Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21660
Title: Investigating Alternative Testing Techniques for Evaluating the Environmental Stress Cracking Resistance of Polyethylenes in Contact with Ageing Fluids
Authors: West, William T.J.
Advisor: Thompson, Michael
Department: Chemical Engineering
Keywords: polyethylene;slow crack growth;ESC;ESCR;environmental stress cracking;brittle fracture;igepal;biodiesel;polyolefins;HDPE;plastic failure
Publication Date: 2017
Abstract: Environmental stress cracking (ESC) is a significant problem that has plagued the plastics industry since its discovery nearly 70 years ago. The accelerated brittle failure brought about when a stressed polymer comes in contact with an aggressive environment can happen suddenly with destructive results. Many classes of polymers are susceptible to this type of slow crack growth; however special emphasis has typically been placed on polyolefins due to their wide range of working environments, market dominance and their seemingly chemical resistance. Much research has been focused on formulating environmentally resistant materials, while the evaluation techniques for gauging environmental stress cracking resistance (ESCR) seem to have been left behind. This research focuses on developing a reliable testing technique for evaluating the ESCR of polyethylene resins. Passive acoustic monitoring was adapted to an industrially accepted ESCR test in an attempt to hear polymer damage before it was visually apparent. It was discovered that the low energy released during the early stages of damage and excessive background noise masked passive signals, making this method of evaluation impractical. Alternatively, active ultrasonic monitoring through velocity and attenuation measurements was investigated to see if probing techniques could be used to detect structural damage. Active ultrasonic monitoring of static and tensile stressed samples were able to differentiate plasticization after ageing, however no indication of ESCR properties could be inferred. A novel forced based monitoring system was developed in response to the acoustic testing techniques. Force monitoring was able to provide useful information regarding the failure cycle of ESC and the acquired profiles could describe a failure onset time. Several ageing environments were also tested with force monitoring and a traditional ESCR test to reveal the stress cracking ability of biodiesel, an important finding.
URI: http://hdl.handle.net/11375/21660
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
WEST_William_TJ_2017April_MASc.pdf
Access is allowed from: 2018-05-01
Thesis3.44 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue