Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21091
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDeza, Antoine-
dc.contributor.authorIndik, Gabriel-
dc.date.accessioned2017-02-10T17:58:01Z-
dc.date.available2017-02-10T17:58:01Z-
dc.date.issued2006-05-
dc.identifier.urihttp://hdl.handle.net/11375/21091-
dc.descriptionTitle: Polyhedra Computation Under Symmetry, Author: Gabriel Indik, Location: Thodeen_US
dc.description.abstract<p>The last 15 years have seen significant progress in the development of general purpose algorithms and software for polyhedral computation. Many polytopes of practical interest have enormous output complexity and are often highly degenerate, posing severe difficulties for known general purpose algorithms. They are, however, highly structured and attention has turned to exploiting this structure, particularly symmetry. We focus on polytopes arising from combinatorial optimization problems. In particular, we study the metric polytope associated to the well-known maxcut and multicommodity flow problems, as well as to finite metric spaces. To tackle the huge size of the problem hundreds of trillions of vertices - a parallel or bitwise enumeration algorithm was implemented and run on Shared Hierarchical Academic Research Computing Network (SHARCNET) clusters. Exploiting the high degree of symmetry, we provide for t he first time a description of the highly degenerate metric polytope in dimension 36. The description consists of 1 056 368 orbits and is conjectured to be complete. While the validity of the dominating set conjecture [Laurent-Poljak, 1992] is proven for the overwhelming majority of the known vertices of the metric polytope, we disprove the conjecture by exhibiting counterexamples in dimensions 36 and 45.</p>en_US
dc.language.isoenen_US
dc.titlePolyhedra Computation Under Symmetryen_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MS)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Indik_Gabriel_2006_05_master.pdf
Open Access
Title: Polyhedra Computation Under Symmetry, Author: Gabriel Indik, Location: Thode25.57 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue