
Distributed Vehicle Routing Approximation



ii



DISTRIBUTED VEHICLE ROUTING

APPROXIMATION

By Akhil Krishnan,B.E

A Thesis Submitted to the School of Graduate

Studies in Partial Fulfillment of the

Requirements for the degree of

Master of Science

McMaster University

c©Copyright by Akhil Krishnan,March 2016

iii



iv



Abstract

The classic vehicle routing problem (VRP) is generally concerned with the optimal de-

sign of routes by a fleet of vehicles to service a set of customers by minimizing the overall

cost, usually the travel distance for the whole set of routes. Although the problem has been

extensively studied in the context of operations research and optimization, there is little

research on solving the VRP, where distributed vehicles need to compute their respective

routes in a decentralized fashion. Our first contribution is a synchronous distributed ap-

proximation algorithm that solves the VRP. Using the duality theorem of linear program-

ming, we show that the approximation ratio of our algorithm is O(n · (ρ)1/n · log(n+m)),

where ρ is the maximum cost of travel or service in the input VRP instance, n is the size

of the graph, andm is the number of vehicles. We report results of simulations comparing

our algorithm results with ILP solutions and a greedy algorithm.
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Chapter 1

Introduction

With the growing popularity of autonomous systems in the modern world, more and more

researchers try to solve complex problems and design algorithms in a distributed manner.

These efforts enable us to design autonomous systems which can act together with other

autonomous vehicles and solve the problem in hand without having any knowledge of

the global state of other autonomous systems. In this thesis, we propose a distributed

algorithm to solve a variation of the vehicle routing problem, where a set of distributed

vehicles need to make independent decisions to service a set of non-conflicting cities

traveling through their respective paths.

1.1 The Vehicle Routing Problem

The vehicle routing problem (VRP) is one of the most studied combinatorial optimization

problems and is concerned with the optimal design of routes to be used by a fleet of

vehicles to serve a set of customers. VRP generalizes the well-known traveling salesman

problem (TSP) and the multiple traveling salesman problem (mTSP), where more than

one salesman is allowed to be used in the solution [Bektas, 2006]. The VRP was first

introduced by [Dantzig and Ramser, 1959]:

The VRP is defined on a complete graph G = (V,E), where V = {0, ..., n}

is the set of nodes or cities, and E = {(i, j) : i, j ∈ V } is the arc set.

Node 0 represents the depot and the rest of the nodes represent the retailers.
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The retailers have a certain demand, di that must be fulfilled and the cost of

traveling between node i and j is defined by a cost cij .

The objective of the classical VRP is to minimize the overall cost, usually the travel

distance, for the whole set of routes. All vehicles are required to start and end at the depot,

and the total demand for each route can not exceed the capacity q of the vehicle. Each

retailer must be visited once by only one vehicle, and get their demand fulfilled.

There are many variations of the VRP. Examples include cases where

• A number of goods need to be moved from certain pickup locations to other delivery

locations;

• At any delivery location, the item being delivered must be the item most recently

picked up;

• The delivery locations have time windows within which the deliveries (or visits)

must be made;

• The vehicles have limited carrying capacity of the goods that must be delivered;

• There are multiple depots for several vehicles and the vehicles after servicing a

set of customers return to the same depot. This variation is called the multi-depot

vehicle routing problem (MDVRP). Furthermore, a variation of this problem does

not require the vehicles to return to their depots. This variation is called the open

multi-depot vehicle routing problem (OMDVRP).

1.2 Distributed OMDVRP

The original VRP has numerous optimization applications, e.g., in the collection of deliv-

ery of goods, waste collection, street cleaning, school-bus routing, routing of salespeople,

and dial-a-ride systems. However, with the recent advances in the area of autonomous

vehicles (e.g., driverless cars and unmanned aerial vehicles), VRP plays even a more im-

portant role in the design and deployment of autonomous vehicles. Such vehicles need to
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make local decisions to reach global optimization on-the-fly and distributed fashion. For

example, in the context of VRP, the problem is not solved a priori but solved while the

vehicles are traveling and servicing cities through communication and making on-the-fly

decisions on their respective next steps.

VRP is an NP-complete problem. Solving VRP in an offline and centralized fashion

is already challenging. Most research efforts focus on developing heuristics and approxi-

mation algorithms and there is, in fact, a large body of work on such techniques. Adding

distribution incurs another level of complexity, as there is no entity that has the full view

of the system and can take global decisions. As a matter of fact, to our knowledge, there

is no work on distributed OMDVRP and this is the problem we investigate in our thesis.

1.3 Thesis Statement

Our research hypothesis is that distributed OMDVRP can be solved effectively and effi-

ciently. By efficient, we mean that one can design distributed algorithms with reasonable

approximation bounds. By effective, we mean that these bounds allow us to actually

implement and deploy the algorithms in real-world scenarios.

1.4 Contributions

Our goal is to validate our research hypothesis through designing a distributed algorithm

that solves VRP and in particular OMDVRP. Given a set A of heterogeneous vehicles

and a graph G, in our distributed model of computation (1) the vehicles can communicate

using synchronous [Lynch, 1996] message passing, (2) the communication network is a

complete graph, and (3) every vehicle has a unique id and knows the entire graph G and

cost functions of all vehicles.

We make the following contributions towards our goal:

Our distributed approximation algorithm is inspired by the technique proposed in

[Moscibroda and Wattenhofer, 2005a] to solve the facility location problem and in

[Kuhn and Wattenhofer, 2005] to solve the minimum dominating set problem. In particu-
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lar, our approach involves the following steps:

• We first transform VRP into an integer linear program (ILP). Then, we relax the

integer program to obtain a linear program (LP), where the solution may involve

fractional values.

• In our distributed approximation algorithm, each vehicle, through communication

with other vehicles, computes a set of fractional values that potentially represent

a route and a set of nodes to be serviced by the vehicle. Using the LP duality

theorem [Jain and Vazirani, 1999], we show that the approximation ratio of this

step is O(n · (ρ)1/n), where n is the size of the graph and ρ is the maximum cost of

travel or service in the given instance of VRP.

• Next, we obtain integer values from the fractional solution either by (1) a simple

rounding technique, which preserves the feasibility of the fractional solution as well

as the approximation ratio, or (2) a randomized rounding technique, which results

in approximation ratio of O(n · (ρ)1/n · log(n+m)), where m is the size of the set

of vehicles. While the former technique results in an on-the-fly algorithm, where

vehicles communicate, take local decisions and move along their routes, the latter

stipulates a semi-offline technique, where the vehicles first compute their full routes

and then start traveling and servicing.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the related work.

Chapter 3 presents the formal problem description of our problem and linear programming

transformations. Chapter 4 discusses the designed distributed approximation algorithm

and proofs to find the approximation ratio. Chapter 5 discusses the randomized rounding

and on-the-fly distributed algorithm along with its implementation. Chapter 6 discusses

the simulation results. Finally, in Chapter 7, we make concluding remarks and discuss

future work.
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Chapter 2

Literature Review

2.1 Multi-Robot Patrolling

The multi-robot patrol application consists of robots coordinating their movements around

a patrol route. A patrol route consists of a sequence of GPS coordinates that the robots

repeatedly follow, i.e., once a robot reaches the last waypoint, it goes to the first waypoint

in the list and repeats its patrol. In this type of problem the robots are required to repeat-

edly visit nodes and if this constraint is relaxed, we can reduce this problem to m-TSP.

Most relevant work in this field is listed below.

• [Portugal and Rocha, 2011] presents a survey on cooperative multi-robot patrolling

algorithms. The various strategies proposed is normally based on operational re-

search methods, simple and classic techniques for robot’s coordination. The vari-

ety of approaches differs in various aspects such as robot type and their decision-

making or the coordination and communication mechanisms.

• [Agmon et al., 2011] discusses multi-robot adversarial patrolling in which the robots

are required to repeatedly visit a target area in a way that maximizes their chances

of detecting an adversary trying to penetrate through the patrol path. When fac-

ing a strong adversary that knows the patrol strategy of the robots, if the robots

use a deterministic patrol algorithm, then in many cases it is easy for the adver-

sary to penetrate undetected (in fact, in some of those cases the adversary can
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guarantee penetration). Therefore this paper presents a non-deterministic patrol

framework for the robots. A polynomial-time algorithm for determining an op-

timal patrol under the markovian strategy assumption for the robots, such that

the probability of detecting the adversary in the patrol’s weakest spot is maxi-

mized. Since this algorithm uses a probabilistic approach for finding any adver-

saries, there may be the cases where we may not end up find adversaries all the time.

This approach cannot be used to solve our problem because these techniques

allow robots to take up a virtual area to patrol and these robots cover this virtual

area repeatedly. No efforts are taken to reduce the costs of this patrol and also no

approximation ratio is found using this approach.

2.2 Multi-Robot Coverage Problem

‘Multi-Robot Coverage Problem’ (MRCP) is a modern problem, on how to make the

coverage of some territory in the best way, using the multiple robots. The most prominent

work done in this area are listed below.

• [Kong et al., 2006] discusses the distributed coverage with multi-robot system. This

algorithm builds on a single robot coverage algorithm using boustrophedon decom-

position. The robots are initially distributed through space and each robot is allo-

cated a virtually bounded area to cover. The area is decomposed into cells where

each cell width is fixed. The decomposed area is represented using an adjacency

graph, which is incrementally constructed and shared among all the robots. Com-

munication between the robots is available without any restrictions. The drawback

of this paper comes from the fact that designated areas of search are assigned to for

every robot and since they use the sweeping algorithm to find the next cell based

on utility function, the idea is to cover the most mines prone cell first but they don’t

make ant attempt to minimize the time taken for coverage.

• [Sheng et al., 2006] presents a multi-robot coordination algorithm to accomplish

an area exploration task using limited communication range. This algorithm is
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based on a distributed bidding model and map synchronization mechanism. The

distributed bidding model is done within the subnet a robot is in and this ensures

that the robots stay close to each other. When robots go out of range, the robots

share map information when they come within range of each other. The map syn-

chronization module ensures only vital parts of the map are shared between robots

and not the entire map. Each robot maintains two maps, a row map table, and a

local map. The raw map table consists of all information gathered by all robots and

it could overlap. The local map is derived from the raw map using a map fusion

mechanism. Each robot acts in an asynchronous manner.

• [Rekleitis et al., 2004] presents multi-robot team based coverage with limited com-

munication (line of sight only). The environment is not known in priori but it is

assumed to be a static environment. There are two types of agents, explorers and

coverers. Explorers are the two robots tracking endpoints of a slice as it is swept

through the free space. Rest of the robots are called coverers. This algorithm works

on two main ideas. First during the coverage of a single cell, boundaries of a cell are

covered by two robots until they are no longer in sight of each other. The explorer

robots use a break in a line of sight to detect critical points and thus the termination

of the cell. Next, to avoid redundant coverage, the teams of robots are divided into

two sub-teams once.

• [Zelinsky, 1992] presents an algorithm for path planning to a goal with a mobile

robot in an unknown environment. The robot maps the environment only to the

extent necessary to achieve the goal. Paths are generated by treating unknown re-

gions in the environment as free space. As obstacles are found, the environment is

updated and a new path to the goal is planned and executed. This algorithm uses

the distance transform methodology to generate paths for the robot to execute.

This approach cannot be used to solve our problem because these techniques allow

robots to take up a virtual area to cover and uses path planning techniques to cover the

virtual area and there are no constraints for the robots to fulfill. Mostly these techniques
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come close to solving the multi-depot VRP.

2.3 Swarm Intelligence

Swarm intelligence according to [Dorigo and Birattari, 2007] “ is the discipline that deals

with natural and artificial systems composed of many individuals that coordinate using

decentralized control and self-organization”. The primary focus of this field is to find the

collective behavior that results from the local interaction of the individuals in a swarm

with each other and the environment. Examples of systems studied by swarm intelligence

are colonies of ants and termites, schools of fish, flocks of birds, herds of land animals.

The characterizing property of a swarm intelligence system is its decentralized control

i.e., the ability to act in a coordinated way without the presence of a coordinator or of

an external controller. Many examples can be observed in nature of swarms that perform

some collective behavior without any individual controlling the group, or being aware of

the overall group behavior.

The two most famous algorithms that uses swarm intelligence techniques are ant

colony optimization (ACO) and particle swarm optimization (PSO) respectively.

2.3.1 Ant Colony Optimization (ACO)

Ant colony optimization according to [Dorigo, 2007] “ is a population-based meta-heuristic

that can be used to find approximate solutions to difficult optimization problems”. In ant

colony optimization (ACO), a set of software agents called “ artificial ants” search for

good solutions to a given optimization problem transformed into the problem of finding

the minimum cost path on a weighted graph. The artificial ants incrementally build so-

lutions by moving along the graph. The solution construction process is stochastic and

is based by a pheromone model, that is, a set of parameters associated with graph com-

ponents (either nodes or edges) whose values are modified at runtime by the ants. ACO

has been applied successfully to many classical combinatorial optimization problems, as

well as to discrete optimization problems that have stochastic and/or dynamic compo-
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nents. The ACO can be applied to various optimization problems. The most interesting

and relevant ones are as follows.

• Traveling Salesman Problem. The traveling salesman problem (TSP) can be de-

fined as “ Given a list of cities and the distances between each pair of cities, what

is the shortest possible route that visits each city exactly once and returns to the

origin city? ”. The process of solving TSP using ACO techniques was shown by

[Dorigo et al., 2006].

• m-TSP. According to [Bektas, 2006], “ The multiple traveling salesman problem

(mTSP) is a generalization of the well-known traveling salesman problem (TSP),

where more than one salesman is allowed to be used in the solution”. The m-TSP

problem can be solved by using ACO techniques as shown by [Junjie and Dingwei, 2006].

• Open VRP. [Li et al., 2009] has shown how the open VRP can be solved using a

combination of ACO techniques and tabu search techniques. The algorithm de-

signed called the ACOovrp works as follows. At each iteration first, a set of ar-

tificial ants probabilistically build the solutions, exploiting the given pheromone

model. Then, the constructed solutions are improved and taken to their local op-

tima using local search. After each ant finishes its solution construction, the in-

formation of some ‘good’ solutions is exploited to update the pheromone trails.

The main procedures are repeated until a termination condition is met. This proce-

dure will stop when the number of iterations reaches the maximum allowed number.

This approach cannot be used to solve our problem because the ACO uses an

iterative algorithm which uses solution that is probabilistically chosen and tries to

improve them in the next iterations to obtain its best value possible. Also, this

algorithm does not use a distributed algorithm to solve the open VRP. They solve

this problem in a centralized offline manner.
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2.3.2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) introduced by [Kennedy, 2011] is a population based

stochastic optimization technique inspired by social behavior of bird flocking or fish

schooling.

The system is initialized with a population of random solutions and searches for op-

tima by updating generations. In PSO, the potential solutions, called particles, fly through

the problem space by following the current optimum particles.

Each particle keeps track of its coordinates in the problem space which is associated

with the best solution (fitness) it has achieved so far. This value is called “pbest”. Another

“best” value that is tracked by the particle swarm optimizer is the best value, obtained so

far by any particle in the neighbors of the particle. This location is called “lbest”. When

a particle takes all the population as its topological neighbors, the best value is a global

best and is called “ gbest ”.

The particle swarm optimization concept consists of, at each time step, changing the

velocity of (accelerating) each particle toward its pbest and lbest locations (local version

of PSO). Like ACO, PSO can be applied to various optimization problems. The most

interesting and relevant ones are as follows.

• TSP. The TSP problem can be solved by using PSO techniques as shown by [Shi et al., 2007].

• mTSP. The m-TSP problem can be solved by using PSO techniques as shown by in

[Pang et al., 2013].

• Open VRP. Solving the open VRP using PCO techniques was proposed by

[MirHassani and Abolghasemi, 2011]. Initially, P particles are randomized with

a position and velocity. Decode these particles using the decoding algorithm and

then evaluate and improve the fitness value of the initial solution to reach the pbest

value. Then these details are shared with others, to improve the fitness value to ob-

tain a value closer to gbest. This process is continued until the termination condition

occurs.
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This approach cannot be used to solve our problem because this approach like the

ACO uses an iterative algorithm which uses particles i.e., random solution and tries to

improve them in the next iterations. Also, this algorithm does not use a distributed algo-

rithm to solve the open VRP. They solve this problem in a centralized offline manner.

Next, we list some of the prominent work done in the area of open VRP.

2.4 Cluster First,Route Second (CFRS)

This approach was introduced by [Sariklis and Powell, 2000] to solve the open VRP prob-

lem based on a minimum spanning tree with penalties procedure. This algorithm works

in two phases

• Clustering. Clustering procedure has two stages. The first stage initially assigns

customers to clusters satisfying the capacity constraint of all vehicles and aims to

have as few clusters as possible. In the second stage, the authors attempt to improve

the quality of the clusters formed by reassigning customers among them.

• Routing. In the second phase, the authors generate open routes by solving a mini-

mum spanning tree problem (MSTP). They use penalties to modify the MSTP so-

lution and iteratively convert infeasible solutions to feasible solutions.

This approach cannot be used to solve our problem because of the following reasons.

• Firstly, this algorithm uses repeated swaps among candidate solutions to guarantee

an optimal solution.

• Secondly, they do not use a distributed setting to solve this problem.

• Thirdly, This approach uses backtracking techniques in their second stage, wherein

they use penalties to modifying the ordering of visits of customers, which is not

true in our case.
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2.5 Tabu Search Algorithm (TSA)

Tabu search, created by [Glover, 1986] and formalized in 1989 is a meta-heuristic search

method employing local search methods used for mathematical optimization. It allows

local search (LS) methods to overcome local optima. The basic principle of TS is to pur-

sue LS whenever it encounters a local optimum by not allowing non-improving moves

i.e., moving back to previously visited solutions are prevented by the use of memories

called tabu lists, that record the recent history of the search. It starts from a random

initial solution and successively moves to one of the neighbors of the current solution.

Tabu search uses a special short term memory that is composed of previously visited so-

lutions that include prohibited moves. So it gives no permission to revisited solutions

and then avoids cycling and being stuck in local optima. During the local search, only

those moves that are not tabu will be examined if the tabu move does not satisfy the pre-

defined aspiration criteria. A common aspiration criterion is better fitness, i.e., the tabu

status of a move in the tabu list is overridden if the move produces a better solution.

[Brandão, 2004] solves the open VRP using TSA. The author generates an initial solu-

tion using a variety of methods including the nearest neighbour heuristic and the k-tree

method. The initial solution is submitted to either a nearest neighbour method or an un-

stringing and stringing procedure to improve each route. In the tabu search algorithm,

there are only two types of trial moves.

• an insert move. This takes a customer from one route and insert it onto another

route

• a swap move. This exchanges two customers on two different routes. This process

is repeated until the best possible cost is reached.

This approach cannot be used to solve our problem because of the following reasons.

• First of all, this approach does not use a distributed algorithm.

• In our problem, we do not allow vehicles to move back to their previous positions

to make improvements to their paths.
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• Thirdly, this approach assign initial values to vehicles and processing is done on the

initial solution to get the best possible value. This technique cannot be used in our

approach.

2.6 Tabu Search Heuristic (TS)

Tabu search is a heuristic method designed to guide methods like local search algorithm,

the escape local optima. The basic idea of the heuristic is to begin with an initial solution

and at each iteration, a neighborhood of the current solution is created through a differ-

ent class of moves. Then, the best admissible solution in the neighborhood is selected

as the new current solution, then the procedure is repeated until a stopping criterion is

satisfied. A move is admissible if it is not in tabu. If it is in tabu, then it still may

be admissible if the move produces a solution strictly better than the best solution so far.

[Fu et al., 2005] designed a farthest first heuristic (FFH) algorithm to solve the open VRP.

The FFH algorithm starts a new route with the farthest un-routed customer from the depot

and tries to add customers to the route until the vehicle is sufficiently full. In the tabu

search heuristic, two different nodes (customer or depot, on the same route or different

routes) are selected at random and one of four types of neighborhood moves is performed

at random.

• node reassignment. Removes the first selected vertex from its current position on

the route and insert it to a position before the second selected vertex.

• node swap. Exchanges the positions of the two selected vertices.

• two-opt move. Reverses the order of all the elements between the two selected

vertices.

• tails swap. select two customers and swap the tails, that is, perform an exchange

from the customer to the end of the route.

The distinctive feature of the TS heuristic is that it uses a simple but powerful neigh-

borhood structure. During the search, the current neighborhood is randomly selected
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among four types of neighborhood move, and the tabu length is randomly selected to be

between 5-10. By applying a different transformation at each iteration, a larger neigh-

borhood is explored over a few iterations, without the computational burden associated

with an extensive search in a unified neighborhood. Simulation results show that there

is a strong relationship between the initial solution and the final results. The better the

chosen initial solution, the better the chances of TS heuristic returning better final costs.

This approach cannot be used to solve our problem because of the following reasons.

• This approach uses a randomly selected neighborhood technique an also uses ran-

dom moves for improvement. Hence this cannot be used to prove any bounds or

solve the OMDVRP in a distributed setting.

• The results generated is directly proportional to the initial solution. This is more

closed to a randomized solution.

2.7 Adaptive Memory Based Tabu Search (BR)

Tabu search (TS) is based on the premise of problem-solving that in order to qualify as

intelligent, we must incorporate adaptive memory and responsive exploration. The adap-

tive memory feature of TS allows the implementation of procedures that are capable of

searching the solution space economically and effectively. The tabu search emphasis on

adaptive memory makes it possible to exploit the types of strategies that underlie the best

of human problem-solving. A key element of the adaptive memory framework of tabu

search is to create a balance between search intensification and diversification. Intensi-

fication strategies are based on modifying choice rules to encourage move combinations

and solution features historically found good. They may also initiate a return to attractive

regions to search them more thoroughly. Diversification strategies, on the other hand, seek

to incorporate new attributes and attribute combinations that were not included within so-

lutions previously generated.

The author [Tarantilis et al., 2004] uses the bone route algorithm(BR) to solve the open

VRP. The BR algorithm is a genetic solution procedure in the sense that it produces a
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new solution out of components of routes of previous good solutions. The components

of routes used in the new algorithm are sequences of nodes called bones. The generation

of a new solution( routing plan) by BR algorithm is based on the adaptive memory con-

cept. It extracts a sequence of points (called bones) from a set of solutions and generates

a route using adaptive memory. If a large number of routes in the set of solutions contains

a specific bone, then the authors argue that this bone should be included in a route that

appears in a high-quality solution. The bone route algorithm has two phases.

• In Phase 1 (pool generation phase).

1. Generate L Fl solutions;

2. Improve the quality of L initial solutions by tabu search algorithm;

3. Insert the routes composing the L solutions in a pool of solutions and

4. Sort the routes by increasing costs solutions where they belong to.

• In Phase 2 (pool exploitation phase).

1. promising bones are extracted;

2. a solution is generated and improved using tabu search and

3. and the set of solutions is updated.

This approach cannot be used to solve our problem because of the following reasons.

• It uses memory techniques to solve the problem efficiently which is not true in our

case. Our problem does not need to use memory techniques.

• Secondly, we cannot prove an approximation ratio of the algorithm using this ap-

proach.
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2.8 Adaptive Large Neighborhood Search (ALNS)

ALNS is a local search framework in which a number of simple algorithms compete to

modify the current solution. In each iteration, an algorithm is chosen to destroy the current

solution, and an algorithm is chosen to repair the solution. The new solution is accepted if

it satisfies some criteria defined by the local search framework applied at the master level.

In the ALNS framework proposed in [Pisinger and Ropke, 2007], a feasible solution

is constructed and then modified. In each iteration, an algorithm is selected to “destroy

the current solution and an algorithm is selected to “repair” the solution. An adaptive

layer stochastically controls which neighborhoods to choose according to their past per-

formance (score). The more a neighborhood Ni has contributed to the solution process,

the larger score πi it obtains, and hence it has a larger probability of being chosen.

For example, customers can be removed at random from the solution and then rein-

serted in the cheapest possible route. Several removals and insertion heuristics can be

used to diversify and intensify the search. The new solution is accepted if it satisfies the

criteria defined by the local search procedure (the authors use simulated annealing).

This approach cannot be used to solve our problem because

• First of all, this approach does not use a distributed algorithm.

• It uses iterative improvements of the solution which cannot be true in a distributed

setting, where a vehicle has to make a decision on the go.

Next, we discuss some of the prominent work done in the field of open multi-depot

VRP

• [Tarantilis and Kiranoudis, 2002] solves the OMDVRP to solve the distribution of

fresh meat from a major Greek industry to customers located in Athens. This paper

uses a stochastic search meta-heuristic algorithm called List Based Threshold Ac-

cepting (LBTA) to solve the problem. The LBTA algorithm iteratively searches the

solution space guided by a deterministic control parameter called threshold. This
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value reveals promising regions for better configurations. The LBTA runs in two

phases. The steps involved are given below.

1. Phase 1.

– Step 1. Initialization. An initial solution is produced by allocating cus-

tomers to the closest distribution center criss-cross and secondly dispatch-

ing to each of them a vehicle.

– Step 2. A local search is conducted in order to compute the threshold

values that represent the list of the algorithm. Local search is blended

with a list of moves listed below.

∗ 2-Opt move. This is implemented in the case of a single route and

multiple routes. This move helps to avoid criss-cross between two

edges in a route. It also helps to avoid criss-cross among two different

routes.

∗ 1-1 exchange move. The 1-1 exchange move swaps two nodes from

the same route. In a case of multiple routes, the swapping of nodes

takes place between two different routes.

∗ 1-0 exchange move. The 1-0 exchange move transfers a node from

its position in one route to another position in either in the same route

or a different route.

The type of move is selected employing a stochastic move generation al-

gorithm where the selection follows a uniform distribution. The relative

threshold is calculated between the proposed and current solution is cal-

culated. If the threshold is positive and lower than the maximum element

in the list, the threshold is inserted in the list. This iterative approach is

repeated for each of the moves.

2. Phase 2. The phase 2 of the algorithm works just like phase 1 but in this

step, ways are given to escape local minimum points from the exchanges. The

algorithm keeps track of values of high list threshold values using which bad
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moves are avoided.

• [Habib et al., 2013] solves the OMDVRP problem using UAVs. In the paper, the

authors design a path planning algorithm for UAVs using Mixed Integer Linear

programming (MILP). There is cooperation among team members as it is helpful

to reduce total mission time. The MILP solution gives the UAVs points where

they need to go and due to the un-foreseen disturbance in the environments, the

UAVS may be forced to apply the path planning again to complete their graph. The

complexity of the path planning algorithm is reduced as most of the nodes have

been covered and the path planning needs to cover only the uncovered nodes. Then

using simulation the algorithm is run on a static and dynamic environments.

This approach does not work for us because we run our distributed algorithm on an

instance of the OMDVRP and find the results but the process followed by Tarantilis’s

paper allows the vehicles to make decisions based on previous results of searches and

findings. So this cannot be used in our case. This technique cannot be used to find any

bounds in a distributed setting.

2.9 Distributed Approximation

• [Elkin, 2004] discusses the techniques and hardships involved in finding the dis-

tributed approximation of various problems. It discusses how to find the lower

bound, upper bound in a distributed setting. Also, the rounding algorithm is dis-

cussed in detail.

• [Kuhn and Wattenhofer, 2005] presents a new fully distributed approximation algo-

rithm based on LP relaxation techniques for finding the distributed dominating set.

For an arbitrary parameter k and maximum degree ∆, their algorithm computes a

dominating set of expected sizeO(k∆2/klog∆ | DSOPT |) inO(k2) rounds where

each node has to send O(k2∆) messages of size O(log∆)

• [Moscibroda and Wattenhofer, 2005b] finds the approximation ratio of the facility
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location problem in a distributed setting. Their algorithm achieves a approximation

ratio of O(
√
k(mρ)1/

√
klog(m+n)) approximation in O(k) communication rounds

where message size is bounded toO(logn) bits. The number of facilities and clients

is m and n respectively, and ρ is a coefficient that depends on the cost values of

the instance. Their technique is based on a distributed primal-dual approach for

approximating a linear program, that does not form a covering or packing program.

This technique is the one that we are going to use to solve the OMDVRP in a

distributed fashion and compute the approximation ratio.
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Chapter 3

The Vehicle Routing Problem and

Linear Program Transformations

In this section, we present the vehicle routing problem (VRP) and its formal description

in Section 3.1. Then, Section 3.2 discusses the ILP formulation of the problem. We also

present the LP relaxation and the dual LP formulations in Sections 3.3 and 3.4, respec-

tively.

3.1 Problem Definition

VRP has numerous variations. However, its most basic version can be described as fol-

lows. According to Laporte [Laporte, 1992]:

“ The Vehicle Routing Problem (VRP) can be described as the problem of

designing optimal delivery or collection routes from one or several depots to

a number of geographically scattered cities.”

The variation of VRP we are studying in this thesis is called the open multi-depot

vehicle routing problem (OMDVRP), wherein a vehicle starts at any one of the depots

and are not required to return to any of the depots after servicing the last node in the

route. In our version of the problem, we assume that all cities have a constant non-

negative demand. We also assume that there is no priority and/or precedence in servicing
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the cities. All vehicles may or may not have same servicing and traveling costs. There are

also some side constraints that need to be satisfied:

• Demands of all cities including the depots are to be serviced by exactly one vehicle;

• A vehicle has to reach the city before satisfying its demand unless the vehicle is

already present in the city (depot), and

• A vehicle can visit a city only once in its entire route. Multiple vehicles can visit

the same city if it helps improve the costs.

We now formally describe the problem. Let A be a finite set of m vehicles and G =

〈V,E〉 be an undirected finite graph. Each vehicle a ∈ A is associated with a vertex va0

called the depot. The depot also needs to be serviced. We consider two cost functions:

• The first is the cost of servicing a demand by a vehicle:

Cs : A× V → Z≥0

• The second is the cost of traveling from one city to another by a vehicle:

Ct : A× E → Z≥0

A path of G is a sequence p = v0 · · · vn, where for all i ∈ [1, n − 1], we have

(vi, vi+1) ∈ E. For each vehicle a ∈ A, we require that v0 = va0 . Let V p
a be the set

of all nodes serviced by a vehicle a ∈ A in its path p, where V p
a ⊆ V . The total cost of a

path p = v1 · · · vn chosen by a vehicle a ∈ A (denoted C(a, p)) is

C(a, p) =
n∑

vi∈V p
a

Cs(a, vi) +
n−1∑
i=1

Ct(a, (vi, vi+1))

Our version of VRP intends to find a set P of paths and a plan function F : P → A,

such that:
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• The paths cover all vertices of G for servicing. That is,

⋃
p∈P

V p
F (p) = V

• And, F respects the following objective

min
∑
p∈P

C(F (p), p)

among all possible such functions.

3.2 Transformation to ILP

We now explain the transformation of our version of VRP to integer linear programming.

An integer linear program is of the form:


Minimize c.x

Subject to B.x ≥ b

where B (a rational k × l matrix), c (a rational l-vector), and b (a rational k-vector) are

given, and x is an l-vector of integers to be determined. In other words, we try to find

the minimum of a linear function over a feasible set defined by a finite number of linear

constraints. A problem with linear equalities ( or≤ linear inequalities ) can always be put

in the above form, implying that this formulation is indeed general. Thus, every integer

linear program involves a set of constants, variables, constraints, and an optimization

objective.

Recall that we let A be a finite set of vehicles, G = 〈V,E〉 be a finite graph, and Cs

and Ct be two cost functions as defined in Section 3.1. We now identify the constants,

variables, constraints, and optimization objective.
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Constants.

• Cs(a, v) is the cost of servicing city v ∈ V by vehicle a ∈ A. Thus, Cs(a, v) ≥ 0.

• Ct(a, (u, v)) is the cost of travel from city u to city v by vehicle a. Thus,Ct(a, (u, v)) ≥

0.

Variables. The set of variables are the following:

• For each edge (u, v) ∈ E and vehicle a ∈ A, we introduce a binary variable xa(u,v),

where

xa(u,v) =


1 if vehicle a travels from city u to city v

0 otherwise

• For each vertex v ∈ V and vehicle a ∈ A, we introduce a binary variable yav , where

yav =


1 if vehicle a services city v

0 otherwise

• Finally, for each edge (u, v) ∈ E and vehicle a ∈ A, we include two integer

variables sau, and sav. These auxilliary variables are used for sub-tour elimination

constraints (explained below).

Constraints. The set of constrains are as follows:

• All variables are binary. That is, for all a ∈ A and (u, v) ∈ E, we include:

xa(u,v), y
a
v ∈ {0, 1} (3.1)

• Each vertex is serviced exactly once. That is, for each vertex v ∈ V , we include the

following: ∑
a∈A

yav = 1 (3.2)
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• If a vehicle a services a city v, then it must travel to that city. Thus, for each vehicle

a ∈ A and each vertex v ∈ V − {va0}, we include the following constraint:

∑
u∈V

xa(u,v) − yav ≥ 0 (3.3)

• We need to ensure that a path enters each node at most once. That is, for each

vehicle a ∈ A and each vertex v ∈ V , we include the following constraint:

∑
u∈V

xa(u,v) ≤ 1 (3.4)

• We need to ensure that a vehicle does not go through a vertex more than once. That

is, for each a ∈ A, we include the following:

∑
v∈V

xa(u,v) ≤ 1 (3.5)

• We need to ensure that a vehicle chooses a continuous path. That is, for each a ∈ A

and v ∈ V − {va0}, we include the following:

∑
u∈V

xa(u,v) −
∑
u∈V

xa(v,u) ≥ 0 (3.6)

• The constraints stated above ensure that all cities are visited at least once. But

there could be multiple cycles (subtours) in the path that a vehicle is assigned.

To avoid this multiple cycles within a path we use subtour elimination constraint.

This constraint forces the vehicle to have a continuous path without any cycles.

This constraint is known as subtour elimination: for each vehicle a ∈ A and edge

(u, v) ∈ E, where (u, v) 6= va0 :

sau − sav + (n−m) · xa(u,v) ≤ (n−m− 1) (3.7)

where n = |V | and m = |A|.
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Example a) This constraint associates a positive value sau, s
a
v to all nodes chosen in a path

in the order they are traveled and this constraint does not allow a vehicle to choose a path

with cycles. In a small graph having 4 nodes, if a vehicle a chooses a path 〈v0v1v2v3〉,

where v0 = va0 . The corresponding values associated with v1 = 0, v2 = 1, v3 = 2.

By substituting these values we can see that a vehicle decides to take an edge to reach

any previously visited node in its path, the subtour elimination condition does not hold.

Optimization objective.

min

(∑
a∈A

∑
v∈V

yav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

xa(u,v) · Ct(a, (u, v))

)
(3.8)

3.3 LP Relaxation

In this section, we show how our ILP constraints are relaxed to form a linear program (LP)

constraints. Since LP allows fractional values for xa(u,v), y
a
v , we cannot use some of the

ILP constraints as stated above, since the solution returned from LP may not be feasible

for ILP. Hence, some of the constraints are divided by a factor of m = |A|. The objective

function of LP relaxation remains the same as the objective function of ILP.

The set of constraints are as follows:

• We change Constraint 3.1 to:

xa(u,v), y
a
v ∈ R≥0 (3.9)

• We modify Constraint 3.2 to: ∑
a∈A

yav =
1

m
(3.10)

• We modify Constraint 3.4 to:

∑
u∈V

xa(u,v) ≤
1

m
(3.11)
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• We modify Constraint 3.5 to:

∑
v∈V

xa(u,v) ≤
1

m
(3.12)

• We modify Constraint 3.7 to:

sau − sav + (n−m) · xa(u,v) ≤
1

m
· (n−m− 1) (3.13)

Since we have reduced the value of xa(u,v) by
1

m
and also (n − m − 1) is reduced

by a factor of
1

m
, we need not reduce the sau, s

a
v variables. The subtour elimination

constraints will still hold in this case.

Example b) In a small graph having 3 nodes and 2 vehicles. If a vehicle a, chooses

a path 〈v0v1v2〉, then the associated s values are v1 = 0, v2 = 1. Now if vehicle

a from v2 tries to go back to v1, the subtour constraints would not allow that visit.

Here we have m = 2. Substituting these values we have for the case of vehicle a

going from v2 to v1 we have that 1− 0 + 0.5 
 0.

3.4 The Dual Linear Program

The motivation behind using a dual LP ( [Bachem and Kern, 1992] ) is that it provides a

lower bound on the value of the optimal primal LP solution (for minimization problems,

and an upper bound for maximization problems). The idea of LP duality to find the

optimal multipliers for the constraints so as to obtain the tightest bound possible. We

can express this problem of finding the best multipliers as another LP; this is called the

dual LP. The variables in the dual LP represent constraints of the original primal LP.

Each constraint in the dual LP refers to one variable of the primal LP and states that the

weighted sum of the coefficients corresponding to that variable should be no more than

the coefficient of the variable in the objective function.

Given the primal LP defined in Section 3.3, the associated dual LP is the following:

Variables. The set of variables are the following:
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• Variable αv represents Constraint 3.10.

• Variable βav represents Constraint 3.3.

• Variable γav represents Constraint 3.11.

• Variable τau represents Constraint 3.12.

• Variable θav represents Constraint 3.6.

• Variable λau,v represents Constraint 3.13.

Constraints. The set of variables are the following:

• Constraint 1: For each v ∈ V and a ∈ A, we have

yav : αv − βav ≤ Cs(a, v) (3.14)

• Constraint 2: For each a ∈ A and (u, v) ∈ E

xa(u,v) : βav − γav − τau − λa(u,v) + θav ≤ Ct(a, (u, v)) (3.15)

•

αv is free, βav , γ
a
v , τ

a
u , λ

a
(u,v), θ

a
v ≥ 0 (3.16)

Optimization objective.

max
1

m

∑
v∈V

αv −
∑
a∈A

∑
v∈V

γav −
∑
a∈A

∑
v∈V

τav − (n−m− 1)
∑
a∈A

∑
(u,v)

λa(u,v)


In the next chapter, we will present an algorithm that solves the primal LP relaxation

and we will provide bounds by use of the dual program.

27



Chapter 4

Algorithm for Distributed VRP with

Fractional Values (Distributed

Approximation Algorithm)

Our goal in this chapter is to design an algorithm, where a set of distributed vehicles solve

the open multi-depot vehicle routing problem (OMDVRP) as formalized in Section 3.1.

We will use the LP relaxation and dual LP constraints given in the last chapter and use it to

design a synchronous distributed algorithm to solve the open multi-depot vehicle routing

problem (OMDVRP). By incorporating the LP relaxation techniques, we are able to find

the approximation ratio of how good our algorithm can perform when compared to the

optimal solution from the ILP formulation.

The basic idea of designing our algorithm in this fashion is to prove that in every

iteration of the distributed algorithm, all the LP relaxation constraints are satisfied and

also the dual constraints are satisfied through out the algorithm. By ensuring this, we are

able to find how much our algorithm solution deviates from the optimal solution, which

is our approximation ratio.
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4.1 Model of Distributed Computation

Given a set A of vehicles and a graph G, our distributed model of computation has the

following characteristics:

• The set of distributed vehicles can communicate using synchronous [Lynch, 1996]

message passing i.e., in each round vehicles send and receive messages synchronously

and subsequently engage in internal computation;

• The communication network is a complete graph i.e., each vehicle can communi-

cate with other vehicles regardless of their location in G and they are able to send

broadcast messages;

• Each vehicle has a unique id and knows the entire graph G and cost functions Cs

and Ct of all vehicles and

4.2 Overall Idea of the Algorithm

Initially, each vehicle is placed in its depot to be serviced. As mentioned earlier, our

distributed algorithm is synchronous. In each round, each vehicle:

1. performs some computation and decides either to service its current location or to

travel to another location;

2. broadcasts a message containing the details of its decision to all other vehicles, and

3. waits to receive similar messages from all other vehicles.

Thus, in each round, a vehicle can perform two operations when it enters a city:

• A vehicle can decide to service the city if the vehicle finds that it can service the city

cheaper (with lesser cost) than any rival vehicle or in fewer communication rounds

compared to all other rival vehicles from their current location.
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• Otherwise, the vehicle decides to travel to a city, from its list of neighboring nodes

where it can reach and service a city with the least cost possible. A vehicle travels

to another city, if it finds a rival vehicle can service the city cheaper than the current

vehicle or in the case when the node is already serviced.

We explain the conditions based on which a vehicle decides to service a node (or city)

and the conditions when the vehicle decides to travel to another node in Subsections 4.2.1

and Subsection 4.2.2, respectively.

4.2.1 Conditions for Servicing

Step 1 – Decide on vehicle’s neighborhood from current location:

Let loc(a) denote the current location of vehicle a. The neighborhood for a vehicle

from loc(a) (if not serviced) is the set of all simple paths where all the vertices are not

yet serviced by any vehicle and traveled by the current vehicle. If the vehicle’s current

location is a vertex that has already been serviced, then the neighborhood for this vehicle

from its current location is empty.

Definition 4.2.1 Given a graph G = 〈V,E〉 and vehicle a ∈ A, the neighborhood of a is

the following set of simple paths:

Na =

{
p | p starts at loc(a) ∧ Vp = V ¬sp

}

where V p denotes the vertices of path p and V ¬sp is the set of vertices of p that are not

serviced.

In our algorithm, we compute a dynamic neighborhood for each vehicle a denoted by

Na
k . Let a ∈ A be a vehicle and Rivala = A − {a} be the set of all rival vehicles of

a. A dynamic neighborhood for a is the neighborhood where the length of each path is

restricted to the minimum distance from loc(a) and its closest rival vehicle, or, the value

of the k, based on the smallest value among the two.
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Figure 4.1: Computing the Dynamic Neighborhood (Example 1)

Definition 4.2.2 Given a graph G = 〈V,E〉 and vehicle a ∈ A, the dynamic neighbor-

hood of a is the following:

Na
k =

{
p | p ∈ Na ∧

(|p| < min
{
k, {d(loc(a), a′) | a′ ∈ Rivala ∧ loc(a) 6= loc(a′)}

}
) ∨

∃a′ ∈ Rivala : loc(a′) = loc(a)→ p = loc(a))

}
where k ≤ |A| is some natural number, d(u, v) is the distance of vertex u from vertex

v for any u, v ∈ V and |p| is the length of path p.

Notice that in Definition 4.2.1, if there exists a′ ∈ Rivala such that a and a′ are in the

same vertex, then Na
k = {loc(a)}.

All concepts discussed above can be shown using the following examples:

• Example 1. In this example we have a graph having three nodes and two vehicles

a1 and a2 which are placed at vertices v1 and v2 respectively as shown in Figure 4.1.

Vertex v1 has been serviced and is denoted by the shaded node. Costs of servicing

and traveling are unimportant. In this case, for k = 2, we have Na1
2 = ∅ and

Na2
2 = {v2}.

• Example 2. In this example we have a graph having three nodes and two vehicles a1

and a2 which are placed at vertices v1, v2 respectively as shown in Figure 4.2. In this

case for k = 2, we have a d(loc(a1), loc(a2)) = 1, Na1
2 = {v1} and Na2

2 = {v2}.

• Example 3. In this example we have a graph having three nodes and two vehicles

a1 and a2 and both vehicles are placed at vertex v1 as shown below in Figure 4.3.

In this case we have k = 2, and both vehicles a1 and a2 have the same location i.e.,

vertex v1. Hence, we have Na1
2 = {v1} and Na2

2 = {v1}.
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Figure 4.2: Computing the Dynamic Neighborhood (Example 2)

Figure 4.3: Computing the Dynamic Neighborhood (Example 3)

• Example 4. In this example, we have a graph having four nodes and two vehicles a1

and a2 which are placed at vertices v1 and v3 respectively as shown in Figure 4.4.

In this case,we take k = 2 and d(loc(a1), loc(a2)) = 2. Hence, we have Na1
2 =

{v1, v1v4, v1v2} and Na2
2 = {v3, v3v2, v3v4} respectively.

Step 2 – Choosing the best possible path from Na
k :

After we compute Na
k , a vehicle should decide which path it will take from the set of

paths in Na
k . This decision is made based on the cost of traveling and servicing along the

paths in Na
k . To this end, we identify the path whose normalized cost of travel and service

is minimum:

C(Na
k ) = min

{∑
v∈pCs(a, v) +

∑
(u,v)∈pCt(a, (u, v))

2|p|+ 1

∣∣∣ p ∈ Na
k

}
(4.1)

We present an example to show how C(Na
k ) is calculated. In the graph shown in

Figure 4.5, we have four nodes and two vehicles with identical service and travel costs

(each edges is labeled by it travel cost and service costs are shown above vertices). We

take k = 3 here and vehicle a1 has its depot at v1 and a2 has its depot at v3.

32



Figure 4.4: Computing the Dynamic Neighborhood (Example 4)

For vehicle a1, we have Na1
3 = {v1, v1v2, v1v4} and

C(Na1
3 ) = min

{
20,

20 + 5 + 10

3
,
20 + 10 + 10

3

}
= 11.67

We denote the path that yields C(Na
k ) by π(Na

k ). Hence, π(Na1
3 ) = v1v2. For vehicle

a2, we have Na2
3 = {v3, v3v2, v3v4} and

C(Na2
3 ) = min

{
30,

30 + 20 + 10

3
,
30 + 10 + 10

3

}
= 16.67

Hence, π(Na2
3 ) = v3v4.

Step 3 – Verify if a rival vehicle may enter the computed path π(Na
k ):

Each vehicle needs to check if it takes fewer number of communication rounds to service

all the nodes in the path than other vehicles from their locations. This check is done using

the function CheckIfPathFree (see Algorithm 1). Before the call to the function, the value

of π(Na
k ) is assigned to p′ and the function is called with the value of p′. The function

Figure 4.5: Choosing the best path from Na
k
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Algorithm 1 Function CheckIfPathFree for vehicle a.

Input: Path p = 〈v0v1 . . . vn〉 and vehicle a′

Output: Path p′

1: if (|p| = 0) then
2: p′ ← p;
3: if (loc(a) = loc(a′)) ∧ (Cs(a, loc(a)) > Cs(a

′, loc(a))∨
4: (Cs(a, loc(a)) = Cs(a

′, loc(a)) ∧ id(a) > id(a′)) then
5: p′ ← ∅;
6: return p′;
7: end if
8: else
9: for (i← 0; i ≤ n; i++) do

10: if (2.d(loc(a), vi) + 1) < d(loc(a′), vi) then
11: p′ ← p′.〈vi〉;
12: else
13: return p′;
14: end if
15: end for
16: end if
17: return p′;

CheckIfPathFree takes two arguments as input and returns a path p′ or its subset for “suc-

cess” or returns an ∅ denoting “failure”. The first argument passed to the function is the

path chosen by the current vehicle i.e., p′ and the second argument passed, is the location

of a rival vehicle. If CheckIfPathFree returns p′ or its subset, it ensures that no rival vehicle

can enter the path π(Na
k ) in less than or equal to 2|p′| + 1 rounds of communication (we

will describe how the vehicles communicate later). Note that CheckIfPathFree is called

for every rival vehicle of the current vehicle a. This is done to ensure that when a vehicle

chooses a path p′, the vehicle has the freedom to service all the nodes by itself and does

not allow any other rival vehicle to enter its computed path.

Function CheckIfPathFree is also used to avoid conflicts among the vehicles. That is

if two or more vehicles have traveled to a node where both vehicles have the same cost

of servicing, then CheckIfPathFree allows only the vehicle that has the least vehicle id to

service the node.

Functionality of CheckIfPathFree can be broken down into two steps. Let a denote

the current vehicle, a′ denote a rival vehicle and π(Na
k ) be the path chosen by a.

There are three possible outcomes of this function:
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• If the CheckIfPathFree returns an ∅, then the vehicle travels to another node from

its current location.

• If it returns a path p′ where, |p′| = |π(Na
k )| then the vehicle is clear to service all

nodes in π(Na
k ).

• If it returns a path p′ where, |p′| < |π(Na
k )| then the vehicle makes p′ its current

path and calculates C(Na
k ) based on the new path p′ and is then clear to service all

nodes in p′.

Note: If CheckIfPathFree returns a path |p′| < |π(Na
k )|, the subsequent function calls to

CheckIfPathFree is made with the updated path. We now present an example. Figure 4.6

shows a graph of eight nodes and three vehicles a1, a2, and a3 with depots v1, v2, and

v5, respectively and identical service and travel costs. We take k = 2. After two rounds,

vehicle a1 has serviced vertex v1 and traveled from vertex v1 to v8. Similarly, vehicle

a2, has finished servicing vertex v2 and traveled to vertex v3. Vehicle a3, has finished

servicing vertex v5 and traveled to vertex v6. The path chosen by vehicle a1 from its

current location is v8, the path chosen by a2 from its current location is v3v4, and the path

chosen by a3 is v6v7 based on their C(Na
k ) values. Let us imagine in this state, the three

vehicles invoke function CheckIfPathFree:

Figure 4.6: CheckIfPathFree: Example 1

• Vehicle a1: Vehicle a1 assigns the value of π(Na1
2 ) to p′ and calls the function

CheckIfPathFree with parameters p′ = v8 and loc(a2) = v3. Since loc(a1) 6=

loc(a2), the function returns v8. Next, vehicle a1 calls the function with parameters
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p′ = v8 and loc(a3) = v6. Since loc(a1) 6= loc(a3), the function again returns v8.

Hence, vehicle a1 can service its node v8.

• Vehicle a2: Vehicle a2 assigns the value of π(Na2
2 ) to p′ and calls the function

CheckIfPathFree with parameters p′ = v3v4 and loc(a1) = v8. Vehicle a2 can

service node v3 in fewer rounds than its rival vehicles a1, a3. Next, vehicle a2 takes

2|p′| + 1 = 3 communication rounds to service node v4. Notice that since a1 has

traveled from v1 to v8 and is not allowed to travel back to v8, then the legitimate

distance of the location of a2 to a1 is 4. Hence, d(loc(a1), v3) > (2|p′| + 1) and

d(loc(a1), v4) > 2|p′| + 1. Hence, the function returns v3v4. Next, vehicle a2 calls

the function with parameters p′ = v3v4 and loc(a3) = v6. Notice that since a3 has

traveled from v5 to v6 and is not allowed to travel back to v5, then the legitimate

distance of the location of a3 to a2 is 5. Hence, d(loc(a3), v3) > 2|p′| + 1 and also

d(loc(a3), v4) > 2|p′| + 1. So, the function returns v3v4. Hence, vehicle a2 can

service the chosen path p′ = v3v4.

• Vehicle a3: Vehicle a3 assigns the value of π(Na3
2 ) to p′ and calls the function

CheckIfPathFree with parameters p′ = v6v7 and loc(a1) = v8. Vehicle a3 can

service node v6 in fewer rounds than its rival vehicles a1, a2.Vehicle a3 takes 2|p′|+

1 = 3 communication rounds to service node v7. We have d(loc(a1), v6) ≤ 2|p′|+1.

Hence the function returns v6. Hence, vehicle a3 updates its path from v6v7 to its

current location only i.e., v6 and calls CheckIfPathFree with the updated path. This

time, since loc(a3) 6= loc(a1) and loc(a3) 6= loc(a2), the function returns v6. Hence,

vehicle a3 can service the v6.

In totality, for a vehicle a to service a path the following two conditions must hold at

all times:

• Na
k 6= ∅ and

• CheckIfPathFree returns a non-empty path comparing all rival vehicles.
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Figure 4.7: Travel Based on nextbest(a) value

4.2.2 Conditions for Traveling

If any of the conditions given above is not satisfied, then a vehicle travels from the current

node to an another node. The logic behind choosing the next node from a set of possible

nodes is as follows. A vehicle evaluates all available nodes that it can reach from its

current location in one communication round excluding the nodes it has traveled before

in its path. For this set of nodes, a vehicle sums up the cost of traveling to that node and

servicing it. All these costs are added into a set and the node which yields the least value

possible is chosen as the next node to travel from the vehicle’s current position. If the set

of available nodes includes nodes that have already been serviced, the vehicle temporarily

assigns a large value as the cost of servicing that node. This large value can simply be

defined as the following:

ρ = max

{
Cs(a, v), Ct(a, (u, v)) | (a ∈ A) ∧ (u, v ∈ V )

}
(4.2)

Next, we present an example to demonstrate this. In this complete graph we have

four nodes and three vehicles with same servicing and traveling costs (see Figure 4.7).

Vehicles a1 and a3 are placed at node v1 and vehicle a2 is currently placed at node v3

which has been serviced by a2.

A vehicle a finds the next best node for it to travel and service as follows:

nextbest(a) = min{Cs(a, v) + Ct(a, (loc(a), v)) | (loc(a), v) ∈ E} (4.3)
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where v has not been traveled to or from by a. In our example, the available vertices to

vehicle a3 are v2, v3, and v4. Since ρ = 35, we temporarily set Cs(a3, v3) = 35. Thus, we

have

nextbest(a3) = min{5 + 10, 20 + 35, 10 + 10} = 15

So vehicle a3 chooses to go to vertex v2. If it happens that the node whose service cost

has been temporarily set to ρ is returned from the nextbest(a) value, that node is chosen

as the next node to travel.

4.3 Detailed Description of the Algorithm

The technique of designing distributed approximation algorithms by first computing a

fractional solution and rounding them in a second phase has been inspired by

[Kuhn and Wattenhofer, 2005]. Our algorithm combines these techniques with ideas from

the centralized primal-dual approach in [Jain and Vazirani, 1999]. All vehicles execute

the same local algorithm. The algorithm consists of two nested loops: an outer s-loop and

an inner t-loop. The outer s-loop iterates as many times as the number of nodes in the

graph i.e., the value of |V |. When the value of s becomes zero, it signals the termination

of the algorithm.

The inner t-loop is initialized by the value of tassign which gives the value 1 either

if Na
k = ∅ or p′ = ∅ or else gives the value 2|p′| + 1. Similar to the outer s-loop, the

inner t-loop also is executed until t becomes zero. That is until all the nodes in the chosen

path is serviced by the current vehicle or the vehicle changes its location from one node

to another node without servicing the current node thus computing a new neighborhood.

If a node is serviced in a t-iteration, the value of t is decreased by 1 and if a vehicle

travels to an another node, then the value is made 0 for the vehicle to compute its new

neighborhood.

Initially, all primal and dual variables xa(u,v), y
a
v , αv, β

a
v , λ

a
(u,v), γ

a
v , τ

a
u , θ

a
v are set to zero.

Hence, the initial primal solution is infeasible, and the dual solution is feasible, yet far

from optimal. During the course of the algorithm, both the primal and dual variables
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are gradually increased, thereby decreasing the primal infeasibility, and increasing dual

optimality. The current vehicle starts its work from its depot location; i.e., va0 . From its

current location, the vehicle finds the minimum of k and distance of its rival vehicles

from itself using which it calculates its Na
k . Then, C(Na

k ) and π(Na
k ) are calculated as

explained in Section 4.2.1. In lines 14 – 16, a vehicle checks to see if its chosen path is

free from other rival vehicles. Based on the path p′ returned, the value of tassign is set

for the execution of the inner for loop. In the inner for-loop line 26 checks if a vehicle

can service its chosen path. We now explain the process of servicing and traveling in two

sections:

• Service Section. This section includes lines 27 – 41. If the condition in line 26 is

satisfied, then a vehicle enters the servicing part of the algorithm. Line 29 checks

if the current vehicle satisfies yav = 0. If true, the vehicle services the node and

assigns yav ←
1

m
. This denotes that node v has been serviced by vehicle a. This

information will be broadcast in the current communication round (t-loop). Since

the vehicle has not traveled to any node in the current communication round, the

dual variables γv and τu do not increase. The dual variable βav represents the 2nd

LP constraint; i.e.,
∑

u∈V x
a
(u,v) − yav ≥ 0. Since a vehicle would have reached the

current location (if not its depot) by taking an edge from an adjacent node, we have

that βav would have already been increased by the value ρ. A node can be reached or

visited using multiple edges. Since we do not know, the cost of the incoming edge

we bound this value by ρ. Going by the 2nd LP constraint we subtract the value of

servicing the current node i.e., Cs(a, v). Hence ∆βav is increased by ρ − Cs(a, v).

If a vehicle services a node from its depot the 2nd LP constraint is not true and

hence the initial value of βav is retained. The boolean value flag is used to check if

a vehicle has serviced a node from its depot location.

Next, if the algorithm from line 29 returns false, it means that vehicle a has already

serviced its current location and executes lines 31 - 40. In these lines, the vehicle

moves from its current location to the next node in its chosen path. In this process

the value of xa(u,v) is increased by
1

m
to denote an edge has been taken. The corre-

39



sponding γv and τu are increased by the value of ∆xa(u,v) and−∆xa(u,v), respectively.

These values are incremented in an equal and opposite way to denote an outgoing

edge from a node u to an another node v can also be seen as an incoming edge

for v from u. Hence, these values are equal and opposite. Lines 36 , 47 are never

executed asNa
k would not contain already visited edges and also nextbest(a) would

not allow the vehicle to travel to a node that is already visited. The maximum cost

of Ct(a, (u, v)) can be bounded by ρ. Hence, the value βav is increased by ρ. Note

that C(Na
k ) was normalized by a factor of 2|p′| + 1. Hence, C(Na

k ) if repeatedly

sent over 2|p′|+1 communication rounds would yield the actual costs of the vehicle

servicing and travel across all nodes in its path. Hence, the temporary assignment

in line 39 is made to ensure C(Na
k ) is send out in each communication round of the

service section of the code.

• Travel Section. This section extends from line 42 to 50. If a vehicle is not

allowed or cannot service its current location, the vehicle enters the travel section.

In this section, the value of nextbest(a) is calculated as shown in Section 4.2.2.

The primal and dual values are incremented in the same way like the travel case in

service section. The only difference between the two, is that here in this section the

value of t is assigned zero after an iteration of the t-loop.

After the service and travel sections end, all the values calculated from the current

communication round are assigned to the respective primal and dual variables. Then, a

broadcast message giving out details of the vehicle id, current location, cost incurred in

the current communication round is sent out and received from all vehicles. The cost

incurred in the current communication round (service or travel costs) is multiplied with

the corresponding xa(u,v) or yav value increased in the current communication round and

this information is passed in the broadcast message. The messages received, can be dis-

tinguished into two sets, one that contains service messages and one that contains travel

messages. From the service message set, the location of all vehicles that sent a service

message is updated, values of corresponding rival vehicle’s yav are updated, the count of

these messages are taken and the cost sent by each vehicle is added up to the correspond-
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ing αv value.

The number of service message received are stored in the variable count and the value

of s is decremented by the value of count once the inner for-loop terminates. That way,

all vehicles have an updated count of the number of nodes yet to be serviced at all times

during the algorithm. From the set of travel message set, the location of all vehicles that

sent a travel message is updated. The corresponding rival vehicles xa(u,v) are updated and

also cost sent by each vehicle is added up to the corresponding αv value. The dual variable

αv holds the weighted sum of all service and travel that happened corresponding to a node

v. The sum of αv for all nodes gives the total cost.

At the end of the last iteration of the outer loop, the primal variables yav and xa(u,v) form

a feasible solution to the LP. The value of θav is given the value
1

m
in the last iteration of

the s-loop (Line 75). This is to show that there is only an incoming edge and there are no

outgoing edges from the last node in the path. In all the other iterations of the s-loop, the

value of incoming edges could increase in one iteration but the corresponding outgoing

edge is also increased in the next iteration of s if a vehicle performs travel or the value is

increased in two communication rounds if a vehicle performs a service.

At the end of the algorithm, each vehicle has some xa(u,v) fractional values and some

yav values and collectively all the nodes have been serviced by exactly one vehicle. While

these values constitute a feasible solution to LP, they have fractional values and can there-

fore not be used as a solution to the original VRP. Hence, we will utilize two approaches

to round these fractional values to integer values in {0, 1}, increasing the approximation

ratio from the fractional solution only by a logarithmic factor.
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Algorithm 2 Algorithm for vehicle a

Input: Graph G = 〈V,E〉, cost functions Cs and Ct of all vehicles, and value of k.
Output: Fractional Value for xauv, y

a
v

1: xa(u,v), y
a
v ,∆x

a
(u,v),∆y

a
v , αv, β

a
v ,∆αv,∆β

a
v , λ

a
(u,v), γ

a
v ,∆γ

a
v , τ

a
u ,∆τ

a
u , θ

a
v ← 0;

2: loc(a)← va0 ;
3: flag ← true;
4: Rivala ← A− {a};
5: Let Na

k , C(Na
k ), ρ, and nextbest be as defined in Definition and Equa-

tions 4.2.2, 4.1, 4.2, and 4.3, respectively.
6: for s = |V | to 0 do
7: tassign ← 0, p′ ← ∅, count ← 0;
8: Calculate Na

k ; {Step 1 in Conditions For Servicing.}
9: if (Na

k = ∅) then
10: tassign ← 1;
11: else
12: Calculate C(Na

k ) and π(Na
k ); {Step 2 in Conditions For Servicing.}

13: p′ ← π(Na
k );

14: for each a′ ∈ Rivala do
15: p′ ← CheckIfPathFree(p′, loc(a′)); {Step 3 in Conditions For Servicing.}
16: end for
17: if (p′ = ∅) then
18: tassign ← 1;
19: else
20: tassign ← 2|p′|+ 1;
21: if (|p′| 6= |π(Na

k )|) then Calculate C(Na
k ) for p′;

22: end if
23: end if
24: for t = tassign to 0 do
25: isService ← false;
26: if (p′ 6= ∅) ∧ (Na

k 6= ∅) then {Check if Servicing conditions are met.}
27: isService ← true; {If Conditions of Servicing are met, Servicing begins.}
28: v ← loc(a);

29: if (yav = 0) then ∆yav ←
1

m
; {Servicing is done here. }

30: if (flag 6= true) then ∆βav ← βav − Cs(a, v);
31: else {Vehicle travels to next node in path.}
32: u← loc(a);
33: Let v be the node adjacent to u on p′ st. xa(u,v) = 0;
34: isService ← false;

35: ∆xa(u,v) ←
1

m
;

36: if (xa(v,u) > 0) then λa(u,v)++;
37: ∆γav ← ∆xa(u,v); ∆τau ← −∆xa(u,v);
38: ∆βav ← ρ;
39: Temporarily assign Ct(a, (u, v))← C(Na

k );
40: end if
41: t← t− 1; {Servicing ends here.}
42: else {If Conditions for Servicing are not met, Travel starts here.}
43: Let u← loc(a);
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44: Let v yield nextbest(a); {Conditions for Traveling: Calculate nextbest(a).}
45: ∆xa(u,v) ←

1

m
;

46: ∆βav ← ρ;
47: if (xa(v,u) > 0) then λa(u,v)++;
48: ∆γav ← ∆xa(u,v); ∆τau ← −∆xa(u,v);
49: t← 0;
50: end if {Travel ends here}
51: γav ← γav + ∆γav ;
52: τav ← τav + ∆τav ;
53: βav ← βav + ∆βav ;
54: yav ← yav + ∆yav ;
55: xa(u,v) ← xa(u,v) + ∆xa(u,v);

56: if (isService) then Send(id(a), v,∆yav .C(Na
k )); {To all vehicles}

57: else Send(id(a), (u, v),∆xa(u,v).Ct(a, (u, v)); {To all vehicles}
58: end if
59: {(id, v, Y )}A′⊆A, {(id, (u, v), X)}A′′⊆A ← Receive(); {A′ is the set of vehicles

sent a message on Line 56 and A′′ is the set of vehicles sent a message on Line 57}.
60: for each ā ∈ A′ do
61: loc(ā)← v;

62: if (a 6= ā) then yāv ←
1

m
;

63: ∆αv ← Y ;
64: αv ← αv + ∆αv;
65: count ← count + 1;
66: end for
67: for each a′′ ∈ A′′ do
68: loc(a′′)← v;

69: if (a 6= a′′) then xa′′(u,v) ←
1

m
;

70: αv ← X;
71: αv ← αv + ∆αv;
72: end for
73: if (t = 0 ∧ s− count = 0) then
74: v ← loc(a);

75: θav ←
1

m
;

76: end if
77: flag ← false;
78: end for
79: s← s− count ; {Value of s is decremented by count.}
80: end for

We now demonstrate how the algorithm works in a step-by-step fashion using an ex-

ample. We have a complete graph of four nodes and two vehicles a1 and a2. Vehicles

a1 and a2 have their depots at vertices v1 and v2, respectively. The algorithm takes four

rounds of communication to complete the given problem and we take k = 2.
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xa(u,v), y
a
v ,∆x

a
(u,v),∆y

a
v , αv, β

a
v ,

∆βav ,∆αv, λ
a
(u,v), γ

a
v ,

∆γav , τ
a
u ,∆τ

a
u = 0 (Line 1)

loc(a1)← v1 (Line 2)

flag ← true (Line 3)

Rivala1 ← {a2} (Line 4)

ρ = 45 (Line 5)

for(s=4 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na1
2 = {v1} (Line 8)

C(Na1
2 ) = 10, π(Na1

2 )← v1 (Line 12)

p′ ← v1 (Line 13)

v1 ← CheckIfPathFree(v1, v2) (Line 15)

tassign ← 1 (Line 20)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

p′ 6= ∅∧Na1
2 6= ∅ (Line 26)

isService ← true (Line 27)

v ← v1 (Line 28)

∆ya1v1 = 0.5 (Line 29)

t← 0 (Line 41)

γa1v1 ← 0 (Line 51)

τa1v1 ← 0 (Line 52)

xa(u,v), y
a
v ,∆x

a
(u,v),∆y

a
v , αv, β

a
v ,

∆βav ,∆αv, λ
a
(u,v), γ

a
v ,

∆γav , τ
a
u ,∆τ

a
u = 0 (Line 1)

loc(a2)← v2 (Line 2)

flag ← true (Line 3)

Rivala2 ← {a1} (Line 4)

ρ = 45 (Line 5)

for(s=4 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na2
2 = {v2} (Line 8)

C(Na2
2 ) = 20, π(Na2

2 )← v2 (Line 12)

p′ ← v2 (Line 13)

v2 ← CheckIfPathFree(v2, v1) (Line 15)

tassign ← 1 (Line 20)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

p′ 6= ∅ ∧Na2
2 6= ∅ (Line 26)

isService ← true (Line 27)

v ← v2 (Line 28)

∆ya2v2 = 0.5 (Line 29)

t← 0 (Line 41)

γa2v2 ← 0 (Line 51)

τa2v2 ← 0 (Line 52)
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βa1v1 ← 0 (Line 53)

ya1v1 ← 0.5 (Line 54)

Send(a1, v1, 0.5 × 10) (Line 56)

{(a1, v1, 5), (a2, v2, 10)} ← Receive()

loc(a1) ← v1 (Line 61)

αv1 ← 5 (Line 63)

count ← 1 (Line 65)

loc(a2) ← v2 (Line 61)

ya2v2 ← 0.5 (Line 62)

αv2 ← 10 (Line 63)

count ← 2 (Line 65)

flag ← false (Line 77)

end-for (Line 78)

s ← 4 − 2 = 2 (Line 79)

end-for (Line 80)

βa2v2 ← 0 (Line 53)

ya2v2 ← 0.5 (Line 54)

Send(a2, v2, 0.5×20) (Line 56)

{(a1, v1, 5), (a2, v2, 10)} ← Receive()(Line 59)

loc(a1)← v1 (Line 61)

ya1v1 ← 0.5 (Line 62)

αv1 ← 5 (Line 63)

count ← 1 (Line 65)

loc(a2)← v2 (Line 61)

αv2 ← 10 (Line 63)

count ← 2 (Line 65)

flag ← false (Line 77)

end-for (Line 78)

s← 4− 2 = 2 (Line 79)

end-for (Line 80)

In this communication round, vehicle a1 starts from its depot at node v1. Vehicle a1

finds the location of its rival vehicle i.e., a2 which is node v2. Since in a complete graph

all nodes are connected to each other, we always have the maximum size of Na
k=1. So

vehicle a1 chooses p′ = v1. Then it finds out the cost of servicing node v1 which is 10.

Then vehicle a1 calls CheckIfPathFree() which returns v1. This is due to the fact that

the vehicles a1, a2 currently has different location. So all conditions required to service

a node is satisfied and hence vehicle a1 services node v1. Similarly following the same

procedure vehicle a2 services node v2. Then after servicing a node, the vehicle sends the

product of ∆yav · C(Na
k ) to its rival vehicle a2. When a message is received from other

rival vehicles, the corresponding αv values are updated. Also, the count of a number of

nodes serviced by all vehicles are taken and the outer for-loop value s is decremented by

the value of count .
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for(s=2 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na1
2 = ∅ (Line 8)

tassign ← 1 (Line 10)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

Na1
2 = ∅ (Line 26)

u← v1 (Line 43)

v3 yields nextbest(a1) (Line 44)

∆xa1(v1,v3) ← 0.5 (Line 45)

∆βa1v1 ← 45 (Line 46)

∆γa1v1 ← 0.5; ∆τa1v3 ← −0.5 (Line 48)

t ← 0 (Line 49)

γa1v1 ← 0.5; τa1v3 ← −0.5 (Line 51)

βa1v3 ← 45 (Line 53)

xa1(v1,v3) ← 0.5 (Line 55)

Send(a1, (v1, v3), 0.5×30) (Line 57)

for(s=2 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na2
2 = ∅ (Line 8)

tassign ← 1 (Line 10)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

Na2
2 = ∅ (Line 26)

u← v2 (Line 43)

v3 yields nextbest(a2) (Line 44)

∆xa2(v2,v3) ← 0.5 (Line 45)

∆βa2v2 ← 45 (Line 46)

∆γa2v2 ← 0.5; ∆τa2v3 ← −0.5 (Line 48)

t ← 0 (Line 49)

γa2v2 ← 0.5; τa2v3 ← −0.5 (Line 51)

βa2v3 ← 45 (Line 53)

xa2(v2,v3) ← 0.5 (Line 55)

Send(a2, (v1, v3), 0.5×10) (Line 57)
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{(a1, (v1, v3), 15), (a2, (v2, v3), 10)} ←

Receive() (Line 59)

loc(a1)← v3 (Line 68)

αv3 ← 15 (Line 70)

loc(a2)← v3 (Line 68)

xa2(v2,v3) ← 0.5 (Line 69)

αv3 ← 20 (Line 70)

flag ← false (Line 77)

end-for (Line 78)

s← 2−0 = 2 (Line 79)

end-for (Line 80)

{(a1, (v1, v3), 15), (a2, (v2, v3), 5)} ←

Receive() (Line 59)

loc(a1)← v3 (Line 68)

xa1(v1,v3) ← 0.5 (Line 69)

αv3 ← 15 (Line 70)

loc(a2)← v3 (Line 68)

αv3 ← 20 (Line 70)

flag ← false (Line 77)

end-for (Line 78)

s← 2− 0 = 2 (Line 79)

end-for (Line 80)

In this communication round, vehicle a1 is in node v1. This node has already been

serviced by a1 in the previous iteration and now Na
k from this node is ∅. Now the vehicle

a1 has a choice of travelling to nodes v2, v3, v4. Since node v2 has already been serviced

by a2, the vehicle a1 temporarily assigns the value ρ as the servicing cost for node v2 by

a1. Now there are more chances for vehicle a1 to choose nodes v2 or v3 based on the

nextbest(a1) value. The nextbest(a1) value returns 45, which corresponds to node v3.

Hence a1 travels to node v3. Vehicle a2 also performs travel in this iteration and decides

to go to node v3 based on its nextbest(a2) value. The value of count for this iteration is

zero as both vehicles did not service any nodes in this round of communication.
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for(s=2 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na1
2 = {v3} (Line 8)

C(Na1
2 ) = 15, π(Na1

2 )← v3 (Line 12)

p′ ← v3 (Line 13)

v3 ← CheckIfPathFree(v3, v3) (Line 15)

tassign ← 1 (Line 20)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

p′ 6= ∅∧Na1
2 6= ∅ (Line 26)

isService ← true (Line 27)

v ← v3 (Line 28)

∆ya1v3 = 0.5 (Line 29)

t ← 0 (Line 41)

βa1v3 ← 30 (Line 53)

ya1v3 ← 0.5 (Line 54)

Send(a1, v3, 0.5×15) (Line 56)

for(s=2 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0(Line 7)

Na2
2 = {v3} (Line 8)

C(Na2
2 ) = 20, π(Na1

2 )← v3 (Line 12)

p′ ← v3 (Line 13)

∅ ← CheckIfPathFree(v3, v3)(Line 15)

tassign = 1 (Line 18)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

p′ = ∅ (Line 26)

u← v3 (Line 43)

v4 yields nextbest(a2) (Line 44)

∆xa2(v3,v4) ← 0.5 (Line 45)

∆βa2v4 ← 45 (Line 46)

∆γa2v3 ← 0.5; ∆τa2v4 ← −0.5 (Line 48)

t← 0 (Line 49)

γa2v2 ← 0.5; τa2v3 ← −0.5 (Line 51)

βa2v4 ← 45 (Line 53)

xa2(v3,v4) ← 0.5 (Line 55)

Send(a2, (v3, v4), 0.5× 10) (Line 57)
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{(a1, v3, 7.5)}, {(a2, (v3, v4), 5)} ←

Receive() (Line 59)

loc(a1)← v3 (Line 61)

αv3 ← 27.5 (Line 63)

loc(a2)← v4 (Line 68)

xa2(v3,v4) ← 0.5 (Line 69)

αv4 ← 5 (Line 70)

flag ← false (Line 77)

end-for (Line 78)

s← 2−1 = 1 (Line 79)

end-for (Line 80)

{(a1, v3, 7.5)}, {(a2, (v3, v4), 5)} ←

Receive() (Line 59)

loc(a1)← v3 (Line 61)

ya1v3 ← 0.5 (Line 62)

αv3 ← 27.5 (Line 63)

loc(a2)← v4 (Line 68)

αv4 ← 5 (Line 70)

flag ← false (Line 77)

end-for (Line 78)

s← 2− 1 = 1 (Line 79)

end-for (Line 80)

In this communication round, both vehicles a1 and a2 enter the same location i.e.,

node v3. Both vehicles choose Na
k as {v3} and call CheckIfPathFree(). The function

CheckIfPathFree() returns v3 for a1 and ∅ to vehicle a2. This is because cost of servicing

node v3 by vehicle a1 is cheaper when compared to a2. So a1 services node v3 and a2

travels to node v4. The value of count after this round of communication is 1 and there is

only 1 node i.e., node v4 which is yet to be serviced.
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for(s=1 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na1
2 = ∅ (Line 8)

tassign ← 1 (Line 10)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

Na1
2 = ∅ (Line 26)

u ← v3 (Line 43)

∆xa1(v3,v4) ← 0.5 (Line 45)

∆βa1v4 ← 45 (Line 46)

∆γa1v3 ← 0.5; ∆τa1v4 ← −0.5(Line 48)

t← 0 (Line 49)

γa1v3 ← 0.5, τa1v4 ← −0.5 (Line 51)

βa1v4 ← 45 (Line 53)

xa1(v3,v4) ← 0.5 (Line 55)

Send(a1, (v3, v4), 0.5×20) (Line 57)

for(s=1 to 0 do) (Line 6)

tassign ← 0, p′ ← ∅, count ← 0 (Line 7)

Na2
2 = {v4} (Line 8)

C(Na2
2 ) = 20, π(Na2

2 ) ← v4 (Line 12)

p′ ← v4 (Line 13)

v4 ← CheckIfPathFree(v4, v3) (Line 15)

tassign ← 1 (Line 20)

for(t=1 to 0 do) (Line 24)

isService ← false (Line 25)

p′ 6= ∅∧Na2
2 6= ∅ (Line 26)

isService ← true (Line 27)

v ← v4 (Line 28)

∆ya2v4 = 0.5 (Line 29)

t← 0 (Line 41)

γa2v4 ← 0 (Line 51)

τa2v4 ← 0 (Line 52)

βa2v4 ← 0 (Line 53)

ya2v4 ← 0.5 (Line 54)

Send(a2, v4, 0.5× 45) (Line 56)
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{(a1, (v3, v4), 10)}, {(a2, v4, 22.5)} ←

Receive() (Line 59)

loc(a1)← v4 (Line 61)

αv4 ← 15 (Line 63)

loc(a2)← v4 (Line 68)

ya2v4 ← 0.5 (Line 62)

αv4 ← 37.5 (Line 70)

v4 ← loc(a1) (Line 74)

θa14 ← 0.5 (Line 75)

flag ← false (Line 77)

end-for (Line 78)

s← 1−1 = 0 (Line 79)

end-for (Line 80)

{(a1, (v3, v4), 10)}, {(a2, v4, 22.5)} ←

Receive() (Line 59)

loc(a1)← v4 (Line 61)

xa2(v3,v4) ← 0.5 (Line 69)

αv4 ← 15 (Line 63)

loc(a2)← v4 (Line 68)

αv4 ← 37.5 (Line 70)

v4 ← loc(a2) (Line 74)

θa24 ← 0.5 (Line 75)

flag ← false (Line 77)

end-for (Line 78)

s← 1−1 = 0 (Line 79)

end-for (Line 80)

In this communication round, vehicle a2 services node v4 and vehicle a1 travels to

node v4. The count in this round of communication is 1 and the value of s becomes 0

denoting that all nodes have been serviced. The α values are α1 = 5, α2 = 10, α3 =

27.5, α4 = 37.5 respectively and the total cost is 80. If the fractional values chosen by

the vehicles are rounded to integer values i.e., all fractional increases are given the value

1 and rest are given the value 0, then the total cost is 160.

Next, we will find the approximation ratio of Algorithm 2 based on the following proofs.
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4.4 Proof of Correctness and Approximation Bound

Lemma 4.4.1 Algorithm 2 forms a feasible solution for the LP.

Proof

• Constraint 3.10. The function call to CheckIfPathFree in line 15 ensures that

a node is serviced by only one vehicle in any iteration of the t-loop. In line 29,

the algorithm increases the yav value by
1

m
. Hence, the

∑
a′∈A y

a′
v =

1

m
. If a node

is serviced, a message is sent across to all vehicles and received by all vehicles

in the same communication round. When a message is received from other rival

vehicles, the current vehicle updates the set of serviced nodes and hence, these

already serviced nodes does not feature in the Na
k in the following communication

rounds. So, it cannot be the case that a vehicle services the same node again in any

subsequent iterations of the t-loop. Hence, a node is serviced exactly once and we

have ∑
a′∈A

ya
′

v =
1

m
.

• Constraint 3.3. There are 3 cases here.

– A vehicle travels from one node to another without servicing: For travel, Al-

gorithm 2 increases only the ∆xa(u,v) value in line 35 or line 45 and ∆yav is

initialized to zero in line 1. Hence, we have

∑
u∈V

xa(u,v) − yav ≥ 0.

– A vehicle services a node other than its depot: Algorithm 2 allows a vehicle to

either service a node or travel from one node to another node in any communi-

cation round. This LP constraint gives a relation between xa(u,v), y
a
v . We need

to prove that a vehicle travels to a node before servicing it. Hence, we need to

consider two consecutive communication rounds to prove the validity of this
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constraint. If a vehicle chooses a path of length zero (|p′| = 0) and services

it in the current communication round, from the definition of Na
k , we see that

Na
k becomes ∅ in the next communication round which forces the vehicle to

travel to another node. With the same logic, we can claim that in the previous

communication round before the servicing took place, the vehicle would have

traveled from some other node to the current location. Also when a vehicle

chooses a path of length more than zero (|p′| > 0), our algorithm in every two

rounds of communication ensures that the vehicles travels to the next node in

the path before servicing it, in the next communication round. This is ensured

by the condition check in line 29, which will return false if the current location

is serviced and hence forcing the vehicle to take the else loop where it travels

to the next node in the path chosen. Therefore, we have that a corresponding

xa(u,v) is increased by a value of
1

m
before increasing the value of yav by

1

m

in the next communication round. So this guarantees the fact that if the node

is serviced in the current iteration of the loop, the previous iteration would

increase the corresponding xa(u,v) value. Hence we have that, ∆yav can never

be greater than ∆xa(u,v). Hence, we have

∑
u∈V

xa(u,v) − yav ≥ 0.

– The constraint trivially holds for the depot because we actually exclude the

depot from the constraint (i.e., V − {va0}).

• Constraints 3.11, 3.12, 3.13. A vehicle always chooses a simple path and hence

this path satisfies the constraints 3.11, 3.12, and 3.13. Constraints 3.11 and 3.12

are satisfied from the definition of a simple path, which ensure that a vehicle takes a

maximum of only one incoming edge and one outgoing edge to travel to and from a

node. By the definition of Na
k and nextbest(a), our algorithm does not allow a node

to be visited twice. From lines 37 and 48, we see that in each iteration of the t-loop,

γav and τau are increased by at most ∆xa(u,v); i.e., by
1

m
. Hence, Constraints 3.11
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and 3.12 are satisfied. And also the definition of a simple path ensures there is no

sub-tour, which satisfies Constraint 3.13. Once an edge is traversed by a vehicle,

the same edge does not feature in the Na
k in the next iteration of the t-loop and also

from the definition of nextbest(a) when a vehicle travels from one node to another

node, the vehicle chooses an edge which has not been visited by the vehicle before.

Hence, there is no subtour.

• Constraint 3.6. Constraint 3.3 ensures that a vehicle enters a node before ser-

vicing it. So to service a node, the vehicle must take an incoming edge to reach

the node. Also Constraints 3.11, 3.12 ensure that a vehicle takes a maximum of

only one incoming edge and one outgoing edge to travel to and from a node. Also

Algorithm 2 guarantees that a vehicle does not exit a node without traveling to it.

Hence its always the case that the sum of incoming edges to a node is greater than

or equal to the number of outgoing edges from the node. Hence this constraint is

also satisfied.

�

Lemma 4.4.2 At the end of each iteration of the t-loop, the value of the primal and dual

objectives are equal. That is,

∑
a∈A

∑
v∈V

yav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

xa(u,v) · Ct(a, (u, v)) =

1

m

∑
v∈V

αv −
∑
a∈A

∑
v∈V

γav −
∑
a∈A

∑
u∈V

τau − (n−m− 1)
∑
a∈A

∑
(u,v)

λa(u,v)


Proof After each iteration of the inner t-for loop, we have

∆L.H.S =
∑
a∈A

∑
v∈V

∆yav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

∆xa(u,v) · Ct(a, (u, v))

∆R.H.S =
1

m

∑
v∈V

∆αv −
∑
a∈A

∑
v∈V

∆γav −
∑
a∈A

∑
u∈V

∆τau − (n−m− 1)
∑
a∈A

∑
(u,v)

∆λa(u,v)


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First, observe that in lines 37 and 48, we have ∆γav = −∆τau , taken to travel from any

pair of vertices u and v. So for any vehicle a ∈ A, the sum
∑

v∈V ∆γav = −
∑

u∈V ∆τau

and hence the sum across all vehicles must be equal as well. Hence, we have

∑
a∈A

∑
v∈V

∆γav = −
∑
a∈A

∑
u∈V

∆τau

Also, we claim ∆λa(u,v) = 0. This is because, our algorithm ensures that a vehicle

cannot travel u to v and from v to u from any (u, v) ∈ E, from the definition of Na
k and

nextbest(a). Hence, lines 36, and 47 will not be executed in the algorithm. From the

definition of Na
k the algorithm ensures that a path is chosen only if all the edges in the

path are not traveled before by the current vehicle. Hence a vehicle will not travel through

the same edge twice. Also, the definition of nextbest(a) does not allow a vehicle to visit

a node that has already been visited by it.

∴ ∆R.H.S =
1

m

∑
v∈V

∆αv

At the end of each round, each vehicle sends a message containing either the value of

(∆yav ·C(Na
k )) or (∆xa(u,v) ·Ct(a, (u, v))) to all vehicles. After receiving these messages in

line 59 and subsequently all iterations of the two for-loops in lines 60-66 (for ∆y values)

and 67 - 72 (for ∆x values), we will have

1

m

∑
v∈V

∆αv =
∑
a∈A

∑
v∈V

∆yav · C(Na
k ) +

∑
a∈A

∑
u∈V

∆xa(u,v) · Ct(a, (u, v))

Now, observe that for any a ∈ A and v ∈ V , we have

C(Na
k ) =

 1

2|p′|+ 1
·

∑
v∈p′

Cs(a, v) +
∑

(u,v)∈p′
Ct(a, (u, v))


where p′ is the path chosen to service and travel by vehicle a in line 15. Since we have

that a vehicle can service only one node in each iteration of the t-loop, we take the value
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of (2|p′|+ 1) as 1 and take Ct(a, (u, v)) as zero. Hence for every node v,

C(Na
k ) = Cs(a, v)

In total we have,

1

m

∑
v∈V

∆αv =
∑
a∈A

∑
v∈V

∆yav · Cs(a, v) +
∑
a∈A

∑
u∈V

∆xa(u,v) · Ct(a, (u, v))

= ∆L.H.S

�

Lemma 4.4.3 In every iteration of the t-loop, it holds that

C(Na
k ) ≤ ρ

Proof We define ρ = max

{
Cs(a, v), Ct(a, (u, v)) | (a ∈ A) ∧ (u, v ∈ V )

}
and Na

k

generates a set of paths p starting from length 0 to a maximum value less than k. For

the case when |p| = 0, we have that C(Na
k ) would have its servicing cost of its current

location to be Cs(a, v) ≤ ρ. For the case where |p| > 0, C(Na
k ) is normalized by a factor

of 2|p′| + 1. When a vehicle chooses a path of length |p| > 0, all paths of length starting

from zero are listed and the minimum cost among these is chosen as C(Na
k ). We have

shown that for the case |p| = 0, we have Cs(a, v) ≤ ρ. Since we take the minimum value

among all the generated paths starting from length 0 as C(Na
k ), its always the case that

we have

C(Na
k ) ≤ ρ

�

In the next lemma, we bound the ∆αv that each vehicle receives in one iteration of the

s-loop for any node v ∈ V . Let us define ∆αv(s) as the sum of αv(s) values received for

a node v in a single iteration of the s-loop by a vehicle a, having a maximum of k rounds
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of communication of the t-loop.

∴ ∆αv(s) =
∑
v∈p′

∆αv

and let σv(s) be the defined as the sum of all (∆yav ·C(Na
k )+∆xa(u,v) ·Ct(a, (u, v))) values

received for a node v by a vehicle a for a single iteration of the s-loop having a maximum

of k rounds of communication of the t-loop.

σv(s) =
∑
v∈p′

(∆yav · C(Na
k ) + ∆xa(u,v) · Ct(a, (u, v)))

=
∑
v∈p′

(∆yav · C(Na
k ))︸ ︷︷ ︸

σ1
v(s)

+
∑
v∈p′

∆xa(u,v) · Ct(a, (u, v))︸ ︷︷ ︸
σ2
v(s)

We have that

∆αv(s) = σv(s)

Lemma 4.4.4 In each iteration of s-loop, for any vehicle a ∈ A and node v ∈ V , we

have

σv(s) ≤ ρ

Proof From Lemma 4.4.1, we have shown that Algorithm 2 satisfies all constraints of the

LP at all times and hence we have that, all vehicles can visit a node at most once and only

one among those vehicles can service a particular node. Hence we can bound the σv(s)

values with this information.

We distinguish two cases:

• Case 1. Algorithm 2 ensures that only one vehicle services a node v at most once.

When a vehicle services a node the condition C(Na
k ) ≤ ρ is satisfied. Hence,

σ1
v(s) ≤

∑
v∈p′(s)

∆yav · ρ

We have the value of yav increased by
1

m
and we can bound the value of C(Na

k ) by
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the value ρ

σ1
v(s) ≤

(
1

m

)
· ρ

• Case 2. Algorithm 2 also ensures that a vehicle travels to a node v at most once.

We have the value of xa(u,v) increased by
1

m
and we can again bound the cost of

Ct(a, (u, v)) by ρ from the definition of ρ. Hence,

σ2
v(s) ≤

(
1

m

)
· ρ

For a given iteration of the s-loop, we can have Case 1 or Case 2 or both can be true.

• Case 1 and 2 are simultaneously true. This scenario comes when a vehicle

chooses a path of length > 0 and decides to service all nodes. So for all nodes

except the starting node, we have that a vehicle travels to that node before servic-

ing the node. Before servicing a node the CheckIfPathFree function is called and

this function ensures that no other vehicles can enter the nodes in the path before

the vehicle completes servicing all nodes in the path chosen. Hence, in one itera-

tion of the s-loop, at most, we can have two rounds of communications (servicing,

travelling) involving the node v.

σv(s) = σ1
v(s) + σ2

v(s)

σv(s) ≤
2 · ρ
m

Now, recall that in VRP, we have m ≥ 2. Hence,

σv(s) ≤ ρ

• Either Case 1 or 2 is true. In this case, either a vehicle services the node or

travels to an another node. That is,

σv(s) = σ1
v(s) or σv(s) = σ2

v(s)

58



This implies that,

σv(s) ≤
(

1

m

)
· ρ

In the same iteration of the s-loop, we can have at most havem−1 vehicles entering

the same node. So, in each iteration of the t-loop, when the s-loop terminates, we

have

σv(s) ≤
(

1

m

)
·m · ρ = ρ

Hence, In both cases, we can bound

σv(s) ≤ ρ

Therefore, we can bound

αv(s) ≤ ρ

�

For our dual solution to be feasible, Constraint 3.15 must be satisfied. That is, for all

a ∈ A and (u, v) ∈ E

βav − γav − τau − λa(u,v) + θav ≤ Ct(a, (u, v))

The dual solution produced by our algorithm does not exhibit this feasibility property.

This is because we cannot guarantee the value βav +θav is≤ Ct(a, (u, v)) for all (u, v) ∈ E

for a fixed vehicle a. We can only guarantee this constraint satisfies for the edges (u, v)

which was taken by a vehicle a in any s-loop. However, we can at least show that the

degree of infeasibility is bounded. Specifically, it holds that if we only consider the sum

of the increases of the βav − γav − τau − λa(u,v) + θav ≤ Ct(a, (u, v)) for every node, in a

single iteration of the s-loop, it fulfills the desired property.

Lemma 4.4.5 For all v ∈ V − {va0} and a ∈ A , in all iterations of the s-loop, Con-

straint 3.14 holds.
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Proof Following Lemma 4.4.4, we have αv ≤ ρ. From the algorithm we have that,

βav =


0 if vehicle a services a node v, where v = va0

ρ− Cs(a, v) if vehicle a services a node v

ρ if vehicle a travels to a node v from node u

• Case 1. βav = 0, when a vehicle services its depot. Hence, the condition αv ≤

C(Na
k ) is satisfied and we have

αv − βav ≤ C(Na
k ) = Cs(a, v) + Ct(a, (u, v))

In this case, a vehicle services from the depot. Hence we take Ct(a, (u, v)) = 0 and

we have:

αv − βav ≤ Cs(a, v)

• Case 2. βav = ρ− Cs(a, v). Hence,

αv − βav ≤ {ρ− ρ}+ Cs(a, v) = Cs(a, v)

• Case 3. βav = ρ. Hence,

αv − βav = {ρ− ρ} = 0 ≤ Cs(a, v)

�

Lemma 4.4.6 For all (u, v) ∈ E and a ∈ A , in all iterations of the s-loop, Constraint

3.15 holds.

Proof Algorithm 2 assigns γav = −τau and λa(u,v) = 0 for all edges (u, v) taken for travel.

So we just need to prove

βav + θav ≤ Ct(a, (u, v))
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From Algorithm 2 we have,

βav =


0 if vehicle a services a node v, where v = va0

ρ− Cs(a, v) if vehicle a services a node v

ρ if vehicle a travels to a node v from node u

• Case 1. βav = 0, when a vehicle services its depot. θav is not defined for this case.

Hence, we have

βav ≤ Ct(a, (u, v))

• Case 2. βav = ρ− Cs(a, v).

In this case a vehicle travels to a node v and also services it. So we can write the

value of βav as Ct(a, (u, v))− Cs(a, v). Hence we have,

βav ≤ Ct(a, (u, v))

θav is increased by
1

m
. An increase by

1

m
would not affect the Ct(a, (u, v)) because

by the definition of

Ct : A× E → Z≥0

Hence we have, βav + θav ≤ Ct(a, (u, v))

• Case 3. βav = ρ. In this case a vehicle travels to a node v and without servicing it.

So we can write the value of βav as Ct(a, (u, v)). Hence, we have

βav ≤ Ct(a, (u, v))

Again θav is increrased by
1

m
. An increase by

1

m
would not affect the Ct(a, (u, v)).

Hence we have, βav + θav ≤ Ct(a, (u, v)).

�

Having bounded the degree of dual infeasibility in the two previous lemmas, we can
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now establish the approximation ratio of the algorithm using the laws of LP duality.

Specifically, we prove that the dual feasibility is violated only by a factor O(n · (ρ)1/n)

and hence, when dividing by αv, βav and θav by suitably large values, we obtain a feasible

solution α̂v, β̂av and θ̂av .

Let us define α̂v =
αv

n(ρ)1/n
, β̂av =

βav
n

, θ̂av =
θav
n

. We show that α̂av , β̂av and θ̂av form

a feasible solution to the dual LP. The feasibility of Constraint 3.15 is trivial. Since we

have proved that βav + θav ≤ Ct(a, (u, v)) and hence
βav + θav

n
≤ Ct(a, (u, v)). That is,

β̂av + θ̂av ≤ Ct(a, (u, v)).

Lemma 4.4.7 For all v ∈ V − {va0} and a ∈ A , in all iterations of the s-loop, Con-

straint 3.14 holds.

Proof First, observe that

α̂v − β̂av =

=
n∑
s=1

αv(s)

n(ρ)1/n
−

n∑
s=1

βav (s)

n

=
1

n

(
n∑
s=1

(
αv(s)

(ρ)1/n
− βav (s)

))

So we need to prove the following:

αv(s)

(ρ)1/n
− βav (s) ≤ Cs(a, v)

• Case 1. βav = 0, when a vehicle services its depot. Hence, the condition αv ≤

C(Na
k ) is satisfied and we have

αv(s)

(ρ)1/n
− βav ≤ C(Na

k ) = Cs(a, v) + Ct(a, (u, v))

In this case a vehicle services from the depot. Hence we take Ct(a, (u, v)) = 0.

∴
αv(s)

(ρ)1/n
≤ Cs(a, v)

ρ1/n
≤ Cs(a, v)
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• Case 2. βav = ρ− Cs(a, v).

αv(s)

(ρ)1/n
− ((ρ)− Cs(a, v))

≤ (ρ)(1−1/n) − ρ+ Cs(a, v) ≤ Cs(a, v)

• Case 3. βav = ρ.
αv(s)

(ρ)1/n
− (ρ)

≤ (ρ)(1−1/n) − (ρ) is a negative value

∴
αv(s)

(ρ)1/n
− βav ≤ Cs(a, v)

By this lemma, we have that each term of the sum is bounded by Cs(a, v). Therefore,

we have α̂v − β̂av ≤
n · Cs(a, v)

n
≤ Cs(a, v)

�

Let OPT be the optimal value and ALG be the value computed by Algorithm 2. By

the LP duality theorem, the sum of α̂v values is a lower bound of OPT.

Lemma 4.4.8 The approximation ratio of Algorithm 2 is O(n · (ρ)1/n

Proof ALG can be bounded as

ALG =
∑
a∈A

∑
v∈V

yav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

xa(u,v) · Ct(a, (u, v))

=
1

m

∑
v∈V

αv

≤ n(ρ)1/n
∑
v∈V

α̂v

= n(ρ)1/n ·OPT

�

In the next chapter we introduce the randomized rounding algorithm that converts the

fractional solutions from Algorithm 2 to integer solutions.
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Chapter 5

Randomized Rounding and On-The-Fly

Algorithms

5.1 Randomized Rounding

In order to generate integer solutions for our problem, we round the fractional solutions

obtained from Algorithm 2. In the following let x̂a(u,v) and ŷav be the fractional solu-

tions obtained from Algorithm 2 and the variables xa(u,v) and yav denote the corresponding

rounded integer values. The idea is to round the fractional values ŷav in such a way that

with probability p, the vehicle that has increased its ŷav fractional value corresponding to a

node v gets to service the node and with probability (1−p), the vehicle with the least cost

to travel and service among the vehicles that have traveled to this corresponding node is

allowed to service the node. We run this algorithm on totala which is the union of nodes

for which the vehicle has traveled to and serviced during its execution of Algorithm 2.

This ensures all vehicles run the algorithm for equal number of rounds i.e., the size of

totala. Each vehicle can calculate the rounded values for a node (even if the current vehi-

cle has not serviced it) and inform other vehicles the value it found and these values are

updated by the respective vehicle.
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Algorithm 3 Randomized Rounding: For each vehicle a
Input: Fractional solutions x̂a(u,v), ŷ

a
v from Algorithm 2 of all vehicles.

Output: Integral Solutions xa(u,v), y
a
v to ILP.

1: visiteda ← {};
2: totala ← {v ∈ V | ŷav > 0} ∪
{vi, vi+1 ∈ V | (∀i ∈ [0, n− 1].(vi, vi+1) ∈ E ∧ x̂a(vi,vi+1) > 0 ∧ v0 ← va0)};

3: for each v ∈ totala do
4: a′′ ← −1; cost ← 0;
5: if v 6∈ visiteda then {Rounding starts here}
6: if (∃a ∈ A.ŷav > 0) then a′ ← a;
7: if (∃u ∈ V.x̂a′(u,v) > 0 ∧ xa′vu 6= 1) then xa′(u,v) ← 1;
8: pa

′
v ← min{1, ŷa′v · ln(n+m)}; {Probability pa

′
v is calculated here}

9: ya
′
v ←

{
1 with probability pa′v .
0 with probability 1− pa′v .

{ya′v ← 1 with probability p~av }

10: Cv ←
∑

a∈A
∑

u∈V x̂
a
(u,v) · Ct(a, (u, v)); {Cv is calculated here. }

11: count ←
∣∣{(u, v) | ∃a ∈ A.∃u ∈ V.x̂a(u,v) > 0}

∣∣;
12: Av ← {a ∈ A | ∃u ∈ V.x̂a(u,v) > 0 ∧ Ct(a, (u, v)) ≤ ln(n+m) · Cv};
13: if (count 6= |Av|) then Av ← ∅;
14: if a′ ∈ Av ∧ (ya

′
v = 1) then a′′ ← a′;

15: else
16: ya

′
v ← 0;

17: cost ← min{Cs(a, v) + Ct(a, (u, v)) | ∃a ∈ A.∃u ∈ V.x̂a(u,v) > 0};
18: Let ã ∈ A yield the value cost .
19: if (∃u ∈ V.x̂ã(u,v) > 0 ∧ xãvu 6= 1) then xã(u,v) ← 1;
20: yãv ← 1; a′′ ← ã;
21: end if
22: visiteda ← visiteda ∪ {v}; {Rounding ends here}
23: else Let a′′ be the vehicle, where ya′′v = 1.
24: end if
25: Send(v, a′′); {To all vehicles}
26: RV ← Receive(); {From all vehicles}
27: for each (v′, a′) ∈ RV do
28: if (∃a ∈ A.∃u ∈ V.x̂a(u,v′) > 0 ∧ xav′u 6= 1) then xa(u,v′) ← 1;
29: if (v′ 6∈ visiteda) ∧ (v′ ∈ totala) then
30: ya

′

v′ ← 1;
31: visiteda ← visiteda ∪ {v′};
32: else if (v′ ∈ visiteda) ∧ ∃a′′.ya′′v′ = 1 ∧ (id(a′) < id(a′′) then
33: ya

′′

v′ ← 0;
34: yáv′ ← 1;
35: else if (v′ 6∈ totala) then ya

′

v′ ← 1;
36: end if
37: end for
38: end for

The main steps of the algorithm are as follows. For every node v in totala:
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• If v /∈ visiteda (From Line 5), the following steps are executed.

1. In Line 6 the current vehicle chooses the vehicle id a′ which has serviced node

v (i.e., ∃a ∈ A.ŷav > 0). In Line 7 the corresponding vehicle’s incoming edge

is made 1. In Line 8, the fractional value ŷa′v is multiplied with ln(n + m)

and the value returned is stored as pa′v . In Line 9 with probability of pa′v , the

corresponding ya′v gets the value 1 else it gets the value 0.

2. In Line 10, let Cv be the cost of travels made to node v by all vehicles. Further

in Line 12, letAv be the set of all vehicles who have travel costs that are within

a factor of ln(n+m) of the travel cost Cv.

3. A vehicle in Line 11 keeps track of the count of vehicles that has entered the

node v. In Line 13 if the size of Av is equal to count, then the contents of Av

are retained else it is made empty. Then in Line 14 we check, if Av contains

the vehicle id (a′) for which ya′v has been made 1 in Line 9 of the algorithm.

If this condition is satisfied the values increased in Lines ( 7 – 9) are retained.

4. If either of the above conditions is not satisfied, the value of ya′v is made 0 in

Line 16. In Line 17 the vehicle (with x̂a(u,v) > 0) that returns the minimum

cost for traveling to node v and servicing it, is chosen and the corresponding

xa(u,v), y
a
v is made 1 in Lines 19 – 20. After each node in totala is processed,

the node is added to the visited nodes list visiteda.

• If v ∈ visiteda (Line 23) and the node has been already added to visiteda, the

vehicle id which has increased its corresponding yav is retrieved.

• Then, a message is sent to all vehicles (Line 25) informing them of the vehicle

id which has increased its yav = 1 for a node in consideration. When a message

is received (Line 26), its corresponding xa(u,v) are made 1 in Line 28. Then the

vehicle checks if the node is present in the totala and not been visited, it adds the

node to visiteda and makes the corresponding vehicle’s yav = 1. If the node is

already present in visiteda, a vehicle updates the information if there any conflicts

in the messages received for a node v, the message that has the least vehicle id is
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updated. If the received node is not present in totala, its corresponding yav values is

increased by 1.

Next we present an example (from Page 44) to show the working of randomized

rounding.

xa1(v1,v3), x
a1
(v3,v4), x

a2
(v2,v3), x

a2
(v3,v4) ← 0.5

xa1(v1,v2), x
a1
(v1,v4), x

a1
(v2,v1), x

a1
(v2,v3) ← 0

xa1(v2,v4), x
a1
(v3,v1), x

a1
(v3,v2), x

a1
(v4,v1) ← 0

xa1(v4,v2), x
a1
(v4,v3), x

a2
(v4,v2), x

a2
(v4,v3) ← 0

xa2(v1,v2), x
a2
(v1,v3), x

a2
(v1,v4), x

a2
(v2,v1) ← 0

xa2(v2,v4), x
a2
(v3,v1), x

a2
(v3,v2), x

a1
(v4,v1) ← 0

ya1v1 , y
a2
v2
, ya1v3 , y

a2
v4
← 0.5

ya1v2 , y
a1
v4
, ya2v1 , y

a2
v3
← 0.5

visiteda1 ← {}; (Line 1)

totala1 ← {v1, v3, v4, v1, v3} (Line 2)

for( v1 ∈ {v1, v3, v4, v1, v3}) (Line 3)

a′′ ← −1, cost ← 0 (Line 4)

v1 6∈ visiteda (Line 5)

a′ ← a1 (Line 6)

pa1v1 ← min{1, 0.5·ln(6)} (Line 8)

pa1v1 ← min{1, 0.89} (Line 8)

pa1v1 ← 0.89 (Line 8)

xa1(v1,v3), x
a1
(v3,v4), x

a2
(v2,v3), x

a2
(v3,v4) ← 0.5

xa1(v1,v2), x
a1
(v1,v4), x

a1
(v2,v1), x

a1
(v2,v3) ← 0

xa1(v2,v4), x
a1
(v3,v1), x

a1
(v3,v2), x

a1
(v4,v1) ← 0

xa1(v4,v2), x
a1
(v4,v3), x

a2
(v4,v2), x

a2
(v4,v3) ← 0

xa2(v1,v2), x
a2
(v1,v3), x

a2
(v1,v4), x

a2
(v2,v1) ← 0

xa2(v2,v4), x
a2
(v3,v1), x

a2
(v3,v2), x

a1
(v4,v1) ← 0

ya1v1 , y
a2
v2
, ya1v3 , y

a2
v4
← 0.5

ya1v2 , y
a1
v4
, ya2v1 , y

a2
v3
← 0.5

visiteda2 ← {};

totala2 ← {v2, v3, v4, v2, v4}

for( v2 ∈ {v2, v3, v4, v2, v4})

a′′ ← −1, cost ← 0

v2 6∈ visiteda

a′ ← a2

pa2v2 ← min{1, 0.5 · ln(6)}

pa2v2 ← min{1, 0.89}

pa2v2 ← 0.89
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Random value generated:0.75

ya1v1 ← 1 (Line 9)

Cv1 ← 0 (Line 10)

count ← 0 (Line 11)

Av1 ← ∅ (Line 12)

a1 6∈ Av1 (Line 14)

ya1v1 ← 0 (Line 16)

cost ← 10 (Line 17)

ya1v1 ← 1 (Line 20)

a′′ ← a1 (Line 20)

visiteda ← {v1} (Line 22)

Send(v1, a1) to a2 (Line 25)

Receive(v2, a2) from a2 (Line 26)

ya2v2 ← 1 (Line 35)

end-for (Line 38)

Random value generated:0.50

ya2v2 ← 1

Cv2 ← 0

count ← 0

Av2 ← ∅

a1 6∈ Av1

ya2v2 ← 0

cost ← 20

ya2v2 ← 1

a′′ ← a2

visiteda ← {v2}

Send(v2, a2) to a1

Receive(v1, a1) from a1

ya1v1 ← 1

end-for

In this communication round vertices v1, v2 were processed by a1, a2 respectively.

There are no incoming edges to either of these nodes. Hence the xa(u,v) values are not

increased. At the end of rounding in this communication round, vehicle a1 decides to

makes its corresponding yav for node v1 as 1 and the vehicle vehicle a2 decides to makes

its corresponding yav for node v2 as 1.
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for( v3 ∈ {v1, v3, v4, v1, v3}) (Line 3)

a′′ ← −1, cost ← 0 (Line 4)

v3 6∈ visiteda (Line 5)

a′ ← a1 (Line 6)

xa1v1,v3 ← 1 (Line 7)

pa1v3 ← 0.89 (Line 8)

Random value generated:0.95

ya1v3 ← 0 (Line 9)

Cv3 ← (30 + 10) · 0.5 ← 20 (Line 10)

count ← 2 (Line 11)

Av3 ← {a1, a2} (Line 12)

a1 ∈ Av1∧ya1v3 = 0 (Line 14)

ya1v3 ← 0 (Line 16)

cost ← 30 (Line 17)

xa2v2,v3 ← 1 (Line 19)

ya2v3 ← 1 (Line 20)

a′′ ← a2 (Line 20)

visiteda ← {v1, v3} (Line 22)

Send(v3, a2) to a2 (Line 25)

Receive(v3, a2) from a2 (Line 26)

xa1v1,v3 ← 1 (Line 28)

xa2v2,v3 ← 1 (Line 28)

end-for (Line 38)

for( v3 ∈ {v2, v3, v4, v2, v4})

a′′ ← −1, cost ← 0

v3 6∈ visiteda

a′ ← a1

xa1v1,v3 ← 1

pa1v3 ← 0.89

Random value generated:0.90

ya1v3 ← 0

Cv3 ← (30 + 10) · 0.5 = 20

count ← 2

Av3 ← {a1, a2}

a1 ∈ Av1 ∧ ya1v3 = 0

ya1v3 ← 0

cost ← 30

xa2v2,v3 ← 1

ya2v3 ← 1

a′′ ← a2;

visiteda ← {v2, v3}

Send(v3, a2) to a1

Receive(v3, a2) from a1

xa1v1,v3 ← 1

xa2v2,v3 ← 1

end-for

In this communication round vertices v3 were processed by both a1, a2 respectively.

Vehicle a2 finds that vehicle a1 has increased its corresponding fractional value yav for this

node v3. Hence the vehicle a2 runs the rounding process on behalf on a1. At the end of

rounding in this communication round, vehicle a2 decides to makes its corresponding yav

for node v3 as 1.
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for( v4 ∈ {v1, v3, v4, v1, v3})

a′′ ← −1, cost ← 0

v4 6∈ visiteda

a′ ← a2

xa1v2,v4 ← 1

pa2v4 ← 0.89

Random value generated:0.97

ya2v4 ← 0

Cv4 ← 15

count ← 2

Av4 ← {a1, a2}

a1 ∈ Av1 ∧ ya2v4 = 0

ya2v4 ← 0

cost ← 50

xa1(v3,v4) ← 1

ya1v4 ← 1

a′′ ← a1

visiteda ← {v1, v3, v4}

Send(v4, a1) to a2

Receive(v4, a1) from a2

xa1(v3,v4) ← 1

xa2(v3,v4) ← 1

end-for

for( v4 ∈ {v2, v3, v4, v2, v4})

a′′ ← −1, cost ← 0

v4 6∈ visiteda

a′ ← a2

xa2v2,v4 ← 1

pa2v4 ← 0.89

Random value generated:0.99

ya2v4 ← 0

Cv4 ← 15

count ← 2

Av4 ← {a1, a2}

a1 ∈ Av1 ∧ ya2v4 = 0

ya2v4 ← 0

cost ← 50

xa1(v3,v4) ← 1

ya1v4 ← 1

a′′ ← a1

visiteda ← {v2, v3, v4}

Send(v4, a1) to a1

Receive(v4, a1) from a1

xa1(v3,v4) ← 1

xa2(v3,v4) ← 1

end-for

In this communication round vertices v4 were processed by both a1, a2 respectively.

Vehicle a1 finds that vehicle a2 has increased its corresponding fractional value yav for this

node v4. Hence the vehicle a1 runs the rounding process on behalf on a2. At the end of

rounding in this communication round, vehicle a1 decides to makes its corresponding yav

for node v4 as 1. In the next two communication rounds the nodes in totala are already
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present in visiteda. Hence this information is retrieved and no rounding happens further

in this algorithm.

for( v1 ∈ {v1, v3, v4, v1, v4}) (Line 3)

a′′ ← −1, cost ← 0 (Line 4)

v1 ∈ visiteda (Line 23)

a′′ ← a1 (Line 23)

Send(v1, a1) to a2 (Line 25)

Receive(v2, a2) from a2 (Line 26)

ya2v2 ← 1 (Line 35)

end-for (Line 38)

for( v2 ∈ {v2, v3, v4, v2, v4})

a′′ ← −1, cost ← 0

v2 ∈ visiteda

a′′ ← a2

Send(v2, a2) to a1

Receive(v1, a1) from a1

ya1v1 ← 1

end-for

for( v4 ∈ {v1, v3, v4, v1, v4}) (Line 3)

a′′ ← −1, cost ← 0 (Line 4)

v4 ∈ visiteda (Line 23)

a′′ ← a1 (Line 23)

Send(v4, a1) to a1 (Line 25)

Receive(v4, a1) from a1 (Line 26)

xa1(v3,v4) ← 1 (Line 28)

xa2(v3,v4) ← 1 (Line 28)

end-for (Line 38)

for( v4 ∈ {v2, v3, v4, v2, v4})

a′′ ← −1, cost ← 0

v4 ∈ visiteda

a′′ ← a1

Send(v4, a1) to a1

Receive(v1, a1) from a1

xa1(v3,v4) ← 1

xa2(v3,v4) ← 1

end-for

Algorithm 2 from page 44 gave a total cost of 160 whereas the randomized rounding

algorithm gives us a better solution of 150. Next, we prove that our solution from ran-

domized rounding algorithm is a feasible ILP solution and also find the bounds for the

randomized rounding algorithm.
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5.1.1 Proofs and Approximation Bounds of Rounding Algorithm

Lemma 5.1.1 Algorithm 3 produces a feasible ILP solution.

Proof

• Constraint 3.2. For every node v ∈ V , the vehicle that processed the node v,

increases its corresponding yav = 1 from the lines (9 or 20); i.e., For any node v, if

the value is made ya′v is made 1 with probability pa′v and a′ ∈ Av, only one ya′v is

assigned the value 1 from line 9. Similarly, for any node v, if yav is assigned 0 with

probability 1 − pa
′
v , then the condition check in Line 14 returns false, and hence

only one yav is assigned the value 1 from line 20. From the messages received if

node (v 6∈ visiteda ∧ v ∈ totala), the corresponding vehicle’s yav is made 1 from

line 30. Also, if there is an update in the vehicle id which has serviced the node, the

previous yav is made 0 and then the newly updated yav is made 1 from line 34 else

the same yav value is retained. Hence in all cases, a node is serviced exactly once.

So, we have that
∑

a∈A y
a
v = 1.

• Constraint 3.3. For every node v ∈ V , the randomized rounding algorithm

increases xa(u,v) = 1 in lines (7 or 19 or 28 ). In these 3 lines, the value xa(u,v) is

made 1 only if x̂a(u,v) > 0; i.e., if the vehicle has taken an edge to reach node v.

Only one vehicle is allowed to service a node, as shown in the previous constraint

and we have
∑

a∈A y
a
v = 1. Hence the condition

∑
u∈V x

a
(u,v) − yav ≥ 0 is always

true.

• Constraints 3.4, 3.5, and 3.7. From lines (7 and 19 and 28) we can say that there

are no sub-tours. Constraints (3.4, 3.5) are satisfied as the xa(u,v) values are increased

by 1 only if the corresponding fractional values are increased ( i.e.,x̂a(u,v) > 0) from

Algorithm 2.

• Constraint 3.6. The Constraint 3.3 ensures that a vehicle enters a node before

servicing it. Also Constraints 3.4, 3.5 ensure that there are at most only one incom-

ing and outgoing edge for each node v. Also Algorithm 2 guarantees that a vehicle
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does not exit a node without traveling to it. Hence its always the case that the sum

of incoming edges to a node is greater than or equal to the number of outgoing

edges from the node. Hence this constraint is also satisfied.

�

Theorem 5.1.2 The approximation ratio of Algorithm 3 for integer solution to xa(u,v), y
a
v

is

O(n · ρ1/n · log(m+ n))

Proof

• Case 1. (a′ ∈ Av ∧ (ya
′
v = 1)) (Line 9)

By the definition of Av the travel costs are at most

Ct(a, (u, v)) ≤ ln(n+m) · Cv

It follows that, the total cost for travelling is at most

ln(n+m)
∑
a∈A

∑
(u,v)∈E

x̂a(u,v) · Ct(a, (u, v))

We have from line 8 of Algorithm 3, the value of yav is 1 with the probability

min{1, ŷav · ln(n+m)}. The expected cost of service is bounded by the value

ln(n+m)
∑
a∈A

∑
v∈V

ŷav · Cs(a, v)

• Case 2. (a′ 6∈ Av ∨ (ya
′
v 6= 1)) (Line 9)

From the definition of Cv, Av we have that

∑
a6∈Av

∑
u∈V

x̂a(u,v) ≤
1

ln(n+m)
(5.1)

for if not, Cv would be larger.
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Algorithm 2 guarantees that, for all a ∈ A, and v ∈ V−{va0}, we have
∑

u∈V x̂
a
(u,v)−

ŷav ≥ 0 i.e., it guarantees that service happens only once at a node and hence only

the number of travels can increase and not the number of services for any node.

Therefore, we have that ∑
a∈Av

ŷav ≤
∑
a∈Av

x̂a(u,v)

and also we can claim for v 6= va0 (where va0 denotes depot location of vehicle a)

∑
a∈A

∑
u∈V

x̂a(u,v) ≤ 1 (5.2)

Equation 5.2 value comes from the fact that x̂a(u,v) is increased by a value
1

m
and at

most m vehicles can have x̂a(u,v) =
1

m
. So, in total,

∑
a∈A

∑
u∈V

x̂a(u,v) ≤ m ·
(

1

m

)
≤ 1

Hence we have

∑
a∈Av

ŷav ≤
∑
a∈Av

∑
u∈V

x̂a(u,v) ≤ 1− 1

ln(n+m)
( From 5.1, 5.2) (5.3)

The probability that (a′ 6∈ Av ∨ (ya
′
v 6= 1)) happens is at most

qa =
∏
a∈Av

(1− pa)

From Means Inequality we have, let A ⊂ R+ be a set of positive real numbers. The

product of the values in A can be upper bounded by replacing each factor with arithmetic

mean of elements of A: ∏
x∈A

x ≤
(∑

x∈A
|A|

)|A|

∴ qa ≤
(∑

a∈Av
(1− pa)

n+m

)n+m
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≤
(

1−
ln(n+m)

∑
a∈Av

ŷav
n+m

)n+m

From Equation 5.3 we have

qa ≤
(

1− ln(n+m)

n+m

(
1− 1

ln(n+m)

))n+m

≤
(

1− ln(n+m) + 1

n+m

)n+m

From Means Inequality we have, for n ≥ x ≥ 1, we have

(
1− x

n

)n
≤ e−x

∴ qa ≤
(

1− ln(n+m) + 1

n+m

)n+m

≤ e−ln(n+m)−1 =
1

e(n+m)

Combining all results together, the total expected cost µ = E[ALG] is

µ ≤ ln(n+m)

∑
a∈A

∑
v∈V

ŷav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

x̂a(u,v) · Ct(a, (u, v))



+
n

e(n+m)

∑
a∈A

∑
v∈V

ŷav · Cs(a, v) +
∑
a∈A

∑
(u,v)∈E

x̂a(u,v) · Ct(a, (u, v))


≤ (ln(n+m) +O(1)) · n · ρ1/n · ·OPT

Since we have ln(a) =
log(a)

log(e)
, we obtain

µ = E[ALG] ≤ (log(n+m)) · n · ρ1/n ·OPT

Hence, in total from Algorithms 2 and 3 the approximation ratio is the following:

O(n · (ρ)1/n · log(n+m))
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5.2 Distributed On-The-Fly Solution

We can modify Algorithm 2 from the last chapter to solve the open multi-depot vehicle

routing problem in a distributed on-the-fly fashion. Here now we assign, xa(u,v), y
a
v as

either 0 or 1 values to mimic the work of ILP directly. We don’t prove any bounds in this

case, but we just compare results of Algorithm 2 with the distributed on-the-fly solution

using simulations which are shown in the next section.

We use the same notations from Algorithm 2 here. Here in the on-the-fly solution the

decision whether to service or travel are taken by the distributed algorithm itself unlike

Algorithm 2 where decisions on whether to service or travel are taken by the randomized

rounding. Since this distributed algorithm can take decisions on-the-fly, there is no need

for a randomized rounding algorithm for this case.

We can modify Algorithm 2 to solve the VRP in an on-the-fly distributed fashion. We

basically need take out the processing of dual LP variables αv, βav , λ
a
(u,v), γ

a
v , τ

a
u , θ

a
v and in

lines 35, 45, and 69 we increase ∆xa(u,v) by value 1 and in lines 29, and 62, we increase

∆yav by 1.
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Algorithm 4 Algorithm for vehicle a

Input: Graph G = 〈V,E〉, cost functions Cs and Ct of all vehicles, and value of k.
Output: Fractional Value for xauv, y

a
v

1: xa(u,v), y
a
v ,∆x

a
(u,v),∆y

a
v , totalcost ← 0;

2: loc(a)← va0 ;
3: Rivala ← A− {a};
4: Let Na

k , C(Na
k ), ρ, and nextbest be as defined in Definition and Equa-

tions 4.2.2, 4.1, 4.2, and 4.3, respectively.
5: for s = |V | to 0 do
6: tassign ← 0, p′ ← ∅, count ← 0;
7: Calculate Na

k ; {Step 1 in Conditions For Servicing.}
8: if (Na

k = ∅) then
9: tassign ← 1;

10: else
11: Calculate C(Na

k ) and π(Na
k ); {Step 2 in Conditions For Servicing.}

12: p′ ← π(Na
k );

13: for each a′ ∈ Rivala do
14: p′ ← CheckIfPathFree(p′, loc(a′)); {Step 3 in Conditions For Servicing.}
15: end for
16: if (p′ = ∅) then
17: tassign ← 1;
18: else
19: tassign ← 2|p′|+ 1;
20: if (|p′| 6= |π(Na

k )|) then Calculate C(Na
k ) for p′;

21: end if
22: end if
23: for t = tassign to 0 do
24: isService ← false;
25: if (p′ 6= ∅) ∧ (Na

k 6= ∅) then {Check if Servicing conditions are met.}
26: isService ← true; {If Conditions of Servicing are met, Servicing begins.}
27: v ← loc(a);
28: if (yav = 0) then ∆yav ← 1; {Servicing is done here. }
29: else {Vehicle travels to next node in path.}
30: u← loc(a);
31: Let v be the node adjacent to u on p′ st. xa(u,v) = 0;
32: isService ← false;
33: ∆xa(u,v) ← 1;

34: Temporarily assign Ct(a, (u, v))← C(Na
k );

35: end if
36: t← t− 1; {Servicing ends here.}
37: else {If Conditions for Servicing are not met, Travel starts here.}
38: Let u← loc(a);
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39: Let v yield nextbest(a); {Conditions for Traveling: Calculate nextbest(a).}
40: ∆xa(u,v) ← 1;
41: t← 0;
42: end if {Travel ends here}
43: yav ← yav + ∆yav ;
44: xa(u,v) ← xa(u,v) + ∆xa(u,v);

45: if (isService) then Send(id(a), v,∆yav .C(Na
k )); {To all vehicles}

46: else Send(id(a), (u, v),∆xa(u,v).Ct(a, (u, v)); {To all vehicles}
47: end if
48: {(id, v, Y )}A′⊆A, {(id, (u, v), X)}A′′⊆A ← Receive();
49: for each ā ∈ A′ do
50: loc(ā)← v;
51: if (a 6= ā) then yāv ← 1;
52: totalcost ← totalcost + Y ;
53: count ← count + 1;
54: end for
55: for each a′′ ∈ A′′ do
56: loc(a′′)← v;
57: if (a 6= a′′) then xa′′(u,v) ← 1;
58: totalcost ← totalcost +X;
59: end for
60: end for
61: s← s− count ; {Value of s is decremented by count.}
62: end for

In the next section, we discuss the implementation of our algorithm in detail.

5.3 Implementation of the Algorithm

5.3.1 Communication Model Of The System:

We design a synchronous algorithm to solve the open multi-depot vehicle routing prob-

lem.We use a global synchronous broadcast model for our system. The vehicles after

each iteration of our algorithm broadcast their current location and costs incurred by the

vehicle in the current step of the algorithm. The vehicles do not have an agreement to

service particular sets of nodes among each other. The broadcast information just helps

other vehicles to know if a new node has been serviced and also to keep track of the total

cost incurred thus far by all vehicles. Our algorithm uses a nearest neighbour technique

to decide on the possible next path for servicing the unserviced nodes. Even though this
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approach is short-sighted, we still are able to design a distributed algorithm to solve the

OMDVRP problem which gives a sub-optimal solution in most cases and in some cases

even gives us optimal solution. We assume our broadcast to be perfect, in the sense that

no bits of information is lost during transit among different vehicles. This assumption is

very important, because after each iteration of the algorithm, all vehicles wait for mes-

sages from all other vehicles and only after receiving this information they start their next

iteration.

Our algorithm is implemented using Java language. We have implemented our algo-

rithm using the TCP/IP protocol. We have implemented both servers and clients in our

laptop using the local host. After implementing the algorithm in Java, we run simulations

for different graphs of varying size. The communication model is centralized. Every

broadcasted message goes through the server to all other vehicles. The server specifically

does two jobs to do: One is to allow exactly ‘m’ vehicles to work in one algorithm and

then act as a access point between two or more vehicles for communication. Figure 5.1

below depicts the communication model that has been used.

A vehicle from the message received from a rival vehicle, takes note of the costs

incurred and also the node it has serviced in the current iteration. Keeping track of the

count of serviced nodes help in the faster completion of the problem. Also it is important

to note that based on the information obtained from other vehicles, the current vehicle

does not restrict or change its path to a new path. One other use of this broadcasted

message is that each vehicle gets to know the current location of all other vehicles at the

current iteration. This helps in choosing a path in such a way that the vehicle has the least

cost of servicing nodes. The structure of the broadcast message is shown next.

The structure of the broadcasted message contains four important parts namely the

vehicle id, current node, cost incurred in the current iteration and finally a bit to distin-

guish if a vehicle has serviced the current node or has traveled to the current node. The

vehicle id is a unique id assigned to each vehicle when it connects to the server. This id is

used to differentiate between vehicles when a message is being broadcast. This bit is very

important as each vehicle waits for messages from all other vehicles before commencing

79



Figure 5.1: Communication Model Of the System

the next iteration. The current node helps other vehicles to find the location of the current

vehicle. This, in turn, helps the vehicles in choosing the size of their dynamic neighbour-

hood. The third bit consists of the cost which is very updated by all vehicles during each

iteration of the algorithm. The last and the most important bit of this structure is the bit

which differentiates between servicing and travel. If a node has been serviced, all other

vehicles take note of the node that has been serviced and assigns temporarily a high cost

for servicing the node. Also these nodes are immediately taken out of the dynamic neigh-

bourhood in the next iteration of the loop. Also a vehicles does not assume that a rival

vehicle has reached a node, it will surely service it. If the current vehicle has a better cost

by taking a particular path, it will take that path not worrying if other rival vehicles are

already present in that node.

Next we discuss the structure of the broadcast message for the randomized rounding

algorithm.

Here we have just two bits of information that has been broadcasted to other vehicles.
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Figure 5.2: Structure of the Broadcasted Message for Distributed Approximation and
Distributed On-The-Fly Algorithm

Figure 5.3: Structure of the Broadcasted Message for Randomized Rounding Algorithm

The first bit contains the node for which the randomized rounding has been applied to.

The second and the most important bit gives the information of the vehicle id that has

been assigned to service that particular node. If a vehicle receives a conflicting message

from two vehicles i.e., if for the same node, there are two messages with different vehicle

ids, then the vehicle only keeps the message which has the lowest vehicle ID for that

corresponding node. If such an update happens, the previous message is discarded and

the corresponding yav value is made 0.

5.3.2 Computation Model Of The System:

Here we show the computation models used to design both the distributed approximation

and on-the-fly algorithm to solve OMDVRP. First, we show the computation model used

for the distributed approximation solution which combines the distributed approximation

along with randomized rounding.

1. Distributed Approximation Algorithm

There are three main parts of computation that take place for the distributed approx-
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Figure 5.4: Computation Model for Distributed Approximation Algorithm

imation algorithm.

• Initialization

In this step, each vehicle connects to the server and gets associated with a

vehicle ID. The vehicles even after getting their respective vehicle IDs wait

till the last vehicle has been assigned its vehicle ID. After assigning the last

vehicle with an ID, the server sends across the graph containing the travel

costs, servicing costs and initial locations of all vehicles. Thus each vehicle

holds the graph of all its rival vehicles apart from having its own graph. This

information is useful when vehicles need to decide on who has the least cost

of servicing a node when both these vehicles are present in the same node.

• OMDVRP

The second and most important step is when all vehicles collectively solve the

OMDVRP problem by respecting all the side constraints. After each iteration,

broadcast messages are sent to all vehicles informing them about the current

location of a vehicles, the nodes serviced or traveled in the current iteration
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and also helping all vehicles to have a count of the number of nodes that has

been serviced. This step produces the fractional values for servicing or travel

across nodes for all vehicles.

• Rounding

Each vehicle runs the randomized rounding algorithm once for each node in

the complete list of paths and nodes serviced during the distributed approx-

imation algorithm. If a node in the total list has already been processed by

some other vehicle, the id of the vehicle who is assigned to service the node

stored and updated if necessary.

2. Distributed On-The-Fly Algorithm:

There are two main parts of computation that takes place for the distributed on-

Figure 5.5: Computation Model for Distributed On-The-Fly Algorithm

the-fly algorithm.

• Initialization

The initialization step is same as the Initialization step for the distributed ap-

proximation algorithm.

• OMDVRP

The second and most important step is when all vehicles collectively solve the
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OMDVRP problem by respecting all the side constraints. After each iteration,

broadcast messages are sent to all vehicles informing them about the current

location of a vehicles, the nodes serviced or traveled in the current iteration

and also helping all vehicles to have a count of the number of nodes that has

been serviced. This step produces the integer values for servicing or travel

across nodes for all vehicles.

5.3.3 Implementation of the Algorithm in Java

Our algorithm was implemented using Java. The structure of the program consists of

three main parts:

• Server.java

This is the file which keeps track of the number of vehicles and the number of nodes

in the graph generated. It also has the list of vehicle IDs to be assigned to each

vehicle when it connects to the server. Also it does not allow more that m vehicles

to join the server. Each vehicle is assigned a dedicated thread called ClientThread

and is invoked using the vehicle ID and the socket details.

• ClientThread.java

This is the file which acts as a server for the clients that connect to the server. All

interactions between server and client are done using the ClientThread class. It

basically stores the structure of the graph for all vehicles and also stores the details

of depots of each vehicles. Its the file that generates the cost of traveling and cost of

servicing for vehicles and it can broadcast messages to all vehicle id simultaneously.

This is the file that helps us achieve synchronous broadcast.

• Client.java

Its the most important file that depicts the working of our algorithm. It has to

connect to the server using the same port number as the server and then receive

all details like the structure of the graph, number of vehicles in the experiment

and so on. It runs the algorithm once the graph is given as an input from the last
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vehicle’s ClientThread class. It has to execute the algorithm and also broadcast

valid information to all vehicles and also gain valuable information from all other

rival vehicles. They must synchronize every step of computation with all other

vehicles and collectively complete the OMDVRP problem.

Next we discuss some major modules and functions of our implementation.

The first step in our implementation is to create the Server. This will allow exactly

m clients to connect to it and run simulations. The server holds the value of the number

of nodes that are used for the current experiment and also the number of vehicles along

with unique vehicle ids. The server opens a dedicated ClientThread for every client that

connects to it. The ClientThread has two main functions. One is to create the graph to

be used for simulation along with servicing and traveling costs for all vehicles and also

act as an access point between multiple clients. Next we discuss how these graphs are

generated by the ClientThread class.

Our algorithm works well on both complete and cyclic graphs. When designing a

complete graph, a random graph is generated and it gets converted to a complete graph

using the Dijkstra’s all pair shortest path algorithm i.e., if there is no edge between two

pair of nodes, the virtual edge is created with shortest distance (using other edges) to travel

between those 2 nodes. Also we must ensure a symmetric complete graph is obtained.

Next when we design a cyclic graph we must ensure connects to only two nodes i.e., its

successor and its predecessor. Again we must ensure the cyclic graph is symmetric in

nature.

We have two ways to input data to the clients. The first way is when the ClientThread

generates a new graph and uses the standard broadcast feature wherein a ClientThread

broadcasts the graph’s information to all clients. The second is to use a file from which

data can be read into by the ClientThread instead of generating a new graph. Next we

discuss the working of our clients which implement the algorithm in them.

Each client after being created connects to the server using the same port number as the

server. Then the server responds to the client by sending the client a vehicle id that it

uses to differentiate itself from other vehicles. Then after the last client connects tot the
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server, the ClientThread sends out data using a synchronous broadcast. The clients upon

receiving this information stores the corresponding travel costs and servicing costs. This

is done extracting the first two values that has been received. The first bit of information

contains the number of vehicles participating in this experiment and the second element

gives the number of nodes used in the experiment. Using this information a client creates

two arrays i.e., to hold xa(u,v), y
a
v values. The maximum size of these arrays are set from

the first two bits of information. Then the following bits of information are the location

of each vehicle. So the client by using the count of the vehicles present in the algorithm is

able to distinguish between the location of vehicles and the costs of travel. Next the set of

bits that come in are the travel costs of all vehicles followed lastly by the cost of servicing

nodes for all vehicles. After each vehicle receives this message the algorithm begins. The

client is able to differentiate costs of other vehicles by the vehicle id presented to it. The

client works differently based on the type of the graph.

• Complete Graphs

For a complete graph, the minimum distance from a vehicle to an another vehicle

is always 1. Hence the size of neighbourhood is always one. So the clients are not

forced to create paths of size more than 1.

• Cyclic Graphs

For cyclic graphs, the vehicles are free to have the size of their neighbourhood less

than the distance between the nearest rival and can have a maximum size ofm. Thus

the vehicles are free to have a dynamic size neighbourhood. This helps in reducing

the computations also by a good factor. That is if vehicles are placed far from each

other. each vehicle can take a path of maximum size m and after ensuring no vehicle

can enter the path chosen in lesser iteration than the current node, each vehicle need

not perform any computations for finding a new path till end of processing the last

node in the path.

The paths generated is found using the simple breadth-first algorithm. Since we use this

path finding algorithm only for cyclic graphs, the breadth-first algorithm works well. For
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complex graph structures, we may need to use the A star algorithm to find the paths. The

distance between rival vehicles can also be found by the same algorithm. Next after the

paths are generated the CheckIfPathfree() function is called which returns a path or

its subset if there are no better vehicles to service the nodes in the path better than the

current vehicle else it returns an ∅.

Then after a vehicle performs a service or travel it has to pass this information to all vehi-

cles . This is done using the synchronous broadcast. The last bit of this broadcast message

is of greater importance. To denote if a node has been serviced in the current iteration, a

vehicle sends the value 6543 and also to denote if a node has been traveled to, the vehicle

sends the value 3546. Based on these two distinct values, each vehicle that receives the

broadcast information is able to differentiate between a service and a travel. Each vehicle

stores a copy of the xa(u,v), y
a
v is a separate array. This array is updated every time a vehicle

visits a node or services it. If an edge has been traversed by a vehicle the corresponding

vehicle’s edge entry has been modified to a temporary value. This information is impor-

tant when it comes to finding the number of steps a rival vehicle takes to reach the path

chosen by a current vehicle.

After each round, a message is broadcast by the current vehicle and it also receives broad-

cast messages from rival vehicles. This information is processed and the corresponding

outer loop sentinel value is decremented if a node has been serviced in the current iteration

by any vehicle.

In the case of the distributed approximation algorithm, the fractional solutions pro-

duced at the end of the algorithm is given to the rounding algorithm as an input. These

values are converted to {0, 1} based on some probability. For the case of on-the-fly solu-

tion, this step is not required as the on-the-fly solution itself produces a integer solutions

for xa(u,v), y
a
v
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Chapter 6

Simulation Results

In this chapter, we present our simulations results comparing the results of ILP solution

with a greedy algorithm, distributed approximation algorithm, and on-the-fly solution for

cyclic and grid graphs converted to complete graphs.

6.1 Simulation Results.

6.1.1 Parameters and Metrics of the Simulations.

We list below the parameters that have been changed during simulations:

• location of depots.

• the type of graph i.e., grid to complete graphs or cyclic graph.

• the type of the vehicles, i.e., from vehicles having same travel time and service time

to vehicles having different travel time and service time.

We evaluate the total cost metric in our simulations which denote the costs that all vehicles

collectively take to finish servicing all nodes in the given graph.

6.1.2 Results Of The Simulations.

• Comparison of Solutions for Small Grid Graphs converted to Complete Graph.

We study grid-shape graphs with different sizes. To ensure that the grids have
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Hamiltonian paths, we convert them complete graphs by adding virtual edges be-

tween nodes that do not share a physical edge, where the travel cost is equal to the

weight of the shortest path between the incident nodes. The greedy algorithm de-

signed gives each vehicle equal number of nodes to service. If there are not equal

nodes, the last vehicle may be given lesser nodes to cover. For the number of nodes

assigned, each vehicle chooses the best nodes it can travel and service starting from

its depot. The graphs comparing simulations results of a 3*3, 5*5, 7*7 grid is

shown in Figures 6.1, 6.2, 6.3 respectively.
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Figure 6.1: Comparison of all Solutions on a 3*3 grid
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Figure 6.2: Comparison of all Solutions on a 5*5 grid
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Figure 6.3: Comparison of all Solutions on a 7*7 grid

In our simulations, we have taken the travel costs of all vehicles in the ratio 1:2:3

where the first vehicle is given a cost of 2 to travel between physical edges of the

grid. For the case of 3*3 grid graph, the cost assigned to service a node is 1 for all

vehicles and for the cases of 5*5 grid, 7*7 grid we assign the cost of service as 2,

4 respectively for all vehicles. All our simulations are run with 95 % confidence

interval.

We acknowledge that the ILP solution outperforms both Algorithm 3 and the on-

the-fly solution. Besides the fact that ILP gives us the optimal solution, the solution

does not require all vehicles to be equally involved in all steps of servicing and it

can require that the vehicle with the highest travel cost not to be used in the solution

for better overall costs. But since we have designed a synchronous algorithm, we

require that all vehicles perform a travel or service in each communication round

until the termination occurs. Hence, the total cost is comparatively higher.

• Comparison of Solutions for Small Cyclic Graphs.

In our simulations, we have taken the travel costs of all vehicles in the ratio 1:2:3

where the first vehicle is given a cost of 1 to travel and all vehicles having the

servicing cost as 2. The greedy algorithm designed does not allow vehicles to travel

across same nodes. But our distributed approximation algorithm and the on-the-fly
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algorithm does allow vehicles to travel to the same node during the execution of the

algorithm. For cyclic graphs, if a vehicle decides to choose a path that has already

been taken, the vehicle is forced to continue its work in the chosen path whereas

this was not the case in grid converted to complete graph case. In grid graphs,

if two or more vehicles travel to a same node in any communication round, there

are chances that they might not travel to a common node for travel. But for cyclic

graphs, this guarantee cannot be given and vehicles might be forced to follow one

another until the termination is reached without servicing any nodes in its path. For

these reasons, our algorithm does not seem to perform at the same level as these

algorithms. The graphs comparing simulations results on a cyclic graph having 12,

24, 48 nodes is shown in Figures 6.4, 6.5, 6.6 respectively.
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Figure 6.4: Comparison of all Solutions on a Cyclic Graph Having 12 nodes
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Figure 6.5: Comparison of all Solutions on a Cyclic Graph Having 24 nodes
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Figure 6.6: Comparison of all Solutions on a Cyclic Graph Having 48 nodes

• Impact of value of k. Here we only show the comparison results on cyclic graphs.

We place the vehicles in depots equally far from each other to find the impact of

k. We have the same cost of travel and service for all vehicles as 2. We can see

that when k values are increased the total cost is decreased. When k >= 2, the

total cost is at is minimum. This is because the vehicles are able to decide their

best paths with the assigned k-value. So any increase of k value after this yields

the same result. So it is better we always choose k ≤ |A| to get a better total
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Cyclic Graph: Vehicles having same travel and service costs
Value of
k

24 nodes,
4 vehi-
cles

50 nodes,
5 vehi-
cles

120
nodes, 6
vehicles

210
nodes, 7
vehicles

320
nodes, 8
vehicles

450
nodes, 9
vehicles

600
nodes,10
vehicles

k=1 452 975 2400 4235 6480 9135 12200
k=2 452 975 2400 4165 6480 9135 12200
k=3 436 919 2196 3971 6072 8559 11416
k=4 436 919 2196 3971 6072 8559 11416
k=5 - 919 2196 3971 6072 8559 11416
k=6 - - 2196 3971 6072 8559 11416
k=7 - - - 3971 6072 8559 11416
k=8 - - - - 6072 8559 11416
k=9 - - - - - 8559 11416
k=10 - - - - - - 11416

Table 6.1: Impact of k on Cyclic Graphs Having Same Travel and Service Costs for all
vehicles.

cost. The tabulated results comparing the performance of the on-the-fly algorithm

for different values of k are shown in Table 6.1.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we studied the problem of distributed open multi-depot vehicle routing

problem (OMDVRP). In particular,

• We proposed a synchronous distributed approximation algorithm that solves OMD-

VRP. The algorithm yielded fractional values for a given instance of the OMDVRP.

We have shown that the approximation ratio of this algorithm is

O(n · ρ1/n)

where n is the size of the graph, ρ is the highest service or travel cost across all

vehicles. We obtained this ratio using a primal-dual linear programming technique.

• To obtain integer values from the fractional solutions of distributed approximation

algorithm, we used (1) a simple rounding technique called on-the-fly algorithm,

which preserved the feasibility of the fractional solution as well as the approxima-

tion ratio, or (2) a randomized rounding technique, which results in approximation

ratio of O(n · (ρ)1/n · log(n+m)), where n is the size of the graph, ρ is the highest

service or travel cost across all vehicles and m is the number of vehicles.

• Both algorithms were fully implemented on TCP/IP protocol stack. We reported
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the results of simulations that compare the results of ILP, greedy, distributed ap-

proximation after rounding and on-the-fly algorithms.

7.2 Future Work

There are numerous open problems for further research:

• Capacity Constraint. In this thesis, we assumed that the vehicles have enough

capacity to service all the nodes in the graph by itself. But in real-life scenarios,

vehicles come with a capacity limit, beyond which they cannot perform a service or

a travel. For instance, UASs flight time is bounded by energy limits. An important

challenge would be to design a distributed algorithm for the cases where vehicles

come with different capacity constraints.

• Fault-tolerance. We also assumed that vehicles do not crash or stop their work

between their respective paths. One can design algorithms that can tolerate the dif-

ferent type of faults like crash faults, hardware failures, etc. It would be interesting

to see how other vehicles cope up with such a situation and service the entire graph.

• Number of vehicles. In our thesis, we had fixed the number of vehicles that can

take part in the OMDVRP. It would be interesting to find the exact number of vehi-

cles required to produce the optimal solution to service a given graph with a set of

costs for each vehicle.

• Unknown/Stochastic demands We solved the OMDVRP for the case where cities

have constant known demands. Designing an algorithm that solves the case where

cities have unknown or stochastic demands using a distributed algorithm would be

a very interesting problem.

• Dynamic graph. We solved the OMDVRP for fixed graphs. In real time scenarios,

certain cities tend to have sudden demands which would be better served in the

present instance of the problem. In this case, the graphs are not known fully and
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vehicles get to know their demands only after reaching a city. One can design a

probabilistic distributed algorithm to solve this problem.

• Implementation on UASs. The immediate future work from this thesis is to im-

plement this algorithm on UASs and record its working using different settings like

vehicles with different travel speed,servicing speed, different graphs etc.
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