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ABSTRACT

We investigate a special case of the quantum integrable Heisenberg spin chain
known as Gaudin model. The Gaudin model is an important example of quantum
integrable systems. We study the Gaudin model for the Lie algebra s(;(C). The
key problem is to find the spectrum and the corresponding eigenvectors of the
commuting Hamiltonians. The standard method to solve this type of classical
problem was introduced by H. Bethe and is known as the Bethe-Ansatz. Bethe‘s
technique has proven to be very powerful in various areas of modern many-body
theory and statistical mechanics. [19], [14], [4]

Following Sklyanin‘s ideas in [19] , we derive the Bethe-Ansatz equations for
sl(C). Solving the Bethe-Ansatz equations is equivalent to finding polynomial
solutions of the Lamé differential equation, which has a meaning in electrostatics.
We derive this equation for sl;(C), and investigate its special cases. We discuss
classical and more recent results on the Gaudin spin chain for sl(C) and provide
numerical evidence for new observations in the real case of the Lamé equation.
Using roots of classical polynomials known as Jacobi polynomials, which are
solutions to a special case of the Lamé equation, we numerically approximate
solutions to the Lamé equation in more complicated settings.

We discuss the Gaudin model associated to the Lie algebra si3(C). Using the

Bethe-Ansatz equations for sl3(C), we provide solutions in special cases.
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Chapter 1

Introduction

The Gaudin spin chain model corresponding to the Lie algebra sl;(C) has
been extensively studied. The Bethe-Asantz was introduced in the context of spin
chains in quantum physics. The problem of diagonalizing the Gaudin Hamiltoni-
ans is equivalent to solving the Bethe-Ansatz equations [19]. An equivalent to the
Bethe-Ansatz equations, which relates to infinite dimensional irreducible repre-
sentations of sl;(C), is a classical differential equation called the Lamé equation,
which has an electrostatic interpretation. The Lamé equation was developed by
Heine [7] in the 19th century in the context of orthogonal polynomials. In special
cases, solutions to the Lainé equation are classical orthogonal polynomials called
Jacobi polynomials.

For cases of the Lamé equation corresponding to infinite dimensional repre-
sentations of sl;(C), the exact number of solutions and their distribution on the
real line are known. This result was first proven by Stieltjes in 1885 [21], and is
known as the Heine-Stieltjes theorem. In the finite dimensional case, still rela-
tively little is known. Recent work in this area, [12], shows interesting patterns in
the complex case.

We derive the equations and prove some of these results. For each of the

1
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discussed cases, we provide numerical algorithms. We observe and provide nu-
merical evidence that in certain cases, a solution to a simpler problem, to which
solutions are completely described, can be used to approximate solutions in more
complicated settings. We numerically obtain a single solution to our problem
from iterating two sets of distinct solutions. Finally, we provide numerical evi-
dence that there exist solutions to equations that are similar to the Bethe-Ansatz
equations corresponding to the Gaudin spin chain model associated to the Lie al-
gebra s(3(C). The case of the Gaudin Model to sl3(C) has recently sparked the
interest of researchers, [13], [14], however, much is still unknown. We provide a
method of finding solutions in a special setting and explain why the Heine-Stieltjes
theorem does not hold in the si3(C) case.

We begin the discussion with a basic introduction to quantum mechanics, ex-
plaining the terminology and mathematical formulation of a quantum mechanical
system.

In chapter 2, we describe the Gaudin spin chain model, introduce the Gaudin
Hamiltonians, and explain the correspondence with the Lie algebra sl (C). The
commutativity of the generating function corresponding to the sf;(C) Gaudin
model is then proven, which implies commutativity of the Gaudin Hamiltonians.

The Bethe-Ansatz is an approach to find joint eigenvectors and eigenvalues of
Gaudin Hamiltonians. In chapter 3, we prove that solving Bethe-Ansatz equations
is equivalent to diagonalizing the generating function.

Chapter 4 discusses two equivalent methods to describe solutions to the Bethe-
Ansatz equations associated to the sl;(C) Gaudin spin chain model. The Bethe
vectors can be thought of as a collection of numbers satisfying critical point equa-
tions of the Master function. The other way to solve the Bethe-Ansatz equations
is by looking at polynomial solutions of a differential equation called the Lamé

equation.
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In Chapter 5, we discuss solutions to the Lamé equation in the case of two
real sites. These solutions correspond to classical orthogonal polynomials, known
as Jacobi polynomials. This Chapter begins with an overview of the theory of
orthogonal polynomials and discusses a subclass of Jacobi polynomials, known
as Chebyshev polynomials, in more details. The last section of this chapter shows
how the theory of orthogcnal polynomials is used to obtain numerical solutions of
the Lamé equation in this special case.

Chapter 6 contains experimental numerical results. We provide numerical ev-
idence for obtaining approximations of solutions to the Lamé equation of more
than two real sites using numerical approximations of roots of Jacobi polynomi-
als. We also make observations and provide numerical evidence of the existence
of solutions to other equations that are similar to the Bethe-Ansatz equations for
slh(C).

In chapter 7, we consider the Lamé equation with complex parameters and
having three complex sites. This special instance of the Lamé equations is then
translated into an eigenvalue problem. Finally, we provide expository discussion
on the recent progress in this direction and deliver numerical algorithms for each
considered variant.

The Gaudin spin chain model can be associated to any semi-simple Lie alge-
bra. In chapter 8, we derive a solution set of the Bethe-Ansatz equations corre-
sponding to the Lie algebra sl3(C). We end the thesis with concluding remarks

and outlook for future rescearch in this area.



Chapter 2
Quantum Mechanical Systems

This chapter is a basic introduction to quantum mechanics. We explain the

terminology used in quantum mechanics and mathematical formulation.

2.1 Mathematical Formulation of Quantum Mechan-
ics

The foundations of quantum mechanics were established during the first half
of the 20" century by Werner Heisenberg and Max Planck. The mathematical
formulation of quantum mechanics was developed by Paul Dirac and John von
Neumann, [16].

The state of a system at a given time is described by a complex wave function,
and more generally, by non-zero vectors of a complex Hilbert space called the
state space. An element of this space is called ket and is denoted by | >.

An observable is a physical quantity that can be measured by an experiment
and whose result is a real number (for example: energy, position, momentum of

a particle). Each observable is represented by a Hermitian operator acting on the
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state space.

Quantum mechanics does not assign definite values to observables; it makes
predictions about probability distributions (i.e. the probability of obtaining each
of the possible outcomes from measuring an observable). These probabilites de-
pend on the quantum state at the instant of the measurement. The states that
correspond to a definite value of a particular observable are known as eigenstates.
Each eigenstate of an observable corresponds to an eigenvector of the operator
and the associated eigenvalue corresponds to the value of the observable in that
eigenstate. The possible results of a measurement are the eigenvalues of the oper-
ator - which explains the choice of Hermitian operators for which all eigenvalues
are real.

In quantum mechanics, we are interested in finding the spectrum of commut-

ing operators.

2.2 Quantum Integrable Systems

Although there is no formal formal definition of a quantum integrable system,
there is a working definition that is analogous to a definition of an integrable sys-
tem in classical mechanics. The notion of Poisson commuting functions, which
occurs in classical setting is replaced with self-adjoint, commuting operators on a
Hilbert space in the quantum setting. Since there is no clear definition of indepen-
dence of operators, except for special classes, the working definition of a quantum
integrable system requires the existence of a maximal set of commuting operators

including the Hamiltonians.



Chapter 3
Gaudin spin chain for sl,(C)

The first section of this chapter introduces a quantum integrable system called
the Gaudin spin chain model and explains its association to the Lie algebra sl;(C).
We explicitly write the Hermitian operators of the system; called the Gaudin
Hamiltonians. Next, we define the generating function #(ux) and prove its com-
mutativity property, which in turn implies commutativity of the Gaudin Hamilto-
nians. Next, we introduce the Bethe-Ansatz method and prove that solving the

Bethe-Ansatz equations is equivalent to diagonalizing the operator ¢ (u).

3.1 The Gaudin spin chain model for s[,(C)

We study an integrable quantum system associated to the Lie algebra sl (C)
called Gaudin model of statistical mechanics.
Let e, f, h be the generators of the Lie algebra sl (C) satisfying the commuta-

tion relations:
[h,e] =2e

{haf] =-2f
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le,f1=h.
Denote by V3, an irreducible representation of sl,(C) with the highest weight
A and the highest weight vector |0 > (also called vacuum) with
e|0>=0

and

hl0 >=A0>.
The Casimir operator ! for sl (C), which commutes with all elements of sl (C)
is given by:
1>
2t:ef+fe+§h 3.1

Please refer to Appendix A for a discussion on sl (C) representation theory.

Proposition 3.1.1.
oy — AA+2)
2
Proof:
1
2|0> = ef|0> +fe|0> +§h2|0 >
1
= fe|0> +e, f]|0 > +fel0 > +5h2|0 >
1
= m0>+ymw>
= AO0>+A%|0>
AA+2

g

A spin chain can be visualized as a string of particles with magnetic spin. The

7
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Gaudin model is a quantum spin chain where the space of states of the model is
the tensor product of irreducible sl (C) representations. The Gaudin Model can
be associated to any semi-simple complex Lie algebra, [19], [14], [4], [18].

Let (A) := (A, ...,An) be a set of the highest weights of sl,(C). Consider the
tensor product:

W=V, ®---QV,

Associate with each factor V,_, a distinct complex number o, forn =0---N, also
called sites.

Denote by |0 > the tensor product of the highest weight vectors:
0>:=[0>®---®|0 >y

Each Vj_ is a spin space on n particles located at distinct points 0, &, ..., 0.
Denote the action of f,4,e on the n'® factor of the tensor product by f,,/,, e,
respectively. In particular, f, acts as f on the #*” factor of the tensor product and
as the identity on the rest. The mutually commuting linear operators in the Gaudin

model, called Gaudin Hamiltonians H,, are given by

1
>hnh
B, = Y, Sdnten Lol o, N (32)
o, — O
mfn n m

Let u # a,Vn.
Consider rational functions with coefficients in the Lie algebra sl;(C) that

form the following one parameter operator families:

Wy =y
nzou—(xn

N
€n

elun) =
W=}
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N
fw=Yy

n=0 u— an.

The operators e(u), f (1), h(u) form the highest weight module over the infinite

dimensional loop algebra derived from the Lie algebra sl,(C) where

e(w)|0>=0
h(u)|0 >= Mu)|0 >

and a scalar function called the highest weight

N
=Y f"an.

The bracket relations of the loop algebra are given by:
N [hm en]

[(u),e(v)] =},

n=0 (u— (X.n) (v — Oly)

N ey,
o = (u—ay)(v—oi,)
2 X en e,
:v—un;)(u—a,, B v—ozn)
_2(e(u) —e(v) (3.3)
i), £ ) = LU= T0) 64
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le(u), f()] = W (3.5)

le(u),e()] = [f (), f(v)] = [(u),h(v)] =0 3.6)

We differentiate h(u),e(u), f(u).

' &
h (u) = _r;) (u_an)z
N
/ . Jn
f (u) - _r;) (u_an)z
/ > €n
e (M) = _n;() (u_an)z
Using #'(u), f' (1) and €' (u) the following brackets are computed:
N 2e, ’
[h(u),e(u)] = ngo(u_—an)z = —2¢'(u)
N 2fn ]
[A(u), f(w)] = _n;)(_u——(l—n)z =2f"(u)
Y by /
le(u), f(u)] = ngom =—h'(u)

Replace e, f, h with e(u), f(u),h(u) in the Casimir 3.1 and define the generat-

ing function #(u) :

24(1) = e(u) F(u) + £ (w)e(u) + %hz (w). 3.7

10
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Proposition 3.1.2. [t(u),i(v)] =0,Vu,v.

Proof:

20w 1) = 2()) 1))

= (@) +70e) + 370 ) (c0)70)+70)e) + 570))
= (00 + 10260+ 370) ) (e @)+ £+ 3720
= ) (ue(V)F) + ) (£ ()elv) +eu) (1) S20)

et f () + £ )@ (0)e(v) + fw)e(u) 5720)

b SR @em)F) + g H W) )elr) + I W)

— el () — e(¥)F3) fw)e(u) () (V) SAC)

— F0)elve) (1)~ F$)e()F)e(w) — F(4)e() 320

1 1 1
= SH)e()f ()= S7* (V) f W)e(w) = 7h* (V)% (w)

The above expression is easily rewritten such that it only involves brackets:

e(w) f(u),e(v) f(v)]+ le(u) f(u), f(v)e(v)] (3.8)
+ [f(w)e(u),e(v)f(v)]+ [f (w)e(u), f(v)e(v)]
+ le(u) ), %hZ (v)] + [f(u)e(u), %hz (v)] (3.9)
+[3720.e70)] + 3000 G0

Using the Power Rule (ref. Appendix B) for Lie brackets and the bracket
relations 3.3, 3.4, 3.5, and 3.6, we further expand the above expressions. We first

expand each bracket individually:

11
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[e() f (u),e()f (V)] = [e(u)f (),e(v)] F(v) +e(v) [e(u) £ (v), F(V)]
= [e(),e(W)f () f(v) +e()[f(u),e()] £ (v)
+ e(v)[e(w), FW)]f(u) +e(v)e(w) [f(w), f(V)]

= o (M) 1) 4ot (M) s

u

Similarly, we expand the remaining brackets and obtain:

() (), F(V)e(¥)] = (h(") h(v)) FI)el) (M)

u u—v

et e) 0] = (M2 oy 10) et (LA=H2)

v—u

.7 0)e)] = 100 (M= ety 70 (HI= ) e

v

s, 5#0)| = (=) rane) +et (L1

u

+ a0) (220 )+ e (L2 =12)

1%

12
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set). 30| = (P e + s (€= ) o)

u—v

+ by )( fv)— f(u))e( )+ h() f(u )(e(u) e(v))

1%

th(”)’e(")f (")] = (e(uv)::(v))h( )f(v)+ h(u )(M) £
T e) (Z(i),—_,{“(v—)) h(u) + e(v)h(u) (ﬁ“i__{(vl)

After grouping the expanded brackets and making appropriate cancellations,

expression 3.8 becomes:

ulv(— e(u)h(v)f(v) +e(h(v)f(u) + f (u)h(v)e(v) — f(v)h(v)e(u)

+ e fWh) —h)e()f(u) — f(w)e(h(v) +h(v)f (v)e(u)
+ h(w)e()f(v) —e(v)f(v)h(u) — h(u) f(v)e(v) + F(v)e(v)h(x))

We group the terms to obtain new brackets:

13



1. Kowalik MCMASTER ~ MATHEMATICS

(e () F)e(r)h) + h()f()e(w) ~ (@) F)
+FA(V)e(v) ~ h(V)e(w)f ) + () f(V)AY) — FO)h(V)elw)
Fhu)e(s) 1) () f(Vh(w) + F(7)e(w(u) — h(u) ()elv)

= ([e(h), £)] + )6 )]

L), A0)e()] + [e(w), O] G.1)
+ 1), (0] + [F0)ev), 1)

We then merge these brackets in the following way:

e (), £ ()] +[f (u), h(v)e(v)]
= [e(), f()]h(v) + () [h(v), f ()] + [f (u), (V)] e(v) + B(v) [ (), (V)]

B (M) h(v) — 2e(v) (f (v) - f(u))

u—y u—vy

—2 (M) e(v) +h(») (h(u) h(v))

u

= L (h0)h(v) — h(u)h(v) — 26(v) F () + 2¢(v) £ (1)

(v) +2f(v)e(v) + h(v)h(u) — h(v)h(v))

= uiv ([f(v),e()] + [e(v), f(®)]) (3.12)

14
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[R(v) £ (v), e(u)] + [e(u), f(V)A(V)]
= [1(v),e@)] f(v) +B(V) [f(v),e(w)] + [e(u), F(W)] A(V) + £ (V) [e(u), A(v)]

:( e(v)—e(u)) )y )(M)

(h(ut)t h(v)) B) = 26(9) (e(v) {(@)

=— (2e(v) f(v) —2e(u) f(v) + h(v)h(u) — h(v)h(v))
_ ;i_v (h()h(v) — h(V)h(v) — 2f (V)e() + 2f (v)e(w))
B uiv([e(V),f(V)]Jr [f(v), e(m)]) (3.13)

We observe that brackets are anti-symmetric in variables # and v. Thus, group-

ing expressions obtained in 3.12 and 3.13 gives:

):e(v)] +[e(v), f()] + [e(v), fF (V)] + [F(v), e(w)])

_ ugv <_h(\ut)£ :iz(v)) . (h(ul)t:ﬁ(v))
=0

Finally, we expand the remaining brackets in equation 3.11 and obtain the

desired cancellations.

15
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[2(u),e(v)f (V)] + [F(V)e(v), h(u)]
[1(u),e(W)] f(v) +e(v) [A(w), f(v)]
+ [F(W), h(u)]e(v) + f(v) [e(v), h(u)]
( e(u)— e(v)) V) +2¢(v) ( u) {gv))
_ 2( () f(v))e(v)+2f( )( u)—e (V))
i (—e@) f(v) +e() f(v) +e(v) f(u) —e(v) f())
+ 5 (fWe)+ f()e(v) +f(V)e(w) — f(v)e(v))

s (F () e(w)] + [e(v), £ (w)])
2 (M) _ re-te)

u—v u—v u—v

It

= 0

Proposition 3.1.3. The vacuum vector |0 > is an eigenvector of the operator t(u).

Proof:

(@10 5= (e ) + £+ 342w ) 0>
=2 ), F]10 > +F()e(w)|0 > + A (w)]0 >
- %h’(u)|0 > +%h2(u)|0 >
=%7\.(u)|0 > —%N(u)IO > (3.14)

16
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O
We also observe that:
Proposition 3.1.4.
N 1
, H I +2
)=y ——+ el Gl 2)
n=0 4 — On (u—ay)
Proof:
1
t(u) = e(u)f(u) + f(u)e(u) + 5/12(")
— ﬁ‘ Z enfm~+ fnem+ %hnhm enfn+ fnen+ %hﬁ
n=0mdZn (4 — 0t ) (4 — Qi) (u— a)?
_ i Z enfm"’fnem‘i‘%hnhm ( 1 _ 1 ) + t
n=0m#n O — Oy Op—U Op—u) (u—0y)?
N 1 2
= Y, L 4}””(}””2) (3.15)
n=0 %~ Oxn (u_aﬂ)
O

Proposition 3.1.5. Gaudin Hamiltonians are diagonalizable.

Proof: We need to show that:
[Hp, H,,] = 0,n # m.

By Proposition 3.1.4, we deduce that

N N H
Yy H Y, —— | =0,u#v
n=o ¥ —0n ,ZoV—Wn

17
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Choose N = 1. Then,

, =0.
Hg H, Ho H;
U—Ogu—0j V—Ogv—0o
1 1
HOa]H[ + H,H :0
a0y —an) B oy Gy - !
> [H(),Hl]zo.

3.2 Bethe-Ansatz equations for s[,(C)

The Bethe-Ansatz is an approach to find joint eigenvectors and eigenvalues of
Gaudin Hamiltonians 3.2. The equations which determine these special vectors
are called the Bethe-Ansatz equations and the joint eigenvector that corresponds
to a solution of the Bethe-Ansatz equations is called the Bethe vector.

We recall a well known theorem from linear algebra:

Theorem 3.2.1. Hermitian operators commute if and only if there exists a basis

of eigenvectors that is common to both.

Definition 3.2.1. The Bethe vectors are defined for any finite set of complex num-
bers V as |V >:=[I,cqp f(¥)|0 >

Theorem 3.2.2. [19] The vector |V > is a joint eigenvector of the commuting
Hamiltonians, or equivalently of the operators t(u) if and only if the spectral

parameters v € V satisfy the Bethe-ansatz equations:

18
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2
AMv)=) —,Wwe¥?
Vévv—v’

The corresponding eigenvalue t(u) of t(u),

t(w)|V > =t(u)|V >

is then
() = ~32(u) — 23, A(u)
u)—4 ) — 0uMu
where
) =)~ ¥ —
v€|"l/>u_v

3.2.1 Proof of thecrem 3.2.2

Let ¥V = {v1,v2,...;Viy--, vk }, Vi € C.

F@)vi >= f(u)f(vi)|0 > = |v; U{u} >= [vju >

SV >=[VU{u}>

Equation 3.19 follows from the definition of Bethe vectors.

19
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Lemma 3.2.1.

)|V > = (x(u)— Yy ML) V>+ Y u—fvw\{v}u{u} >

yep ¥~V veV

Proof: We use induction with base case given by:

B> = ORI >+ 2 () = F)
— SO0 >~ () - £ ()

= ?»(u)lv,- > —

(> i >)

= Mw)+—)lvi>-

|u >
Vi—u Vi—Uu

= (M) ——=)lvi>+

lu >
u—yv;i Uu—vj

Inductive Hypothesis: Let W = {v...v,—1} Assume the statement is true for
W, i.e.

hu)|W >= (x(u)— y 2 ) W+ Y ;—3—v|‘W\{v}U{u}>

ve‘Wu——v vew

20
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h(u)|V >

Lemma 3.2.2.

e(u)|V >

MCMASTER - MATHEMATICS

h(u)|vpvi...vy — 1 >

f(vn)h(u
S va) (Mu) — Z = )I‘W>+ Y —'I‘W\{V}U{u} >)
vew vG‘W
2 luvy vy > — [Vavy -« Vp—1 >
u—vy u—vy,
A@) |vuvr - Vg1 > — Z [Vavie-vp—1>
ve‘Wu—
2
Z — | W\{v}u{u} >
u—1v
vew
2
[vy-« Vg > — Vi vy >
Uu—vy Uu—"vy
2
AMu)lvy v, > —vezwu_vm vy >

|V1 e Vp—1U >

2v vie--vn >+ Y, —I‘W\{v}U{u}>+
o vew #

(x(u)— y u—f—;) v >+ Y -——|‘V\{v}U{u} >

veV ve'l/

- ¥ (x(u x(v)—évz( ﬁ))

2 '
> |V\{v,V}U{u} >

_+. —————
v eV vty (u—v)—v)

Proof: To prove Lemma 3.2.2, we also use induction. Base case:

21
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e(Wi> = f(vi)e(w)|0>+ %f_h(_

i) 0>
u

— W%u(h(u)m > —h(¥]0>)

- = L —(A()[0 > —A()[0 >)
= L awlo>-2m)o>)

u—yv;

Inductive Hypothesis. Let W = {v;...v,—1 } Assume that the statement is true

for W, i.e.

1 1 1

eW|W> = ve):w—u_v(x(u)—x(v)—£v2<u_v,—v_w))m/\{vb
2

MR P e

wew A/

| W\ {v,v'}U{u} >

22
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e(u)|V >

MCMASTER - MATHEMATICS

e(u)|v,,v1 e Vpy >

fe@)vy--ve—_1 >+ — V-1 >
1
fvn) v;ﬂ——(?\.(u —Mvy) — Vé‘)Z ( —v’) NY\{v} >
2 /
f(Vn) V’VG;W#‘/ —m| W\{V, v } U {u} >
—h(u) | W >

ZW———vX(u)f (a)|W\{v} > + Z;V SA(n) f(n) [ WAV} >

1
P g (52525 )7 oIW\0 >
F(vn) ( v’) |\ {v,v'}U{u} >

vv’e"Wv?év’

u—lv ((k(vn)— Z " |‘W>) Z ” I"W\{v}U{vn} >)
" vew vew 'n

- ((x(u)— y —|W>+ Y - )I‘W\{v}u{u})

Vn vE‘W ve "W

VGZVV"—_MU)|W\{V}U{V,,} >~ M)W >

EZ:,WM— M) [ WAL} (o} >+ A) W >

Pk (u_",—v_‘,)IW\{v}U{vn}>

V,VG%V#‘/Z(u_IVI— _1 )|'W\{V,V’}U{u}u{vn}>

u lv,, ng —v|w>+u lv,,v;ﬂnz_VIW\{v}U{vn}>
Ly 2 iwsos 1v Zu_z_v|‘l/V\{v}U{u}>

U="Vn Ewu v Byew
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= ¥ - ()M >

veV
+ vezrwuivv;f(u—l‘/_VTI‘/)"W\{V}U{V"»
+ V’EW—(L{_—V)%M_—V,)|W\{V,V'}LJ{M}>
LD MR s e (Ll W e e LA LA
+ v5m|W>—v§Vm|W\{v}u{u}>

_ Z—uiv(k(u)—k(v))|‘V\{v}>

o
+ vez;‘,Vuiv‘évz(u—lv’_v~1V’>|W\{v}U{vn}>

+ u_’vnvg(u_l\,—ﬁ)th{v}um}>

+ v,vgw—m|‘[/l/\{v,v’}u{u}>

- m|W\{v}u{u}>

_ vg/_uiv (k(u)—?»(v)—vév2<u_1v,—v_lvl>>|‘V\{v}>
+ A} U} >

WWEV vy @=v)—v)

We also compute the following brackets:

Lemma 3.2.3.

[6(), £ 01)] = —— (F()h(v) — F i) ()

u—v;

24



1. Kowalik

Proof:

[22(u),

fi)

+ o+

MCMASTER - MATHEMATICS

5700+ e+ Fw)e(e). 03|
| 57200, 500 + @ )00 + W) 0]

| 300,05 | G + 30) ), £
(), )]0+ () £, £ )
) £ )] )+ @) (), £(00)
0101 90

h(u) h(v,)f() ~ fu )h(u) h(v,)

u Vi u—vj

;_—Vi (f (w)h(w) — £ (vi)h(vi) + h(w) f (u) — h(w) f (vi))
u—l—v (h(u) f () + h(vi) f (u) — f(u)(u) + f(u)h(vi))
L (H0) £ 0) = S 0)+ £ G) = SO G)

;{_Vi (F)h(vs) + [A(vi), £ ()]
FC)R(ve) = Fi)(u) = [F (i), ()] - £ (i) (w))
;f_v; (2f (u)h(vi) = 2f (vi)h(u))

= .S = —— (FGhG) ~ )G (320

O

Using the above as the base case we formulate the following recursive proce-

dure:

25
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[#(), f(v1)F (v2)..f (V)]
= [t(), (1) f (v2) oo f )] (V) + F 1) f (v2) oS (V1) [1(1), F (V)]

Lemma 3.2.4.

1
u—v;

[#(u),e(vi)] =

(e(vi)h(u) —e(u)h(vi))

26
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Proof:

[2¢(u), e(vi)]

Lemma 3.2.5.

+ b

= [1(),e(v)] =~

MCMASTER -~ MATHEMATICS

|57200+ e 0) + F@helude0s)|
[gmu),e(v»] Lo f (), e(vs)] + FW)e(w),e(vi)]

3000 B+ 3406) 40 0]
(), ()] 0+ () [F ) 0)]
L) (0] )+ £(6) (), )
e(u) e(vl)h( ) h( )e(u) e(v,)

(s )’“(“) =20 4 )+M (1)

Fv‘,- (—e(@)h(w) + e(vi)h(u) — h(u)e(u) + h(u)e(v;))

_1_‘; (e(u)h(u) — e(u)h(vi) + h(u)e(u) — h(vi)e(u))

o (el + () — e(uh() — Wi )e(u)
({0 + e(h(u) + () (o)
e(h(v) ~ e(wh(v) ~ [h(:). e(w)])

— - e(v)h(u) ~ 2¢(u)h(v)

_lvi (e(vi)h(u) — e(u)h(vi)) (3.21)
O

1), )] = = (F)elt) = S W)

27
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Proof:

MCMASTER - MATHEMATICS

2rAD] = [0+ e+ 1)) )

[e(u), h(vi)] f () + e(u) [f (1), R (vi)]

+  [f (), h(vi)le(u) + £ (u) [e(u), h(vi)]
A
2f(u) :i(vl)e(u) +2f(u)e(u) _e(vi)

u u—v;

2

|50 0| + ) 7)) + @Dl )

= (e(u)f(u) +e(vi) f(u) — e(u) f(u) + e(u) f(vi))

u—vj
2
U—vj

2

(f(w)e(u) + f(vi)e(u) + f (w)e(u) — f (w)e(vi))

= (f(vi)e(u) +e(u)f (vi) — e(vi) f (u) — f (u)e(vi))

Uu—y;
2

= (f(vi)e(u) + f (vi)e(u) + [e(u), f (vi)]

u—yv;

— FWe) — e f@)] — F(u)e()
= 2 (af(v)e(w) — 2F We(w))

u—v;

—> [0, h()] = 7 (F0)e(w) — Fu)e(v)

Proof of theorem 3.2.2

28
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t(u)

+ + + +

MCMASTER - MATHEMATICS

lviva...vk >= [t(w), f(v1)] |v2...vk >
Fv) [t(w), f(»)]|vs...vg >
F1)f(v2) [t(w), f(v3)] |[va...vg >

F)f(v2)-- f(vk-1) [t(w), f(vk)] |0 >
S f(v2)... f(vg)e(u)[0 >
—— (FWh(1) = SOV v >

_1v2f(VI)(f(u)h(vz)—f(V2)h(u)) v >

f (v1).f(v2) -« f(vk—-2) (f(Wh(vk-1) — f(vk—1)h(%)) [vk >

_— va 1) -+ fvk-1) (F@h(vk) — f(vi)h(u)) |0 >
f (Vl)f (v2)...f (VK)t(u)IO >
) |V2 Vg >

(f(u (7\(1’1) Z

|uvz ve\{ve} U{v1} >)

(f(V1)(‘~(u) ): >|V2"'VK>

|v1V2 -ve\{ve} U{u} >)

if

)’i

K
__ v (f(v1)f () (Mm) _kgf; - 3vk) vy --vg >
K
k§3 V2 — Vi luvivs - ve\{vi} U{v2} >)

29
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ST .

|V1v2 v \{vi} U{u} >)

i

+ - _lf(Vl)f(V2)"'f(VK—z)f(u)(l(VK—l)
2 2
— ———)‘VK>+———|MV1VZ---VK_1 >
VK- 1_'VK VK—-1—VK
i f(Vl)f(Vz) fvk-2)f(vg—1)(Mu)
2 2
— )vi >+ |MV1V2--~VK_1 >
— VK u—vg
b ) FR ) F@ATR)IO > = () FM )]0 >
K u—VK

T ORI

We group all terms that are not the eigenvector, i.e. the terms that involve the

spectral parameter u.
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1 K
— (l(vl ) luvy---vg >

1 2
+ Q\,(V2) - Z |uv1V3- VK >
u—vy k=3 Vo — Vg
+
1 K 2
+ ———(Mvk2)— Y, —— | w1+ vg—3vg_1vk >
U—vg_o k=K—1 VK2 — Vi
1 2
+ —_— X(VK_l)—— |uv1---vK_2vK>
U—vg-—1 VK—1—VK
1
+ Avg)|uvy - vg—1 >
u—vg
and
K
Uvy .-y, vepUvig >
— V1kZV1 vy - vg \ {ve } U{v1}

£
Z |V1V2 . -VK\{Vk} U {u} >

U=V, U=V

K
2
U
u—v223vz Vk|uv1V3 ve \ {w}U{n}>

K 2
) = vklwvz---vx\{vk}u{u} >

U—V2 =3

1 2
luvy---ve_1 >
U—VK_1VK—1—VK
1 2

|MV1VZ s VE_1 >
U—vg-1u—vg

31
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We observe that the vectors in 3.24 have the following coefficients (we use

partial fraction decomposition):

|uv1v2 ceeVRE_1 >

1 2 1 2
u—vy1vy —vg U—viu—vg
1 2 1 2
+ —
Uu—vyvy —vg U—vyu—vg
1 2 1 2
+ -
U—VK—-1VK-1—VK U—Vg-1U—Vg
1 2 2 2
Uu—vg u—vi u—vy u—vg—1
2 2 2 2
+ - + -
u—vi VK —WV] u—vy VK — V2
2 2
+ -
U—VK-1 VK —VKk-1
1 2 2 2
u—vg Vg — Vi1 VK — V2 VK —VK—1

1 k-1 9
N _u—vK kg’vi—vk

|uv1vz < VRK_2VE >
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1 2 1 2
U—v1vy —Vg—-1 U—viu—vg—1
1 2 1 2
+ —
U—vavy—Vvg_i U—vau—vg_1
1 2 1 2
+ —
U— VK2 VK2 —VK-1 U—VK-2U— VK1
1 2 2 2 2
— (_ — ——e— -+
Uu—vg—1 Uu—vi Uu—vy Uu—vg_o u—vi
2 2 2
— + — + e
VK-1—V1 U—vy Vg-1—V2
2 2
4 —
U—VK-2 VK—-1—VK-2
1 2 2 2
U—Vg-1 VK-1—WV1 VK—-1—V2 VK—-1—VK-2

_ 1 Kf 2
U—VK-1 \ j=1 VK-1—Vk

luvivy -« -vg_3vk_1vg >
Uuvivz---vg >

1 2 1 2

U—vivy—vy U—viu—vy

1 2 .2 \__1 2
- Uu—vy \uU—w Vo —V _u—V2 V2 —V1

Thus the terms which involve the spectral parameter 1 (Equations 3.23 and
3.24 ) take the following form:
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k=K —1 VK-2 —Vk k=1 VK—2 — Vg

1 K 2 K3 2
+——2 Mvk—2) — Z —Z |uvy - vg_3vg—_1vg >

1 2 k2 9
+ — 7\.(171(_1)————-—— Z _ |uv1-~vK_2vK>
U—VK—1 VK-1—VK ;=) VK-1—Vk
K—1 2
+ Mvk)— Y, luvy - vg_ > (3.25)
u—vg k=1 VK — Vi

We now consider the remaining terms in equation 3.23 (i.e. the terms that

contribute to the coefficient of vector |vy ---vg >).
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S (0 )

Au)

u VK

_2 ___I
+ 7M7) — 5V (W)
1

~ by~ Ivw-aw ¥,
4 2 k=1

U= Vi
1 ¥ 2 1 & 2 1 o)
+ Z -+ Z NI
U—V] UV U=V, [ U~V U—VK_1U—VK
K 1 K
tr T3 (3.26)
k;l (u—vi)? ,Z"l(u—vk

Remark: In equation 3.26, we added and subtracted the term:

)2(

uvk
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Consider the terms:

1 & 2

MCMASTER - MATHEMATICS

1 & 2
) + )y
U—V] g U— Vg U—V2 iU—

NIRRT
1 2 1

K
+
U—VE_1U— Vg k; (1 — v )?

in equation 3.26 .
Lemma 3.2.6.

1 ¥ 2 1 K 2

u—vlkg’zu~vk+u—v2k§’3u—vk
K 1\
- (5)

Proof of Lemma 3.2.6:

36
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1 XK 2

MCMASTER - MATHEMATICS

1K2++12K1

)}

u—vi k:2u—vk

+ —_—
u—vzéu——vk U—VK_]U—VK k;l(u——vk)z

Uu—viu—vg

U—VyU—Vg

U—viu—vg

1 2 1 2 1 2 1 2
= +...+ _|_
u—viu—vy U—viu—v3 U—viu—vg_
1 2 1 2 1 2 1 2
+ +- +
Uu—vaou—vs U—vryu—vy U—vru—vg_1
1 2 1 2 1 2 1 2
+ +- 4 +
U—viu—v4 U—viu—yvs U—viu—vg-i
+
1 2 1 2
+
U—Vg_r2U—Vg_1 Uu—vg_rU—Vvg
1 2 K71 \?
+ +):< )
U—Vg_1U—vg k=1 Uu—vg
1 1 1 & 1 1 1
= 2, s Db trd) Mo
2 U — V] u V3k:1u Vi u—V4k=1u Vi

+ +
~
S

1 + 1 Kz—:l )+Z(u Vk)z

11 12 2
+ +21 )
U—Mu—vy u—vy k:l”_

u._
2
=1 U—vg

Thus the coefficient of vector |v; - -

vk > (equation 3.26) becomes:
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2
) (3.27)

L2t — v — ) Y 3
P02 Y o (1

letV

Finally, we group equations 3.25 and 3.27 and obtain:

t(u)|vy..vg >

1 ) K £ 1\’
= (u)——?»(u) AMu kzlu <kzlu_Vk> [vi-- vk >

1 ko2
+ 7»(171 Z ‘uV2
u—v; = 2v1 — Vi

1

+ A(vy - uvivs---vg >
u— ( ( ) ];’3v2—vk V2—v1>|
1 X 2
——(A(vk2)— ), ————
Uu—vg_n k=K—1 VK-2 — Vi
K-3 2
— Z ————)|uv1 c+VEK_3VK_1VK >

k—1 VK-2 — Vi
K-2 2

+ ——1— (}\,(VK_1)— 2 — Z

U—Vg1 VK-1—VK 21 VK-1—Vk

1 LS )
+ K(VK) — IMV] VR >
u—vg k=1 VK — Vi

We thus conclude that vector |% > = |v; - - - vk > is a joint eigenvector of the

) |uv1 <o VE_2VE >

commuting operator ¢(u) if and only if the spectral parameters v € ¥ satisfy the

Bethe-Ansatz equations.
O
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Remark: Another proof of theorem 3.2.2 is based on Sklyanin’s, [19], [14],
separation of variables method. The eigenfunction equations are transformed into
a differential equation for which the differential operator is the same as the differ-

ential operator in the Bethe-Ansatz equations.
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Chapter 4
Lamé differential equation

There are two ways to describe the solutions to the Bethe-Ansatz equations
associated with the s, (C) Gaudin spin chain model. One of the them is to regard
the Bethe vectors as a collection of numbers satisfying the critical point equations
of the Master function. The problem of solving the Bethe-Ansatz equations can
also be approached by looking at polynomial solutions of a differential equation,
called the Lamé equation, [14], [4], [15], [13]. In what follows, we discuss these

two equivalent methods.

4.1 The Lamé equation

In 1878, H.E. Heine [7] motivated by his work in the area of orthogonal poly-
nomials, formulated the following problem:

Given a(z),b(z) € C[z] of degrees N+ 1 and N respectively. Heine was inter-
ested in the polynomials ¢(z) € C[z] of degree N — 1 such that the equation

a()V' (2) +b(2)¥ (z) +c(2)y(z) =0 (4.1)
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has non-trivial, monic polynomial solution y(z) of a given degree K. Equation
4.1 is called the Lamé equation. The solution to the Lamé equation is a pair

¢(z),y(z). Heine proved that there are at most

(N+K-1)

o(N,K) = KWN-D)1

polynomial solutions of degree K to equation 4.1. These polynomial solutions
y(z) are called the Heine-Stieltjes polynomials and the corresponding polynomi-

als c(z) are known as Van Vleck polynomials.

4.2 Heine-Stieltjes Theorem

In 1885, T.J. Stieltjes [20] considered a special case of the Lamé equation 4.1.
Let

N
a(z) = I_To(z—an),

,7»,1 <0 4.2)

where all 0y < Q; < ... < oy are distinct and real roots of a(z) and Ay, A, ..., Ak
are negative. These assumptions force the roots of b(z) to also be real. Note:
A < O corresponds to infinite dimensional irreducible representations of the Lie
algebra s, (C) in the Gaudin spin chain model. Please refer to Chapter 2 and to
Appendix A for more detazils.

Under these new assumptions, the Lamé equation 4.1 takes the following

form:
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N N }\'n
I @—on)v"(z) —a(z) ;0 W (2) +c(2)y(z) =0 (4.3)

n=0 n=0%" Oy

Stieltjes proved the following theorem:

Theorem 4.2.1. Heine-Stieltjes Theorem. There are exactly 6(N,K) polynomial
solutions to equation 4.3. The location of zeros of the Heine-Stieltjes polynomials

is completely characterized by their distribution in subintervals

(0, 001), ..., (OIN—1, OLN).

The Lamé equation 4.3 has a natural interpretation in electrostatics, which had
lead Stieltjes to further investigation. Consider an electrostatic field with the log-
arithmic potential energy acting upon the system. The zeros of the Heine-Stieltjes
polynomials y(z) can be interpreted as equilibrium positions of an electrostatic
system with logarithmic potential. Suppose there are magnets with charges A,, lo-
cated at the points o,, € R. Place K identical electrons (unit charges) at the points
v, allowed to move freely on the real line. The charges repel each other according
to the logarithmic potential (particles repel each other with a force proportional to
their masses and inversely proportional to their distance). Stieltjes, [20], proved
that the energy of the field has a local minimum. Szeg6 [21] then proved that this

minimum is unique and thus results in stability of the equilibrium.

Let L N K
E(o,v) = [TTTx — o) [Tk —w0)? (4.4
k=1 =0 i

E(v) is called the Master Function.
The logarithmic electrostatic potential § of the system is given by the loga-

rithm of the Master function:
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L N K
S) = —log([ T [Tk — @) [ [ (v —v1)%)

k=1n=0 k#£l
Proposition 4.2.1. The Bethe-Ansatz equations are critical points of the Master
Junction.

Proof: Consider the function

—logE = S(v) ——log(HH (Vi — Q)™ xn(Vk vi)%)

k=1n=0 k;él
= Z z Alog(;—o-) + ): 200g(;—) (4.5)
k=1n=0 Oy k#l

Since §' = F: , both functions E(v) and S(v) have the same critical points. Differ-

entiating S(v) gives

diS0) _ EW)
dv E(v)
K N 9 K 5

=X}

k=1n=0 Yk~ W iz Vk— VI

I

which proves the proposition. O
At an equilibrium position, the sum of all forces acting on each electron is
zero. It occurs when VS = 0.
In what follows, we shall prove that there exists a one-to-one correspondence
between the set of Heine-Stieltjes polynomials and the points at an equilibrium of

the electrostatic system under discussion.
Lemma 4.2.1. The roots of ¥ are simple.

Proof: Let v; be any root of Y. Assume for a contradiction that y(v;) =

y/(vi) = 0. After repeated differentiation of equation 4.1, we observe that all
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derivatives of y are equal to zero when evaluated at vi, and thus ¥ is a zero
polynomial. Therefore, we conclude that ' (v;) # 0 and the roots of  are simple.
g

Proposition 4.2.2. The roots of ¥ form a solution to the Bethe-Ansatz equations
3.16 if and only if there exists a polynomial c(z) of degree not greater than N — 1
such that \y is a solution to the Lamé equation 4.3.

Let v; - - - vg be distinct roots of y(z).
Proof:

¥(z) = (z—v1)...(z—vk)
Let yy(z) = X2

=V

¥(z) = (2— i) Wi (2)
V' (2) = Wik(2) + (2= vi) Wi (2)
V' (Vi) = Wie(ve)
V'(2) = v (2) + Wi (@) + (2 — vi) vy (2)

V' (Vi) = 2y (ve)

V() _ W)
W) \lfk(vk)

Note: W (v) # 0 since roots of ¥ are simple by lemma 4.2.1.

gy~

We also use the following known fact pn

We prove one direction first by assuming the Bethe-Ansatz equations.

V() _ 29 (w) y _ =b(w)
Vv w(w) /§1Vk ,,Z’ Vk—an  a()
(ay" +by') (wi) =
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= y(z) divides ay”(z) + by (z)
= Jc such that a(2)y"(z) +b(2)V¥ (z) = —c(2)y(z)
Thus, a(z2)¥" (z) + b(2)¥'(z) + c(2)y(z) =0

To prove the converse of the above statement, we assume that y(z) is a solution
to the Lamé equation 4.1. By evaluating 4.1 at any of the roots of y(z), the
expression c(v)y(vx) vanishes.

Equation 4.1 becomes:

a()V' (V) +b(vi)¥' (vi) =

V') _ b(w)
V()  a(ve)

Thus,
i _ =bve) _ W) _ W) _ 2

“ =0 a) W) \lfk(vk) Zive—vi

O

Definition 4.2.1. Fix oy < 01 < ... < Oy, and K > 0, a positive integer. A con-
figuration m is a multindex d = (d\,...,dy) such that |d| =Y¥N_,d, =K. Fora
given configuration m denote by D the set of all z € R¥ with the arrangement that
there is di of zx in (0, Q1 ), d2 of 7 in (04, 00),etc... This is equivalent to saying
that

Op <21 <... <Zg O < Z14dy < ove < Zdptdy <02 <

<oy-1 < L+my_y+...+my <..< Imy+mpy_1+...+my < on

Definition 4.2.2. An equilibrium configuration is a configuration m where {z; }X_,

are solutions to the Bethe-Ansatz equations 3.16.
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A simple counting argument shows that the number of possible configurations

is 6(N,K). D is a connected, convex and open subset of R¥.

Theorem 4.2.2. The electrostatic potential function S has a unique minimum.

Proof: Let H be the Hessian of the electrostatic potential S. Then H is a

symmetric KxK matrix with entries

()
Ha = 360900

On the diagonal of H we have:

2 K
Hy =), - ) (v }nan)z

G e—vi)? 15

and the off diagonal entries are:

2
Hy=——"——
(v — 1)
or in the matrix format:
2 A 2 2
zf;lm—iﬁzom TR . “ix?

2 K 2 An 2

CEN Liz (w2 ~Ino (vy-0on) - TR
H = .

'2 - ' K 2 _ N An

= R -2 Inzo vk —on)

and we have the following equation

N
Hkk—ZIHkllz—Z—L k=1,---,K

I#k n=0 (vie— an)Z’
By the Gershgorin circle theorem (ref. to Appendix B), all eigenvalues of H
lie in one of the disks Dy where Dy is a disk centered at Hyy with radius Y. |Hy/|.
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Since {vi}X |, {ota}_, are real and {A,}_, are negative, every eigenvalue 1 of

: LA
no=mne (_ ) (Vk—(ln)2>

n=0

H satisfies

Thus all eigenvalues of H are strictly positive.

For a fixed configuration m let S = S(v) and restrict H = H(v) to D(o,m).
Then S is convex since D is connected, open, bounded, and H is a positive definite
KxK matrix. Also, lim,_-3pS(v) = +o0. Thus S has a unique minimum and no
maxima. This unique minimum occurs at the equilibrium configuration.

It remains to show that for a given polynomial ¢(z), there cannot be two lin-
early independent polynomials that are solutions to the Lamé equation 4.3. Sup-
pose that this is possible and call these two solutions Y (z) and y»(z). Let w(z)
be the Wrofiskian of ¥ (z) and y2(z). Then the w(z) = 1 (2)W5(z) + ¥} (2)¥2(2).
By Abel’s theorem (ref. to Appendix C), w(z) satisfies the following differential

equation:

a(2)W'(2) +b(z)w(z) =0
and

w(z) = woe_f a4

where wy is any constant.

By equation 4.2,

b(z)

——= —o0 as z—> 0y,

a(z)
Therefore

w(z) =0 as z— Oy,
which cannot be true for Wroriskian w(z) of two independent functions.
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Thus, if energy of the electrostatic potential function has a unique minimum
for a given configuration m, then there exists a unique pair (c, V) for the Lamé
equation 4.1. Conversely, if there is a unique pair (C, y) of a Van Vleck and a
Heine-Stieltjes polynomial for the Lamé equation 4.1, such that the zeros of the
polynomial y form a configuration, then the energy of the electrostatic field has a
unique minimum. t

The Heine-Steiltjes Theorem does not apply when the roots of a(z) are com-
plex. The first author who has obtained a result in the complex case was Pélya,
[17], who proved that the zeros of the Heine-Stieltjes polynomial lie inside the

convex hull CH(al,--- ,ay) of the roots of a(z).

Proposition 4.2.3. The Bethe-Ansatz equations are invariant under complex affine

transformations of {vi}X_, and {o, }_,,.

Proof: Let r,s € C. Applying the change of variables rv; + s and ro, + s to the
Bethe-Ansatz equations, we obtain:

(rvi +5) — (ro, +5) l#(rvk—}-s)—(rvl—i—s)’

n=0

which also has the form of the Bethe-Ansatz equation.

O
Thus, proposition 4.2.3 allows us to fix two sites 0y and o on the real line,

which is very useful for numerical and symbolic computations of solutions.

Proposition 4.2.4. The zeros of the Heine-Stieltjes polynomials lie inside the con-

vex hull of the zeros of a(z).
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Proof: Let v; be any root of y. From equation 4.1, we see that

v (w) | B(v) _
2y (i) +A(Vk) =0

By proposition 4.2.2, the Lamé equation 4.1 is equivalent to the Bethe-Ansatz

3.16 equations. After evaluating equation 3.16 at v, we obtain:

N 2

y Moy

n=0 Yk k#l Ve — Vi

Thus, by the Gauss-Lucas theorem (ref. to Appendix E), vy must lie inside the
convex hull CH(aty,- -« , 0y ).

O

Marden, [11], used a similar argument to that of Pélya to show that zeros of

the Van Vleck polynomial also lie inside the convex hull of the zeros of a(z).
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Chapter 5

Classical Jacobi Polynomials -

special case of the Lamé equation

In this chapter we investigate a well known case of the Lamé equation 4.3,
which occurs when a(z) = 72 — 1. In this case the solutions to equation 4.3 are
classical othogonal polynomials, known as Jacobi polynomials. We begin the
discussion with basic introduction to orthogonal polynomials. The last section of

this chapter shows plots of solutions obtained numerically.

5.1 Orthogonal Polynomials

Definition 5.1.1. Let h : [a,b] — R such that h is strictly positive on the interior
(a,b) but h may go to infinity at the endpoints. h is called a weight function if
for any polynomial f the integral |, ab F(x)h(x)dx is finite. Orthogonal polynomials

with respect to h are defined as a sequence of {P,} polynomials satisfying the
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orthogonality condition:
b
<PooPu>= [ BQPa@h(Ddz=0nEm
a

where {P,} represents the " degree polynomial, and < -,- > is an inner product
on the vector space of all polynomials. This means that a sequence of orthogonal
polynomials forms a basis of the infinite dimensional vector space of all polyno-

mials with the condition that P, has degree n.

5.2 Jacobi Polynomials

Jacobi polynomials are orthogonal polynomials {P;" P } on the interval [—1,1]
with respect to the weight function 4(z) = (1 —z)*(1 +z)B, where the parameters
o and P are required to be greater than —1, and » is the degree of the polynomial.

Jacobi polynomials {P,?’B} are solutions of

(1= () +(B—a—(a+B+2))¥ () +K(K+a+B)y(z) =0 (5.1)

[21]

Equation 5.1 is a special case of the Lamé equation 4.3 with sites —1 and
1. In what follows, we relate parameters . and  in equation 5.1 to charges
Ao and A; that occur in equation 4.3 . Let a(z) = 22 — 1. Then b(z) = —(z2 —
1) (Z% — z—}erl) = —(Ao +A1)z+ 29 — A and equation 4.3 takes the form

(@ — DV (@) — (Mo +M)z+ho— M)V (2) +cy(z) =0 (5.2)

According to the Heine-Stieltjes theorem, equation 5.2 has K solutions (where
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K is the degree of W) corresponding to a unique degree zero polynomial (c is a
constant polynomial in the case of two sites). This problem can be approached
by solving an eigenvalue problem of the form: let D be the differential opera-
tor D(¥) = (22 — D)y (z) — (Ao +M1)z+Ao — M) ¥ (z). The problem is to find
eigenvectors  and the corresponding eigenvalues such that D(y) = —cy.
Remark: To compute the relations between o, B and Ag, A1, we use the nega-

tive of equation 5.1.

Proposition 5.2.1. In equations 5.1 and 5.2, the parameters ., and Ay, \; are
suchthathy=—PB—1and Ao = —a— 1

Proof: Equating the coefficients of y'(z) from both equations gives the fol-
lowing system of equations:

—B+o=r—M

G+B+2=M—7»1
= M=-B-1LA =-a-1

O
Equation 5.1 can be further classified in the theory of orthogonal polynomials.
Leta=B= —%:

(Z = 1)y" (@) + 2y (2) + K*y(z) =0 (5.3)
Solutions to equation 5.3 form a subclass of Jacobi polynomials and are known
as Chebyshev polynomials, [1].
Chebyshev polynomials are obtained from the following recurrence relations,
[9]:
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Tir1 = 22Tk(2) — Ti-1(2) (54)

and

Ti(z) = cos(kcos™ (z)),

which puts roots of the Chebyshev polynomial inside the interval of orthogo-

nality, [9]. This fact can be proven by using recurrence formula 5.4.

5.3 Numerical solutions

A Matlab code that computes roots of the Chebyshev polynomial using recur-
rence relation 5.4 is attached in Appendix D (ChebyRoots.m). Figure 5.1 shows
distribution of roots of the Chebyshev polynomial of degree K = 40, which is a
solution to equation 5.3.

We use roots of the Chebyshev polynomials for numerical computation of
roots of general Jacobi polynomials. Roots of general Jacobi polynomials for
different values of parameters o and [ can be obtained by iterating roots of the
Chebyshev polynomial using Newton’s method. It turns out that roots of the
Chebyshev polynomial are close to roots of the Jacobi polynomial for o and B
relatively close to —%. A Matlab algorithm to compute zeros of Jacobi polynomi-
als in the interval [—1, 1] can be found in Appendix D.

The Heine-Stieltjes theorem is demonstrated in figure 5.4. The Matlab algo-
rithm that generates figure 5.4 can be found in Appendix D.
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JWCASS 66 0 ¢ 5 6 0 8 T 6 T 4 8 O 5 O s s et e e sssssemk

Figure 5.1: An sl,(C) equillibrium configuration with two sites 0o = —1,0; = 1. The sites are
represented by stars. Roots of the Chebyshev polynomial of degree K=40 are represented by dots.
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Figure 5.2: An equillibrium configuration for sl,(C) with two sites 0 = —1,0; = 1. The sites
are represented by stars. Roots of the Chebyshev polynomial of degree K=15 are represented by
dots.
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Feses s o o o o o o o o 4 s e & e s s e eesnak

Figure 5.3: An sl;(C) equillibrium configuration with two sites g = —1,0,; = 1. The sites are
represented by stars. Roots of the Jacobi polynomial of degree K = 29 fort = —.2 and B =1 are
represented by dots.
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T T T T
Yrececnne o . Poeoao o o oofierceerte
Yooo ok Yoessacovonaas oho o s oorny
1 I 1 i 1
1 0.7 03 08 1

Figure 5.4: An equilibrium configuration for sl;(C) with sites ap = —1,0) = —.7,0p = .3,03 =
.8,04 = 1 with weights Ay = —.5,A) = —1,Ay = —1.3,A3 = —.5,A4 = —.8. The sites are repre-
sented by stars. The K = 40 Bethe parameters are represented by dots.
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Chapter 6
Experimental numerical results

In this chater we provide numerical evidence for obtaining approximations
of solutions to the Lamé equation of more than two real sites using numerical
approximations of roots of Jacobi polynomials. We also make observations and
provide numerical evidence for obtaining solutions to other equations, which are

similar to the Bethe-Ansatz equations for sl (C).

6.1 Two site solution of the Bethe-Ansatz equations
converging to a multisite s, (C) equilibrium con-

figuration

Using numerical approximations to roots of the Jacobi polynomial {PI(:"I3 )} as
initial values for Newton’s method, we approximate solutions to the Lamé equa-
tion with more than two real sites (N > 1). We write the Bethe-Ansatz equations
3.16 as:

N
_ A C0k—1 ...
fk(v)_n—;)vk_an_z — _Oak— 9" K
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where K is the degree of w(z) and v € (—1,1).

fO) =(AW), L), -, fxk()T = VS(v) : R¥ — R¥ where S is the logarith-
mic potential function, (ref. to 4.5). We are interested in the unique equilibrium
position v* € (—1, 1) of the given particles v € (—1,1). We use Newton’s iteration
Vm+1 = g(vm) where g(v) =v— (F/(v))"Lf(v). f'(v) = H(v) is the Hessian of S.
In the proof of the Heine-Stieltjes Theorem, we see that f/(v) is a positive defi-
nite KxK matrix and thus, it is invertible at any v € (—1,1). At the equilibrium
g (v*) = 0. Therefore g is a contraction in some neighborhood of v*. The conver-
gence rate for Newton’s method is quadratic if the initial position of the points is
close to their equilibrium position. It turns out that roots of the Jacobi polynomial
are very good initial values for Newton’s method. In the case of the degree of ¥
equal to 40, our algorithm (Demosl2J.m, ref. Appendix D) produces figure 6.1.

We observe that after applying Newton’s iteration to roots of the Jacobi Poly-
nomial, they will stay in the same configuration at their equilibrium position (pro-
vided that roots of the Jacobi polynomial do not coincide with the sites o). Nu-
merical evidence suggests that an sl;(C) equilibrium configuration with N = 1
(two sites) is a good approximation to the electrostatic equilibrium configura-
tion of particles where N > 1. We observe, that any sl;(C) configuration with
two sites will converge to a unique sl(C) equilibrium configuration of more
than two sites. Below is a table of absolute differences between roots of the
Jacobi polynomial in the interval [-1,1] having weights Ag = —2,A; = —.5 and
roots of the polynomial that is a solution to the Lamé equation 4.1 in the multi-
site setting with ap = — 1,01 = —0.2,00 = 0.103 = 0.7,04 = 1 having weights
MN=-2,M=—-"7M~,=-92A=—.4,A = —.5. Table 6.2 corresponds to figure
6.1.
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Figure 6.1: The upper configuration is an equillibrium configuration with two sites 0 =
—1,0; = 1 with weights Ay = —2,A; = —.5 computed using roots of the Jacobi polynomial in
the interval [—1, 1]. The sites are represented by stars. Roots of the Jacobi polynomial of degree
K = 40 are represented by dots. The lower configuration is an equillibrium configuration with
five sites: 0g = —1,0; = —0.2,0p = 0.103 = 0.7, 04 = 1 with weights Ay = —2,A; = —.7,Ap =
—.9,A3 = —.4,A4 = —.5. The sites are represented by stars and roots are represented by dots.

l Abs(initial-new) I Abs(initial-new) I Abs(initial-new)

0.0002 0.0235 0.0030
0.0007 0.0251 0.0082
0.0014 0.0260 0.0049
0.0024 0.0007 0.0049
0.0036 0.0061 0.0043
0.0051 0.0110 0.0035
0.0067 0.0164 0.0026
0.0085 0.0163 0.0018
0.0105 0.0138 0.0011
0.0126 0.0112 0.0006
0.0148 0.0086 0.0002
0.0171 0.0059 0.0000
0.0193 0.0031

0.0215 0.0003

Figure 6.2: Absolute differences between roots of the Jacobi polynomial in the interval [-1,1]
with weights Ly = —2,A; = —.5 and roots of the polynomial that is a solution to the Lamé equation
4.1 in the multisite setting with 0y = —1,0) = —0.2,0, = 0.1a3 = 0.7,04 = 1 having weights
M=-2M=-Trh=-9=—4A=->5
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6.2 Roots of Jacobi Polynomials converging to solu-

tions of other equations

Numerical evidence suggests that for a positive number r, equations

K

Z (1) Yo (1 Z (1) ROl ©.1)

n=0 Vk -0y £k Vk l =1 Vk

k=1,---,K
1 )“0 K> 2 K r
—) ) =0, (6.2)
Lo ke e m
k= 17 -, Ky,
with A, < 0, have a solution in the interval (o, ).
Given two distinct sl>(C) equilibrium configurations {v*(V}, {v*?)}, we use

Newton’s method to iterate equations 6.1 and 6.1.

We iterate these equaiions such that for each equation we use points obtained
from iterating the other equation. We iterate equations 6.1 with respect to the first
kind of points and equations 6.2 with respect to the second kind of points while
keeping the other kind of points fixed. This is the same as treating one kind of
points as sites with weight . This procedure is repeated until desired accuracy is
obtained. We are able to obtain solutions to equations 6.1 and 6.1 for K < 10. A
Matlab algorithm using this procedure is attached in Appendix D (DemoRsl2.m).

Figures 6.3 and 6.4 show distributions of points before and after applying

Newton’s method where r = 10 and r = 3, with sites oy = —1,0p = 1. v,(cl) is

@)

represented by dots, and v, is represented by crosses.

Solutions to equations 6.1 and 6.2 can be thought of as points at an equilib-

61



I. Kowalik MCMASTER - MATHEMATICS
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A
-

Figure 6.3: Distribution of points before and after applying Newton’s method to equations 6.1

and 6.1 where r=3and o = —1,00 =1, A= —7,A1 = —2. v,(cl) is represented by dots, and v,(f)

is represented by crosses. K; = 18 and K = 19.

rium of the electrostatic potential as explained in Chapter 4 with the additional
requirement that each two particles of different kind repel each other with force

proportional to .
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Figure 6.4: Distribution of points before and after applying Newton’s method to equations 6.1

and 6.1 where r=10and oy = —1,0p = 1, Ag = —3.5,A; = —.8. v,(cl) is represented by dots, and

v,(cz) is represented by crosses. K; = 16 and K = 17.

6.3 Two s1,(C) equilibrium configurations converg-
ing to a single s[;(C) configuration

Let r =2 in equations 6.1 and 6.1. Iterating these equations separately, with
the initial values as explained in the previous section, gives a solution to the Bethe-
Ansatz equations:

N )‘-n K 2

yo oy Lo

n—0 Vk — On 17k Yk — VI

where K =K1 + K

We conclude that given two distinct sl (C) equilibrium configurations we ob-
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tain a single sl (C) equilibrium configuration by slightly shifting the points. That

is, given two Lamé equations:

a(2) ¥} (z) + b(z)¥1(z) +c(z)¥1(z) =0 (6.3)

a(z)¥ (z) + b(2)¥5(2) +c(z2)¥2(z) =0 (6.4)

with deg(¥) # deg(¥,), the product of polynomials ¥ ¥, is a good approx-

imation to a solution of the Lamé equation

a(2)¥" (z) +b(z)¥' (z) +c(2)¥(z) =0 (6.5)

where
deg(¥) = deg(¥1) +deg(¥s).
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Figure 6.5: The first configuration illustrates two distinct sl;(C) configurations; the first one
is represented by dots, the second one is represented by crosses. Kj; =26 and K> = 27, 0 =
—1,ay =1, and Ay = —2.5,A; = —.7. The second configuration is a solution to equations 6.1 and
6.2 with the parameter r = 2. In this case, solutions to equations 6.1 and 6.2 converge to a single
sl (C) equilibrium configuration.
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Chapter 7

The Lamé equation with Complex

parameters

Substantial amounts of research have considered the case of real number pa-
rameters of the Lamé equation 4.1. In this chapter, we consider the Lamé equation
with complex parameters having three complex sites. The Lamé equation is in-
variant under affine transformations, hence two of its sites can be assumed to be
fixed on the real line. This allows us to convert the Lamé equation into an eigen-
value problem, for which, we derive a linear operator matrix. Finally, we discuss
recent research development in this direction and provide numerical evidence to

each considered variant.
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7.1 Solutions to the Lamé equation with three com-
plex sites

Let a € C. In the Lamé equation, 4.1, let
a(z) =2(z—1)(z—a) =22 — (a+ 1) +az.

Then
b(z) =—(z—1)(z—a)—z(z—a)h —z(z— 1)Ay

and

c(z) =c1z+co

for some ¢y,cq € C.

For a given K, a solution to the Lamé equation is a polynomial of the form:

¥(z) =X+ piz+ po.

Then,

¥ (z) K& 4 pe 1 (K— 1)K 2+ +2prz+p
W) = K(K—1)E2 4 (K—1)(K—2pgi2+-+2py

Recall from Chapter 4 that zeros of polynomials ¥ and c(z) lie inside the con-

vex hull of zeros of a(z).

Compute:
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a@Q¥'(z) = (@—(a+1)P+az)(K(K—1)ZE 2+ +2p,)
= KK -1~ (a+ DK(EK - 1)K +ak (K~ )5
+ . 42p (2 — (a+ 1) +az)

b()¥'(z) = —(z-1)z—a)ko+zz—a)h
+ Z(Z—1)7»2)(KZK_1+pK_1(K—I)ZK_I—I----—I—szz—I—pl)
= —Ko+M +0)FM +. +—pi(do+ M +12)7

c(2)®(z) = (c1z+co) (& +px—1Z 4+ + piz+ po)
= C]ZK+1+cozK+~-+clpoz+cop0

We rewrite the Lamé equation:
a(2)¥"(z) +b(2)¥' (z) + (c12+ c0)P(z) (7.1)

as

a(2)¥"(2) +b(2)¥'(2) + c12¥(2) = —co¥(2), (7.2)

which is an eigenvalue problem.

Since the zX*! term does not occur on the R.H.S of this equation, we make
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the highest power coefficients equal to zero and obtain an expression for c;:

c1 =—K2+K(1+M+A +Ay)

Thus,

a(2)¥" (2) + b(2) V' (z) + (—K> +K(1 + Ao + A1 +A2)2¥(2) = —co'¥(2). (7.3)
Let
LY = —¢oV¥.

We have:

£ aZ)(F)" = (22— (1 +a) +ag)k(k—1)2
= k(k— )2 — (1 + a)k(k — 1) + ak(k — 1)
2= b(z)(2) = —k(ho +MA)Z T + ((a+ 1)ho +aks +22) kk — akokz* ™!
& e(2) !

Collecting coefficients of the same power of z gives:

(2 — K% — (k—K) (140 + A +12)) 25!
(—(1+a)k(k— 1) +k((a+1)Ag+ah; +22)) 2
(ak(k—1) — alok) 25!

L is a linear operator acting on polynomials of degree K. We now express L as
a K + 1xK + 1 matrix with respect to basis {zX,z5~1,...,1}:
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Dx D¢ 0
Ds
L — K
0 1
0 0

where

DF =1 —K>—(k—K)(14+A +M +1)
Dg = —(1+a)k(k—1)+k((a+1)Ao+aki +A2)
Dy = ak(k—1) — akok
k=1,...,K
and ¥ is a Kx1 vector:

(e

WK1

wi
\ "o )
For each solution pair (¥, c(z)), the column vector ¥ with entries wy is an
eigenvector of L with eigenvalue —cg and corresponds to coefficients of the Heine-
Stieltjes polynomial.
The Matlab algorithm which was used to solve the eigenvalue problem of the
linear operator L can be found in Appendix D (Demosl2Complex.m). Figures 7.1

are 7.2 are outputs of the program with different parameters. Figure 7.3 shows
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one pair of solutions to the Bethe-Ansatz equations and figure 7.7 shows zeros of

the Van Vleck polynomials.

H
. ) —
08 S

04| o0 o p

02 P . °.. o* v |
.

.o
- e ®®
L] ..'~ .'”
0

K

.

.
o.'. Co
.. ....

L ! L
1] 0.2 04 06 0.8 1

Figure 7.1: Solutions of the Bethe-Ansatz equations where 0y = 0,01 = i,0, = 1 with A9 =
—1,A; = —0.5,A; = —2. The dots are roots of the Heine-Stieltjes polynomials of degree 20.

An electrostatic interpretation still applies in the complex case, however the
complex case significantly differs from the real case, [10]. If the matrix L has
K + 1 distinct eigenvalues then there are K 4 1 distinct degree K polynomial solu-
tions. In fact, distinct eigenvalues occur for generic choices of the parameter a in
the linear operator L. The proof of the Heine-Stieltjes theorem is not valid in the

complex case since the convexity argument does not hold.
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Figure 7.2: Solutions of the Bethe-Ansatz equations where g = 0,0y = .7 +i,0 = 1 with
weights Ag = —1.1,A; = —.7,Ay = —2. Smaller dots are roots of the Heine-Stieltjes polynomial
of degree 15 and larger dots are roots of the corresponding Van Vleck polynomial.

7.2 Location of zeros of complex Van Vleck polyno-
mials

In their recent paper, A. McMillen, A. Bourget and A. Agnew [12] investigated
the complex case of the Lamé equation. They observed that roots of the Van Vleck
polynomials have a deeper structure in the case where {a, }2’:0 are vertices of an
equilateral triangle. Since the Lamé equation is invariant under complex affine
transformations, we may assume that {ay, }flvzoare the third roots of unity:

2m

Oy 1 = e3”

where n=0,1,2.

Let the charges A = A; = Ay = A3 be negative and equal for all three sites. Un-
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08

08

041

0.2

Figure 7.3: One pair of solutions of the Bethe-Ansatz equations where ag = 0,0,y = 0.6 +
i,0 = 1 with weights Ag = —1.5,A; = —2,A; = —.7. Smaller dots are roots of the Heine-Stieltjes
polynomials of degree 15 and larger dots correspond to a root of the Van Vleck polynomials.

der these assumptions, we obtain the following special case of the Lamé equation:

(22 — D)W (z) + 6A2Y' (z) = p(z — ¢)¥(2) (7.4)

For each k € N, denote by N(k) the number of roots of all distinct Van Vleck
polynomials ¢(z) = u(z — ¢) corresponding to the Heine-Stieltjes polynomials of

degree k.

Theorem 7.2.1. [12] Let ay,0,,03 and Ay, A2,A3 be as above. For any k € N, let
k+1=3p+q,q=0,10r2. Then there exists p real, distinct r € (0, 1), such that
3p of the zeros of the accociated Van Vleck polynomials are nonzero and have the
form:

re%ﬁforj:O,l,Z
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and the remaining zeros of the Van Vleck polynomials are zero.
Thus:

(i)Ifq=00rq=1, then N(k) = k+ 1.

(ii) if g =2, then N(k) = k.

Therefore, Van Vleck zeros lie on the lines that are angle bisectors of the equi-
lateral triangle with vertices o, 0y, a3. Figures 7.4, 7.5, 7.6 illustrate cases (i)
and (ii) (for ¢ =0, 1,2 respectively) of theorem 7.2.1, where the equilateral trian-

gle has been moved by an affine transformation to vertices 0 and 1 and 0.5 + @i.

08F ®

|
ol

02 —~ S

" L L
Q 6.2 04 06 08 1

Figure 7.4: Tlustration of theorem 7.2.1 where ¢ = 0, K = 8. The zeros of Van Vleck
polynomials distribute over the bisectrices of the equilateral triangle with vertices a; = 0,0 =

0.5+ i 03 = 1.

As a consequence of Theorem 7.2.1, we have the following corollary:

Corollary 7.2.1. With o,0,03 and A,\y,A3 as above, the Lamé equation 7.4
has exactly k+ 1 polynomial solutions of degree k if k = 0(mod3) or if k =
2(mod3), but has only k polynomial solutions if k = 1(mod3).
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08

08

o

o2f e e

Figure 7.5: Illustration of theorem 7.2.1 where ¢ = 1, K = 6. The zeros of Van Vleck
polynomials distribute over the bisectrices of the equilateral triangle with vertices o) = 0,0 =

0.5+ %Bi03 = 1.

Theorem 7.2.1 does not hold in the case when the charges A, are not equal
(figure 7.7) and when the triangle is not equilateral (figures 7.8 and 7.9).

A. McMillen, A. Bourget and A. Agnew further investigated this case of the
Lamé equation and considered to vary A, from O to e. The A, = O case does
not correspond the the Lamé equation but can be understood as the limiting case
A, — 0 when the charges are reduced to zero. Even in this case, there exists
an equilibrium configuration of free charges that are located inside the triangle

formed by fixed charges 2. = 0. This observation has led to the following corollary:

Corollary 7.2.2. Let the hypotheses of Theorem 7.2.1 hold. Then, if A = 0 and
k > 2, three Van Vleck zeros lie on the vertices of the triangle and the remaining
zeros lie inside the triangle. As b — oo, the zeros concentrate at the center of the

triangle.
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Figure 7.6: Illustration of theorem 7.2.1 where ¢ = 2, K = 7. Zeros of the Van Vleck poly-
nomials distribute over the bisectrices of the equilateral triangle with vertices a; = 0,0, =

05+ i 03 =1.
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Figure 7.7: Tlustrates the Van Vleck zeros where the sites are vertices of an equilateral triangle
(o = 0,0 = .5+ %3i 03 = 1) with charges & = —1.1,Ap = —15,33 = —2.
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Figure 7.8: Nlustrates the Van Vleck zeros where the sites have vertices a; = 0,0, = .7 +i,03 =
1) with charges A = Ay = A3 = —.5.

£

oz g ™~

Figure 7.9: Tllustrates the Van Vleck zeros where the sites have vertices oy = 0,0 = .7 +i,03 =
1) with charges Ag = —1.1,Ay = —15,A3 = -2
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Chapter 8

Conclusions and Outlook

The Gaudin spin chain model can be associated to any semi-simple Lie alge-
bra. In the first section of this chapter, we derive a solution set of the Bethe-Ansatz
equations corresponding to the Lie algebra sl3(C). The last section contains final

remarks and outlook.

8.1 Gaudin spin chain associated to s[3(C)

Letting r = —1 in equations 6.1 and 6.2 gives:

N A’n K, 2 K> 1
) Mix Capip RN ORD MU
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N K 2 K 1
Lo o ket e O &2
k=1,---,K
It turns out that equations 8.1 and 8.1 correspond to the Gaudin spin chain
associated with the Lie algebra s(3(C). [13], [14], [15], [4]. Very little is known
about solutions to equations 8.1 and 8.2. We provide a method which produces
infinitely many solutions in the case when N = 1, dg = —1,0; = 1 with charges
A=A = % The points v, are located symmetrically around zero with two of
the points inside the interval (—1, 1), and two of them outside the interval (—1,1).
We denote by x, —x € (—1, 1), one kind of points, and by y, —y the points outside
the interval (—1,1). That is:

< -1 <—x<0<x<I <y

Under these assumptions, equations 8.1 and 8.2 take the following form:

* I E o
-1 x x2—y2
y 1 2y
—— =0 8.3
P15y PR ®3)
Let
e=1-x>0
and
3=y’—1>0.
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We conclude that if
£
T 1-2¢’
or equivalently
b
E= 1128

we get infinitely many solutions to equations 8.1 and 8.2.

For example: Let § = %, €= %. Then

=
H
N W

Q

an

y=+

S

(8.4)

Recall that in the sl(C) case, solutions of the Bethe-Ansatz equations lie

inside the convex hull of the {a,}Y_. In the sl3(C) case, this assertion does not

hold and 8.4 gives a counterexample.

Let
F=
f
where
X 1 2x
h x2—1 ;_xz—y2
Yy 1 2y
Iy R
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Since F ‘1(0,0) is a one parameter curve, dF is not invertible and the map
F cannot be a diffeomorphism by the Inverse Function theorem. In particular,

Newton’s method cannot be used to solve the s{3(C) Bethe-Ansatz equations.

8.2 Conclusions and Outlook

The Gaudin spin chain model can be associated to any semi-simple complex
Lie algebra; hence it presents many possibilities for future considerations. Even
the case of finite irreducible representations of sl,(C), associated to the Gaudin
spin chain, is still unknown. Furthermore, asymptotic properties of the model
can be studied, [2], [3]. Moreover, the problem of diagonalizing the Gaudin’s
Hamiltonians has an interpretation in algebraic geometry, [6]. As a further matter,
similar techniques used for diagonalizing Hamiltonians of the Gaudin spin chain

model, can be applied to other Heisenberg spin chains.
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Appendix A

A.1 Representation theory of sl,(C)

Intuitively, a representation of a Lie algebra is a way of representing a Lie
algebra in terms of matrices such that the Lie bracket is the commutator. These
matrices are endomorphisms of some vector space.

Let g be a Lie algebra.

Definition A.1.1. A linear map ¢ : g — b is a homomorphism of Lie algebras if
O([X,Y]) = [6(X),0(Y)), i.e. alinear map that preserves the bracket operation.

Definition A.1.2. A vector space V over a field F is a representation (or an g-

module) if there exists a Lie algebra homomorphism g — gl(V).

Definition A.1.3. W C V is a submodule of a g-module V if W a linear subspace
of V such thatx-w e W forallx € g.

A g-module V is irreducible if there exists no proper submodule, that is no
submodule other than O and g itself.
We also state the well known theorem by Weyl:

Theorem A.1.1. Every finite-dimensional representation of a complex semisimple

Lie algebra is completely reducible.
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[51

The vector space,

b
sh(C)=4 |* la,b,c € C
c —a

together with the bracket operation [A,B] = AB— BA, is a semisimple Lie algebra.

We choose a basis of s, (C) as follows:

1 0 01 00
h= ,€ = o =
0 -1 00 10

The basis elements satisfy the commutation relations:

[h,e] =2e
[h, f1=—2f
le, f]=h.

Let V is an irreducible sl;(C)-module. Then we have a decomposition of V' as

follows:

where V, = {v € V|hv = wv}. If V,, # 0 we call u a weight and V,, a weight space.

Let v € V,,. The action of elements e and f on the weight spaces is given by:
eveV,p
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If V). 1o, = 0 then A is called the highest weight and any non-zero vector in Vj,

is called vacuum and is denoted by |0 > with

e|0>=0

and
hl0 >=2|0 >

V5, is called the highest weight module.
The highest weights A of sl3(C) can be identified with complex numbers, how-
ever the following theorem gives further classification of irreducible representa-

tions of sl (C).

Theorem A.1.2. [5], [8]
(a) V;, is isomorphic to V.
(b) If A has a positive integral value then it corresponds to an finite dimensional
irreducible representation and other values of A give rise to infinite dimensional

irreducible representations of sl (C).

A.2 Loop algebra

Definition A.2.1. [6] Given a Lie algebra g. The loop algebra of g is defined as
the tensor product of g with Clu,u™"), the Laurent polynomials in the variable u

over C is an infinite-dimensional Lie algebra with the Lie bracket given by

[81® f1,82® f2] = [g1,82] ® f1f2

where g\ and g3 belong to g and fi and f» are elements of Clu,u™1). It is called a

loop algebra because it can be thought of as a smooth parameterized loop in g.
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A.3 The Casimir operator for semisimple Lie alge-

bras

Let g be an n-dimensional, semisimple Lie algebra. Let x,y € g.

Definition A.3.1. The Killing form on g is an invariant symmetric bilinear form
given by
K(x,y) :=tr(adxoady)

The bilinearity of the Killing form follows from the the fact that ad is linear,
the composition is bilinear and tr is linear. The Killing form is symmetric since
tr(ab) = tr(ba) for any linear maps a, b. The Killing form is invariant in the sense

that it is associative:

k(e yly) = x(x [y, 2])

Let V be a faithful g-module. Let p : g — gl(V).

Definition A.3.2. /5] The Casimir element of the Lie algebra g is the linear map
c:V —V defined by

() = .):n:l"("f)"(”)

where x; is any basis of g and y; is any dual basis of g with respect to a fixed

invariant bilinear form (e.g. the Killing form on g satisfying x(x;,y;) = 8;j).

A.4 The Casimir operator for s{,

The basis for sl that has been used throughout the thesis is:

1 0 01
h= ,€ = ,f:
0 -1 00
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Using the given basis we observe that

k(e,f) = 0
k(f.e) = 0
K(h 3h) =

Thus the Casimir operator for sl is: to, = ef + fe+ k2.

A.5 The Casimir operator for sl;

The basis for s(3 that has been used throughout the thesis is:

1 0 0 00 0

o= 0o -1 0|.m=[01 0|,
0 0 00 —1

(0 1 0) (001\ (000\
ez = |0 0 Of,ei3=|0 0 O],e23=1]0 0 1],

\0 0 0/ \0 0 0 \0 0 0/

(0 0 0) (0 0 o) (0 0 0)
e; = |1 0 0|,es1=|0 0 O},e2=10 1 O

\0 0 0/ \1 0 0 00 0

We make the following observations:
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K(e12,e21)
K(e13,e31)
K(e23, e32)
K(e21,e12)
K(e31,e13)
K(eiz,e23)

1
~hy+~hih
K(h1,3h2+3h1 2)

1 1
hy,=h1+=hih
K(z3 1+3 1h2)

and obtain the Casimir operator for sl3:

tﬁ I3 =

+

2, 2., 2

_|_.

3 3 3
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Appendix B

B.1 Product Rule for Lie brackets

Proposition B.1.1.
la,bc] = [a,b]c+bla,c]

Proof:;

[a,b]c+bla,c] = abc—bac+ bac—bca
= |[a,bc]

Proposition B.1.2.
[ab,c] = [a,c]b+alb,c]

Proof:

la,clb+alb,c] = acb— cab+ abc— ach
= [ab,c]
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C.1 Gershgorin circle theorem

Theorem C.1.1. (Gershgorin’s circle theorem) Let A be an nxn matrix, with com-
plex entries a;;. Fori € {1,n} let R; =¥ ;4;|aij| where |a;;| is the complex norm
of a;j. The closed disc D(aj;,R;) centered at aj; with radius R; is called a Gersh-
gorin disc. Every eigenvalue of A lies within at least one of the Gershgorin discs
D(a;;, R;).

Proof: Let 1 be an eigenvalue of A and let x = [x;] the corresponding eigen-
vector. Choose i € {1,n} such that |x;| = maxj|x;|. Then |x;| > 0, otherwise x = 0.

Since x is an eigenvector, Ax = Mx or equivalently:

Zaijxj =nx Viel...n
j

Z aijxj = NXi — iiX;
J#i

Choose i as above, we have x; # 0. Divide both sides by x;, and take the norm

to obtain:
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Z g a- .x .
|11 _aiil = JAT < Z Iaijl =R;.
Xi e
J#H
The last inequality is valid because
<1 Vi

C.2 Abel’s Theorem

Theorem C.2.1. (Abel’s theorem) Given a homogeneous second-order ordinary

differential equation:

Y'(x) +P(x)y (x) + Q(x)y(x) = 0

The Wroriskian of two linearly independent solutions to C.1 is given by

w(x) = ce™ J P¥)x

where c is any constant.

Proof: let y; (x) and y;(x) be two linearly independent solutions to C.1 Then,

Yi(x) +P(x)y) (x) + Q(x)y1 (x) =0

and
¥ (%) + P(x)y3 (x) + Q(x)y2(x) = 0.
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We have,
0 = y1(x) (2 (¥) + P(x)y2(x) + Q(x)y2(x)) — y2(x) (] (x) +P(x)y (x) + Q(x)y1(x))
0 = (1 (x)y2 (x) = 32(x)37 () + P(x) (01 (x)y2(x) — ¥} (x)y2(x))
+Q(x) (1 (x)y2(x) —y1(x)y2(x))
0= (y1(x)y2 (¥) = y2(x)y1 (0)) + P(x) (01 (x)y2(x) =¥} (0)y2(x)) ~ (C.2)
We compute the Wronskian:
w(x) = y1(x)y(x) —¥1 (x)y2(x)

W (x) = (1 (®)ya (%) +y1 (x)y5 (%)) — (7 )y (x) + 37 (%)y2(x))
= y1 (x)y3 (x) —y{ (x)y2(x)

Combining C.2 with w and w' gives:

w (x) + P(x)w(x) =
Integrate both sides:
‘iv“éc);) = / —P(x)dx
In W(") - [Py
w(x) = ce~ J P@)dx
where c is a constant of integration. O

91



I. Kowalik MCMASTER - MATHEMATICS

C.3 Gauss-Lucas Theorem

Lemma CJ3.1. Let z € C and let ry,--- ,ry be positive real numbers. Suppose

wy -+ wy € C and wy, # z. The equality
r ™

+ot
Z—wWi —Wpm

=0 (C.3)

only holds when z lies inside the convex hull CH (w1, -+ ,wuy) of {wm},m=1---M

Proof: Suppose that z lies outside of CH(wj,--- ,wp). Let L be the line that
separates z and CH(wy,---,wpy). Since equation C.3 is invariant under affine
transformations, we can choose a and b such that aL + b is the x-axis, the points
awy, + b have positive imaginary part and az+ b has negative imaginary part. Then
the left hand side of equation C.3 has strictly negative imaginary part and therefore

cannot be zero. O

Theorem C.3.1. (Gauss-Lucas) Let p(z) € C. The zeros of p'(z) lie inside the

convex hull of the zeros of p(z).

Proof: Suppose z,--- ,zx are zeros of p(z). Assume that there exists z for

which p’(z) = 0 and that lies outside CH(z;,- -+ ,za). We have p(z) # 0 and

/ M
1
P@ _ y —0
This cannot be true by lemma C.3.1. O
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Appendix D

Matlab code

%$ChebyRoots.m
$Computes the roots of the Chebychev polynomial

%$in the interval [-1,1] for a give K

o

%

o

%a - vector of sites

oe

$w — vector of weights

%$%K - number of points

K = 15;
a=[-11];
w = [-0.5, -0.5];

$find the roots of the Chebyshev polynomial in the interval [-1,1]
v = roots (ChebyshevFoly (K));

$improve with Newton iteration
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v = newtonf (v, 1E-100, 20, a, w);

%plot(real(a), imag(a)-1,’rs’,real(v), imag(v)-1,'b.");

plot (real(a), imag(a)-1,’rp’,’MarkerEdgeColor’,’r’,

"MarkerFaceColor’,’r’,'MarkerSize’,10);

set (gca, 'YTick’, [])

xlim([-1.1 1.1])

ylim([-3 1])

set (gca, 'XTick’, a)

set (gca, ’XTickLabel’,{’-17,'1"})
hold on

plot (real(v), imag(v)-1,'b.’,'MarkerSize’,13);

%end of ChebyRoots.m

$55555555555555%55555555%555%%

%$JacobiRoots.m

$Computes the roots of the Jacobi polynomial

%in the interval [-1,1] for a given K

o

%

oe

%a — vector of sites

o

%w — vector of weights

%%K - number of points
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K = 29;
a=[-11};

$w = [0.6, 31;
w= [-0.8, -2];

$find the roots of the Chebyshev polynomial in the interval [-1,1]
v = roots (ChebyshevPoly(K));

$Find roots of the Jacobi Polynomial with Newton iteration
$using roots of the Chebyshev polynomial as initial values

v = newtonf (v, 1E-100, 20, a, w)

plot (real(a), imag(a)-1,’rp’,'MarkertEdgeColor’,’r’,

'MarkerFaceColor’,’r’,"MarkerSize’,10);

set (gca, 'YTick’, [])

xlim([-1.1 1.1])

ylim([-3 1])

set (gca, 'XTick’, a)

set (gca, 'XTickLabel’,{"'-17,’1'})
hold on

plot (real(v), imag(v)-1,’'b.’,’MarkerSize’,13);

%end of JacobiRoots.m

95



1. Kowalik MCMASTER - MATHEMATICS

o
o
o
oe
o

B EELELEASLL%%%%%
%DemoMultisitesl2.m
%Demonstrates the Heine-Stieltijes theorem.

$Fix \{ \alpha_n\}_{n=0}"{N} the charges \lambda_ns.

%Compute the equilibrium

%distribution at each interval

%(i.e. approx. to roots of the Jacobi

%$polynomial after scaling each two sites to [-1,11).

%Apply the Newtons

$method to all points v with all sites \{ \alpha_n\}_{n=0}"{N}.

$number of points

K = 40;

Snumber of sites

N = 5;

$number of intervals = N-1
%sites

a=[-1-.7.3.81];

$number of points in each interval

k = [13 2 15 10];

w=[-.5 -1 -1.3 -.5 ~-.8];
%$create the weight vector

[¢]

% for n=2:N
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o\

w = [w,-0.5};

% end

o\e

W;

$scale points and compute roots of the Chebyshev in each interval

for m=1:N-1
tempv = roots (ChebyshevPoly(k(m)}};

sort (tempv) ;

tempv [~1 tempv’ 1];

tempv = sort {tempv);

Lempv

for r=1:k (m)

scaledata(tempv, a{m), a(m+l));

if r==

v2

tempv(2);
else

v2

[v2 tempv(r+l)];
end
end
atemp = [a(m), a(mt+l)]
wtemp = [w(m), w(m+l)]
v2=v2';
%Get Jacobi roots in each interval

v2 = newtonf(v2, 1E-100, 20, atemp, wtemp);

if m==1
v=v2';
else
v = [vv2';
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end

end

figure(1l);

plot(real(a), imag(a),’rp’,’MarkerEdgeColor’,’r’,
"MarkerFaceColor’,’r’,'MarkerSize’,10);

set (gca, ’'YTick’, [1])

xlim([-1.1 1.11)

ylim([-3 1])

set (gca, ’'XTick’, a)

hold on

figure(l);
plot (real(a), imag(a),’rp’,’MarkerEdgeColor’,’r’,
"MarkerFaceColor’,’r’,'MarkerSize’,10);
set (gca, 'YTick’, [1)
xlim([-1.1 1.17)
ylim([-3 17)
set (gca, 'XTick’, a)
hold on
plot (real(v), imag(v),’b.’,’MarkerEdgeColor’,’Db’,

"MarkerFaceColor’,"b’,’'MarkerSize’,10);

vl = v';

vl newtonf (vl, 1E-100, 100, a, w);

plot{real(a), imag(a)-1,’rp’,’MarkerEdgeColor’,’r’,
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"MarkerFaceColor’,’r’, MarkerSize’,10);

set (gca, "YTick’, [1)

xlim([-1.1 1.1])

ylim([-3 17])

set (gca, 'XTick’, a)

hold on

plot(real(vl), imag(vl)-1,'b.’,'MarkerEdgeColor’,’b’,

"MarkerFaceColor’,’'b’, MarkerSize’,10);

%evaluate the function at vl

vl = baf(vl, a, w)

%end of DemoMultisiteslZ2.m

o
o\®
o
o°
o°
o
o
o
o\°®
o
o
o\°
oe
oe
o
o
o©
o\
o
oe
o
o
o\
o\e
o\
o
oe
o
o
Ul

%
$%Demosl2J.m

%$%Illustrates an sl2 equilibrium confuguration

%$of points of two sites

%%converging to an sl2 multisite equillibrium configuration;

%% (solutions of the Bethe-Ansatz equations for multiple sites).
%%The differences between the

%initial and final position of points is also

%%computed.

]

%a - vector of sites

o

$w — vector of weights

o©

%K - number of poirnts

%N —-number of sites

o
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K = 40;

N =5;

a=[-1 -0.2 .1 .7 11;
w=[-2 -.7 -.9 -.4 -.5];

v = roots (ChebyshevPoly (K)};

v = sort(v');

al = [-1,1];
wl = [-2, -.5];
v =v’;

newtonf (v, 1E-100, 100, al, wl);

<
I

figure(1l);

plot(real(al), imag(al),’rp’,’MarkerEdgeColor’,’'r’,
"MarkerFaceColor’,’r’,'MarkerSize’,10);

set(gca, 'YTick’, [1])

xlim([-1.1 1.1])

ylim([-3 1])

set (gca, 'XTick’, a)

hold on

plot (real(v), imag(v),’b.’,’'MarkerSize’,10);
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vl = newtonf(v, 1E-100, 100, a, w);
plot (real(a), imag(a)-1,’rp’,’MarkerEdgeColor’,’r’,
'"MarkerFaceColor’,’r’,'MarkerSize’,10);
plot (real(a), imag(a)-1,’rp’,real(vl), imag(vl)-1,’b.’,
"MarkerSize’,10);
va = baf(v, al, wl);
via = baf(vl, a, w);

abs (v-vl)

%end of Demosl2J.m

000000000000006000
0500600600060 0060606070

o\®
oe
o\°
o\°
o
oe
o
o
o
o
o
oe
oe

%%DemoRsl2.m

oe

$Finds solutions to the ’Bethe-Ansatz like’ equations

oe

%a - vector of sites

oe

%w — vector of weights

K1

o
o

number of points of the first kind

o

%K2 - number of points of the second kind

o\e

% K1 = 16;

% K2 = 17;
$a=[-11];

5 w=[-.5 -.5];
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%$ nw = -10;
$ r =-10;
Kl = 18;
K2 = 19;
a = [-11];
w= [-.5, -.5];
nw = -3;
r = -3;
wl = [nw];
w2 = [nw];
for k=2:K1
wl = [wl,nw];
end
for k=2:K2
w2 = [w2, nwl;
end
vl = roots(ChebyshevPoly (K1)};

v2

roots (ChebyshevPoly (K2}) ;
vl = sort(vl);

v2 = sort(v2);

figure(1l);

plot (real(a), imag(a}),’rp’,’MarkerEdgeColor’,’r’,
"MarkerFaceColor’,’r’,’MarkerSize’,10);

set (gca, ’'YTick’, [1])

xlim([-1.1 1.1])
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ylim([-3 1])

set (gca, 'XTick’, a)

hold on

plot (real(vl), imag(vl),’b.’,’MarkerEdgeColor’,
v’ ,’'MarkerFaceColor’,’'b’,"MarkerSize’,10);

plot (real(v2), imag(v2),’bx’, ’'MarkerSize’,7);

vinew = vi;

vl_sites = append_sites(a,vlnew);

vl_weights = append_weights (w,wl);

v2_weights = append_weights(w,w2);

v2new = v2;

maxiterations = 40;

for k=l:maxiterations
vZnew = newtonf (v2new, 1E-100, 20, vl_sites, vl_weights);
v2new = sort (v2new);
v2_sites = append_sites(a,v2new);

newtonf (vinew, 1E-100, 20, v2_sites, v2_weights);

vinew

vlinew = sort{vlnew);

vl_sites = append_sites(a,vlnew);

end

plot (real(a), imag(a)-1,’'rp’, ' MarkerEdgeColor’,’r’

, 'MarkerFaceColor’,’r’, " MarkerSize’,10);
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hold on

plot (real (vinew), imag(vlinew)-1,'b.’

; 'MarkerEdgeColor’,'b’, "MarkerFaceColor’,'b’,'MarkerSize’,10);
hold on

plot (real (v2new), imag{v2new)-1,'bx’, ’'MarkerSize’,7);

It

vlr rf(vlnew,v2new, a, Ww,r)

var rf(vZ2new,vlnew, a, w,r)

%end of DemoRslZ2.m

function: [v,st]=newtonf(v_init, tol, maxiter,sites,weights)
$%Computes the next iterate of v_init using Newton’s method
Input parameters:

$%v_init: vector with initial points

oo

for the Newton Iteration to be

o

$performed

-

$tol: tolerance value

$maxiter: maximum number of iterations

o

o

%$sites: vector of sites

o

Sweights: vector of weights

o
o\

Output:

oe

%v: vector of points after applying the Newton’s Iteration

$%st: status of acuarracy
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function [v,st]=newtonf(v_init, tol, maxiter,sites,weights)

if nargin <2
tol = 1E-100;
maxiter=20;

end

v=v_init;

v = v-Jbaf (v,sites,weights)\baf (v, sites,weights);

k=1;

while abs(v-v_init) >tol *abs(v_init) & k<maxiter
v_init=v;
v=v-Jbaf (v, sites,weights)\baf (v, sites,weights);
k=k+1;

end

if abs(v-v_init) > tol*abs(v_init)

st =0;

end

%end of function newtonf

%%function Jac=Jbaf (v_k,sites,weights) returns the Jacobian
$%0of the Bethe-Ansatz equations at v_k

%%Input parameters:
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o©

%v_k: vector of values at which the Jacobian is evaluated

oe

%¥sites: vector of sites

o

$weights: vector of weights

o

$0utput:

o\©

$Jac: Jacobian of the Bethe-Ansatz equations at v_k

function Jac=Jbaf (v_k,sites,weights)

L = length(v_k);
[X,Y]=meshgrid(v_k,v_Xk);

$off diagonal entries

Jac = - (X-Y)."2;

Il

Jac = Jact+eye (L);

Jac = 1./Jac;

$diagonal entries

for k=1:L
Jac(k,k) = sum(2./(v_k{([1l:k-1 k+1:L])
-v_k(k))."2)-(1./(sites-v_k(k))."2) *weights’;

end

$end of Jbaf
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%%Evaluates the Bethe-Ansatz equations at v_k

oe

%Input parameters:

o\

$v_k: vector of values at which the function is evaluated

-

%$sites: vector of sites

o

$weights: vector of weights

o\°

%Output:

%%ba: value of the function at v_k

function ba=baf (v_k,sites,weights)
L = length(v_Xk);
ba = zeros(size(v_k));
for k=1:L
ba(k)=(1./(v_k(k) - sites))*weights’
- sum(2./(v_k(k) - v_k([1:k-1 k+1:L])));

end

%end of function baf

090000000900900000000000000000000020
C660000600000000000000060006000600600

oe
o
o°
o®
oe
oe
o
o
o
o
o
oe

oe

%ChebyshevPoly.m

oe

sfunction coef = ChebyshevPoly (n)

oe

%Given nonnegative integer n, the function computes the

o°e

%Chebyshev polynomial T n.

oe°

s0utput:

oe

%Returns the result as a column vector whose mth

$%element is the coefficient of x* (n+l-m).
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function coef = ChebyshevPoly (n)

if n==0
coef = 1;
elseif n==1
coef = [1 0]';
else
v coef2 = zeros(n+l,1);
coef2 (n+l) = 1;
coefl = zeros(n+l,1);

coefl(n) = 1;

for k=2:1:n

coef = zeros(n+l,1);

for ind=n-k+1:2:n

coef (ind) = 2*coefml (ind+1l) -coef2(ind);

end

if k<n

coef? =coefl;

coefl = coef;

end

if mod(k,2)==0
coef (n+l) = (-1)"(k/2);
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end

end

end

%end of function ChebyshevPoly.m

%%Demosl2Complex.m

owe

$function Demosl2Complex

o

%Computes and plots solutions of the

oe

BA equations with three sites: 0,1,a
%$%This algorithm plots roots of the
$H-S polynomials and rocots of the Van Vleck

%$%polynomials

function Demosl2Complex

$third site
%a = input('a: ’);
a=20.7+ i;

% a=i;

\C

¥a = 0.5 + (sqrt(3)/2)*i;
%degree of the Heine-Stieltjes polynomial
%n = input (’degree of q: ');

n = 14;
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lambda_0 = -.5;
lambda_1 = -.5;
lambda_2 = -.5;

o

lambda_0 = -1.1;

% lambda_l = -15 ;
% lambda_2 = -2;

A = zeros(n+l, n+l);
k = n;

for iter=1l:n+l
A(iter,iter) = —(1l+a)*k*(k-1) + k*((a+l)*lambda_0
+ a*lambda_l + lambda_2);
if iter==n+1;
else A(iter+l, iter) = a*k*(k-1) - a*lambda_0%*k;
end
if iter =1
A(iter-1, iter)= k"2 - n"2 - (k-n)*(l+lambda_0
+ lambda_1 + lambda_2);
end
k = k-1;

end

[X D] = eig(A);

Cmatr=-1/(n"2 - n*(l + lambda_0 + lambda_l + lambda_2))*D;
for j=1:1:n+l

C(3) = Cmatr(3j,J);
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end

for iter=l:n+l
p= X(:,iter);
y(:, iter) = roots(p);

end

$Compute the coordinates of the incentre of the triangle
$with vertices 0, 1, a

distance0 = sqgrt(sum(([0,0]-[real(a), imag(a)])."2));
distancel = sqrt(sum(([1,0]-[real(a), imag(a)l)."2));
incenter = (distance0/(distance(0+l+distancel))*[0,0]

+ (1/(distancelC + 1 + distancel))*[1,0] +

(distancel/(distance0 + 1 + distancel))*[real(a),imag(a)l;

bl = [[0,0]; [incenter(l), incenter(2)]];

b2 = [[1,0]; [incenter(l), incenter(2)]];

b3 = [[real(a),imag(a)]; [incenter(l), incenter{(2)11]1;
bind = 1:2;

k=1:n;

j=1l:n+1;

jl=1:n+1;

bl

fiqure(2);

plot(y(k, j),"b.");
hold on
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plot (bl(bind, 1), bl(bind, 2), 'b-');
hold on
plot (b2 (bind, 1), b2(bind, 2), 'b-");
held on
plot (b3 (bind, 1), b3(bind, 2), "b-");
hold on
plot (C(3),"ro’,’MarkerEdgeColor’,’r’,

'MarkerFaceColor’,’'r’, ' MarkerSize’,10);

xlim([-.1 1.1])
ylim([-0.1 1.1])
hold off

%end of Demosl2Complex.m

}
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