Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21594
Title: The Impact and Rebound of a Small Water Drop Striking a Hot Surface
Authors: Harvey, Denis
Advisor: Hoffman, T. W.
Department: Chemical Engineering
Keywords: Rebound;Small Water Drop;Hot Surface;steam atmosphere
Publication Date: Mar-1967
Abstract: <p> Water drops at their boiling point were projected through a steam atmosphere to strike a surface which was varied in temperature from 300 to 900 degrees Fahrenheit. A high-speed motion picture study of the collision process showed that, except at low surface temperatures, the drop flattened out on impact and rebounded in a state of oscillation. Measurements of the change in drop diameter on--collision indicated that the amount of evaporation due to heat transfer from the surface was extremely small except when the drop extensively wetted the surface. Solution of a mathematical model of the initial impact dynamics and models of heat transfer through a vapour film beneath the drop and by direct liquid-surface contact confirmed experimental observations. </p>
URI: http://hdl.handle.net/11375/21594
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Harvey_Denis_M_1967_Phd.pdf
Open Access
13.28 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue