Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21320
Title: The Bethe-Ansatz for Gaudin Spin Chains
Authors: Kowalik, Ilona
Advisor: Min-Oo, Maung
Department: Mathematics
Keywords: Bethe-Ansatz;Gaudin;Spin chains;quantum;heisenberg
Publication Date: 9-Jun-2008
Abstract: We investigate a special case of the quantum integrable Heisenberg spin chain known as Gaudin model. The Gaudin model is an important example of quantum integrable systems. We study the Gaudin model for the Lie algebra s[z(<C). The key problem is to find the spectrum and the corresponding eigenvectors of the commuting Hamiltonians. The standard method to solve this type of classical problem was introduced by H. Bethe and is known as the Bethe-Ansatz. Bethe's technique has proven to be very powerful in various areas of modem many-body theory and statistical mechanics. [19], [14], [4] Following Sklyanin's ideas in [19], we derive the Bethe-Ansatz equations for sl2(<C). Solving the Bethe-Ansatz equations is equivalent to finding polynomial solutions of the Lame differential equation, which has a meaning in electrostatics. We derive this equation for sl2(<C), and investigate its special cases. We discuss classical and more recent results on the Gaudin spin chain for sl2(<C) and provide numerical evidence for new observations in the real case of the Lame equation. Using roots of classical polynomials known as Jacobi polynomials, which are solutions to a special case of the Lame equation, we numerically approximate solutions to the Lame equation in more complicated settings. We discuss the Gaudin model associated to the Lie algebra sl3(C). Using the Bethe-Ansatz equations for sl3(C), we provide solutions in special cases.
URI: http://hdl.handle.net/11375/21320
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kowalik_Ilaona_A_2008Jun_Masters.pdf
Open Access
3.07 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue