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ABSTRACT 


We investigate a special case of the quantum integrable Heisenberg spin chain 

known as Gaudin model. The Gaudin model is an important example of quantum 

integrable systems. We ~tudy the Gaudin model for the Lie algebra s[z(<C). The 

key problem is to find the spectrum and the corresponding eigenvectors of the 

commuting Hamiltonians. The standard method to solve this type of classical 

problem was introduced by H. Bethe and is known as the Bethe-Ansatz. Bethe's 

technique has proven to be very powerful in various areas of modem many-body 

theory and statistical mechanics. [19], [14], [4] 

Following Sklyanin's ideas in [19], we derive the Bethe-Ansatz equations for 

st2(<C). Solving the Bethe-Ansatz equations is equivalent to finding polynomial 

solutions of the Lame differential equation, which has a meaning in electrostatics. 

We derive this equation for st2(<C), and investigate its special cases. We discuss 

classical and more recent results on the Gaudin spin chain for st2(<C) and provide 

numerical evidence for new observations in the real case of the Lame equation. 

Using roots of classical polynomials known as Jacobi polynomials, which are 

solutions to a special case of the Lame equation, we numerically approximate 

solutions to the Lame eq 11ation in more complicated settings. 

We discuss the Gaudin model associated to the Lie algebra st3(<C). Using the 

Bethe-Ansatz equations for st3(<C), we provide solutions in special cases. 
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Chapter 1 

Introduction 

The Gaudin spin chain model corresponding to the Lie algebra .sh(C) has 

been extensively studied. The Bethe-Asantz was introduced in the context of spin 

chains in quantum physics. The problem of diagonalizing the Gaudin Hamiltoni­

ans is equivalent to solving the Bethe-Ansatz equations [19]. An equivalent to the 

Bethe-Ansatz equations, which relates to infinite dimensional irreducible repre­

sentations of .st2(C), is a dassical differential equation called the Lame equation, 

which has an electrostatic interpretation. The Lame equation was developed by 

Heine [7] in the 19th century in the context of orthogonal polynomials. In special 

cases"solutions to the Lame equation are classical orthogonal polynomials called 

Jacobi polynomials. 

For cases of the Lamt! equation corresponding to infinite dimensional repre­

sentations of .st2(C), the exact number of solutions and their distribution on the 

real line are known. This result was first proven by Stieltjes in 1885 [21], and is 

known as the Heine-Stieltjes theorem. In the finite dimensional case, still rela­

tively little is known. Recent work in this area, [12], shows interesting patterns in 

the complex case. 

We derive the equations and prove some of these results. For each of the 
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discussed cases, we provide numerical algorithms. We observe and provide nu­

merical evidence that in certain cases, a solution to a simpler problem, to which 

solutions are completely described, can be used to approximate solutions in more 

complicated settings. We numerically obtain a single solution to our problem 

from iterating two sets of distinct solutions. Finally, we provide numerical evi­

dence that there exist solutions to equations that are similar to the Bethe-Ansatz 

equations corresponding to the Gaudin spin chain model associated to the Lie al­

gebra ,g[3(C). The case of the Gaudin Model to .s[3(C) has recently sparked the 

interest of researchers, [13], [14], however, much is still unknown. We provide a 

method of finding solutions in a special setting and explain why the Heine-Stieltjes 

theorem does not hold in the ,g[3(C) case. 

We begin the discussion with a basic introduction to quantum mechanics, ex­

plaining the terminology and mathematical formulation of a quantum mechanical 

system. 

In chapter 2, we describe the Gaudin spin chain model, introduce the Gaudin 

Hamiltonians, and explain the correspondence with the Lie algebra .s(z(C). The 

commutativity of the generating function corresponding to the .s(2 (C) Gaudin 

model is then proven, which implies commutativity of the Gaudin Hamiltonians. 

The Bethe-Ansatz is an approach to find joint eigenvectors and eigenvalues of 

Gaudin Hamiltonians. In chapter 3, we prove that solving Bethe-Ansatz equations 

is equivalent to diagonalizing the generating function. 

Chapter 4 discusses two equivalent methods to describe solutions to the Bethe­

Ansatz equations associated to the .s(z(C) Gaudin spin chain model. The Bethe 

vectors can be thought of as a collection of numbers satisfying critical point equa­

tions of the Master function. The other way to solve the Bethe-Ansatz equations 

is by looking at polynomial solutions of a differential equation called the Lame 

equation. 

2 




I. Kowalik MCMASTER - MATHEMATICS 

In Chapter 5, we discuss solutions to the Lame equation in the case of two 

real sites. These solutions correspond to classical orthogonal polynomials, known 

as Jacobi polynomials. This Chapter begins with an overview of the theory of 

orthogonal polynomials <md discusses a subclass of Jacobi polynomials, known 

as Chebyshev polynomials, in more details. The last section of this chapter shows 

how the theory of orthogonal polynomials is used to obtain numerical solutions of 

the Lame equation in this special case. 

Chapter 6 contains experimental numerical results. We provide numerical ev­

idence for obtaining approximations of solutions to the Lame equation of more 

than two real sites using numerical approximations of roots of Jacobi polynomi­

als. We also make observations and provide numerical evidence of the existence 

of solutions to other equations that are similar to the Bethe-Ansatz equations for 

sh(C). 

In chapter 7, we consider the Lame equation with complex parameters and 

having three complex sites. This special instance of the Lame equations is then 

translated into an eigenvalue problem. Finally, we provide expository discussion 

on the recent progress in this direction and deliver numerical algorithms for each 

considered variant. 

The Gaudin spin chain model can be associated to any semi-simple Lie alge­

bra. In chapter 8, we derive a solution set of the Bethe-Ansatz equations corre­

sponding to the Lie algebra .s£3(C). We end the thesis with concluding remarks 

and outlook for future res,~arch in this area. 
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Chapter 2 

Quantum Mechanical Systems 

This chapter is a basic introduction to quantum mechanics. We explain the 

terminology used in quantum mechanics and mathematical formulation. 

2.1 	 Mathematical Formulation of Quantum Meehan­

ics 

The foundations of quantum mechanics were established during the first half 

of the 2oth century by Werner Heisenberg and Max Planck. The mathematical 

formulation of quantum mechanics was developed by Paul Dirac and John von 

Neumann, [16]. 

The state of a system at a given time is described by a complex wave function, 

and more generally, by non-zero vectors of a complex Hilbert space called the 

state space. An element of this space is called ket and is denoted by I>. 
An observable is a physical quantity that can be measured by an experiment 

and whose result is a real number (for example: energy, position, momentum of 

a particle). Each observable is represented by a Hermitian operator acting on the 

4 
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state space. 

Quantum mechanics does not assign definite values to observables; it makes 

predictions about probabdity distributions (i.e. the probability of obtaining each 

of the possible outcomes from measuring an observable). These probabilites de­

pend on the quantum state at the instant of the measurement. The states that 

correspond to a definite value of a particular observable are known as eigenstates. 

Each eigenstate of an observable corresponds to an eigenvector of the operator 

and the associated eigenvalue corresponds to the value of the observable in that 

eigenstate. The possible results of a measurement are the eigenvalues of the oper­

ator - which explains the choice of Hermitian operators for which all eigenvalues 

are real. 

In quantum mechanics, we are interested in finding the spectrum of commut­

ing operators. 

2.2 Quantum Integrable Systems 

Although there is no formal formal definition of a quantum integrable system, 

there is a working definition that is analogous to a definition of an integrable sys­

tem in classical mechanks. The notion of Poisson commuting functions, which 

occurs in classical setting is replaced with self-adjoint, commuting operators on a 

Hilbert space in the quantum setting. Since there is no clear definition of indepen­

dence of operators, except for special classes, the working definition of a quantum 

integrable system requires the existence of a maximal set of commuting operators 

including the Hamiltonians. 

5 




Chapter 3 

Gaudin spin chain for s[2 (CC) 

The first section of this chapter introduces a quantum integrable system called 

the Gaudin spin chain model and explains its association to the Lie algebra .s [2 (C). 

We explicitly write the Hermitian operators of the system; called the Gaudin 

Hamiltonians. Next, we define the generating function t(u) and prove its com­

mutativity property, which in tum implies commutativity of the Gaudin Hamilto­

nians. Next, we introduce the Bethe-Ansatz method and prove that solving the 

Bethe-Ansatz equations is equivalent to diagonalizing the operator t(u). 

3.1 The Gaudin spin chain model for s[2 (CC) 

We study an integrable quantum system associated to the Lie algebra .sh(C) 

called Gaudin model of statistical mechanics. 

Let e,J, h be the generators of the Lie algebra .sh (C) satisfying the commuta­

tion relations: 

[h,e] = 2e 

[h,J] = -2! 

6 
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[e,J] =h. 

Denote by VA,, an irreducible representation of .s[2 (<C) with the highest weight 

A. and the highest weight vector 10 >(also called vacuum) with 

el0>=0 

and 

hiO >= A.IO > . 

The Casimir operator t for .s[2(<C), which commutes with all elements of .sh(<C) 

is given by: 

(3.1) 


Please refer to Appendix A for a discussion on .sh(<C) representation theory. 

Proposition 3.1.1. 
2t = A.(A.+ 2) 

2 

Proof: 

1 
2tl0> efiO > +feiO > +"2h2 IO > 

1 
feiO > +[e,J]IO > +feiO > +2h2IO > 

1 
hiO > +2hhiO > 

A.IO > +A.2IO > 
A.(A.+ 2) IO 

2 > 

D 

A spin chain can be visualized as a string of particles with magnetic spin. The 

7 
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Gaudin model is a quantum spin chain where the space of states of the model is 

the tensor product of irreducible .sh(C) representations. The Gaudin Model can 

be associated to any semi-simple complex Lie algebra, [19], [14], [4], [18]. 

Let (J..) := (A.o, ... ,AN) be a set of the highest weights of .s[2 (C). Consider the 

tensor product: 

Associate with each factor V~.n, a distinct complex number CX.n, for n = 0· · ·N, also 


called sites. 


Denote by 10 > the tensor product of the highest weight vectors: 


IO >:= IO >o ®···® IO >N 

Each VA.n is a spin space on n particles located at distinct points a.o, a.1 ,... ,CX.N. 

Denote the action of f,h,e on the nth factor of the tensor product by fn,hn,en 

respectively. In particular, fn acts as f on the nth factor of the tensor product and 

as the identity on the rest. The mutually commuting linear operators in the Gaudin 

model, called Gaudin Hamiltonians IHin, are given by 

(3.2) 

Let u =/= CX.nVn. 

Consider rational functions with coefficients in the Lie algebra .sh(C) that 

form the following one parameter operator families: 

h(u) = E hn 
n=O u- CX.n 

N e 
e(u) = L n 

n=O U -CX.n 

8 
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f(u) = E fn 
n=OU-Cln. 

The operators e(u), f( u), h(u) form the highest weight module over the infinite 

dimensional loop algebra derived from the Lie algebra .s[z(C) where 

e(u)JO >=0 

h(u)JO >= A.(u)JO > 

and a scalar function called the highest weight 

A.(u) = LN An . 
n=l u-an 

The bracket relations of the loop algebra are given by: 

~ [hn,en][h(u) ,e v ( )] == i...J ( ) ( )n=O u-an v-an 

== E 2en 
n=O (u-an)(v-an) 

:=-2-E ( en _ en ) 
v-un=O u-an v-an 

2(e(u)- e(v)) 
·- (3.3) 

v-u 

[h(u),f(v)] = -2(f(u)- f(v)) (3.4) 
v-u 

9 
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[e(u),j(v)] = (h(u) -h(v)) (3.5) 
v-u 

[e(u),e(v)] = [f(u),j(v)] = [h(u),h(v)] = 0 (3.6) 

We differentiate h(u),e(u),j(u). 

1 ~ hn 
h (u) =- '-' ( )2n=O u-an 

N 
' ~ en 

e (u) =- n'=a (u- Un)2 

Using h' (u), f' (u) and e' (u) the following brackets are computed: 

N 2e 

[h(u),e(u)] = L ( n ) 2 = -2e1(u)


n=O u-an 


N 2h 
[h(u),j(u)] =-Io (u _ ~n)2 = 2!' (u) 

1
[e(u),J(u)] u _1!;,.)2 = -h ( u)= .t( 

Replace e,j,h with e(u),f(u),h(u) in the Casimir 3.1 and define the generat­

ing function t (u) : 

1
2t(u) = e(u)f(u) + f(u)e(u) + -zh2 (u). (3.7) 

10 
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Proposition 3.1.2. [t(u),r(v)] = 0,Vu, v. 

Proof: 

2[t(u),t(v)] 	 - 2((u)t(v) -t(v)t(u)) 

- ( e(u)j(u) + f(u)e(u) + ~h2 (u)) (e(v)f(v) + f(v)e(v) + ~h2(v)) 

- ( e(v)f(v) + f(v)e(v) +~h2 (v)) (e(u)f(u) + f(u)e(u) +~h2 (u)) 

e(u)f(u)e(v)f(v) +e(u)(f(u)f(v)e(v) +e(u)f(u)
1
h2 (v)

2

+ f(u)e(u)e(v)f(v) + f(u)e(u)f(v)e(v) + f(u)e(u) 
1
h2 (v)

2
1 1 	 1+ h2(u)e(v)f(v) + h2(u)f(v)e(v) +4h2(u)h2(v)
2 2

- e(v)f(v;,e(u)f(u)- e(v)f(v)f(u)e(u)- e(v)f(v)~h2 (v) 

- f(v)e(v~~e(u)f(u)- f(v)e(v)f(u)e(u)- f(v)e(v)~h2 (u) 
1 1 	 1 

- 2h2(v)e(u)f(u)- h2(v)f(u)e(u)- 4h2(v)h2 (u)
2

The above expression is easily rewritten such that it only involves brackets: 

[e(u)f(u), e(v)f(v)]+ [e(u)f(u),j(v)e(v )] (3.8) 

+ [f(u)e(u),e(v)f(v)]+ [f(u)e(u),J(v)e(v)] 

+ [e(u)f(u), ~h2 (v)] + [!(u)e(u), ~h2 (v)] (3.9) 

+ [~h2 (u),e(v)f(v)] + [~h2)u),j(v)e(v)] (3.10) 

Using the Power Rule (ref. Appendix B) for Lie brackets and the bracket 

relations 3.3, 3.4, 3.5, and 3.6, we further expand the above expressions. We first 

expand each bracket individually: 

11 
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[e(u)f(u),e(v)f(v)] = [e(u)f(u),e(v)]f(v) +e(v) [e(u)f(v),j(v)] 

- [e(u),e(v)]f(u)f(v) +e(u) [f(u),e(v)]f(v) 

+ e(v) [e(u),j(v)]f(u) +e(v)e(u) [f(u),f(v)] 


- e(u) ( h(u~ =~(v)) f(v) +e(v) ( h(u~=~(v)) f(u) 


Similarly, we expand the remaining brackets and obtain: 

[f(u)e(u),e(v)f(v)] = ( h(u~=~(v)) e(u)f(v) +e(v)f(u) ( h(u~=~(v)) 

[f(u)e(u),j(v)e(v)] = f(u) ( h(u~=~(v)) e(v) + f(v) ( h(u~=~(v)) e(u) 

[e(u)f(u), ~h2 (v)] - (e(u~=:(v)) f(u)h(v) +e(u) (f(v~=~(u)) h(v) 

+ h(v) ( e(u~=:(v)) f(u) + f(v)e(u) (!(v~=~(u)) 

12 
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[t(u)e(u), ~h2 (v)] - (f(v~=~(u)) e(u)h(v) + f(u) ( e(u~ =:(v)) h(v) 

+ h(v) (f(v~ =~(u)) e(u) +h(v)f(u) ( e(u~= :(v)) 

[~h2 (u),e(v)f(v)] - ( e(u~=:(v)) h(u)f(v) +h(u) ( e(u~= :(v)) f(v) 

+ e(v) (f(u~=~(v)) h(u) +e(v)h(u) ( f(u~=~(v)) 

After grouping the expanded brackets and making appropriate cancellations, 

expression 3.8 becomes: 

1 
u _ v ( - e(u)h(v)f(v) + e(v)h(v)f(u) + f(u)h(v)e(v)- f(v)h(v)e(u) 

+ e(u)f(v)h(v) -h(v)e(v)f(u)- f(u)e(v)h(v) +h(v)f(v)e(u) 

+ h(u)e(v)f(v)- e(v)f(v)h(u)- h(u)f(v)e(v) + f(v)e(v)h(u)) 

We group the terms to obtain new brackets: 

13 
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1
-(e(v)h(v)f(u)- f(u)e(v)h(v) +h(v)f(v)e(u) -e(u)h(v)f(v)
u-v 

+f(u)h(v)e(v)- h(v)e(v)f(u) + e(u)f(v)h(v)- f(v)h(v)e(u) 

+h(u)e(v)f(v) -e(v)f(v)h(u) + f(v)e(v)h(u) -h(u)f(v)e(v)) 

1 
= -([e(v)h(v),f(u)] + [h(v)f(v),e(u)]

u-v 

+ [f(u),h(v)e(v)] + [e(u),f(v)h(v)] (3.11) 

+ [h(u),e(v)f(v)] + [f(v)e(v),h(u)]) 

We then merge these brackets in the following way: 

[e(v)h(v),f(u)] + [f(u),h(v)e(v)] 


= [e(v),J(u)] h(v) +e(v) [h(v),f(u)] + [f(u),h(v)] e(v) +h(v) [f(u),e(v)] 


= ( h(v~=~(u)) h(v)- 2e(v) (!(v~=~(u)) 


_ 2 (f(u~=~(v)) e(v) +h(v) ( h(u~=~(v)) 
1 

=- (h(v)h(v)- h(u)h(v)- 2e(v)f(v) +2e(v)f(u))
u-v 

1 
-- (2f(u)e(v) +2f(v)e(v) +h(v)h(u) -h(v)h(v)) 

u-v 
2 

= - - ([f(v),e(v)] + [e(v),f(u)]) (3.12)
u-v 

14 
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[h(v)f(v),e(u)] + [e(u),J(v)h(v)] 


= [h(v),e(u)]f(v) +h(v) [f(v),e(u)] + [e(u),J(v)]h(v) + f(v) [e(u),h(v)] 


= ( 2e(v)- e(u)) f(v) +h(v) (h(u)- h(v)) 
u-v u-v 

_ ( h(u~=~(v)) h(v) _ 2f(v) ( e(v~=:(u)) 
1 

= - - (2e(v)f(v) -2e(u)f(v) +h(v)h(u) -h(v)h(v)) 
u-v 

--
1 

(h(u)h(v)- h(v)h(v)- 2f(v)e(u) +2f(v)e(u))
u-v 

=-
2 

([e(v),J(v)] + [f(v),e(u)]) (3.13)
u-v 

We observe that brackets are anti-symmetric in variables u and v. Thus, group­

ing expressions obtained in 3.12 and 3.13 gives: 

2 
- ([f(v),e(v)] + [e(v),J(u)] + [e(v),J(v)] + [f(v),e(u)])
u-v 

_ _2_ (-h(u) -h(v)) + (h(u) -h(v)) 
u-v u-v u-v 

- 0 

Finally, we expand the remaining brackets in equation 3.11 and obtain the 

desired cancellations. 

15 
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[h(u),e(v)f(v)] + [f(v)e(v),h(u)] 

[h(u),e(v)]f(v) +e(v) [h(u),j(v)] 

+ 	 [f(v),h(u)] e(v) + f(v) [e(v),h(u)] 

-2 ( e(ul=~(v)) f(v) +2e(v) (!(ul=~(v)) 

2 (!(ul=~(v)) e(v) +2f(v) (e(ul=~(v)) 

- u:_v (-e(u)f(v) +e(v)f(v) +e(v)f(u)- e(v)f(v)) 

+ u:_v (f(u)e(v) + f(v)e(v) + f(v)e(u)- f(v)e(v)) 

-	 u:_v ([f(v),e(u)] + [e(v),f(u)]) 
_l_ (h(u)-h(v) _ h(u)-h(v))
u-v u-v u-v 

0 

D 

Proposition 3.1.3. The vacuum vector 10 >is an eigenvector ofthe operator t(u). 

Proof: 

t(u)IO >=~ (e(u)f(u) + f(u)e(u) + ~h2 (u)) IO > 


1 1 

=2 [e(u),j(u)] IO > +f(u)e(u)IO > +4h2(u)IO > 

1 1 
=- 2h'(u)IO > 	+4h2 (u)IO > 

=~A.(u)IO > -~A.'(u)IO > 	 (3.14) 

16 
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D 

We also observe that: 

Proposition 3.1.4. 

Proof: 

t(u) = 

D 

Proposition 3.1.5. Gaudin Hamiltonians are diagonalizable. 

Proof: We need to show that: 

By Proposition 3.1.4, we deduce that 

17 
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Choose N = 1. Then, 

JH[_o_ JH[1 Ho JH[1 l 
[- + ' +-- =0. 
u-an u-an v-an v-an 

JH[o JH[I + JH[o ~ = 0 
u-a.ou-ar v-a.ov-ar 

( )( 
1 

) [Ho,JH[t] + ( )(
1 

) [JH[r,JH[o] = 0 u-a.o v-ar v-a.o u-a1 

===} [HQ,JH[r] = 0. 

D 

3.2 Bethe-Ansatz equations for .sh(C) 

The Bethe-Ansatz is an approach to find joint eigenvectors and eigenvalues of 

Gaudin Hamiltonians 3.2. The equations which determine these special vectors 

are called the Bethe-Ansatz equations and the joint eigenvector that corresponds 

to a solution of the Bethe-Ansatz equations is called the Bethe vector. 

We recall a well known theorem from linear algebra: 

Theorem 3.2.1. Hermitian operators commute if and only if there exists a basis 

ofeigenvectors that is common to both. 

Definition 3.2.1. The Be the vectors are defined for any finite set ofcomplex num­

bers 11 as 111 >:= TivE'vf(v)IO > 

Theorem 3.2.2. [19] The vector 111 > is a joint eigenvector of the commuting 

Hamiltonians, or equivalently of the operators t(u) if and only if the spectral 

parameters v E 11 satisfy the Bethe-ansatz equations: 

18 
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2
A.(v) = E -v',Vv E '1l (3.16) 

v'=Fv V-

The corresponding eigenvalue 't(u) oft(u), 

t(u)I'Tl> ='t(u)I'Tl> 

is then 

(3.17) 

where 

2
~(u) := A.(u)- L (3.18) 

vEI'V> u-v 

3.2.1 Proof of theCJirem 3.2.2 

f(u)lvi >= f(u)f(vi)IO > = lviU{u} >= lviu > 

f(u)I'Tl > = I'Tlu{u} > (3.19) 

Equation 3.19 follow:;; from the definition of Bethe vectors. 

19 
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Lemma 3.2.1. 

h(u)lo/>= (A.(u)- L u:v) lo/>+ L u=)o/\{v}U{u}> 
vE'V vE'V 

Proof: We use induction with base case given by: 

2 
h(u)lvi > f(vi)h(u)IO > +-(f(u)-!(vi))

Vi-U 
2

f(vi)A.(u)IO >- -(f(u)- f(vi))
Vi-U 

2 
A.(u)lvi > ---(lu > -lvi >)

Vi-U 
2 2 

(A.(u) + --)lvi > ---lu >
Vi- U Vi- U 

2 2 
(A.(u)- -)lvi > +-lu >

U-Vi U-Vi 

Inductive Hypothesis: Let W = {vl···Vn-d Assume the statement is true for 

W, i.e. 

h(u)IW >= (A.(u)- L u:v) W+ L u=)W\{v}U{u} > 
VE~ vE~ 

20 
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h(u)io/ > h(u)ivnV} ...Vn -1 > 
2 

f(vn)h(u~ IW > +-(f(u)- f(vn))iW >
U-Vn 

2 2 
f(vn)(A.(u)- L -)IW> + L -IW\{v}U{u} >)

vEWU-V vEWU-V 
2 2+ --iuvi · · ·Vn-I > ---lvnVI · · ·Vn-I >

U-Vn U-Vn 
2 

A.(u)ivnVI · · ·Vn-I >- L --ivnVI · · ·Vn -1 > 
vE'Wu-v 

2+ L -·IW\{v}U{u} > 
vE'Wu-v 

2 2
+ --lvt · · ·Vn-IU > ---lvt · · ·Vn >

U-Vn U-Vn 
2 

A.(u)ivt· · ·Vn >- L --lvt · ··Vn > 
vEWu-v 

2 2 2 
- --lvt···Vn > + L --IW\{v}U{u} > +--ivt···Vn-IU > 

u-vn .... ,u-v u-vnvE·vv 

2 2 
( A.(u)- L - -) lvt···Vn > + L - -lo/\{v}U{u} > 

~~u-v ~~u-v 

D 

Lemma 3.2.2. 

e(u)io/ > E--1 (A.(u)-A.(v)-[,2(-1,--1)) 
vE'l-' u-v v'=f.v u-v v-v' 

+ [, -(u-v)~u-v')lo/\{v,v'}U{u}>
v,v'E: ~,v=f.v' 

Proof: To prove Lemma 3.2.2, we also use induction. Base case: 

21 
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h(u) -h(v·)
e(u)iv; > f(v;)e(u)iO>+ 

1 IO> 
v;-u 

1
-(h(u)iO >-h(v;IO >)
v;-u 

1 
- -(A.(u)IO>-Iv(v;)IO>)

v;-u 
1

--(lv(u)iO > -A.(v;)IO >)
u-v; 

Inductive Hypothesis. Let W = { v1 ...Vn- I} Assume that the statement is true 

forW, i.e. 

e(u)iW> L --1 (~v(u)-lv(v)- E2(-1
-,--

1 
-))IW\{v}>u-v u-v v-v'vE'W v'ofv 

+ L - (u-v)~u-v') IW\{v,v'}U{u} > 
v,v'E'W,vofv' 

22 
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e(u)lo/ > 	 - e(u)lvnv1 · · ·Vn-1 > 

- f(vn)e(u)iv1 .. ·Vn-1 > +h(vn) -h(u) lv1 ...Vn-1 > 
U-Vn 

1 
- f(vn) L ---(A.(u)-A.(vn)- E2(_!__v' _ _!__v'))lo/\{v}> 

vE'l1' U- V 	 v'=Fv U- V­

+ f(vn) L - (u-v)~u-v') IW\{v,v'}U{u} > 
v, v'E 'W,v=Fv' 

+ U~Vn (h(vn) -h(u)) IW > 

1 	 1- L ---A.(u)f(vn)IW\{v} > + L -A.(vn)f(vn)IW\{v} > 
~'W u-v 	 ~'Wu-v 

+ L U~l; L 2 (u~v'- v~v')f(vn)IW\{v} > 
vE'W v'=Fv 

+ f(vn) L 2(u~v'- v~v'}W\{v,v'}u{u}> 
v, v'E 'W,v=Fv' 

1	 2 2 
+ - -	 ((A.(vn)- L - -IW>) + L - -IW\{v}U{vn} >)

U-Vn vE'W Vn -v vE'W Vn -v 

- u~v ((A.(u)- L u=)W> + L u:v) IW\{v}U{u}) > 
n 	 vE'W vE'W 

1 	 1- L ---A.(u)IW\{v}U{vn} > --A.(u)IW>
vE'W u--v 	 u-vn 

1 	 1 
+ L --A.(vn)IW\{v}U{vn} > +--A.(vn)IW>

vE'Wu-v 	 u-vn 

+ L u~,; L 2 (u~v'- v~v') IW\{v}U{vn} > 
VEW v'#v 

+ L 2(u~v'- v~v') IW\{v,v'}U{u}U{vn} > 
v,v'E'W,v-#1'1 

1 ., 	 2 1 2- -I.~ -IW>+- L -IW\{v}U{vn}>
U- Vn VE WVn- V U- Vn vE'W Vn- V 

1 ., 2 1 2 
+ -I -I'U-'>2-3----=--- L -IW\{v}U{u}>

U- Vn vEW U- V U- Vn vE'W U- V 
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1- L -- (A.(u) -A.(v))lo/\{v} > 
vE'V' U- V 

+ L u~v L 2 (u~v'- v~v') IW\{v}U{vn} > 
vE'W v'#v 

+ L (u-v)~u-v')IW\{v,v'}U{u} > 
v,v'E'W 

2 2 
+ ~AI (u- Vn)(v-vn) IW >- ~AI (u-vn)(v-vn) IW\{v} U {vn} > 

vE-vv vE-vv 

2 2 
+ v~(u-vn)(u-v)IW>- v~(u-vn)(u-v)IW\{v}U{u} > 

1- L -- (A.(u) -A.(v))lo/\{v} > 
vE'V' U- V 

+ L u~v L 2 (u~v'- v~v') IW\{v}U{vn} > 
vEW v'#v 

+ u~v E2(u~v'- v~v')IW\{v}U{vn}>
n v'#v 

+ L - (u-v)~u-v')IW\{v,v'}U{u} > 
v,v'EW 


2 

- (u-vn)(u-v)IW\{v}U{u} > 

1 1 1- L --- (A(u) -A(v)- L 2 (--,- - -)) lo/\{v} > u-v u-v v-v'
vE'V' v'#v 

+ L (u-v)~u-v')lo/\{v,v'}U{u} > 
v,v'E'V',v#v' 

D 

We also compute the following brackets: 

Lemma 3.2.3. 

1
[t(u),j(vi)] =- (f(u)h(vi)- f(vi)h(u))

U-Vi 

24 
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Proof: 

[2t(u),j(vi)] - [~h2 (u) +e(u)f(u) + f(u)e(u),j(vi)] 

- [~h2 (u),J(vi)l + [e(u)f(u),f(vi)] + [f(u)e(u),j(vi)] 

- [~h(u),j(vi)l h(u) + ~h(u) [h(u),j(vi)] 

+ [e(u),J(vi)]f(u) +e(u) [f(u),j(vi)] 

+ [f(u),j(vi)] e(u) + f(u) [(e(u),j(vi)] 
_ f(u)- f(vi) h(u) +h(u)f(u)- f(vi) 

U-Vi U-Vi 
_ 	 h(a) -h(vi) f(u) _ f(u)h(u) -h(vi) 

U-Vi U-Vi 
l 

- -- (f(u)h(u)- f(vi)h(vi) +h(u)f(u) -h(u)f(vi)) 
U --Vi 

- --
l 

(h(u)f(u) +h(vi)f(u)- f(u)h(u) + f(u)h(vi)) 
U --Vi 

- --
l 

(h(vi)f(u)- h(u)f(vi) + f(u)h(vi)- f(vi)h(u)) 
U --Vi 

- --
1 

(f(u)h(vi) + [h(vi),f(u)] 
U --Vi 

+ f(u)h(vi)- f(vi)h(u)- [f(vi),h(u)]- f(vi)h(u)) 
l 

- -- (2f(u)h(vi)- 2f(vi)h(u))
U --Vi 

1 
===> [t(u),j(vi)] =- (f(u)h(vi)- f(vi)h(u)) (3.20)

U-Vi 

D 

Using the above as the base case we formulate the following recursive proce­

dure: 

25 
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[t(u),J(VI )f(v2) ... f( Vn)] 


= [t(u),J(vi)f(vz) ... f(vn-I)]f(vn) + f(vi)f(vz) ...f(vn-d [t(u),f(vn)] 


Lemma 3.2.4. 

1
[t(u),e(v;)] =- (e(v;)h(u)- e(u)h(v;)) 

u-v; 

26 
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Proof: 

[2t(u),e(vi)] - [~h2 (u) +e(u)f(u) + f(u)e(u),e(vi)] 

- [~h2 (u),e(vi)] + [e(u)f(u),e(vi)] + [f(u)e(u),e(vi)] 

- [~h(u),e(vi)l h(u) + ~h(u) [h(u),e(vi)] 

+ [e(u),e(vi)]f(u) +e(u) [f(u),e(vi)] 

+ [f(u),e(vi)] e(u) + f(u) [(e(u),e(vi)] 
_ -~·(u)- e(vi) h(u) _ h(u) e(u)- e(vi) 

u-v; u-vi 

( )h(u) -h(vi)f( ) h(u) -h(v;) ( ) + e L! u + e u 
U-Vi U-Vi 

l 
- -- (-e(u)h(u) +e(vi)h(u)- h(u)e(u) +h(u)e(v;)) 

U --Vi 
l+ -- (e(u)h(u)- e(u)h(vi) +h(u)e(u)- h(vi)e(u))

U --Vi 
l 

- -- (e(vi)h(u) +h(u)e(vi)- e(u)h(vi)- h(vi)e(u)) 
U --Vi 

l 
- --(e(vi)h(u) +e(vi)h(u) + [h(u),e(vi)]

U --Vi 
- e(u)h(vi)- e(u)h(v;)- [h(vi),e(u)]) 

l 
- -- (2e(vi)h(u)- 2e(u)h(vi)) 

U --Vi 

1 
=? [t(u),e(v;)] =- (e(v;)h(u)- e(u)h(v;)) (3.21)

U-Vi 

D 

Lemma 3.2.5. 

1
[t(u),h(vi)] =- (f(vi)e(u)- f(u)e(vi))

U-Vi 
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Proof: 

[2t(u),h(vi)] - [~h2 (u) +e(u)f(u) + f(u)e(u),h(vi)l 

- [~h2 (u),h(vi)] + [e(u)f(u),h(vi)] + [f(u)e(u),h(vi)] 

- [e(u),h(vi)]f(u) +e(u) [f(u),h(vi)] 

+ [f(u),h(vi)] e(u) + f(u) [e(u),h(vi)] 
_ 2e(u)- e(vi) f(u) _ 2e(u) e(u)- e(vi) 

U-Vi U-Vi 
_ 	 2J(u)- f(vi) e(u) +2f(u) e(u)- e(vi) 

U-Vi U-Vi 
2 

- - (e(u)f(u) +e(vi)f(u)- e(u)f(u) +e(u)f(vi)) 
U-Vi 

- -
2 

(f(u)e(u) + f(vi)e(u) + f(u)e(u)- f(u)e(vi))
U-Vi 

2 
- - (f(vi)e(u) +e(u)f(vi) -e(vi)f(u)- f(u)e(vi))

U-Vi 
2 

- -(f(vi)e(u) + f(vi)e(u) + [e(u),j(vi)]
U-Vi 

- f(u)e(vi)- [e(vi),J(u)]- f(u)e(vi)) 
2 

- - (2f(vi)e(u)- 2f(u)e(vi))
U-Vi 

1 
====> [t(u),h(vi)] =- (f(vi)e(u)- f(u)e(vi)) (3.22)

U-Vi 

D 

Proof of theorem 3.2.2 
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t(u) lvtV2···VK >= lt(u),j(vt)] lv2 ...VK > 

+ f(vt) [t(u),j(v:z)] lv3 ...VK > 

+ f(vt)f(v2) [t(u),j(v3)] lv4 ...vK > 
+ ... 

+ f(vt)f(v2) · · · f(vK-d [t(u),j(vK)] IO > 

+ f(vt)f(v2) ... f(vK)t(u)IO > 
1 

- -- (f(u)h(vt)- f(vt)h(u)) lv2 · ··VK > 
U-Vl 

1+ --J(vt) (f(u)h(v2)- j(v2)h(u)) lv3 · · ·VK > 
U-V2 

+ ... 
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+ 
1+ f(vt)f(v2) · · · f(VK-2)f(u)(A(VK-l)

U-VK-l 
2 2 

---)ivK > + \uVlV2···VK-l >
VK-l- VK VK-l- VK 

1 
- f(vl)f(v2) · · · f(VK-2)f(VK-t)('A.(u)

U-VK-1 
2 2 

--)ivK > + \UVtV2 ···VK-1 >
U-VK U-VK 

l 1+ f(vl) · · · f(vK-df(u)A.(vK)\0 >- f(vl) · · · f(vK)A.(u)\0 >
U-VK U-VK 

+ ~A.2 (u)- ~A.'(u)
4 2 

We group all terms that are not the eigenvector, i.e. the terms that involve the 

spectral parameter u. 
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+ 

+ 
1 2 

+ (A(VK-2)- t ) iuvl · · ·VK-3VK-IVK > 
U-VK-2 k=K-I VK-2-Vk 

1 2
+ (A(VK-t)- ) iuVI · • ·VK-2VK > 

U- VK-I VK-I- VK 

1+ f..(vK)iuvi · · ·VK-I > (3.23)
U-VK 

and 

+ 
1 2 

+ -------IUV} · · ·VK-I > 
U-VK-I VK-I-VK 

1 2
------iuvtV2 · · ·VK-I > (3.24) 
U-VK-I U-VK 
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We observe that the vectors in 3.24 have the following coefficients (we use 

partial fraction decomposition): 

1 2 1 2 

U-Vl VI -VK U-Vl U-VK 

1 2 1 2+ --- +··· 
u-vz vz -VK u -vz u- VK 

1 2 1 2 
+ 

U-VK-1 VK-1 -VK U-VK-1 U-VK 

1 (--2___2______ 2 
U-VK U-Vl U-Vz U-VK-l 

2 2 2 2+ --- +--- +··· 
U-Vl VK-Vl U-Vz VK-Vz 

2 2 )+ 
U-VK-1 VK-VK-1 

_1_(- 2 2 _______2_ 
U-VK VK-Vl VK-V2 VK-VK-1 

-u~VK Ct: VK~v.) 
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1 2 1 2 

U-VI VI -VK-I U-VI U-VK-I 

1 2 1 2+ --- +··· 
U-V2V2-VK-I U-V2U-VK-I 

1 2 1 2 
+ 

U- VK-2 VK-2- VK-I U- VK-2 U- VK-I 

1 2 2 2 2---(-------···- +-­
U-VK-I U-VI U-V2 U-VK-2 U-VI 

2 2 2
---+--- +··· 
VK-I -VI U-V2 VK-I -V2 

2 2 )+ 
U-VK-2 VK-I -VK-2 

__1_(- 2 2 _______2__ 

U-VK-1 VK-I -VI VK-I -V2 VK-I -VK-2 

- U-~K-1 (~ VK-~-Vk) 

1 2 1 2 

U -VI VI - V2 U -VI U- V2 

2 
U ~ v2 ( U VI + V2 -=VI ) - U ~ V2 ( V2 -=VI ) 

Thus the terms which involve the spectral parameter u (Equations 3.23 and 

3.24 ) take the following form: 
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+··· 

(3.25) 

We now consider the remaining terms in equation 3.23 (i.e. the terms that 

contribute to the coefficient of vector Ivi · · · VK >). 
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1 ( K 2 )-- A(u)-E­
u-v1 k=2 u-vk 

1 ( K 2 )-- A(u)-E­
u-v2 k=3 u-vk 

_ 1 (A(u)--2) 
U-VK-1 U-Vk 

1 A(u) 
U-VK 

+~A2(u)- ~A1(u)
4 2 

1 2 1 1 f 1=-A (u)- -A (u) -A(u) .£.. - ­
4 2 k=1 U-Vk 


1 K 2 1 K 2 1 2+-- "{'"" --+-- "{'"" --+... +---­
u-v16U-Vk U-V2~U-Vk U-VK-1 U-VK 

1f f ( 1 )2 (3.26)+ .£.. (u- Vk)2 - J!... U - Vk
k=1 k=1 

Remark: In equation 3.26, we added and subtracted the term: 
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Consider the terms: 

1 K 2 1 K 2 
-~-+-E-
u - VI i..J U - Vk U - V2 U - Vk

k=2 k=3 

+.. ·+ 
1 2 K 1 


U-VK-1 U-VK +k(U-Vk)2 


in equation 3.26. 

Lemma 3.2.6. 

1 K 2 1 K 2 1 2 K 1 

U-VIkU-Vk + U-V2~U-Vk +···+ U-VK-1 U-VK +k(u-Vk)2 

K )2E-1­
( k=l U-Vk 

Proof of Lemma 3.2.6: 
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1 K 2 1 K 2 1 2 K 1
-E-+-E-+···+ + [....,------:-::­
u-vlk=2u-vk u-v2k=3 u-vk u-VK-IU-VK k=l (u-vk)Z 

1 2 1 2 1 2 1 2
----+----+···+-- + 
U-VI U-V2 U-VI U-V3 U-VI U-VK-1 U-VI U-VK 

1 2 1 2 1 2 1 2
+ ----+----+···+-- + 

u-v2 u-v3 u-v2 u- V4 u-v2 u -VK-1 u-v2 u-vK 

1 2 1 2 1 2 1 2
+ ----+----+···+-- + 

U-V3U-V4 U-V3U-Vs U-V3U-VK-I U:-V3U-VK 

+ 
1 2 1 2+ +----­

U-VK-2U-VK-I U-VK-2U-VK 

2 
+ 1 2 K ( 1 ) 

U-VK-1 U-VK +fi U-Vk 

2 31 1 1 1 1 12(--+-E-+-E­
u- V2 U- VI U- V3 k=l U- Vk U- V4 k=l U- Vk 

+ 
1 K-2 1 1 K-1 1 K ( 1 )2+ ~--+ ~--)+~ -­

U-VK-2 f::t U-Vk U-VK-1 f::t U-Vk f::t U-Vk 

C~vY+2u~v, U~V2 +c~V2r+2 (~ u~v.) u~v, 
+ C~v,)

2 

+2 (t. u1Vk) u~v4 
+ 

+ 2 (~: u~vk) u~VK + C~v.r 
(tu~v.r 

D 

Thus the coefficient of vector !vi·· ·VK >(equation 3.26) becomes: 
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2
1 1 K 1 K 1 
-J.}(u)--'A'(u)-'A(u) L -+ L- (3.27)
4 2 k=l U-Vk ( k=l U-Vk ) 

Finally, we group equations 3.25 and 3.27 and obtain: 

+ 

We thus conclude that vector Io/ > = !v1 · · · VK > is a joint eigenvector of the 

commuting operator t(u) if and only if the spectral parameters v E o/ satisfy the 

Bethe-Ansatz equations. 

D 
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Remark: Another proof of theorem 3.2.2 is based on Sklyanin's, [19], [14], 

separation of variables method. The eigenfunction equations are transformed into 

a differential equation for which the differential operator is the same as the differ­

ential operator in the Bethe-Ansatz equations. 
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Chapter 4 

Lame differential equation 

There are two ways to describe the solutions to the Bethe-Ansatz equations 

associated with the s[2(C) Gaudin spin chain model. One of the them is to regard 

the Bethe vectors as a collection of numbers satisfying the critical point equations 

of the Master function. The problem of solving the Bethe-Ansatz equations can 

also be approached by looking at polynomial solutions of a differential equation, 

called the Lame equation, [14], [4], [15], [13]. In what follows, we discuss these 

two equivalent methods. 

4.1 The Lame equation 

In 1878, H.E. Heine [7] motivated by his work in the area of orthogonal poly­

nomials, formulated the following problem: 

Given a(z),b(z) E C[z] of degrees N + 1 and N respectively. Heine was inter­

ested in the polynomials c(z) E C[z] of degree N- 1 such that the equation 

a(z)'!l'' (z) +b(z)'!l' (z) +c(z)v(z) = 0 (4.1) 
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has non-trivial, monic polynomial solution v(z) of a given degree K. Equation 

4.1 is called the Lame equation. The solution to the Lame equation is a pair 

c(z), 'Jf(z). Heine proved that there are at most 

cr(N K) = (N +K -1) 
' K!(N -1)! 

polynomial solutions of degree K to equation 4.1. These polynomial solutions 

'Jf(z) are called the Heine-Stieltjes polynomials and the corresponding polynomi­

als c(z) are known as Van Vleck polynomials. 

4.2 Heine-Stieltjes Theorem 

In 1885, T.J. Stieltjes [20] considered a special case of the Lame equation 4.1. 

Let 
N 

a(z) = f1 (z-an), 
n=O 

N An 
b(z) = -a(z) L, --,An < 0 (4.2)

n=Oz-an 

where all ao < a I < ... < aN are distinct and real roots ofa(z) and AI , A.2, ... ,AK 

are negative. These assumptions force the roots of b(z) to also be real. Note: 

An < 0 corresponds to infinite dimensional irreducible representations of the Lie 

algebra .sh(C) in the Gaudin spin chain model. Please refer to Chapter 2 and to 

Appendix A for more details. 

Under these new assumptions, the Lame equation 4.1 takes the following 

form: 
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N N AnIT (z-an)'!"' (z)- a(z) E--'1" (z) +c(z)v(z) = 0 (4.3) 
n=O n=O Z- Cln 


Stieltjes proved the following theorem: 


Theorem 4.2.1. Heine-Stieltjes Theorem. There are exactly cr(N,K) polynomial 

solutions to equation 4.3. The location ofzeros ofthe Heine-Stieltjes polynomials 

is completely characterized by their distribution in subintervals 

The Lame equation 4.3 has a natural interpretation in electrostatics, which had 

lead Stieltjes to further investigation. Consider an electrostatic field with the log­

arithmic potential energy acting upon the system. The zeros of the Heine-Stieltjes 

polynomials 'lf(z) can be interpreted as equilibrium positions of an electrostatic 

system with logarithmic potential. Suppose there are magnets with charges 'An, lo­

cated at the points Cln E R PlaceK identical electrons (unit charges) at the points 

Vk allowed to move freely on the real line. The charges repel each other according 

to the logarithmic potential (particles repel each other with a force proportional to 

their masses and inversely proportional to their distance). Stieltjes, [20], proved 

that the energy of the field has a local minimum. Szego [21] then proved that this 

minimum is unique and thus results in stability of the equilibrium. 

Let 
L N K 

3(a,v) = IJIJ(vk-an)-A.IJ(vk-vt)2 (4.4) 
k= 1n=O k-=fl 

3(v) is called the Master Function. 

The logarithmic electrostatic potential S of the system is given by the loga­

rithm of the Master function: 
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L N K 
S(v) = -log(ll n(vk -an)-). ll(vk -vt)2

) 

k=ln=O k#l 

Proposition 4.2.1. The Bethe-Ansatz equations are critical points of the Master 

function. 

Proof: Consider the function 

K N K 
-logE= S(v) = -log(n n(vk- <Xn)-A n(vk- Vt)2) 

k=ln=O k# 
K N 1 K 1 

=- E E A.nlog( ) +E2log( ) (4.5)
k=l n=O Vk- <ln k#l Vk- V[ 

Since S' =~,both functions E(v) and S(v) have the same critical points. Differ­

entiating S(v) gives 

d(S(v)) E'(v) 
dv E(v) 

K N An K 2 

~1Vk- <ln - !1z Vk- V[ 

which proves the proposition. D 

At an equilibrium position, the sum of all forces acting on each electron is 

zero. It occurs when VS = 0. 

In what follows, we shall prove that there exists a one-to-one correspondence 

between the set of Heine-Stieltjes polynomials and the points at an equilibrium of 

the electrostatic system under discussion. 

Lemma 4.2.1. The roots ofv are simple. 

Proof: Let Vk be any root of V· Assume for a contradiction that v(vk) = 

'JI'(vk) = 0. After repeated differentiation of equation 4.1, we observe that all 
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derivatives of 'II are equal to zero when evaluated at Vk. and thus 'II is a zero 

polynomial. Therefore, we conclude that 'II' (Vk) =J. 0 and the roots of 'II are simple. 

D 

Proposition 4.2.2. The roots of 'II form a solution to the Bethe-Ansatz equations 

3.16 ifand only if there exists a polynomial c(z) ofdegree not greater than N -1 

such that 'II is a solution to the Lame equation 4.3. 

Let VI··· VK be distinct roots of '1/(z). 


Proof: 


Let '1/k(Z) = ;i% 
'1/(z) = (z- vk)'l'k(Z) 

'II' (z) = 'l'k(z) + (z- vk)~(z) 

'II'(vk) = 'Ilk(vk) 

'II'' (z) = ~(z) +~(z) +(z- vk)'l"£ (z) 

'l"'(vk) = 2~(vk) 

====?- 'l"'(vk) = 2~(vk) 
'l''(vk) 'l'k(vk) 

Note: 'II' (vk) =J. 0 since roots of 'II are simple by lemma 4.2.1. 

We also use the following known fact: ~((vk~ = I:~ _I_1.,.k vk z-vk 

We prove one direction first by assuming the Bethe-Ansatz equations. 

'l"'(vk) = 2'l"(vk) = L 2 = E An 
'1/'(vk) '1/(Vk) k-f.!Vk-V[ n=OVk-<Xn 

(a'l"' +b'l") (vk) = 0 

44 




I. Kowalik MCMASTER - MATHEMATICS 

===? \jl(z) divides a'll'' (z) +b'll' (z) 

===? 3c such that a(z)'ll'' (z) +b(z)'!l' (z) = -c(z)'l'(z) 

Thus, a(z)'!l'' (z) +b(z)'!l' (z) +c(z)'l'(z) = 0 

To prove the converse of the above statement, we assume that 'I'(z) is a solution 

to the Lame equation 4.1. By evaluating 4.1 at any of the roots of 'l'(z), the 

expression c(vk)'l'(vk) vanishes. 

Equation 4.1 becomes: 

Thus, 

D 

Definition 4.2.1. Fix flo< a.1 < ... < a.N, and K > 0, a positive integer. A con­

figuration m is a multindex d = (dJ, ... ,dN) such that ldl = I!=l dw = K. For a 

given configuration m denote by D the set ofall z E ~k with the arrangement that 

there is d1 ofzk in (flo, <XI), d2 ofzk in (a.1,a.2),etc ... This is equivalent to saying 

that 

Definition 4.2.2. An equilibrium configuration is a configuration m where {Zk}f=I 

are solutions to the Bethe-Ansatz equations 3.16. 
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A simple counting argument shows that the number of possible configurations 

is cr(N, K). D is a connected, convex and open subset of JRk. 

Theorem 4.2.2. The electrostatic potential function S has a unique minimum. 

Proof: Let H be the Hessian of the electrostatic potential S. Then H is a 

symmetric KxK matrix with entries 

On the diagonal of H we have: 

and the off diagonal entries are: 

or in the matrix format: 

- (vJ-VK)2 
2 

- (vrvK)22 ) 

r.f,K (vK~v11z ~~~ rv/:"an12 

and we have the following equation 

By the Gershgorin circle theorem (ref. to Appendix B), all eigenvalues of H 

lie in one of the disks Dk where Dk is a disk centered at Hkk with radius Ll# iHkti· 
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Since {vk}f=l' {an}~=O are real and {A,}~=O are negative, every eigenvalue 11 of 

H satisfies 

Thus all eigenvalues of H are strictly positive. 

For a fixed configuration m letS= S(v) and restrict H = H(v) to D(a,m). 

Then S is convex since D is connected, open, bounded, and H is a positive definite 

Kx.K matrix. Also, limx->avS(v) = +oo. Thus S has a unique minimum and no 

maxima. This unique minimum occurs at the equilibrium configuration. 

It remains to show that for a given polynomial c(z), there cannot be two lin­

early independent polynomials that are solutions to the Lame equation 4.3. Sup­

pose that this is possible and call these two solutions '1'1 (z) and '1'2(z). Let w(z) 

be the Wronskian of '1'1 (z) and '1'2(z). Then the w(z) = '1'1 (z)~(z) +Yt (z)'l'2(z). 

By Abel's theorem (ref. to Appendix C), w(z) satisfies the following differential 

equation: 

a(z)w' (z) +b(z)w(z) = 0 

and 
f b(z)dz

w(z) = woe- iiTz! 

where wo is any constant. 

By equation 4.2, 

b(z) 
- ----+ 00 as z----+an
a(z) 

Therefore 

w(z) ----+0 as z----+an, 

which cannot be true for Wronskian w(z) of two independent functions. 
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Thus, if energy of the electrostatic potential function has a unique minimum 

for a given configuration m, then there exists a unique pair (c, 'I') for the Lame 

equation 4.1. Conversely, if there is a unique pair ( C, 'I') of a Van Vleck and a 

Heine-Stieltjes polynomial for the Lame equation 4.1, such that the zeros of the 

polynomial 'If form a configuration, then the energy of the electrostatic field has a 

unique minimum. 0 

The Heine-Steiltjes Theorem does not apply when the roots of a(z) are com­

plex. The first author who has obtained a result in the complex case was P6lya, 

[17], who proved that the zeros of the Heine-Stieltjes polynomial lie inside the 

convex hull CH(a.1, · · · , a.N) of the roots of a(z). 

Proposition 4.2.3. The Bethe-Ansatz equations are invariant under complex affine 

transformations of{Vk}f=l and {<ln}~=o· 

Proof: Let r, s E C. Applying the change of variables rvk +s and ra.n +s to the 

Bethe-Ansatz equations, we obtain: 

N An K 2

fa (rvk +s)- (ra.n +s) = ~ (rvk+s)- (rvt +s)' 

which also has the form of the Bethe-Ansatz equation. 

0 

Thus, proposition 4.2.3 allows us to fix two sites a.o and a.1 on the real line, 

which is very useful for numerical and symbolic computations of solutions. 

Proposition 4.2.4. The zeros ofthe Heine-Stieltjes polynomials lie inside the con­

vex hull of the zeros ofa(z). 
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Proof: Let Vk be any root of 'If. From equation 4.1, we see that 

By proposition 4.2.2, the Lame equation 4.1 is equivalent to the Bethe-Ansatz 

3.16 equations. After evaluating equation 3.16 at Vk. we obtain: 

Thus, by the Gauss-Lucas theorem (ref. to Appendix E), Vk must lie inside the 

convex hull CH(a.1, · · · , a.N). 

D 

Marden, [11], used a similar argument to that of P6lya to show that zeros of 

the Van Vleck polynomial also lie inside the convex hull of the zeros of a(z). 
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Chapter 5 

Classical Jacobi Polynomials ­

special case of the Lame equation 

In this chapter we investigate a well known case of the Lame equation 4.3, 

z2which occurs when a(z) = - 1. In this case the solutions to equation 4.3 are 

classical othogonal polynomials, known as Jacobi polynomials. We begin the 

discussion with basic introduction to orthogonal polynomials. The last section of 

this chapter shows plots of solutions obtained numerically. 

5.1 Orthogonal Polynomials 

Definition 5.1.1. Let h : [a, b] --t R such that h is strictly positive on the interior 

(a, b) but h may go to infinity at the endpoints. h is called a weight function if 
for any polynomial f the integral J: f(x)h(x)dx is finite. Orthogonal polynomials 

with respect to hare defined as a sequence of {Pn} polynomials satisfying the 
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orthogonality condition: 

< Pn,Pm >= lb Pn(z)Pm(z)h(z)dz = O,n "1-m 

where {Pn} represents the nth degree polynomial, and<·,·> is an inner product 

on the vector space ofall polynomials. This means that a sequence oforthogonal 

polynomials forms a basis of the infinite dimensional vector space ofall polyno­

mials with the condition that Pn has degree n. 

5.2 Jacobi Polynomials 

Jacobi polynomials are orthogonal polynomials { P~'~} on the interval [ -1, 1] 

with respect to the weight function h(z) = (1- z)a.(l +z)~. where the parameters 

a and ~ are required to be greater than -1, and n is the degree of the polynomial. 

Jacobi polynomials { P;'~} are solutions of 

(1- i)v''(z) +(~-a- (a+~+ 2)z)v'(z) +K(K+a+ ~)'l'(z) = 0 (5.1) 

[21] 

Equation 5.1 is a special case of the Lame equation 4.3 with sites -1 and 

1. In what follows, we relate parameters a and ~ in equation 5.1 to charges 

Ao and AI that occur in equation 4.3 . Let a(z) =?- 1. Then b(z) = -(z2 ­

1) (z~I -fiT) = -(A.o + AI)Z+Ao- AI and equation 4.3 takes the form 

(i- 1)v''(z)- ((A.o +AI )z + A.o- AI) v'(z) + c'lf(z) = 0 (5.2) 

According to the Heine-Stieltjes theorem, equation 5.2 has K solutions (where 
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K is the degree of 'If) corresponding to a unique degree zero polynomial (c is a 

constant polynomial in the case of two sites). This problem can be approached 

by solving an eigenvalue problem of the form: let D be the differential opera­

tor D('lf) = (z2 
- 1)'II'' (z) - ((Ao +AI )z + Ao- AI) 'II' (z). The problem is to find 

eigenvectors 'I' and the corresponding eigenvalues such that D('lf) = -c\jl. 

Remark: To compute the relations between a,~ and Ao, AI, we use the nega­

tive of equation 5.1. 

Proposition 5.2.1. In equations 5.1 and 5.2, the parameters a,~ and Ao,AI are 

such that Ao = -~ -1 and Ao = -a-1 

Proof: Equating the coefficients of '!l'(z) from both equations gives the fol­

lowing system of equations: 

==} Ao = -~-l,AI = -a-1 

D 

Equation 5.1 can be further classified in the theory of orthogonal polynomials. 

Leta=~=-~: 

(i- 1)'If''(z) +z'l" (z) +K2v(z) = o (5.3) 

Solutions to equation 5.3 form a subclass of Jacobi polynomials and are known 

as Chebyshev polynomials, [1]. 

Chebyshev polynomials are obtained from the following recurrence relations, 

[9]: 
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(5.4) 

and 

which puts roots of the Chebyshev polynomial inside the interval of orthogo­

nality, [9]. This fact can be proven by using recurrence formula 5.4. 

5.3 Numerical solutions 

A Matlab code that computes roots of the Chebyshev polynomial using recur­

rence relation 5.4 is attached in Appendix D (ChebyRoots.m). Figure 5.1 shows 

distribution of roots of the Chebyshev polynomial of degree K = 40, which is a 

solution to equation 5.3. 

We use roots of the Chebyshev polynomials for numerical computation of 

roots of general Jacobi polynomials. Roots of general Jacobi polynomials for 

different values of parameters a and ~ can be obtained by iterating roots of the 

Chebyshev polynomial using Newton's method. It turns out that roots of the 

Chebyshev polynomial are close to roots of the Jacobi polynomial for a and ~ 

relatively close to-!. A Matlab algorithm to compute zeros of Jacobi polynomi­

als in the interval [ -1, I] can be found in Appendix D. 

The Heine-Stieltjes theorem is demonstrated in figure 5.4. The Matlab algo­

rithm that generates figure 5.4 can be found in Appendix D. 
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................................
···~ 

-1 

Figure 5.1: An .st2(<C) equillibrium configuration with two sites no= -l,a, = 1. The sites are 
represented by stars. Roots of the Chebyshev polynomial of degree K=40 are represented by dots. 
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.. . . . . ... 


·1 

Figure 5.2: An equillibrium configuration for .s[z(<C) with two sites ao = -l,a., = 1. The sites 
are represented by stars. Roots of the Chebyshev polynomial of degree K=15 are represented by 
dots. 
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,.,.. . . . . . . . . . . . . . . . . . ......... 

-1 

Figure 5.3: An .s£2 (<C) equillibrium configuration with two sites ao = -l,a1 = 1. The sites are 
represented by stars. Roots of the Jacobi polynomial of degree K = 29 for a= -.2 and~= 1 are 
represented by dots. 
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............. ....................... 


.............. ........................ 


-1 -0.7 0.3 0.8 

Figure 5.4: An equilibrium configuration for.s[z(<C) with sites ao = -l,a, = -.1,az = .3,a3 = 
.8,a4 = 1 with weights A.o = -.5,A.1 = -l,A.z = -1.3,A.3 = -.5,~ = -.8. The sites are repre­
sented by stars. The K = 40 Bethe parameters are represented by dots. 
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Chapter 6 

Experimental numerical results 

In this chater we provide numerical evidence for obtaining approximations 

of solutions to the Lame equation of more than two real sites using numerical 

approximations of roots of Jacobi polynomials. We also make observations and 

provide numerical evidence for obtaining solutions to other equations, which are 

similar to the Bethe-Ansatz equations for sh(C). 

6.1 	 Two site solution of the Bethe-Ansatz equations 

converging to a multisite sh(CC) equilibrium con­

figuration 

Using numerical approximations to roots ofthe Jacobi polynomial {P~a,~)} as 

initial values for Newton's method, we approximate solutions to the Lame equa­

tion with more than two real sites (N > 1 ). We write the Bethe-Ansatz equations 

3.16 as: 
N An 2 

fk(v) = E - E =O,k= 1,···K 
n=O Vk- a.n k#l Vk- V[ 
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where K is the degree of 'If(z) and v E ( -1, 1). 

f(v) = (ft (v),fz(v), · · · JK(v)f = VS(v): JRk---* JR.k where Sis the logarith­

mic potential function, (ref. to 4.5). We are interested in the unique equilibrium 

position v* E ( -1, 1) of the given particles v E ( -1, 1). We use Newton's iteration 

Vm+I = g(vm) where g(v) = v- (f'(v))-1f(v). f'(v) = H(v) is the Hessian of S. 

In the proof of the Heine-Stieltjes Theorem, we see that f'(v) is a positive defi­

nite KxK matrix and thus, it is invertible at any v E ( -1, 1 ). At the equilibrium 

g' (v*) = 0. Therefore g is a contraction in some neighborhood of v*. The conver­

gence rate for Newton's method is quadratic if the initial position of the points is 

close to their equilibrium position. It turns out that roots of the Jacobi polynomial 

are very good initial values for Newton's method. In the case of the degree of 'If 

equal to 40, our algorithm (Demosl2J.m, ref. Appendix D) produces figure 6.1. 

We observe that after applying Newton's iteration to roots of the Jacobi Poly­

nomial, they will stay in the same configuration at their equilibrium position (pro­

vided that roots of the Jacobi polynomial do not coincide with the sites a.n). Nu­

merical evidence suggests that an sh(<C) equilibrium configuration with N = 1 

(two sites) is a good approximation to the electrostatic equilibrium configura­

tion of particles where N > 1. We observe, that any sh(<C) configuration with 

two sites will converge to a unique sh(<C) equilibrium configuration of more 

than two sites. Below is a table of absolute differences between roots of the 

Jacobi polynomial in the interval [-1,1] having weights A.o = -2,A.t = -.5 and 

roots of the polynomial that is a solution to the Lame equation 4.1 in the multi­

site setting with a.o = -l,a.t = -0.2,a.2 = 0.1a.3 = 0.7,<4 = 1 having weights 

A.o = -2,A.t = -.1,A.2 = -.9,A3 = -.4,"-4 = -.5. Table 6.2 corresponds to figure 

6.1. 
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........................................ 


.............. . . ..... . . .... . . . . . . . . .... .. ....... 


-1 -0.2 0.1 0.7 

Figure 6.1: The upper configuration is an equillibrium configuration with two sites <Xo = 
-1,a.1 = 1 with weights A.o = -2,A.1 = -.5 computed using roots of the Jacobi polynomial in 
the interval [ -1 , 1 J. The sites are represented by stars. Roots of the Jacobi polynomial of degree 
K = 40 are represented by dots. The lower configuration is an equillibrium configuration with 
five sites: <Xo = -1,a.1 = -0.2,a.2 = 0.1a.3 = 0.7,(4 = 1 with weights A.o = -2,A.1 = -.?,A.2 = 
- .9, A.3 = - .4, ~ = - .5. The sites are represented by stars and roots are represented by dots. 

IAbs(lnltlal-new) IAbs(lnltlal-new) IAbsCinltlal-new) I 
0.0002 0.0235 0.0030 
0.0007 0.0251 0.0082 
0.0014 0.0260 0.0049 
0.0024 0.0007 0.0049 
0.0036 0.0061 0.0043 
0.0051 0.0110 0.0035 
0.0067 0.0164 0.0026 
0.0085 0.0163 0.0018 
0.0105 0.0138 0.0011 
0.0126 0.0112 0.0006 
0.0148 0.0086 0.0002 
0.0171 0.0059 0.0000 
0.0193 0.0031 
0.0215 0.0003 

Figure 6.2: Absolute differences between roots of the Jacobi polynomial in the interval [-1,1] 
with weights A.o = -2, AI = -.5 and roots of the polynomial that is a solution to the Lame equation 
4.1 in the multisite setting with <Xo = -1,a.1 = -0.2,a.2 = 0.1a.3 = 0.1,a.4 = 1 having weights 
A.o = -2,A.r = -.1,A.2 = -.9,1.3 = -.4,~ = -.5 
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6.2 Roots of Ja-cobi Polynomials converging to solu­

tions of oth~er equations 

Numerical evidence suggests that for a positive number r, equations 

I Ao K1 K22 r
E (I) - E (I) (I) - E (I) (2) = o, (6.1) 
n=O vk - CX.n 1=/=k vk - I=I vk ­v1 v1 

k= 1,··· ,KI 

(6.2) 

k = 1,··· ,K2, 


with A-n< 0, have a solution in the interval (a.o,a.l). 


Given two distinct .sl2(C) equilibrium configurations { v*(I)}, { v*(2)}, we use 

Newton's method to iterate equations 6.1 and 6.1. 

We iterate these equaHons such that for each equation we use points obtained 

from iterating the other equation. We iterate equations 6.1 with respect to the first 

kind of points and equations 6.2 with respect to the second kind of points while 

keeping the other kind of points fixed. This is the same as treating one kind of 

points as sites with weight r. This procedure is repeated until desired accuracy is 

obtained. We are able to obtain solutions to equations 6.1 and 6.1 forK:::; 10. A 

Matlab algorithm using this procedure is attached in Appendix D (DemoRsl2.m). 

Figures 6.3 and 6.4 show distributions of points before and after applying 

Newton's method where r = 10 and r = 3, with sites CX.t = -1,a.2 = 1. vii) is 

represented by dots, and vi2) is represented by crosses. 

Solutions to equations 6.1 and 6.2 can be thought of as points at an equilib­
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-1 

Figure 6.3: Distribution of points before and after applying Newton's method to equations 6.1 

and 6.1 where r= 3 and <X1 = -l,az = 1, A.o = -.7,AJ = -2. vi1) is represented by dots, and vfl 
is represented by crosses. K1 = 18 and Kz = 19. 

rium of the electrostatic potential as explained in Chapter 4 with the additional 

requirement that each two particles of different kind repel each other with force 

proportional tor. 
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~ ,_,. X• X • X • X • X • X • X • X • X • X •X «' "'* 

'ifx• :< • X • >: • X • • X • X • '< • ;: • X • X • X • X•>* 

-1 

Figure 6.4: Distribution of points before and after applying Newton's method to equations 6.1 

and 6.1 where r = 10 and a.,= -1,a.2 = 1, A.o = -3.5,A., = -.8. vi') is represented by dots, and 

vi2) is represented by crosses. K, = 16 and K2 = 17. 

6.3 	 Two sh(CC) equilibrium configurations converg­

ing to a single s h ( CC) configuration 

Let r = 2 in equations 6.1 and 6.1. Iterating these equations separately, with 

the initial values as explained in the previous section, gives a solution to the Bethe­

Ansatz equations: 

N An K 2E -E = 0 
n=O Vk -On l=/=k Vk - V[ 

whereK=Kt +K2 

We conclude that given two distinct .sh(C) equilibrium configurations we ob­
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tain a single sr2(CC) equilibrium configuration by slightly shifting the points. That 

is, given two Lame equations: 

a(z)'P1(z) +b(z)'Pi (z) +c(z)'Pt (z) = 0 (6.3) 

a(z)'P~(z) +b(z)'Pi(z) +c(z)'P2(z) = 0 (6.4) 

with deg('Pt) =/= deg('P2), the product of polynomials 'Pt 'P2 is a good approx­

imation to a solution of the Lame equation 

a(z)'P"(z) +b(z)'P' (z) +c(z)'P(z) = 0 (6.5) 

where 

deg('P) = deg('Pt) +deg('P2). 
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"J1loEA ~ '<• X• X• X• X • X • X • X • X • V: • Y • X • X •X •X •X •X +< _.-JOI!t­

•A•X•X•X • A •-< • X • A • X • :.< • A • X • A e X • A • X • ;( • X • X • ..<•X•X"'*' 

-1 

Figure 6.5: The first configuration illustrates two distinct sl2(C) configurations; the first one 
is represented by dots, the second one is represented by crosses. K1 = 26 and K2 = 27, ao = 
-1,a1 = 1, and A.o = -2.5,1..1 = -.7. The second configuration is a solution to equations 6.1 and 
6.2 with the parameter r = 2. In this case, solutions to equations 6.1 and 6.2 converge to a single 
sl2(C) equilibrium configuration. 
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Chapter 7 

The Lame equation with Complex 

parameters 

Substantial amounts of research have considered the case of real number pa­

rameters of the Lame equation 4.1. In this chapter, we consider the Lame equation 

with complex parameters having three complex sites. The Lame equation is in­

variant under affine transformations, hence two of its sites can be assumed to be 

fixed on the real line. This allows us to convert the Lame equation into an eigen­

value problem, for which, we derive a linear operator matrix. Finally, we discuss 

recent research development in this direction and provide numerical evidence to 

each considered variant. 
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7.1 	 Solutions to the Lame equation with three com­

plex sites 

Let a E CC. In the Lame equation, 4.1, let 

3a(z) = z(z-l)(z-a) = z - (a+ l)i+az. 

Then 

b(z) = -(z-l)(z-a)A.o-z(z-a)A.I -z(z-l)A.2 

and 

c(z) = c1z +co 

for some CI ,co E C. 

For a given K, a solution to the Lame equation is a polynomial of the form: 

'P(z) = f< + · · · PIZ+ PO· 

Then, 

'P'(z) Kf<-l +PK-1 (K -l)f<-2 + · · · +2P2Z+ PI 

'P11 (z) K(K -l)f<-2 + (K -l)(K- 2)PK-If<-3 + · · · +2P2· 

Recall from Chapter 4 that zeros of polynomials 'P and c(z) lie inside the con­

vex hull of zeros of a(z). 

Compute: 
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a(z)'P"(z) 	 (z3 
- (a+ 1).? +az)(K(K -1)E-2+ · · · +2P2) 


K(K -1)E+1 - (a+ 1)K(K -1)E +aK(K -l)E-I 


+ 	... +2p2(z3 -(a+1).?+az) 

b(z)'P' (z) 	 -((z-1)(z-a)A.o+z(z-a)A.t 

+ 	z(z-1)A.2)(KE-1 +PK-t(K -1)E-1 +···+2p2z+pi) 

-K(A.o+A.t +A.2)E+1 + ... +-Pt(Ao+A.t +A-2).? 

c(z)'P(z) 	 (ctz+co) (E + PK-tE-I + · · · + PtZ+ Po) 

c1E+1+coE +··· +ctpoz+copo 

We rewrite the Lame equation: 

a(z)'P"(z) + b(z)'P'(z) + ( ctz + co)'P(z) 	 (7.1) 

as 

a(z)'P"(z) +b(z)'P'(z) +ctz'P(z) = -co'P(z), 	 (7.2) 

which is an eigenvalue problem. 


Since the zK+I term does not occur on the R.H.S of this equation, we make 
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the highest power coefficients equal to zero and obtain an expression for CI : 

Thus, 

a(z)''P"(z) +b(z)'P'(z) + ( -K2+ K(1 +Ao +"-I +A.2)z'P(z) = -co'P(z). (7.3) 

Let 

L'P =-co'¥. 

We have: 

I~ a(z)(l)" = (~- (1 +a)l +az)k(k-1)1-2 


= k(k-1)I+I- (1 +a)k(k-1)1 +ak(k-1)1-I 


I ~ b(z) (I)' = -k(A.o +AIA.2)l+I + ( (a+ 1)A.o + aA.I + A-2) kl- aA.oki-I 


I~ ct(z)I+I 


Collecting coefficients of the same power of z gives: 

(~ -K2- (k-K)(1 +A.o+A.I +A.2))I+I 

(-(1 +a)k(k-1) +k((a+ 1)"-o+aA.I +A.2))I 

(ak(k-1) -a/..ok)I-I 

L is a linear operator a,;;ting on polynomials of degree K. We now express L as 

a K + lxK + 1 matrix with respect to basis {z!,zK-I, ... , 1 }: 
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L= 


0 0 

where 

Dk_ = f? -K2 - (k- K)(1 +Ao +AI +A-2) 

DK = -(1 +a)k(k-1)+k((a+ 1)J..o+aAI +A-2) 

DK = ak(k-1) -aA.ok 

k= 1, ... ,K 

and 'Pis a Kx1 vector: 

WK-I 

WI 

wo 

For each solution pair ('P,c(z)), the column vector 'P with entries Wk is an 

eigenvector ofL with eigenvalue -co and corresponds to coefficients of the Heine­

Stieltjes polynomial. 

The Matlab algorithm which was used to solve the eigenvalue problem of the 

linear operator L can be found in Appendix D (Demosl2Complex.m). Figures 7.1 

are 7.2 are outputs of the program with different parameters. Figure 7.3 shows 
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one pair of solutions to the Bethe-Ansatz equations and figure 7.7 shows zeros of 

the Van Vleck polynomials. 

~:,.. .. .0.8 ......····· .. .. ... . ...... . ~ ' 
0.6 .... ..... . ..... . .... .0.4 ..... . . .. .... . ..... ... ...0.2 .. . .. .,·:.·. ·. . . . .. .......

L. :?.. . . • • . . . .• ...........
Z.• • • • • • • • • • • •• '"i·~.....:..-.....·.. : .: ..·.............
,~ 
0.2 0.4 0.6 0.8 

Figure 7.1: Solutions of the Bethe-Ansatz equations where <Xo = 0, a1 = i, az = 1 with A.o = 
-1, At = -0.5, A.z = -2. The dots are roots of the Heine-Stieltjes polynomials of degree 20. 

An electrostatic interpretation still applies in the complex case, however the 

complex case significantly differs from the real case, [10]. If the matrix L has 

K +1 distinct eigenvalues then there are K + 1 distinct degree K polynomial solu­

tions. In fact, distinct eigenvalues occur for generic choices of the parameter a in 

the linear operator L. The proof of the Heine-Stieltjes theorem is not valid in the 

complex case since the convexity argument does not hold. 
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0.8 

0.6 

0.4 

0.2 

.\•l... . ....·. .• • ..•"'• ..• . . 	 . . 
• • 	 .• ... . .• .. 
• . . . . . .. . . ... • • 

... . . ... . . . •• • ••• .... ···: 	 . . . :·, . 	. . . . . . ··- ··~ ._.-_,. ......... . ..·.....·...,.. 

0.2 	 0.4 0.6 0.8 

Figure 7.2: Solutions of the Bethe-Ansatz equations where ao = 0, a, = . 7 + i, az = 1 with 
weights A.o = -1.1).., = -.7, 'Az = -2. Smaller dots are roots ofthe Heine-Stieltjes polynomial 
of degree 15 and larger dots are roots of the corresponding Van Vleck polynomial. 

7.2 	 Location of zeros of complex Van Vleck polyno­

mials 

In their recent paper, A. McMillen, A. Bourget and A. Agnew [12] investigated 

the complex case of the Lame equation. They observed that roots of the Van Vleck 

polynomials have a deeper structure in the case where { <:x.n}~=O are vertices of an 

equilateral triangle. Since the Lame equation is invariant under complex affine 

transformations, we may assume that { <ln }~=0are the third roots of unity: 

where n = 0, 1,2. 


Let the charges A= AI= A2 = A3 be negative and equal for all three sites. Un­
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.• 
0.8 

0.6 

0.4 

0.2 

• .. 
0.2 0.4 0.6 0.8 

Figure 7.3: One pair of solutions of the Bethe-Ansatz equations where ao = 0, a1 = 0.6 + 
i, a2 = 1 with weights A.o = -1.5, A.1 = -2, A2 = -.7. Smaller dots are roots of the Heine-Stieltjes 
polynomials of degree 15 and larger dots correspond to a root of the Van Vleck polynomials. 

der these assumptions, we obtain the following special case of the Lame equation: 

(z3 - 1 )'P" (z) +6A.i'P'(z) = Jl(Z- c)'P(z) (7.4) 

For each kEN, denote by N(k) the number of roots of all distinct Van Vleck 

polynomials c(z) = Jl(Z- c) corresponding to the Heine-Stieltjes polynomials of 

degree k. 

Theorem 7 .2.1. [12] Let a I , a2, <X3 and AI , A.2, A.3 be as above. For any k E N, let 

k+ 1 = 3p+q,q = 0,1 or2. Then there exists p real, distinct r E (0, 1), such that 

3p ofthe zeros ofthe accociated Van Vleck polynomials are nonzero and have the 

fonn: 
2lti 

reT forj = 0, 1,2 
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and the remaining zeros ofthe Van Vleck polynomials are zero. 

Thus: 

(i) Ifq = 0 or q = 1, then N(k) = k+ 1. 

(ii) ifq = 2, then N(k) = k. 

Therefore, Van Vleck zeros lie on the lines that are angle bisectors of the equi­

lateral triangle with vertices a1, a2, a3. Figures 7.4, 7.5, 7.6 illustrate cases (i) 

and (ii) (for q = 0, 1,2 respectively) oftheorem 7.2.1, where the equilateral trian­

gle has been moved by an affine transformation to vertices 0 and 1 and 0.5 +Yfi. 

0.8 

I ' 
0.6 ~ 

0.4t' J, 
0.2 

...~..... · --...,__. 

............ -~•.. 

------/- ~-.......
....... ',...._
,) 

0.2 0.4 0.6 0.8 

Figure 7.4: Illustration of theorem 7.2.1 where q = 0, K = 8. The zeros of Van Vleck 
polynomials distribute over the bisectrices of the equilateral triangle with vertices a.1 = 0, a.z = 
0.5+ fi,a.3 = 1. 

As a consequence of Theorem 7 .2.1, we have the following corollary: 

Corollary 7.2.1. With a1,a2,a3 and A.1,A.2,A3 as above, the Lame equation 7.4 

has exactly k + 1 polynomial solutions of degree k if k O(mod3) or if k = 
2(mod3), but has only k polynomial solutions ifk = 1(mod3). 
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0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 

Figure 7.5: Illustration of theorem 7.2.1 where q = 1, K = 6. The zeros of Van Vleck 
polynomials distribute over the bisectrices of the equilateral triangle with vertices <Xt = O,a.2 = 

0.5+ {Ji,a.3 = 1. 

Theorem 7 .2.1 does not hold in the case when the charges An are not equal 

(figure 7.7) and when the triangle is not equilateral (figures 7.8 and 7.9). 

A. McMillen, A. Bourget and A. Agnew further investigated this case of the 

Lame equation and considered to vary An from 0 to oo. The A.n = 0 case does 

not correspond the the Lame equation but can be understood as the limiting case 

An --+ 0 when the charges are reduced to zero. Even in this case, there exists 

an equilibrium configuration of free charges that are located inside the triangle 

formed by fixed charges l = 0. This observation has led to the following corollary: 

Corollary 7.2.2. Let the hypotheses of Theorem 7.2.1 hold. Then, ijA, = 0 and 

k ~ 2, three Van Vleck zeros lie on the vertices of the triangle and the remaining 

zeros lie inside the triangle. As A --+ oo, the zeros concentrate at the center of the 

triangle. 
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0.6 

0.6 1• 
0.4 

02 

0.2 0.4 0.6 0.8 

Figure 7.6: Illustration of theorem 7.2.1 where q = 2, K = 7. Zeros of the Van Vleck poly­
nomials distribute over the bisectrices of the equilateral triangle with vertices a.r = 0, a.2 = 
0.5+ {/i,a.3 = 1. 

0.8~ 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.6 

Figure 7. 7: Illustrates the Van Vleck zeros where the sites are vertices of an equilateral triangle 

( a.r = O,a.2 = .5 +4i,a.3 = 1) with charges A.r = -l.l,A.2 = -15,A.3 = -2. 
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0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 

Figure 7.8: Dlustrates the Van Vleck zeros where the sites have vertices a, =O,a2 = .7 +i,a3 = 
1) with charges A., = A.2 = A3 = -.5. 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.8 0.8 

Figure 7.9: Dlustrates the Van Vleck zeros where the sites have vertices a,= O,a2= .7 +i,a3 = 
1) with charges A.o = -l.l,A.2 = -15,A.3 = -2 
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Chapter 8 

Conclusions and Outlook 

The Gaudin spin chain model can be associated to any semi-simple Lie alge­

bra. In the first section of this chapter, we derive a solution set of the Bethe-Ansatz 

equations corresponding to the Lie algebra .s[3(<C). The last section contains final 

remarks and outlook. 

8.1 Gaudin spin chain associated to s[3(C) 

Letting r = -1 in equations 6.1 and 6.2 gives: 

(8.1) 

k= 1,···,KJ 
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N 'J....n Kz 2 K1 1 
0 (8.2)E (2) - E (2) (2) +E (2) (I) = 

n=OVk -an l#Vk -v1 l=I vk -v1 

k= 1,··· ,K2 

It turns out that equations 8.1 and 8.1 correspond to the Gaudin spin chain 

associated with the Lie algebra .sl3(C). [13], [14], [15], [4]. Very little is known 

about solutions to equations 8.1 and 8.2. We provide a method which produces 

infinitely many solutions in the case when N = 1, ao = -1, <li = 1 with charges 

Ao =AI = !· The points vk are located symmetrically around zero with two of 

the points inside the interval (- 1, 1), and two of them outside the interval ( -1, 1). 

We denote by x, -x E ( -1, 1 ), one kind of points, and by y, -y the points outside 

the interval ( -1 , 1). That is: 

-y<-1 <-x<O<x< 1 <y. 

Under these assumptions, equations 8.1 and 8.2 take the following form: 

(8.3) 

Let 

and 

o=l-1 >0. 
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We conclude that if 

or equivalently 
0 

E = 1+20' 

we get infinitely many solutions to equations 8.1 and 8.2. 

For example: Let o= i, E = ! . Then 

x±~ 

and 

y± v's (8.4)
2" 

Recall that in the .sr2(C) case, solutions of the Bethe-Ansatz equations lie 

inside the convex hull of the { <X.n}~=o· In the .s[3(C) case, this assertion does not 

hold and 8.4 gives a counterexample. 

Let 

where 

X 1 2x!I = --+ - - ----o----=­
x2-1 x x2 -y2 

y 1 2y 
h= y2_ 1+y-- y2-x2 
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Since F-1(0,0) is a one parameter curve, dF is not invertible and the map 

F cannot be a diffeomorphism by the Inverse Function theorem. In particular, 

Newton's method cannot be used to solve the s[3(C) Bethe-Ansatz equations. 

8.2 Conclusions and Outlook 

The Gaudin spin chain model can be associated to any semi-simple complex 

Lie algebra; hence it presents many possibilities for future considerations. Even 

the case of finite irreducible representations of sh(C), associated to the Gaudin 

spin chain, is still unknown. Furthermore, asymptotic properties of the model 

can be studied, [2], [3]. Moreover, the problem of diagonalizing the Gaudin's 

Hamiltonians has an interpretation in algebraic geometry, [6]. As a further matter, 

similar techniques used for diagonalizing Hamiltonians of the Gaudin spin chain 

model, can be applied to other Heisenberg spin chains. 
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Appendix A 

A.l Representation theory of sh(CC) 

Intuitively, a representation of a Lie algebra is a way of representing a Lie 

algebra in terms of matrices such that the Lie bracket is the commutator. These 

matrices are endomorphisms of some vector space. 

Let g be a Lie algebra. 

Definition A.l.l. A linear map <1> : g ---+ ~ is a homomorphism ofLie algebras if 
<I>([X,Y]) = [<I>(X),<j>(Y)], i.e. a linear map that preserves the bracket operation. 

Definition A.1.2. A vector space V over a field F is a representation (or an g­

module) if there exists a Lie algebra homomorphism g---+ g[(V). 

Definition A.1.3. W C V is a submodule ofa g-module V ifW a linear subspace 

ofV such that x· wE W for all x E g. 

A g-module V is irreducible if there exists no proper submodule, that is no 

submodule other than 0 and g itself. 

We also state the well known theorem by Weyl: 

Theorem A.l.l. Every finite-dimensional representation ofa complex semisimple 

Lie algebra is completely reducible. 
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[5] 


The vector space, 


together with the bracket operation [A,B] =AB-BA, is a semisimple Lie algebra. 

We choose a basis of .sh(<C) as follows: 

The basis elements satisfy the commutation relations: 

[h,e] = 2e 

[h,J] = -2! 

[e,J] =h. 

Let Vis an irreducible.sr2(<C)-module. Then we have a decomposition ofV as 

follows: 

where V.u = { v E VI hv = JIV}. If V.u =/= 0 we call Jl a weight and V.u a weight space. 

Let v E Vw The action of elements e and f on the weight spaces is given by: 

evE V,u+2 

fv E V,u-2· 
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If VA.+2 = 0 then A is called the highest weight and any non-zero vector in VA. 

is called vacuum and is denoted by JO >with 

eJ0>=0 

and 

hJO>=AJO> 

VA. is called the highest weight module. 

The highest weights A of sr2(<C) can be identified with complex numbers, how­

ever the following theorem gives further classification of irreducible representa­

tions of s[2(<C). 

Theorem A.1.2. [5], [8] 

(a) VA. is isomorphic to V. 

(b) /fA has a positive integral value then it corresponds to an finite dimensional 

irreducible representation and other values of Agive rise to infinite dimensional 

irreducible representations ofs[2(<C). 

A.2 Loop algebra 

Definition A.2.1. [6] Given a Lie algebra g. The loop algebra ofg is defined as 

the tensor product ofg with <C[u, u- 1], the Laurent polynomials in the variable u 

over <C is an infinite-dimensional Lie algebra with the Lie bracket given by 

where g1 and g2 belong tog and fi and hare elements of<C[u, u-1]. It is called a 

loop algebra because it can be thought ofas a smooth parameterized loop in g. 
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A.3 	 The Casimir operator for semisimple Lie alge­

bras 

Let g be ann-dimensional, semisimple Lie algebra. Let x,y E g. 

Definition A.3.1. The Killing form on g is an invariant symmetric bilinear form 

given by 

K(x,y) := tr(adxoady) 

The bilinearity of the Killing form follows from the the fact that ad is linear, 

the composition is bilinear and tr is linear. The Killing form is symmetric since 

tr(ab) = tr(ba) for any linear maps a, b. The Killing form is invariant in the sense 

that it is associative: 

K([x,y],y) = K(x, [y,z]) 

Let V be a faithful g-module. Let p : g -+ gt(V). 

Definition A.3.2. [5] The Casimir element ofthe Lie algebra g is the linear map 

c : V -+ V defined by 
m 

t(v) = LP(x;)p(y;) 
i=l 

where x; is any basis of g and Yi is any dual basis of g with respect to a fixed 

invariant bilinear form (e.g. the Killing form on g satisfying K(Xi,Yj) = Oij)· 

A.4 	 The Casimnr operator for s[2 

The basis for sh that has been used throughout the thesis is: 
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Using the given basis we observe that 

K(e,J) 0 


K(f,e) 0 

1 

K(h, lh) 0 


Thus the Casimir operator for sr2 is: t5 [2 = ef+ fe + ~h2 . 


A.S 	 The Casimir operator for s[3 

The basis for .5[3 that has been used throughout the thesis is: 

(1 0 0) r0 0)h] 	 0 -1 0 'h2 = 0 1 0 ' 


0 0 0 0 0 -1 


e12 0 	 0 0(~ 
1 

~).en= (~ 
0 

~).e23 =(~ 
0 

~).0 0 0 

0 0 1e21 = (~ 
0 

~).e31 =(~ 
0 

~).e32= (~ 
0 

~)0 0 0 


We make the following observations: 
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K(e12,e21) 0 

K(e13,e3I) 0 

K(e23, e32) 0 

K(e21,e12) 0 

K(e31,e13) 0 

K(e32,e23) 0 
1 1 

K(h1, 3h2 +3h1h2) 0 

1 1 
K(h2, 3h1 +3h1h2) 0 

and obtain the Casimir operator for s£3: 
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B.l Product Rule for Lie brackets 

Proposition B.l.l. 

Proof: 

[a,bc] = [a,b]c+b[a,c] 

[a,b]c+b[a,c] - abc-bac+bac-bca 

[a,bc] 

Proposition B.1.2. 

Proof: 

[ab, c] = [a, c]b +a[b, c] 

D 

[a, c]b +a[b, c] acb- cab+ abc- acb 

[ab,c] 

D 
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C.l Gershgorin circle theorem 

Theorem C.l.l. (Gershgorin's circle theorem) Let A be an nxn matrix, with com­

plex entries aij. For i E { 1, n} let R; = Lj#i laij Iwhere laijI is the complex norm 

ofaij· The closed disc D(au,R;) centered at au with radius R; is called a Gersh­

garin disc. Every eigenvalue ofA lies within at least one of the Gershgorin discs 

D(au,R;). 

Proof: Let 11 be an eigenvalue of A and let x = [xj] the corresponding eigen­

vector. Choose i E { 1, n} such that lx;I= maxj lxj I· Then lx;I> 0, otherwise x = 0. 

Since x is an eigenvector, Ax = 11x or equivalently: 

[,aijXj = 11Xi ViE 1 .. .n 
j 

La;jXj = 11Xi - aux; 
#i 

Choose i as above, we have x; =f:. 0. Divide both sides by x;, and take the norm 

to obtain: 
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1 1 1 1 E·c~·a··x·l111-aui = :::; I.', iaiji =R;..'I x, '-'-' J-t-l 

The last inequality is valid because 

D 

C.2 Abel's Theorem 

Theorem C.2.1. (Abel's theorem) Given a homogeneous second-order ordinary 

differential equation: 

y11 (x) +P(x)y' (x) +Q(x)y(x) = 0 (C.l) 

The Wronskian oftwo linearly independent solutions to C. I is given by 

w(x) = ce- fp(x)dx 

where cis any constant. 

Proof: let YI (x) and yz(x) be two linearly independent solutions to C.l Then, 

Y1 (x) +P(x)yi (x) +Q(x)yl (x) = 0 

and 

y~(x) +P(x)y~(x) +Q(x)yz(x) = 0. 
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We have, 

0 = Yl (x)(y~(x) +P(x)y~(x) +Q(x)y2(x)) -y2(x)(y1(x) +P(x)yi (x) +Q(x)yl (x)) 

0 = (YI (x)y~(x)- Y2(x)y1(x)) +P(x)(y1 (x)y~(x)-Yi (x)y2(x)) 

+Q(x)(yl (x)y2(x) -y1 (x)y2(x)) 

0 = (YI (x)y~(x)- Y2(x)y'{ (x)) +P(x)(y1 (x)y~(x)- Yi (x)y2(x)) (C.2) 

We compute the Wronskian: 

w(x) = Yl (x)y~(x) -yi (x)y2(x) 

w'(x) = (yi (x)y~(x) +Y1 (x)y~(x))- (yi (x)y~(x) +y1(x)y2(x)) 

= Yl (x)y~(x)- y~ (x)y2 (x) 

Combining C.2 with w and w' gives: 

w'(x) +P(x)w(x) = 0. 

Integrate both sides: 

Id;~) =I -P(x)dx 


In Iw~x) I=-I P(x)d(x) 


w(x) = ce- I P(x)dx 

where c is a constant of integration. 
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C.3 Gauss-Lucas Theorem 

Lemma C.3.1. Let z E <C and let ri , · · · , rM be positive real numbers. Suppose 

WI · · · WM E <C and Wm =/= z. The equality 

ri rM--+···+ =0 (C.3)
z-wi z-wM 

only holds when z lies inside the convex hull CH (WI, · · · , WM) of{Wm}, m = 1 · · · M 

Proof: Suppose that z lies outside of CH(wi, · · ·,WM). Let L be the line that 

separates z and CH (WI, · · · , WM). Since equation C.3 is invariant under affine 

transformations, we can choose a and b such that aL +b is the x-axis, the points 

awm +b have positive imaginary part and az+b has negative imaginary part. Then 

the left hand side of equation C.3 has strictly negative imaginary part and therefore 

cannot be zero. D 

Theorem C.3.1. (Gauss-Lucas) Let p(z) E C. The zeros of p'(z) lie inside the 

convex hull of the zeros ofp(z). 

Proof: Suppose ZI, · · · ,ZM are zeros of p(z). Assume that there exists z for 

which p'(z) = 0 and that lies outside CH(zi, · · · ,ZM)· We have p(z) =/= 0 and 

p'(z) M 1
-=E-=o 
p(z) m=l Z- Zm 

This cannot be true by lemma C.3.1. D 
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Matlab code 

\small { 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%ChebyRoots.m 

%Computes the roots of the Chebychev polynomial 

%in the interval [-1,1] for a give K 

%% 

%%a - vector of sites 

%%w - vector of weights 

%%K - number of points 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

K = 15; 

a = [-1 1]; 

w = [-0.5, -0.5]; 


%find the roots of the Chebyshev polynomial in the interval [-1,1] 


v = roots(ChebyshevPoly(K)); 

%improve with Newton iteration 
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v = newtonf(v, 1E-100, 20, a, w); 


%plot(real(a), imag(a)-1,'rs' ,real(v), imag(v)-1,'b.'); 


plot(real(a), imag(a)-1,'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 

set (gca, 'YTick', []) 

xlim ( [ -1.1 1.1]) 

y lim ( [-3 1] ) 

set (gca, 'XTick', a) 

set (gca, 'XTickLabel', {' -1', '1'}) 

hold on 

plot(real(v), imag(v)-1,'b.' ,'MarkerSize' ,13); 

%end of ChebyRoots.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%JacobiRoots.m 

%Computes the roots of the Jacobi polynomial 

%in the interval [-1,1] for a given K 

%% 

%%a - vector of sites 

%%w - vector of weights 

%%K - number of points 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


K 29; 


a = [-1 1]; 


%w = [ 0 . 6 , 3 ] ; 


w = [-0.8, -2]; 


%find the roots of the Chebyshev polynomial in the interval [-1,1] 


v = roots(ChebyshevPoly(K)); 


%Find roots of the Jacobi Polynomial with Newton iteration 


%using roots of the Chebyshev polynomial as initial values 


v = newtonf(v, 1E-100, 20, a, w) 


plot(real(a), imag(a)-1,'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


set (gca, 'YTick', []) 


xlim ( [ -1.1 1.1] ) 


y lim ( [ -3 1 ] ) 


set(gca, 'XTick', a) 


set(gca, 'XTickLabel', {'-1' ,'1' }) 


hold on 


plot(real(v), imag(v)-1,'b.','MarkerSize',13); 


%end of JacobiRoots.m 


95 




I. Kowalik MCMASTER - MATHEMATICS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%DemoMultisitesl2.m 


%Demonstrates the Heine-Stieltjes theorem. 


%Fix \{ \alpha_n\}_{n=O}A{N} the charges \lambda_ns. 


%Compute the equilibrium 


%distribution at each interval 


%(i.e. approx. to roots of the Jacobi 


%polynomial after scaling each two sites to [-1,1]). 


%Apply the Newtons 


%method to all points v with all sites \{ \alpha_n\}_{n=O}A{N}. 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%number of points 


K = 40; 


%number of sites 


N = 5; 


%number of intervals N-1 


%sites 


a = [-1 -.7 . 3 . 8 1] ; 


%number of points in each interval 


k = [13 2 15 10 l; 


w=[-.5 -1 -1.3 -.5 -.8]; 


%create the weight vector 


% for n=2:N 
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% w = [w,-0.5]; 


% end 


% w; 


%scale points and compute roots of the Chebyshev in each interval 


for m=1:N-1 


tempv = roots(ChebyshevPoly(k(m))); 


sort (tempv); 


tempv [-1 tempv' 1]; 


tempv sort (tempv); 


tempv scaledata(tempv, a(m), a(m+1)); 


for r=1: k (m) 


if r==1 


v2 tempv(2); 


else 


v2 [v2 tempv(r+1)]; 


end 


end 


atemp = [a(m), a(m+1)] 


wtemp = [w(m), w(m+1)] 


v2=v2'; 


%Get Jacobi roots in each interval 


v2 newtonf(v2, 1E-100, 20, atemp, wtemp); 


if m==1 


v=v2'; 


else 


v 
 [v v2': ; 
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end 

end 

figure(l); 


plot(real(a), imag(a),'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


set (gca, 'YTick', []) 


xlim ( [ -1. 1 1. 1] ) 


y1im ( [-3 1] ) 


set(gca, 'XTick', a) 


hold on 


figure (1); 


plot(real(a), imag(a),'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


set (gca, 'YTick', []) 


xlim ( [ -1.1 1.1]) 


y lim ( [-3 1] ) 


set(gca, 'XTick', a) 


hold on 


plot(real(v), imag(v),'b.' ,'MarkerEdgeColor' ,'b', 


'MarkerFaceColor' ,'b' ,'MarkerSize' ,10); 


v1 v'; 


v1 newtonf(v1, 1E-100, 100, a, w); 


plot(real(a), imag(a)-1,'rp' ,'MarkerEdgeColor' ,'r', 
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'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 

set (gca, 'YTick', []) 

xlim ( [ -1. 1 1. 1] ) 

y lim ( [ - 3 1] ) 

set(gca, 'XTick', a) 

hold on 

plot(real(v1), imag(v1)-1,'b.' ,'MarkerEdgeColor' ,'b', 

'MarkerFaceColor' ,'b' ,'MarkerSize' ,10); 

%evaluate the function at v1 

v1 = baf(v1, a, w) 

%end of DemoMultisitesl2.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 

%%Demosl2J.m 

%%Illustrates an sl2 equilibrium confuguration 

%of points of two sites 

%%converging to an sl2 multisite equillibrium configuration; 

%%(solutions of the Bethe-Ansatz equations for multiple sites). 

%%The differences between the 

%initial and final position of points is also 

%%computed. 

%a - vector of sites 

%%w - vector of wei9hts 

%%K - number of points 

%%N -number of sites 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

9,.
0 

K 40; 

N 5; 

a= [-1 -0. 2 .1 . 7 1] ; 

w=[-2 -.7 -.9 -.4 -.5]; 

v = roots(ChebyshevPoly(K)); 

v = sort (v' ) ; 

a1 [-1,1]; 

w1 [-2, -.5]; 

v = v'; 

v = newtonf(v, 1E-100, 100, a1, w1); 


figure(1); 


plot(real(a1), irnag(a1),'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


set (gca, 'YTick', []) 


xlirn ( [ -1.1 1.1]) 


y lim ( [-3 1] ) 


set(gca, 'XTick', a) 


hold on 


plot(real(v), irnag(v),'b.' ,'MarkerSize' ,10); 
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v1 newtonf(v, 1E-100, 100, a, w); 


plot(real(a), imag(a)-1,'rp' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


plot(real(a), imag(a)-1,'rp' ,real(v1), imag(v1)-1,'b.', 


'MarkerSize' ,10); 


va = baf(v, a1, w1); 


v1a = baf(v1, a, w); 


abs (v-v1) 


%end of Demosl2J.m 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%%DemoRsl2.m 


%%Finds solutions to the 'Bethe-Ansatz like' equations 


%%a - vector of sites 


%%w - vector of weights 


%%K1 - number of points of the first kind 


%%K2 - number of points of the second kind 


!!­
0 

% K1 16; 

% K2 17; 

!!- a = [-1 1];0 

% w = [- • 51 -. 5]; 
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% nw = -10; 

% r = -10; 

K1 18; 

K2 19; 

a=[-11]; 

w = [-.51 -.5]; 

nw = -3; 

r = -3; 

w1 [nw]; 

w2 [nw]; 

for k=2:K1 

w1 = [w1 1 nw]; 

end 

for k=2:K2 

w2 = [w2 1 nw]; 

end 

v1 roots(ChebyshevPoly(K1)); 


v2 roots(ChebyshevPoly(K2)); 


v1 sort(v1); 


v2 sort(v2); 


figure(1); 


plot(real(a) 1 imag(a) 1 'rp' 1 
1 MarkerEdgeColor 1 'r' 11 

1 r 11 MarkerFaceColor 1 
, 1 

1 MarkerSize 1 ,10); 


set (gca 1 
1 YTick' 1 [ l) 


xlim( [-1.1 1.1]) 
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y lim ( [-3 1] ) 


set(gca, 'XTick', a) 


hold on 


plot(real(vl), imag(vl),'b.' ,'MarkerEdgeColor', 


'b' ,'MarkerFaceColor' ,'b' ,'MarkerSize' ,10); 


plot(real(v2), imag(v2),'bx', 'MarkerSize' ,7); 


vlnew = vl; 


vl_sites = append_sites(a,vlnew); 


vl_weights append_weights(w,wl); 


v2_weights append_weights(w,w2); 


v2new = v2; 


maxiterations 40; 


for 	k=l:maxiterations 

v2new newtonf(v2new, lE-100, 20, vl_sites, vl_weights); 

v2new sort(v2new); 

v2_sites = append_sites(a,v2new); 

vlnew newtonf(vlnew, lE-100, 20, v2_sites, v2_weights); 

vlnew sort(vlnew); 

vl_sites = append_sites(a,vlnew); 

end 

plot(real(a), imag(a)-l,'rp','MarkerEdgeColor','r' 

,'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 
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hold on 


plot(real(vlnew), imag(vlnew)-l,'b.' 


,'MarkerEdgeColor' ,'b' ,'MarkerFaceColor' ,'b' ,'MarkerSize' ,10); 


hold on 


plot(real(v2new), imag(v2new)-l,'bx', 'MarkerSize' ,7); 


vlr rf(vlnew,v2new, a, w,r) 


v2r rf(v2new,vlnew, a, w,r) 


%end of DemoRsl2.m 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%%newtonf.m 


%%function: [v,st]=newtonf(v_init, tol, maxiter,sites,weights) 


%%Computes the next iterate of v_init using Newton's method 


%%Input parameters: 


%%v_init: vector with initial points 


% for the Newton Iteration to be 


%%performed 


%%tol: tolerance value 


%%maxiter: maximum number of iterations 


%%sites: vector of sites 


%%weights: vector of weights 


%%Output: 


%%v: vector of points after applying the Newton's Iteration 


%%st: status of acuarracy 


104 




I. Kowalik MCMASTER - MATHEMATICS 

function [v,st]=newtonf(v_init, tol, maxiter,sites,weights) 

if nargin <2 

tol = lE-100; 

maxiter=20; 

end 

v=v_init; 


v = v-Jbaf(v,sites,weights)\baf(v,sites,weights); 


k=l; 


while abs(v-v_init) >tol *abs(v_init) & k<maxiter 


v_init=v; 


v=v-Jbaf(v,sites,weights)\baf(v,sites,weights); 


k=k+l; 


end 

if abs(v-v_init) > tol*abs(v_init) 

st =0; 

st=l; 

end 

%end of function newtonf 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Jbaf .m 

%%function Jac=Jbaf(v_k,sites,weights) returns the Jacobian 

%%of the Bethe-Ansatz equations at v_k 

%%Input parameters: 
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%%v_k: vector of values at which the Jacobian is evaluated 


%%sites: vector of sites 


%%weights: vector of weights 


%%Output: 


%%Jac: Jacobian of the Bethe-Ansatz equations at v_k 


function Jac=Jbaf(v_k,sites,weights) 


1 = length(v_k); 


[X,Y]=meshgrid(v_k,v_k); 


%off diagonal entries 


Jac -(X-Y). A2; 


Jac Jac+eye(L); 


Jac 1./Jac; 


%diagonal entries 


for k=l:L 


Jac(k,k) = sum(2./(v_k([l:k-1 k+l:L]) 

-v_k(k)) .A2)-(1./(sites-v_k(k)) .A2)*weights'; 

end 

%end of Jbaf 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%%baf.m 


%%function ba=baf(v_k,sites,weights) 
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%%Evaluates the Bethe-Ansatz equations at v_k 


%%Input parameters: 


%%v_k: vector of values at which the function is evaluated 


%%sites: vector of sites 


%%weights: vector of weights 


%%Output: 


%%ba: value of the function at v_k 


function ba=baf(v_k,sites,weights) 


1 = length(v_k); 


ba = zeros(size(v_k)); 


for k=l:L 


ba(k)=(l./(v_k(k) - sites))*weights' 

- sum(2./(v_k(k) - v_k([l:k-1 k+l:L]))); 

end 

%end of function baf 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%%ChebyshevPoly.m 


%%function coef = ChebyshevPoly(n) 


%%Given nonnegative integer n, the function computes the 


%%Chebyshev polynomial T_n. 


%%Output: 


%%Returns the result as a column vector whose mth 


%%element is the coefficient of xA(n+l-m). 
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function coef ChebyshevPoly(n) 

if n==O 

coef = 1; 

elseif n==1 

coe f = [ 1 0] ' ; 

else 

v coef2 = zeros(n+1,1); 

coef2(n+1) = 1; 

coef1 = zeros(n+1,1); 

coefl (n) = 1; 

for k=2:1:n 

coef zeros(n+1,1); 

for ind=n-k+1:2:n 

coef(ind) = 2*coefm1(ind+1) -coef2(ind); 

end 

if k<n 

coef2 =coefl; 

coefl = coef; 

end 

if mod(k,2)==0 


coef(n+l) = (-1)A(k/2); 
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end 

end 

end 

%end of function ChebyshevPoly.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%%Demosl2Complex.m 


%%function Demosl2Complex 


%%Computes and plots solutions of the 


%BA equations with three sites: O,l,a 


%%This algorithm plots roots of the 


%H-S polynomials and roots of the Van Vleck 


%%polynomials 


function Demosl2Complex 


%third site 


%a= input('a: '}; 


a= 0.7 + i; 


% a=i; 


%a= 0.5 + (sqrt(3}/2)*i; 


%degree of the Heine-Stieltjes polynomial 


%n = input ('degree of q: '}; 


n = 14; 
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lambda_O -.5; 

lambda_1 -.5; 

lambda_2 -.5; 

% lambda_O -1.1; 

% lambda_1 -15 

% lambda_2 -2; 

A zeros(n+1, n+1); 

k n; 

for iter=1:n+1 

A(iter, iter) -(1+a)*k*(k-1) + k*((a+1)*lambda_O 

+ a*lambda_1 + lambda_2); 

if iter==n+l; 

else A(iter+1, iter) a*k*(k-1) - a*lambda_O*k; 

end 

if iter -= 1 

A(iter-1, iter)= kA2- nA2- (k-n)*(1+lambda_O 

+ lambda_1 + lambda_2); 

end 

k k-1; 

end 

[X D] = eig(A); 


Cmatr=-1/(nA2- n*(1 + lambda_O + lambda_1 + lambda_2))*D; 


for j=1:1:n+1 


C ( j ) = Cmat r ( j , j ) ; 
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end 

for 	iter=1:n+1 

p= X (:,iter); 

y(:, iter) = roots(p); 

end 


%Compute the coordinates of the incentre of the triangle 


%with vertices 0, 1, a 


distanceO sqrt(sum(([O,O]-[real(a), imag(a)]) .·2)); 


distance1 sqrt(sum(([1,0]-[real(a), imag(a)]) .·2)); 


incenter = (distance0/(distance0+1+distance1))*[0,0] 


+ (1/(distanceO + 1 + distance1))*[1,0] + 


(distance1/(distance0 + 1 + distance1))*[real(a),imag(a)]; 

b1 [[0,0]; [incenter(1), incenter(2)]]; 

b2 [[1,0]; [incenter(1), incenter(2)]]; 

b3 [[real (a), imag (a)]; [incenter (1), incenter (2)]]; 

bind= 1:2; 


k=1:n; 


j=1 :n+l; 


j1=1:n+1; 


b1 


figure(2); 


plot (y (k, j) , 'b.' ) ; 


hold on 
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plot (b1 (bind, 1), b1 (bind, 2), 'b-'); 


hold on 


plot (b2 (bind, 1) , b2 (bind, 2) , 'b-' ) ; 


hold on 


plot(b3(bind,1), b3(bind, 2), 'b-'); 


hold on 


p1ot(C(j),'ro' ,'MarkerEdgeColor' ,'r', 


'MarkerFaceColor' ,'r' ,'MarkerSize' ,10); 


xlim ( [-. 1 1. 1] ) 


y lim ( [- 0 . 1 1. 1] ) 


hold off 


%end of Demosl2Complex.m 
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