Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20670
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCarbotte, J. P.-
dc.contributor.authorWhite, Brian-
dc.date.accessioned2016-10-06T15:01:54Z-
dc.date.available2016-10-06T15:01:54Z-
dc.date.issued1974-04-
dc.identifier.urihttp://hdl.handle.net/11375/20670-
dc.description.abstract<p> The theoretical formulation of the electronic transport properties (in the absence of a magnetic field) of pure single crystals of simple metals is extended to incorporate the effect of a non~spherical Fermi surface, using a multiple orthogonalized plane wave description of the conduction electrons. Two approaches are considered, one using a variational principle, and the other employing a scattering time approximation. </p> <p> Formal results for the electrical resistivity and the electronic contribution to the thermal resistivity are expressed in terms of effective phonon frequency distributions. These distributions are particularly convenient for numerical computations and are generalization: of those previously used for the case of a spherical Fermi surface. </p> <p> The generalization of the scattering time method to dilute nonmagnetic substitutional alloys is applied to hexagonal close~packed metalsc It is shown that the addition of small amounts of impurities to pure Zn leads to measurable changes in the temperature dependence of the electrical resistivity ratio (see text for ratio with symbols). The corresponding deviations front Matthiessen's rule for polycrystalline samples are also calculated. </p>en_US
dc.language.isoenen_US
dc.subjecttransport theoryen_US
dc.subjectmetalen_US
dc.subjectelectronic transporten_US
dc.subjectsingle crystalsen_US
dc.titleTransport Theory in Metalsen_US
dc.contributor.departmentPhysicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
White_Brian_A_1974Apr_Masters.pdf
Open Access
3.6 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue