Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20769
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBonakdarpour, Borzoo-
dc.contributor.authorKrishnan, Akhil-
dc.date.accessioned2016-11-03T14:51:38Z-
dc.date.available2016-11-03T14:51:38Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/20769-
dc.descriptionDistributed Approximationen_US
dc.description.abstractThe classic vehicle routing problem (VRP) is generally concerned with the optimal design of routes by a fleet of vehicles to service a set of customers by minimizing the overall cost, usually the travel distance for the whole set of routes. Although the problem has been extensively studied in the context of operations research and optimization, there is little research on solving the VRP, where distributed vehicles need to compute their respective routes in a decentralized fashion. Our first contribution is a synchronous distributed approximation algorithm that solves the VRP. Using the duality theorem of linear programming, we show that the approximation ratio of our algorithm is $O(n . (\rho)^{1/n} .log(n+m))$, where $\rho$ is the maximum cost of travel or service in the input VRP instance, $n$ is the size of the graph, and $m$ is the number of vehicles. We report results of simulations comparing our algorithm results with ILP solutions and a greedy algorithm.en_US
dc.language.isoen_USen_US
dc.subjectVRP, NP-Complete, Distributeden_US
dc.titleDistributed Vehicle Routing Approximationen_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractThe Open Multi-Depot Vehicle Routing Problem(OMDVRP) problem is solved using an synchronous distributed algorithm and the approximation ratio is found and simulation results comparing the performance of ILP , greedy and the designed algorithm is done.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
krishnan_akhil_finalsubmission201610_msc.pdf
Open Access
1.15 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue