Please use this identifier to cite or link to this item:
http://hdl.handle.net/11375/21038| Title: | Alternate Duals of Gabor Subspace Frames |
| Authors: | Akinlar, Mehmet Ali |
| Advisor: | Gabardo, Jean-Pierre |
| Department: | Mathematics and Statistics |
| Keywords: | alterante duals, Gabor subspace frames, function, linear span, Bessel Collection, The Zak Transform |
| Publication Date: | Aug-2005 |
| Abstract: | <p> In this thesis we mainly give a characterization of dual frames of Gabor subspace frames. We give necessary and sufficient conditions for the existence and the uniqueness of a function h (called window) in the closed linear span of a Gabor subspace frame {EmbTnak}m,n∈Z such that the Bessel collection {EmbTnah}m,n∈Z serves as the dual frame of the original frame {EmbTnag}m,n∈Z. We solve the problem for three cases, first ab = 1, second ab = p ∈ N, and third ab = p/q, gcd(p, q) = 1. In each case, we first find the conditions for upper frame bound (known as Bessel collection). Secondly, we characterize the functions which are orthogonal to {EmbTnag}m,n∈Z in terms of the Zak transform, and then obtain necessary and sufficient conditions for lower frame bound. Here we state obtained conditions for normalized tight frame as a corollary. Finally, using all this information we solve the duality problem.</p> |
| URI: | http://hdl.handle.net/11375/21038 |
| Appears in Collections: | Digitized Open Access Dissertations and Theses |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Akinlar_Mehmet_A._2005Aug_Masters..pdf | 2.08 MB | Adobe PDF | View/Open |
Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.
