimately, the coarse model is established as 

Qc(Xc) = 10 log10 ( h ) = 10 log10 ( RPo ) 
a 1 + ao a1 + ao 

(4.62) 

where Xc is a vector denoting the design parameter and Po is the launched peak power, 

R is the responsivity of a photodiode. 

4.3 Two-Stage Implementation Of Space-Mapping Tech-
. n1que 

So far, we have a coarse model based on an analytical formula and a fine model based on 

a simulator numerically solving NLS. In the fine model, the split-step Fourier method is 

used and the step size ~z is dependent on the launched peak power as 

(4.63) 

where ¢max is the maximal allowed nonlinear phase shift. Apparently, as the launch 

power increases, ~z becomes smaller, then evaluation time of the fine model goes up. 

Whereas, the evaluation of the coarse model is nothing but calculating an integral, which 

is totally independent of the launched peak power. Therefore, the step size for the coarse 

model is fixed and could be quite large as long as the accuracy of the integration could 

be guaranteed. Normally, the evaluation time for the fine model is around 2.5 hours at 

a lower level of the launched peak power, by contrast, it is less than 3 seconds for the 

coarse model. On the other hand, the fine model is of higher fidelity compared with the 

coarse model. Space-mapping (SM) technology builds a bridge between the coarse and 

fine models. SM procedures iteratively update and optimize surrogates (based on a fast 

physically based coarse model) and then link the design parameters in the space of coarse 

and fine models by a mapping, given by Xc = P( x f). Here, the surrogate is a mapped 

coarse model or enhanced coarse model. 
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To implement space-mapping technique, we first assign the design parameters used 

in the optimization process. In our simulation, we choose the launched peak power and 

dispersion compensation ratio as the optimized design parameters and they are denoted 

by Xc and x f for the coarse and fine models, respectively. Here, they are 2 x 1 vectors and 

xc(1), x1(1) stand for launched peak power; xc(2), x1(1) stand for dispersion compensation 

ratio (DCR), which is defined by 

DC R = pre-compensation fiber length x 
100

% 
total compensation fiber length 

4.3.1 First Stage: Implicit Space Mapping (ISM) 

(4.64) 

Considering that the original coarse model has a large deviation from the fine model (See 

Fig. 4.5, 4.7), we can not use Explicit Space Mapping (such as ASM, OSM) directly. 

Hence, we insert an Implicit Space Mapping (ISM) to improve the original coarse model. 

After ISM, we get an enhanced coarse model with better approximating to the fine model. 

Then, we implement Output Space Mapping (OSM) to find the optimal design parameters 

based on this improved coarse model [16]. 

In ISM, a set of auxiliary parameters (selected preassigned parameters) is extracted 

to match the coarse model to the fine model. The total noise can be expressed as: 

2 2 2 
atot = aNL +a ABE (4.65) 

where aJVL and a~sE are nonlinear noise and ASE noise variances respectively. In Fig. 

4.4, it is shown that the practical ASE noise can be depicted well by the analytical formula 

( 4.55) and so, we only need to align nonlinear noise of the coarse model with that of the 

fine model. 

We introduce two preassigned parameters named "AdjustSigma1" and "AdjustSigmaO", 

then obtain 

a~Ll (AdjustSigma1) x a~Ll 

-2 
aNLO (AdjustSigmaO) X a~Lo 
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where <71£1 and <71LO are original coarse-model outputs of the nonlinear variances for bit 

'1' and bit '0'; a-1Ll and a-1LO are improved coarse-model. Then, for the improved coarse 

model, the noise can be rewritten as 

2 -2 2 
O"totl O"NLl + <7 ABEl 

-2 2 
O"NLO + <7 ASEO ( 4.67) 

Further, the Q factor for the coarse model, now is given by 

(4.68) 

The following table presents the executable algorithm of ISM, 

Table 4 1: Summary of the ISM Algorithm 

Step 1 select preassigned parameters 

x = [adjustsigma1; adjustsigmaO] 

Step 2 Set j = 0 and initialize x<0) 

Step 3 Obtain the optimal coarse model design parameters 

by solving x~(j) = arg minx ( Qc(Xc, xUl)) 

Step 4 Terminate if stop criteria (e.g. 

II x~(j) - x~(j-l) II< c ) are satisfied. 

Step 5 set xy) = x~(j) 

Step 6 Evaluate the fine model at xy) 

Step 7 Calibrate the coarse model by extracting 

the preassigned parameters x by 

xU+l) = arg minx(ll <7 J(xy)) - <7c(xy), x(j)) II) 
where O"J = [<7Jl; O"Jo] and O"c = [<7c1; O"co] 

Step 8 Increase j and go to step 3 
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4.3.2 Second Stage: Output Space Mapping ( OSM) 

OSM deals with residual misalignment between the optimal coarse-model output and fine

model output. For example, a coarse model such as Rc = x2 will never match to the fine 

model R1 = x2
- 5 around its minimum with any mapping Xc = P(xJ)· Therefore, in 

the original SM [17], an exact match between the mapped coarse model and fine model 

is impossible. Output Space Mapping can overcome this deficiency by introducing a bias 

term in the output of the coarse model. Along with the input mapping P, OSM can give 

a better calibration or a better surrogate. 

After ISM, we've achieved a improved coarse model with particular preassigned param

eters: [adjustsigma1; adjustsigmaO] = [1272.8; 120.75]. Based on this enhanced coarse 

model, we further implement the explicit space mapping (OSM) to calibrate it so that 

the mapped coarse model after OSM can match the fine model exactly. 

Though, normally the input mapping Pis nonlinear, it can be approximated by local 

linear mappings. We assume a linear mapping 

(4.69) 

where Xf E ~2 is the fine-model design parameter vector, the matrix B E ~2x2 and 

c E ~2 • The output mapping is defined as 

O(z) = a(z- z) + ,B (4.70) 

where z = Qc(Bxf +c) and Xf is a constant vector. Then the surrogate can be written 

as: 

Qs(xJ) =a (Qc(Bxf +c)- Qc(Bxf +c))+ ,B 

If let Xf = xY) and ,B = QJ(xyl), where xY) is the jth iterate, then we obtain 

at current iterative point xY). Thus, jth iterative surrogate is 

Q~1l(xJ) = a(j) ( Qc(p(j)(xJ))- Qc(p(j)(xY)))) + ,B(j) 
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where pUl(xJ) = BUlxf + c(j) and f3(j) = QJ(xY)). In each iteration, the surrogate is 

optimized to find the next iterate by solving 

(4.74) 

The mapping parameters are updated by the Parameter Extraction (PE) process and it 

is implemented by matching the single or multiple iterative points between the surrogate 

and the fine model. In our simulation, only the latest previous point is matched during 

the PE process, which can be mathematically expressed as: 

(4.75) 

a e .. T bl 4 2 P ropose d OSM Al "th tgon m 

Step 1 select a coarse model and fine model 

Step 2 Set j = 0 and initialize x>o) 

Step 3 Obtain the the next iterate xY+l) by solving 

x;(j+l) = argminx
1 

( QV)(xtU 

Step 4 Terminate if stop criteria (e.g. 

II x?+l)- x?) II< c) are satisfied. 

Step 5 Evaluate Q1(xY+l)) 

Step 6 In PE process to update the input and output 

mapping parameters {aU H), B(j+l), c(j+l)} by solving 

{ a(j+l),B<J+l), c(j+l)l = arg min(a,B,c) _(_11 Qij+l)(xY), a, B, c)- QJ(xY)) I~ 

Step 7 Set j = j + 1 and go to step 3 

4.3.3 Results and Discussion 

Since the direct optimization of the fine model is a time-consuming work and hence, space 

mapping is introduced to reduce evaluations of the fine model so that we can have higher 
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Table 4.3: ISM Implementation 

Iteration Preassigned Parameters Xc_opt E JR2 

[ adjustsigma1; adj ustsigmaO] [Peak Power; DCR] 

0 [2000;500] [4.04e-3; 0. 7757] 

1 [993.36; 126.04] [5.12e-3; 0.7757] 

2 [1281.83; 170.06] [4.76e-3; 0.7757] 

3 [1273.18; 120.71] [4.76e-3; 0.7757] 

Table 4.4: OSM Implementation 

Iteration Mapping Parameters 

o:,B,c [Peak Power; DCR] 

0 o: = 1.0, c = [0; 0] [4.76e-3; 0.7757] 

B= 1 0 I 
0 1 I 

1 o: = 0.9999, c = [1.3e-3; -9.84e-3] [3.8e-3; 0. 7867] 

0.9999 0 \} 
B=! 

0 0.9922 

2 o: = 0.9999, c = [0.547e-3; -9.71e-3] [4.1626e-3; 0.7867] 
I 

B = 0.9999 0 ) 

0 0.9922 

3 o: = 0.9999, c = [0.594e-3; -9. 71e-3] [4.1626e-3; 0. 7867] 

B= 
0.9999 

0 
0 ) 

0.9923 I 
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Table 4.5: Complexity Comparison Among Coarse, Fine and Surrogate Models 

Obj. Problem Fine Model Coarse Model Surrogate 

Surrogate-ISM Surrogate-OSM 

Optimization "Direct Search" "Direct Search" "Implicit SM" "Output SM" 

Techniques 

Fun. Evals 43 105 3x 4x 

Fine Model Evals. Fine Model Evals. 

+ 3x + 3x 

PE process PE process 

Elapsed Time rv 2.5 - 4.5 hours < 3 seconds rv 2.5 hours rv 2.5 hours 

per Fun. Eval 

Optimal Design [4.167e-3; [12.87 4e-3; [4.759e-3; [4.163e-3; 

Parameters 0.8087] 0.7757] 0.77574] 0.7867] 

Q-Factor 6.423 dB 1.212 dB 6.275 dB 6.421 dB 

of Fine Model 

Total Elapsed 137.89 hours 151.29 seconds 7.6 hours 10.4 hours 

Time 18hours 
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efficiency. On the other hand, the optima we obtain from SM technique should approach 

the true optima derived from the fine model so as to ensure accuracy. 

From Table 4.5, we can find that the coarse model is fast but not accurate; the fine 

model is slow but accurate. By using SM technology, evaluations of the fine model have 

been reduced and hence the efficiency is enhanced greatly, at the same time, through 

two-stage SM, we obtain a set of optimal design parameters well approximating to the 

true optima. 

Fig. 4.9 to Fig. 4.12 show the surrogate model compared with the fine model. In 

these figures, it is shown that the surrogate model can give a good estimate of the optima. 

Especially for the DCR fixed case, the surrogate model is in good agreement with the fine 

model within a wide power range (1mW-6mW). Fig. 4.10 shows that when the launch peak 

power is greater than 4 m W, the coarse model deviates from the fine model significantly, 

which means that the first-order theory based analytical model can not describe the true 

model itself at higher power level. Whereas, the surrogate model that is modified by using 

the information from the fine model can track the fine model well even at the higher power 

level (See Fig. 4.9). 

By using SM techology, we obtain two benefits. First, high efficiency: 18 hours for 

SM-based optimization versus 138 hours (around 5 days) for direct optimization. Second, 

high accuracy: the relative error, between the optimal design parameters of the surrogate 

and fine model, < 3% (calculated under l-1 norm). 
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Chapter 5 

Conclusions 

In this work, we study the effect of the dispersion slope on fiber-optic transmission systems 

with two different dispersion maps. We investigate whether it is necessary to compensate 

the third-order or not and compare the system performance between the schemes having 

different local dispersions. 

Our results show that for the system scheme with the dispersion map consisting of a 

single transmission (scheme 2, see Fig. 3.2), around 1.8dB drop in Q occurs if the third

order dispersion is not compensated, whereas, for the system scheme with the dispersion 

map consisting of a dispersion managed fiber (scheme 1, see Fig. 3.1 ), nearly the same 

performance is achieved for the systems with and without dispersion slope compensation. 

Therefore, we conclude that it is not a must to compensate the dispersion slope for scheme 

1 when the launch power and pre-compensation are all optimized while for scheme 2, 

it is important to compensate the dispersion slope. Moreover, the impact of the local 

dispersion is also investigate and the results show that the system performance increases 

by rv 0.8dB in Q with higher local dispersion. 

We introduce Space Mapping (SM) technique into fiber-optic communications to solve 

the time-consuming problem in direct optimization and present how to set up a fine and 

coarse model, how to implement the specific SM algorithms to fine the optimal design 

parameters. We discuss what benefits we can obtain and what deficiencies we have to 
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overcome in this application of SM technique. 

From our simulations, we find that the SM-based optimization is much better than the 

direct optimization due to its less computational effort. First, the SM-based optimization 

is of high efficiency. Only 18 hours are needed to get the optimal design parameters for 

the SM-based optimization while for the direct optimization, it takes 137 hours or about 

5 days. Second, the SM-based optimization can guarantee high accuracy. The relative 

error between the optima achieved from the surrogate and the fine model is less than 3%. 

Therefore, we conclude that SM technique can be applied to fiber-optic communications 

and it effectively reduces the elapsed optimization time, and hence provide us a highly 

efficient method to get the optimal design parameters. 

Finally, there are still some areas we can go into in future work such as how to improve 

our coarse model and further make the SM algorithm more stable and how to keep the 

SM-based optimization work well when more design parameters are added in, etc .. 
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Appendix A 

Auxiliary Method for Solving NLS 

Taking the Fourier transform of (4.12), we have 

d/(z,w) _ jw
2
{32(z)j-( ) = _ .F-( ) 

d 
z,w J z,w 

z 2 

where f(z,w) is the Fourier transform of f(z, T) and 

where 

P(z,w) ~ ~(z)exp (- t,cfR,) 
X j_: exp[-RT2 - jT(C3 + 2jCr- w)]dT 

-- ---wD .Jiirl [-w2 
] 

exp 4R 

R = R1 + R2, Cr = C1R1 + C2R2 

D = -(C3 + 2jCr) 
2R 

1 ( ~ C2R 4C;- Cj- 4jC3Cr) rJ = rJ exp - ~ l l + ----'-~=--..:__=---
!=! 4R 

The solution of ( A.l) with the initial condition /( 0, w) = 0 is 

- t - [jw
2
A(z s)] f(z, w) = -j Jo F(s,w) exp 
4 

' ds 
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where 

A(z, s) 

S(z) 

2[S(z)- S(s)] 

1z f32(s)ds 

Inserting (A.2) into (A.6) and inverse Fourier transforming, we obtain 

f(z, T) = 

where 

-jy'ir r r/(s) 
27r Jo JR[S) 

x 1: exp[-w26/4- w(D + jT)Jdwds 

1 . 
6(z,s) = R(s) -JA(z,s) 

After evaluating the inner integral in (A.8), we obtain 

!( T) ·1z r/'(s) [(D(s) + jT)
2

] d z, = -J exp s 
o }6(z, s)R(s) 6(z, s) 

Using (A.3)-(A.5) and (A.lO), after some algebra, we arrive at (4.14) 
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