TRANSPORT THEORY



TRANSPORT THEORY IN METALS

By
BRIAN ALEXANDER WHITE, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

April 1974



MASTER OF SCIENCE (1974) McMASTER UNIVERSITY

(Physics) Hamilton, Ontario.

TITLE: Transport Theory in Metals

AUTHOR: Brian Alexander White, B.sc. (University of Toronto)
SUPERVISOR: Professor J. P. Carbotte

NUMBER OF PAGE3: (vi), 119

SCOPE AND CONTENTS:

The theoretical formulation of the electronic
transport properties (in the absence of a magnetic field)
of pure single crystals of simple metals is extended to
incorpérate the effect of a non-spherical Fermi surface,
using a multiple orthogonalized plane wave description
of the conduction electrons. Two approaches are
considered, one using a variational principle, and the
other employing a scattering time approximation.

Formal results for the electrical resistivity and
the electronic contribution to the thermal resistivity
are expressed in terms of effective phonon frequency
distributions. These distributions are particularly
convenient for numerical computations and are
generalizations of those previously used for the case of

a spherical Fermi surface.

(i)



The generalization of the scattering time method
to dilute nénmagnetic substitutional alloys is applied
to hexagonal close-packed metals. It is shown that the
addition of small amounts of impurities to pure Zn leads
to measurable changes in the temperature dependence of
the electrical resistivity ratio pH/pl° The corresponding
deviations from Matthiessen's rule for polycrystalline

samples are also calculated.

(iidi)



ACKNOWLEDGEMENTS

I would like to thank Dr. J. P. Carbotte, my
research supervisor, for his guidance and encouragement.

I wish to thank Dr. F. Kus and Dr. B. Hayman for
many helpful discussions. |

The financial assistance of the National Research
Council is gratefully acknowledged.

I also wish to thank Miss Erie Long for her

speedy and accurate typing of this thesis.

(iv)



CHAPTER

I

I1I

Iv

TABLE OF CONTENTS

INTRODUCTION

1.1 Scope of Thesis

LATTICE DYNAMICS AND THE ELECTRON-PHONON
INTERACTION

2.1 Lattice Dynamics

2.2 The Electron-Phonon Interaction

THE BOLTZMANN TRANSPORT EQUATIONS FOR THE
ELECTRONS AND THE PHONONS

3.1 The Linearized Boltzmann Egquations

3.2 The Electron-Phonon Scattering Terms

FORMAL TRANSPORT THEORY: VARIATIONAL METHOD
4.1 General Formulation
4.2 Phonon-Limited Electrical Resistivity

4.3 Thermal Resistivity (Electronic
Contribution)

FORMAL TRANSPORT THEORY: SCATTERING TIME
APPROXTIMATION

5.1 Phonon-Limited Electrical Resistivity

(v)

PAGE

11

18
18
22

30
30
39

48

55

55



CHAPTER

\Y%

VI

TABLE OF CONTENTS - continued

PAGE
5.2 Thermal Resistivity (Electronic
‘ Contribution) 63
ELECTRICAL RESISTIVITY OF DILUTE Zn ALLOYS 72
6.1 Introduction 72
6.2 Theory 76
6.3 Results 85
APPENDIX A 93
APPENDIX B 97
APPENDIX C 100
APPENDIX D 104
APPENDIX E 107
APPENDIX F 111
REFERENCES 117

(vi)



CHAPTER I

INTRODUCTION

1.1 Scope of Thesis

There are two alternative theoretical descriptions
of the electronic transport properties of pure single
crystals of simple (non-transition) metals in the absence
of a magnetic field. The variational method, which is
usually employed, uses trial solutions pf the Boltzmann
transport equations to calculate transport coefficients
" such as the electrical resistivity and the electronic
contribution to the thermal resistivity; this approach is

reviewed in the book by Ziman (ll). The electrical

resistivity has also been discussed by Robinson and Dow (26)
in terms of a scattering time solution of the Boltzmann
transport equation. In both formalisms the approximation

of a spherical Fermi surface was made in order to simplify
calculations. These methods will be extended in Chapters
II, III, IV and V to consider a non-spherical Fermi surface,
with a multiple orthogonalized plane wave description of the
conduction electrons; a scattering time formalism for the
"electronic contribution to the thermal résistivity will also
be introduced. The resulting expressions will be presented

in terms of effective phonon frequency distributions which

1



are generalizations of the ones previously used (4, 21, 22,

23, 29, 30’ 31) for the case of a spherical Fermi surface;
these distributions are particularly convenient for
computation and it is hoped that our formulae will lead to
quantitative results.

For simple metals the electronic and lattice
problems may be separated, with their coupling described by
the electron-phonon interaction. In Section 2.1 the theory
of lattice dynamics in the harmonic apprdximation is
reviewed briefly, and in Section 2.2 an expression is
obtained for the coupling between the éonduction electrons
and the lattice vibrations, utilizing a pseudopotential
formalism based upon multiple orthogonalized plane waves
for the conduction electrons.

¥For ordinary transport phenomena, the application
of constant 6utside constraints, such as temperature
gradients and electric fields, prevents the establishment
of a strict egquilibrium state, and a steady state is
established with the scattering (due to the electron-phonon
interaction ir pure single crystals) balancing the effect
of the external constraints. In Section 3.1 the linearized
Boltzmann transport equations for the electrons and phonons
in the absence of a magnetic field are reviewed; these are
the steady stete equations for the electron and phonon

distribution functions. The explicit forms of the scattering

terms in these equations are obtained in Section 3.2, using



the expression for the electron-phonon interaction from
Section 2.2.

The veriational method approach to the calculation
of transport coefficients is discussed in Chapter IV, using
the results of Chapters II and III. In Section 4.1 we
present the details of a general formulation using a
variational principle to express the solutions of the
coupled electron and phonon Boltzmann equations in terms of
given trial functions. In Sections 4.2 and 4.3 we generalize
previous lowest order trial function results for the
electrical recsistivity and the electronic contribution to
the thermal resistivity to the case of a non~spherical Fermi
surface. Phoron drag effects are ignored (i.e., the phonons
are assumed tc be in equilibrium) and our results are
formulated in terms of effective phonon frequency distribu-
tions.

The scattering time approach to the calculation of
transport coefficients is discussed in Chapter V, using the
results of Chapters II and III. In Section 5.1 the theory
of Robinson and Dow (26) for the electrical resistivity of
pure single crystals is presented for the case of a non-
spherical Fermi surface, and in Section 5.2 a scattering time
theory for the electronic contribution to the thermal
resistivity of pure single crystals is introduced. The
resulting expressions are formulated in terms of effective

phonon frequency distributions.



The scattering time method of Robinson and Dow (26)

31) to consider dilute

has been generalized (30,
nonmagnetic substitutional alloys of simple metals. In
Chapter VI we show that the change in scattering time
anisotropy resulting from the addition of small amounts of
impurities to pure Zn leads to measurable changes in the
temperature dependence of the resistivity ratio pllfpl :
pll(pl) is the electrical resistivity with the electric
field parallel (perpendicular) to the c-axis. We also
calculate the corresponding deviations from Matthiessen's
rule for polycrystalline samples. |

The Appendices contain the detailed derivation of

several expressions used in Chapters IV, V and VI.



CHAPTER II
LATTICE DYNAMICS AND THE ELECTRON-PHONON INTERACTION

2.1 Lattice Dynamics

In this section we review the theory of lattice
dynamics in the harmonic approximation, following
Maradudin et al. (l). For simple (non-transition) metals,
we make the usual distinction between conduction electrons,
which are nearly free, and core electrons, which are
tightly bound to the ions, and separaté the electronic and
lattice problems, describing their coupling by the electron-
phonon interaction (Section 2.2). Using the adiabatic

(1r 20 3) ) e may consider the motion of the

approximation
core electrons to contribute to the effective interionic
forces, and not include them in the lattice dynamical
problem. Then the crystal potential energy, ¢, is a function
of the instanteneous ion positions, where the ions are
assumed to execute small excursions from their equilibrium
positions due to thermal fluctuations.

Consider a crystal with N unit cells and r ions per

unit cell, and write

R(Z,kit) = RO(2,k) + u(R,kit)



th th

for the position vector of the « ion in the % unit cell
at time t, where EOIZ,K) is the equilibrium position and u

is the excursion from egquilibrium. We may write

th unit cell and p (k)

where Bg locates the origin of the %
specifies the equilibrium position of the Kth ion with
respect to the origin of a unit cell, with x =1, 2, ..., r.
In the harmonic approximation, wvalid for small
displacements, the crystal potential energy ¢ is expanded

in a Taylor's series to second order in the displacements,

and the classical lattice Hamiltonian is

1 ° 2
H=06, 4+ = T Mu (f,k:t)
0 2 e <@
L
+ iy Rga @aB(QK;R'K‘)ua(l,K;t)uB(z',K';t) (2.1)
QI'K'B

where @0 is the static equilibrium potential energy, MK is
the mass of the Kth type of ion, a = 1, 2, 3 are the

Cartesian components, and

2%%

aua(ﬂ,,K)BuB(l',K') 0

eV 1Yy =
@aB(QK,R K')

are the atomic force constants, where the subscript zero

means the derivatives are evaluated in the equilibrium



configuration. From Hamilton's equations and (2.1), we

obtain the classical equation of motion:

MKG'OL(R"K;t) = - E @uB(gK;le|)ué(2w,K|;t) . (2.2)

If we assume a solution to (2.2) of the form

. . 0
u (k,q) =-iwt + ig-R
ua(Q,K;t) =% e % (2.3)

M

the equation of motion (2.2) becomes

2 , , |
wia (k,q) = K§B D, g (KK |g)uB(K '9) (2.4)

where the dynamical matrix DuB is

1 ’ ig- (Rp,~Ry)
DGB(KK‘IE) = ——— I @aB(QK;R'K')e (2.5)
VMKMK, Lt

which is Hermitian and independent of % since @as(lK;R'K') is
a function of {2'-2) only and not &' and % separately. The
original problem of solving 3rN coupled differential equations
(2.2) has been reduced to the diagonalization of a 3r by 3r
matrix DaB(KK'|g) for each value of q.

We assume cyclic boundary conditions (1); that is, we
consider an infinite periodic crystal composed of macrocrystals

with N unit cells, and any one of the macrocrystals may be

regarded as the physical crystal we are studying. Consideration



of the boundary conditions and the expression (2.3) shows
that all distinct solutions are obtained for the N allowed
values of the wavevector ¢ uniformly distributed throughout
the first Brillouin zone (F.B.%Z.). The eigenvalues m?(g),
j =1, 2, ..., 3r of the dynamical matrix are the squares
of the phonon (normal mode) frequencies, and the eigenvectors,
denoted by E(Klgj), are the phonon polarization vectors,
corréspon&ing to the phonon of wavevector g.

We now write the equation of motion (2.4) in its

usual form:

2 . —_ v 1 3
wj(g)su(Klgj) = K§B DaB(KK |g)eB(K lai) . (2.6)

We assume orthonormality and closure for the eigenvectors,

b sa(Klgj)ea(K|gj‘) = 6.

© o J3]
(2.7)
g ef (" |aide (x|gd) = 8,08, v
where § is the Kronecker delta and * denotes the complex
conjugate. We have w?(-g) = w?(g) and we adopt the
convention of Born and Huang (2):
e* (k|-qi) = elclgi) . (2.8)

The frequencies and polarization vectors are periodic in the



reciprocal lattice since the dynamical matrix is.
The excursions from eguilibrium may be written in
general as a superposition of normal modes (gj) where the

normal coordinates Q(gj) diagonalize the Hamiltonian (2.1):

. 0
ig-R
u(l,k) = —= T elclgholgile ¥ (2.9)
YNM,, qj
(F.B.Z.)

where the sum over g is restricted to the F.B.Z. and we have
suppressed the explicit time dependence of u and Q. Since u

is real, we have
0(-gj) = 0*(gj) . (2.10)

The normal cooirdinates may be expressed in terms of the

(1)

phonon creation (aT) and annihilation (a) operators as

Q(g3) == Tos (@) (a-gj + agj) (2.11)

where h is Planck's constant divided by 27, and the phonon
operators satisfy the usual commutation relations for Bose
operators.,

Finally, we note that for more than one ion per unit
cell (r > 1), there is an alternative definition of the

dynamical matrix (1, 4) as

Cop (kK" 1Q) = e~12"p.(x) DaB(KK'Ig)eig-°9(K') (2.12)
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which is not periodic in the reciprocal lattice. The

polarization vectors are then

wiklgi) = e L) ¢ (| g9 (2.13)
such that
w§ (Dw, (c]|gi) = K)':B Cyp lkx [ wg (! la3) (2.14)

is the equation of motion.
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2.2 The Electron-Phonon Interaction

In this section we obtain an expression for the
coupling between the conduction electrons and the lattice
vibrations (phonons), using a pseudopotential formalism (3)
based upon orthogonalized plane waves. For simple (1f'xon---=
transition) metals we may separate the electron states into
localized core states and nonlocal conduction band states,
which must be orthogonal. In the pseudopotential method,
the orthogonal:ization manifests itself as a repulsive
contribution added to the attractive potential between the
conduction electrons and the ions, and the resulting
effective potential, the pseudopotential, W, is then weak.
The pseudopotential equation for the pseudo wave function
is formally the same as the Schrédinger equation for a
free electron gas with perturbing potential, W, and the
true wave function can be obtained from the pseudo wave
function by orthogonalization to the core states. Since W
is weak, we may expand the pseudo wave function in plane
waves, and if m plane waves are used, this is the m
orthogonalized plane wave (OPW) approximation.

In the diffraction model (5) we deal with pseudé
wave functions and pseudopotentials, and the potential
energy (pseudoootential) W of a conduction electron at
position r may be separated into a sum of individual

electron-ion pseudopotentials centred upon the individual



12
ions:

W(r) = I w(r - R(&,k)) (2.15)
LK
where we have assumed all ions to be identical (this
implies MK =M, k=1, 2, ..., ¥ in Section 2.2) and we
suppress explicit time dependence. In the m OPW

approximation the pseudo wave function may be written as

1
VQ

iker
etk r

¢}S_(£) = uh(g) ' (2.16)

where @ is the crystal volume, k is the wavevector suitably

restricted by the cyclic boundary conditions, and uk(r)

has the Bloch form

(m) ik, -x
(r) = I a, (ke

Ky -

u (2.17)

L3

where Kk are m reciprocal lattice vectors including the

origin, and the a, are coefficients in the expansion (with

ag = 1).

If we sum the interaction (2.15) over all

conduction electrons, situated at positions ;s we have

:Z;:_ W(r,)
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which is a sum of one-body operators. In the notation of

second quantization this becomes
3.+ '
a’r v (z)W(r)y(r) (2.18)

where w(w+) is the annihilation (creation) field operator

for an electron at r. We may make the expansion

Y(r) = by (x) [o>Cy

—

Z‘
ko
and its adjoint, where Ckc annihilates an electron of spin

0 in the state ¢kn Then the interaction Hamiltonian (2.18)

becomes

F
<p,  |W|$, >C, ; C (2.19)
RO UL e
where <¢k,[wl¢k> = I a3r ¢§f(£)W(£)¢k(£) .
Using (2.15), (2.16) and (2.17), we have

1 (m) (m)
<¢k,[w]¢k> =& L I a* (k"a (k)
- - 55 Kn - -
~i(k'+k!')-r
X 5 I Bre - TRF w(r=-R(%,k))
K
ilk+e ) x ‘
X e n . (2.20)

If we make the substitution y = r - R({&,x) for each
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term in the sum over £ and k, the integral in (2.20)
becomes

S, 0
- l i'_ =) o
i(k'+k'=k=-x_) (Rl

. +B(K)) 1 - i(l{_'-‘-ﬁr’lﬂl&nﬁn) °E(27K)]

=i(k"+k') *y i(k+k )
X j a3y e — TR x wiy)e P x (2.21)

where we have used R(&,k) = Rg + plk) + u(f,x) and

-1 (k¥R kR ) cu (25K) , , ,
expanded e to first order in u, since
the displacements are assumed to be small. The first term
in (2.21) wher. inserted in (2.20) does not depend on the
displacements from equilibrium and_simply describes Bragg
scattering from the static lattice. The second term gives
the electron-phonon interaction, and we denote its
contribution to <¢k,|W|¢k> by <¢k.|Wl¢k>, and write for the
electron-phonon in;éraction - -

k'ko = 20X
using (2.19).
Using (2.9) and (2.11) to write u(%,k) in terms of

phonon operators, the sum over £ in (2.22) restricts g by
k' -k =g+ k" - (2.23)

where k2 is a reciprocal lattice vector, and contributes a
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factor of N. Defining the volume per ion as
Q. = (2.24)

and

~i(k'¥k )y
' R 3 T :
<k '+l |wlkte > = o J a’y e

ikt )
x wiyle =n' L ; (2.25)

(2.22) becomes, using the periodicity in the reciprocal lattice

of wj(g), e(k|qj), and the phonon operators:

of t )
%' ,x:3 k'o - (k'~k) 7 (k'-k)3j

oj (2.26)

(a + a

where the eleciron-phonon coupling constant is

i ,MN T t-k
J2 wj(£ k)

I

1 .
etk T Ielle B

(m) (m)
{z )} a* (k* )a (k)

°

“ | ——]
K, Kn oD “n
~i(k o~k ) p (k)
i | S PR
x e (k'+ep -k-k))
x <k'+e ) |wlkie >} . (2.27)

We note that in the one OPW approximation this becomes



lé6

T 1
i

L2 = - i — I elxk](k'-k)j)
i_]il ] JZMij (E 35) K‘ 1 et

. {e“i(k'“£) °9_(K) (Enw£)<}iilw!_]§;>} . (2.28)

In terms of the alternative definitions discussed in Section

2.1, this becomes, using (2.13) and (2.23):

n 1 ~iksep (k)
.gliu'.]i’,j = = 1 ’WZMNUJJ. (_q) E‘E e

x wik|gd) - (k'-k)<k'[w]k> (2.29)

with

| - u

k' =k =g+ x, (2.23)
where g is in the F.B.Z.. This agrees with the result of
Truant (4)9

Furthermore, in the one OPW approximation for a
Bravais lattice (r = 1) we have

g . a (k*'=K) e ((k'-k)Jj)<k'|w|k>

k' kij J2Mij(l_<_'=l§) = = EWETEIIISK at

{(2.30)

which is the usual result (G)ﬁ

We note for future reference that it is easily shown

from (2.27) that
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* =
g]_f,,i}iu;j g]j.,"}_i;j (2.31)
using the facts that w is real, wj (-q) = wj (q), and also
(2.8). Thus we have
2 , 2
lgl_g";l.g;j‘ - Iglg';lg'::‘il ° (2.32)



CHAPTER III
THE BOLTZMANN TRANSPORT EQUATIONS FOR
THE ELECTRONS AND THE PHONONS

3.1 The Linear:ized Boltzmann Egquations

In this section we consider the linearized
Boltzmann transport equations for the electrons and the
phonons (3, 7, 8, 9). As mentioned previously, we consider
independent systems of conduction electrons and phonons for
a pure single crystal of a simple metal, and the effect of
the electron-phonon interaction is to produce transitions
between the unperturbed states of these systems. The
electron distribution function, fk' and the phonon
distribution function, ngj’ are t;é probable occupation
numbers for the electron state of wavevector k and the
phonon mode (qj), respectively. The explicit time
dependence is suppressed, and the distribution functions
depend on position r only through their dependence on
external parameters such as the temperature T. We shall
consider ordinery transport phenomena, in which the
application of constant outside constraints (temperature
gradients and electromagnetic fields) prevents the
establishment of a strict equilibrium state, and a steady
state is established, with the scattering due to the

18
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electron-phonon interaction balancing the effect of the
external constraints.
In the absence of interactions and external

constraints, the equilibrium electron distribution function

is
0 _ 1. ,
fk B (Ek"'u) 7 (301)
e - + 1
where
1
B = = 7
kBT

with kB the Bolizmann constant and T the absolute temperature,

¥ is the chemical potential, and €1 is the energy of the

—

electron state of wavevector k. We assume that the

equilibrium phonon distribution function is

0 _ 1
qj B(ﬁwj(g)) '
e - 1

n {(3.2)

Considering first the electron distribution function,

in the steady state we have (7, 8)

afE 3fk fk fE
e 51

5t~ 5t aife T STV field T 3T

Q2
(e 3]

scatt o (3.3)

where the first equality is the statement of a generalized

equation of corntinuity. The diffusion term gives the rate
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of chanage of fk due to thermal gradients, the field term

———

gives the change due to external electromagnetic fields,
and the scattering term gives the change due to the electron-

phonon interaction. This assumed Boltzmann eguation may be .

7, 8, 9)

linearized (3, under the assumption that the

external constraints causing the deviation from equilibrium
are small, in which case we may use fg in the diffusion and

field terms for small deviations of fk from fg, and neglect
gradients of the correction term. In the absence of a
magnetic field, the linearized Boltzmann equation for the

conduction elec:rons is then

0
th | (e, ~u) af&
3ey Y;°{eE - 7 YT} = 5t )lscate ¢ (3.4)
d€

k ‘
where V,. E,% §§: is the velocity of an electron of wavevector

kX, e is the electronic charge, E is the observed (10) electric
field, and we have used (3.l1) to write Bfg/aT in terms of
Bfg/aek. We have also used the fact that fg depends on Xk only

through ¢

k¢ SO that

0 0
3f£ Bf£ 3e£
3K oey Bk

By similar reasoning, we obtain the linearized

Boltzmann equation feor the phonons:
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0
on_ . in_.
s a3 ;
57 Yq3 VT T TSt Jscatt (3.5)
duw; (q)
where ygj = gg—— is the group velocity of the phonon of

wavevector g and polarization branch j, and the scattering
term is due only to the electron-phonon interaction since we

have assumed thet we have a pure single crystal.
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3.2 The Electron-Phonon Scattering Terms

In this section we obtain the éxplicit form of the
scattering terms in the linearized Boltzmann equations (3.4)
and (3.5) for pure single crystals, using the expression for
the electron-phonon interaction from Section 2.2. The
Golden Rule transition probability per unit time for a
conduction electron of spin o scattering from k to k' with

the absorption of a phonon of wavevector

with

9; = QR = (1_{.' - £)R (3°6)

where g is the reduction (denoted by R) of Q to the F.B.Z.,

is

§ C N N LT [ S o P
X 6(€kn = €k ""ﬁwj (g)) (3.7)

where the deltea function expresses energy conservation.
Using (3.6) and the periodicity of the phonon operators, we

may write the electron-phonon interaction (2.26) in the form
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- toa ot
He-p = ?k k' ki Cl{_'oclic(aﬂj * agj)

aix=

J

The matrix element in (3.7) is then

gk',]_fjj “ngj

since the ¢k are basis states for the electron operators and

(1)

the phonon operators satisfy

aln> = /n |n-1>
(3.8)
a+|n> = y/n¥l |n+l>

The transition probability (3.7) becomes

27

2
EY § lg}g',]yjl

ngj 6(]£'_]_{—)R’g 6(615._. - E]_(- - fle (g))

(3.9)
where the first delta is the Kronecker delta stating that q
is (k'-k) reduced to the F.B.Z.. In the same way, using

(3.8) again, we find that the transition probability fox

scattering from k to k' with the creation of a phonon is

27

2
KN g: lg]il ’]i;jl

(n_qja-l)es(]—{__,]i,)R'g 6(8.15,' + ‘hwj (@) - e]i) .
(3.10)
The rate of change of the electron distribution

function is the difference between the probabilities
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for scattering into and out of the state of wavevector k
caused by emission and absorption of phonons. These
probabilities are given by (3.9) and (3.10) and their
analogues for k' scattering into k, multiplied by the
appropriate Fermi factors expressing the occupation
probabilities of the electronic states concerned. Using
(2.32) and the fact that the delta function is even, we may

write this asg

of
& 27T
T scatt = B k{:J ng, K: JI {[fk.(l ~f )nqj

£ (1-E1) (ng5+1)18 (kK" g

x G(Ek,+'ﬁwj (@)-ep) + [£ (1~ fk) (n it
- f -£ [
(1- k )n ] (k "k)R'g.
x G(Ek.—ekJHNj(g))} . (3.11)

In the equilibrium situation this must vanish and thus we

have the conditions

0, 0,0
k. (1- fk)n = £ (1)) (ng5+1)

aj
(3.12)

0 0,,.0 _ 0, .0
£r (L-£) (ngy+1) = £ (1-£ ) ngy
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It is conventional (8) to express the deviation from

equilibrium of the electron and phonon distribution functions

in terms of deviation functions @k and ng defined by

5£0
0 k
£, = £2 - o 5, (3.13)
an?, :
N (3.14
g3 T Pg3 T Vgl They @) 4

Using (3.1) and (3.2) we see that these equations can be
written as

_ £0 0
fE = fk + Bé-f_(l fk (3.15)

_ N 0,0 '
ngj = ngj + ngjngj(ngj+l) (3.16)

where B = ELT as before.

B
We now expand the factors in (3.11l) using (3.15) and

(3.16), and the conditions (3.12); the result to first order
in the deviation functions @k and ij is

Bfk
= _ —2mB 5 I
9 scatt i) K5 gk' k:j

|2{f£(l—fg.)(n§j+l)

b (q)li_—lyg’j "(b]-il ) 6 (E”l{_' ) ng 6 (€]£|+Jﬁwj (g) —EE)

+ f (l fk')ng]( k Q_J k')s(k'—k)R,q

X G(sh,—ekfﬁwj(g))} . (3.17)



Define

qj k

PE"EJ‘ = 2% |c_~.;£.'1{_;:.'|2 £ (1~ fk,) (n 18 (e
Then (3.17) becomes
Bfk
§E:]scatt =~ 8 Egj e +WEJ QE') (k'-k)prg k 43
+ (0, - k'iddy

kg3 ) Sk g TR

We note that thz spin ¢ of the conduction electron of
wavevector k doass not occur explicitly in the above

equations since it is not changed by the scattering.

26

f (l fk,)n 8 (e ,~£E‘5wj(g))

(3.18)

€E+’Bwj (q))

(3.19)

(3.20)

We now obtain the expression for the rate of change

of the phonon distribution function ngj' where g is in the

F.B.Z., due to electron-phonon scattering only. This

distribution function is decreased by processes in which a

conduction electron scatters from k to k' with the

absorption of a phonon of reduced wavevector g, such that

for any reciprocal lattice vector Kt whereas it is

increased by processes in which a conduction electron

(3.21)
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scatters from k' to k with the creation of a phonon of
reduced wavevector ¢ such that (3.21) again holds. (The
roles of k and k' are interchanged in the second process for
simplification in the following results.) Using the
transition probebilities (3.9) and (3.10) (with k and k'
interchanged in the latter) multiplied by the appropriate
Fermi factors, we obtain, summing over k, k , and spin o

(k' is then fixed by (3.21) since we know g) and omitting
the sum over j since we are considering a particular

polarization branch:

Bngj
27 2
=1 L5 19k gl

[fE,(1=f§)(ngj+l)

- f_li(l-f,]i! )ngjl 51{-? "_]Erﬁ"','(_nd (E]_E' =€]£'_hwj (ﬁ_) )
" (3.22)

where we have also used (2.32) and the fact that the delta
function is even. In the equilibrium situation the rate of

' change (3.22) mist be zero and we have the condition

0 0

0 0 _ 0,4
fEf(l_fE)( +1) = fE(l fE')ngj . (3.23)

nO
g3
Using the expressions (3.15) and (3.16) (for the distribution
functions in terms of the deviation functions) and the
condition (3.23) to expand the factors in (3.22) to first

order in the deviation functions, we have
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on

28 -2m 2 .0,,_ .0, 0
RS = e———p—— ), ) . £ l—.f (., +Y =0
3T - scatt EH Kok, ‘95',133‘ 1::( &')ng:l( k g3 1;:,')
e e (3.24)

By the definition (3.18), we obtain

on_ .
g3
ot ]scatt

1
= - B I (®, +¥ 50
kok k g3

P
ook, g

i (3.25)

i

k!

We may summarize the results of Sections 3.1 and 3.2
in a convenient. form by combining Egs. (3.4) and (3.20) and
Egs. (3.5) and (3.25). The coupled linearized Boltzmann
transport equations for the electrons and phonons in the
absence of a magnetic field are, to first order in the

deviation functions,

Bfo (e, =)
= V. {eE - — vV} = = B % {{® +Y _.-0 )8, \_ P=,
aeE ks | X' kogj k' U(k'-kK)ped Tkig]
-y - k'idj
FO e ek g PR
(3.26)
and
an°.
= o +Y .~ )8 pk’ 3.2
T i A A <1 IER
="=n

We not= that the situation in which the phonons are

in equilibrium, expressed mathematically by
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n_. u
a3 a3

and

Yy .
a3

is often considered, in which case the linearized Boltzmann
transport equation for the conduction electrons in the

absence of a magnetic field is (from (3.26))

Bfg (ek-u) ‘

= _ — _ _ 0,,_20 k' .
=E§=_é.,]_{_3;,;_”.,{@_, ——5— VT} = B ]i:“ (8y 4 0,) £y (1=Fy )W (3.28)
where

' 2T 2 0 :
we = 2T 3 , .8 § (e, ,~e, ~hw.
k=8 ] Ol g Sarw g, gt ey (@)

Bﬁwj (@)
+ e G(EE.—sEfﬁwj(g))} . (3.29)

We have used néj = nggj, which follows from wj(g) = wj(=g),
the definitions (3.18) and (3.19), and Eg. (3.2) (to express
(n§j+l) in terms of n;j)o



CHAPTER IV
.FORMAL TRANSPORT THEORY: VARIATIONAL METHOD

4.1 General Formulation

The use of a variational principle to solve the
coupled Boltzmenn equations (3.26) and (3.27) is discussed

(ll)g and we follow his formulation with slight

by Ziman
changes in notation. We note that Ziman discusses in
detail only the case where the phonon system is assumed to
be in equilibrium (ng = 0); therefore, we present some of
the details of the more general formulation including
phonon drag ef:iects (ngj # ngj), for which Ziman gives only
the rxesults. It is important to note further that Ziman's
expressions ignore dependence on the phonon branch index j.
In calculations which include phonon drag, it is

usually assumed that (11, 12, 13, 14)

vy . =¥ (4.1)
aJ q
for 3 =1, 2, ..., 3r. This is the case if we assign only
wavevector (g) dependence to the phonon deviation function,
and assume it is independent of energy (ﬁwj(g)) and

polarization vector (e(k|gj)). The use of a branch-dependent ‘

30
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phonon deviation function leads to a complexity in the
formalism (for example, it would be necessary to introduce

3r trial functions instead of the single trial function given
by (4.19)) which seems unwarranted in the present context;
hence we adopt the convention (4.1). In this case, the
Boltzmann equation (3.26) for the conduction electrons may

be written as

Yy (e, ~u)
k 3 | o
= — . O e = + = —
BEE Vi {eE = VT} =8 £| {(Q_ wg QE“)5(£'“E)Rrg Pjyci
Y b k';g
F O I S ekry g TR
(4.2)
where, by summing (3.18) and (3.19) over j, we have
k' _ 2m 2 .0, -0 0 I
PE:Q" R § lglz'rli;j| fE(l fli,)ngj(S(e]i, .e]i‘ﬁwj (@) (4.3)
and
k'ig _ 2m 2 .0, .0 0 _
PE = 5 § Iqu'Efj| fE(l f£,)(ngj+l)6(e£, eEfﬁwj(g)) .
(4.4)

The Boltzmann equation for the phonons (3.27), summed over

j, becomes

an°.
2y wr=g 1 (0. +¥ =0, )6 pk' (4.5)
j °T —4j Kok kg k' k'-k,gte “kig )

- =
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Using (2.32), (3.12), and the even property of the delta

function, it is easily shown that

(4.6)

as expected.

We next consider some definitions necessary for the

formulation of the variational principle. A vector

function of k and g may be formed from the deviation
functions:

o

¢(k:g) = (<I>k,‘i’q) (4.7)

Using the R.H.S. of the Boltzmann equations (4.2) and (4.5),

we define an operator P which acts on ¢ by

P(9) = (Py(9)s Pyld))

(4.8)
where
Pr(9) = B B (Y =0 )8 iy P
o UETETEC R R g Erg
* OO 8 gy g PE';Q} (4.9)

is a function of k and
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Pyld) =B I (¥ ) (4.10)

]

k
X

)
) - ®
3&. E’g.{.ﬁn iq

is a function of g. Finally, for two vector functions of k

and g,

¢y (ki) = (£ (K), gy ()
and

o, kia) = (E5(K)igy (@)Y
we define an inner product by

Wyrdyr = I O£) K, (k) + 9 (D9, (@ . (4.11)

)
ko q
(F.B.2.)

Writing the L.H.S. of the Boltzmann equations (4.2) and

(4.5) as
X(kig) = (X5 (k)X (q)) | (4.12)
with
| afg | (ekfu)
Xl(li) = - '5?' \_{]i°{e§ - "‘—-T’—” VT} (4.13)
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and

VT, (4.14)

Xpla) = - § 57

we may summarize the electron and phonon Boltzmann

equations in the form
X = B(¢)

where explicit dependence bn‘g and g has been suppressed.

If
elkra) = (@_]g’wg) and 'R (]_{_?g) = (Q_l,"yé_) ’
by (4.11) and (4.8),

<¢",P(¢)> = I @kP () +

v'p .
ko = 4 2(1)

Qo ™

(F.B.2.)
We use the exﬁressions (4.9) and (4.10), interchange k and
k' in the second term of the first summation and use (4.6):
in the second summation, the sum over k, g and Kn is
equivalent to a sum over k and k' with g = (k'-k)p. The

‘result is

<¢$',P(p)> = B L (®'+T'm¢'t)(@ +¥ -
e wr' K 4K :

"k ktk) g T

In particular,
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k ¥
P

o kg% Skt g TRig

(4.16)
The operator P is obviously linear from its definition (458)f
moreover, from (4.15) we have <¢',P(¢)> = <¢,P($"')>,. and
from (4.16) we have <¢,P(¢)> 2 0. From these properties one
Acan prove (11) the variational principle: Of all functions
¢ which satisfy <¢,P(¢)> = <¢,X>, the solution
$(kiqg) = (@k,Wc) of the coupled Boltzmann equations (4.2)

and (4.5) gives to
> : .
il (4.17)
2

its minimum value.

In order to apply thé variational principle to the
calculation of transport coefficients, we expand the
deviation functions in terms of known trial functions

¢i(_]_<_)r i=1, ..., M, and ¢L(g)=

!

(SIS

nys (k) | | (4.18)

i=1

\Pg = n:Ld)L (g) (4"19)
where ny (i =1, ..., M) and n;, are arbitrary coefficients

to be determinad by the minimization of (4.17). Contact

with transport properties is made by noting that the

electric current density
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_ 1
g_—ﬁ e\_f_f

b
ko =K

may be written, using (3.13), (4.18), and the fact that J is

zero in the equilibrium situation, as

1 M
Jd== LI n.Jd (4.20)
Q j=1 171
where
0
BfE
Jd. = - 1 eV, 6. (k) 5= (4.21)
i ko ki 385
for i = l' LI ] Mo
If we introduce
Jr, = 0 ' (4.22)
we may write (4.20) in the convenient form
1
i': iy Z n-J- - (4-23)

@ i=1,...,M;L T7%

Furthermore, the heat current density, given by (11, 15)

Voshos@ngy

may be written, using (3.13), (3.14), (4.18), (4.19), and

the fact that U is zero in the equilibrium situation, as



where

for i

where

P,.
13

for 1

for 1

1
il

=L

=

- X

ko

o § M,

(F.

. ML

'U-
1—1

0
BfE
YE(EE_U)¢1(£) gg;
and
Bn;j
I Vgl @6 @ srmTgy
B.Z.) ’

Using (4.18) and (4.19) in (4.16), we have

<Q_I_P_($_) > =

z

kok

1,

iL

1,

LL

)}

i=l,...,M:L

”jﬂjpij

j=l] LI ] 'M;L

ey M

and j = 1,

LK B J M'

45 08 =03 (R4, (@8 o1y

kl
q Tkig
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(4.

(4.

(4.

24)

25)

26)

27)

28)

29)
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From (4.11), (4.12), (4.18), (4.19), (4.21), (4.22),
(4.25), and (4.26), and also

0 0
angj ‘ﬁwi(g) angj
5T T T othuy (@Y’
we have
<4, X> = z n[3,E - & U, -VT] . (4.31)

i=1'oo.'M;L

Using (4.27) and (4.31) we minimize (4.17) with respect to
n; (i =1, ..., M) and n; i moreover, these parameters are

determined by this procedure and we then use them in (4.23)

and (4.24). The result is (11)

_1 -1 _ 1 -1 :
_J_-_ - S-z z. -q'i (P )l] JJ E QT .Z. 'J'."i(P )ij ['-]'j VT (4 032)
1] 1]
= -1 - X -1 .
=g %P Dy IyEogr L L Dy GyrvE (433

where the sum isover i =1, ..., M;Land j =1, ..., M:L,
and P“l is the inverse of the matrix Pij' The transport
coefficients such as electrical resistivity, thermal

conductivity, and the thermopower can be obtained directly

from (4.32) and (4.33).
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4.2 Phonon-Linited Electrical Resistivity

In this section we derive a formula for the ideal,
phononulimited electrical resistivity in terms of effective
phonon frequency diStfibutions, and demonstrate that this
reduces to the forms previously obtained (20, 21, 22, 23)

for a spherical Fermi surface (F.S.). The electrical

- conductivity tensor, g, is defined by

1

I
o
ji

Using (4.32) in the absence of a temperature gradient, we

have

-1

T J. (P (4.34)

i

)

la
0
Q=

s Jo
1) =)

where i, = 1; ..., M;L. If we neglect phonon drag effects

by assuming

(ls), is likely to be a good

which, according to Bass
approximation for most metals above 5-10°K, and use only a

sin@le frial function ¢1(E)' (4.34) becomes

1
QPll

(4.35)

na

Erll' °
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We note that calculations involving more than one trial
function could be done by using (4.34); Greene and Kohn (25)

and Ekin and co-workers (17,

18) have done this for the case
of a spherical F.S..
For the trial function we use the usual (11, 12)

lowest order approximation
¢1(k) = etV 'E (4.38)

where T is some characteristic relaxation time (which is
unimportant since it will cancel out in (4.35)). One way of
motivating this choice is to consider the Boltzmann edquation
for the conduction electrons, (3.4), in the absence of a

temperature gradient,

QL
N o

£

|.
]

Vi -eE

3
|~

€

and make the phenomenological assumption (7)

0
x)

=34

fk (fE - £

[

3t “scatt T . (4.37)

The ﬁse of definition (3.13) then leads to the solution
(4.36). We stress that we are not making the approximation
(4.37) in the following; we simply use (4.36) as a given
trial function.

it is shown in Appendix A that the use of the trial
function (4.36) in the expression (4.35) for the conductivity

tensor leads tc the form
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.o a3y as, -
- | ] torudee | o neves |/ [ame
FQS' - Fas. - 0
as, as., , ,
o - ° — © - '—
X {i T?;T JS T?;TT[YE E_qu ul ?Igﬁiik;jl 6 (w wj(E k))}
-Sn _F. . bl

(4.38)
where the surface integrals in k-space are over the Fermi
surface, u is a unit vector in the direction of E, and V
denotes the variational method. The approximations used in
deriving (4.38) are discussed in Appendix A, and the function

R(w) is defined by

o
R(w) — (4.39)
(egﬁw-l)(l*e Bhw)
We note that R{w) also depends on the temperature.
The electrical resistivity tensor, p, is the
inverse of the conductivity tensor g,
Log , (4.40)

and therefore (4.38) gives us an expression for the
resistivity gv in the variational method.

So far we have not utilized any of the symmetry
properties of the crystal lattice involved; however, we now

specialize our results and consider a lattice with cubic
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symmetry. In this case, the conductivity tensor is

r \
o 0 O
g = ¢ o O (4.41)
¢ 0 o .
4 J

For a lattice with cubic symmetry, the F.S. must

also have this symmetry; therefore, suppressing k dependence,

as 2 _ - 1 ds 2

T V% = - =5 ) Ter 1€ (4.42)
F'S. F.SO

whereas cross terms such as

as _
J W‘—VXVY =0 . (4.43)
F.S.

BEE

This is easily seen from the definition V. ‘% ¢

Consider the x--component of

as
]—V_T'\l‘_f'll_
F.S.

which is, by (4.42) and (4.43),

12

Wik

as
s | For lw®

F-\)c

Thus we have
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ds, ds,

[ -V, V,u = =u f — |w [2 .
Vil =k =k = 3 = v, T '~k

F-So o= FoSo -

The tensor character of (4.38) is now given by the dyadic
uu; moreover, this may be replaced by unity in the scalar
conductivity o defined by (4.41), since u is a unit vector.
Since the x, vy, and z directions are equivalent in cubic
symmetry, we may average over directions of u and replace
[(Yh-yk,)'g]z by % iyﬁ-yk,lz in the denominator of (4.38).

The resultant resistivity from (4.38), (4.40), and (4.41) is

o ds, ds, .
v _ 307 = > _ 2
e nxgt 1o F.8. = F.s. =
ds,
x 1| |28 twmug (k")) 3| /| 1] 7lY 1212] (4.4
- g]i'l]_i;j W j X =K J zk ]i .
F.S5. =

where the temperature (T) dependence is now explicit and we
again note that R(w) also depends on T.
We now proceed to the definition of effective phonon

frequency distributions analogous to those previously

21, 22,

used (20, 23) for a spherical F.S.. For convenience,

we incorporate a volume factor in the electron-phonon

coupling constant:

- 2
ER L (4.45)
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In practical terms, this means that the factor of % in the
square root of Eg. (2.27) is replaced by (rQO), where r is

the number of :lons per unit cell and Q. is the volume per

0
ion. We define the isotropic (transport) effective phonon

- frequency distribution by

Sy Sy Yy Yy
Biz:rF(w) = ____ili___z_ f —— |y_kl2 [ TVZ-T (1 = _:__5'_..)
320R% plg Il T plg, K ¥y |
x %|g 21, ' 4.46
- gk',k;j! A (w-@j (}_(_ -k)) ( )
j == |

where the subscript tr denotes transport. It is convenient
at this point to also define an anisotropic (transport)

effective phonon frequency distribution by

2 1 k' ( —k k'
By Flw,k) = J Vo T 1 )
£ aed F.S. Tt |Y—kl2
~ 21 -
x g‘g&.']—{_;j' B G(w—wj (k'-k)) . (4.47)
From (4.46) ancd (4.47), we then have
ds
B2 F () = = £ v, |2 82 F(w, k) (4.48)
tr T 47h IV [ =% tr U=t :
FoSo el

The reason for the choice of numerical coefficients in

(4.46) and (4.47) will become evident in the following.
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For the case of a free-electron spherical F.S., the
anisotropic and isotropic transport effective phonon

frequency distributions previously used (20, 21,

22, 23) are
" ko.
ap Fluk) =N g I 77— (1 - cos(k,k"))
F.S.
x5 |g 12 £ 6 (w-w, (k'-k)) (4.49)
j ]_(_'I]_‘:jj ) J_ - :
/
and L
0l F(w) = ig-z-]’i* 02 F (w,k) (4.50)
tr - a7 Srt WX ' *
F.S.
where the integrals are over a solid angle at the F.S.,
cos(k,k') is the cosine of the angle between k and k' {which
are on the F.S.), and
kaF
N(O) = — (4.51)
F.E. 2TrZﬁZ

is the free-electron single spin density of states in energy

at the Fermi energy Epr with m the electron mass and kF the
Fermi wavevecto:r defined by €p = %2k$/2m .

For a firee-electron spherical F.S., Vi

=

gp¥

k, and
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therefore, the distributions (4.46) and (4.47) take the

forms

3
182 F(w)] -
tr spherical m
FOSO

and

1827 (w,k)] =0l Fluk) .

spherical
FQSD

ZIF(w,E) are dimensionless, we

. 2
Since o rF(w) and oy

t

(4.52)

(4.53)

see from

(4.52) and (4.53) that BirF(w,g) is dimensionless whereas

BirF(w) has dimensions [(length)3(mass)]=l.

Consider now the expression (4.44) for pV(T)o The

)

factor |V, -V, .|“ is, on expanding,

vV, °v, + Y_]_{_' .Z]_{'_‘ - ZY_k°Y;kn i

hence, if we interchange k and k' in the integration of the

middle term above (noting that |g,. kejlz and wy(k'-k) are
£ e K7

invariant under this interchange), we may replace

expression by

> Yi:ykﬂ
2|y |7 (1 - —=)
- IYkl

Then (4.44) and (4.46) lead to the expression

this
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® 2
dwR(w) B, _F(w)
162752 I0 tr
as °

oV (ry = 122
e k. T [[ ]_E | 19]2
v 12
SOIYEI “&

(4.54)
B
F.
‘The notable feazure of this expression is that, aside from
the 1/T factor, all temperature dependence is contained in
the function R(w). The effect of the phonons is contained
in BirF(w) and this need only be calculated once, and not
for each temperature.

For the case of a free-electron spherical F.S., we

have from (4.54) and (4.52),

v _m an 7 2
[p (T)]spherical = ;:;f -E;;f f dwR(w)atrF (w) (4 ..55)
F.S. 0 '
where
3
- —F
2

w
=

is the number of conduction electrons per unit volume.

(21,

Equation (4.55) is the usual result 23) for a

spherical F.S..



4.3 Thermal Resistivity (Electronic Contribution)

48

In this section we derive a formula for the ideal,

phonon-limited electronic contribution to the thermal

resistivity in terms of effective phonon frequency

" distributions in which we do not assume the F.S. to be

spherical.

by

<

- VT

|
[172%

where U is the aeat current density (Section 4.1).

According to Ziman

(11)

for measuring thermal conductivity is that the electric

current density J is zero. Considering Eq. (4.32), we

would have an equation for E in terms of VI (related by

the thermopower) which could be used in Eq. (4.33) for U,

It is conventional (11

)

to ignore this (thermopower)

contribution to the thermal conductivity, in which case

we obtain

17

where i,j

from Eg. (4.33)

effects and

we then have

1 . -1

== L U, (P 7)., U.

QT i3 1. 1ij —j

1, .., M;L. We shall neglect phonon drag

use only a single trial function ¢2(E), and

, the usual experimental situation

The thermal conductivity tensor, K, is defined

(4.56)
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1
K = gm— U, U . (4.57)
‘ QT£22 2—2
Calculations involving more than one trial function could

be done by using (4.56) and Ekin (24) has done this for the

~case of a spherical F.S..

For the trial function we use the usual (11, 24)
lowest order approximation
(EE = U)
¢o(k) = = T ———— Y, VT (4.58)

where T is some characteristic relaxation time (which is
unimportant since it cancels in Eqg. (4.57)). This choice
can be motivated by considering the Boltzmann equation (3.4)
for the conduction electrons in the absencé of an electric

field,

0
Bfk (r—:k - ) Bfk

Bek —k T T3t ]scatt ’

and again making the phenomenological assumption (4.37).
By definition (3.13) this leads to (4.58), but we stress
again, as in Section 4.2, that we do not make the
approximation (4.37) and we simply use (4.58) as a given
trial function.

It is shown in Appendix C that the use of the
trial function (4.58) in the expression (4.57) for the

thermal conductivity tensor leads to the form
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ﬂkgTzﬁ dSk dSk, o
v J — V. V, -u J — V. V. ,u |/ f duwR (w)
= 64 P s i\..'r_]_{-l —k—k -.'.E‘ 5 1‘115_-| -k 'k 0

ds, ds

k k'
X {FIS ]izzr I T-ETT'[(V °u) (L + (ﬂkBT) )

Jéﬂin) )1 I lgk- K; 51 25 (- wy (k'=K))}

- (ew (T w1 - 3

(4.597
where the surface integrals in k-space are over the Fermi
surface (F.S.), u is a unit vector in the direction of VT,

V denotes the variational method, and R(w) is defined by
(4.39) and depends on the temperature (T). The
approximations used in deriving (4.59) are discussed in
Appendix C.

The thermal resistivity tensor, W, is the inverse

of the thermal conductivity tensor,
W=x =~ , (4.60)

and thus (4.59) gives us an expression for the electronic
contribution to the thermal resistivity, EV’ in the
variational meihod.

The result (4.59) is general in that we have not
used any of the symmetry properties of the crystal lattice

involved. We now specialize our results to consider a



51

 lattice with cubic symmetry, in which case

(4.61)

7
Il
Lo
P
©

For cubic symmetry we may write

ds . ds

k 1 k 2
o T Wee =32 I T % |
F.5. = F.S5. &

as in Section 4.2, and by (4.61) the dyadic uu in (4.59) may
be replaced by unity in the expression for the scalar
thermal conductivity KVQ The equivalence of the x, y, and

z directions in cubic symmetry implies that (}_Z’k'g_)2 may be
replaced by IV |2 and (Vy ) (Vy o vu) by % Zk'ik' in (4.59)

by averaging over directions of u. The resultant

electronic contribution to the thermal resistivity is

ds dSk.

w k
' 189 - 2
Wy - 20 Fame (| mar | o (gl - ven
1TkBTZTI 0 F.S 1 k! soI Y| - -7
o 2 3, hw 2 2 2
x (1 - -(Wk D+ 3l |7, 171 : l9r x5

dS
x G(w—wj(ﬁ"-E))} / [[ T‘“T lV

FeSo -

1212 (4.62)
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where the temperature dependence is now explicit and we
recall that R(w) also depends on the temperature.

In addiiion to the transport effective phonon
Vfrequency distributions already defined in Section 4.2, we
shall introduce another two which are generalizations of

‘the anisotropic and isotropic distributions for a spherical

F.S. (4, 6, 23), which are given by
) : dQE, \
o 'Flo/k) = N0 p g f T I 19, x5
F.S. > ==
1 _ S
x g S (w wj(§ k)) (4.63)
and
\ d9£ )
g F(w) = ¢ Flw,k) (4.64)

F.Sl

As in (4.49) and (4.50), the integrals are over a solid
angle at the F.S., and N(O)F - is given by (4.51). We

define the isotropic effective phonon frequency distribution

by
as, as, ,
P = | oy ul® | o
321°h% plg Tk = plg, 7k
x % |§ 12 £ 5(w - w,(x'-k)) (4.65)
j Ji'ik?:] pe! J— - :

and the anisotropic distribution by
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dsk,
k) = = [ e T 1§17 E S temey )
8% P s _;V 3 K rX7i] J
e (4.66)
From (4.65) and (4.66) we see that
das
BF (0) = o f T"Eﬁ'|v 12 8% (w, k) |  (4.67)
- , .o o
4mh Yk -k -
F.85. =-—
We recall that
~ 2 _ 2 :
lg.li"h;jl - Q|g.]£"’lc_'.j] ° (4°45)

As in Section (4.2), for a free-electron spherical F.S5., we

have the relations

2 kp
(e F(w)]spher:‘i.cal, = 7 ¢ Flw (4.68)
F.S.
and
[82F (w,k) ] = P (w,k) (4.69)
' r='"spherical r= ’ :
F.S.

which imply that BZF(w,E) is dimensionless whereas BZF(w)
has dimensions [{length)3(mass)]=lo
We now consider the expression (4.62) for the

thermal resistivity. Using the definitions {(4.46) and

(4.65) and the Lorentz number (11)



ﬂzkz
_ B
Ly = 37
e
we have
Wim - L A4r 487 h2 ® wR (6) [ (1 - L ‘fm) )62,
LOT kBT 2 2 k T
e 0 27
ds
"3 Bw -o= 2.2
+ -—-——(———) 220 () 1|/ 1 [ T 1%
2n® KgT F S Yy %

This expression has the advantage that the effect of the

phonons is contained in the distributions B

2
trF(w) and
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(4.70)

(4.71)

BZF(w) which are independent of temperature and need only

be calculated once.

For the case of a free-electron spherical F.S. we

have, from (4.71), (4.52), and (4.68),

A" _ 1 m 4t
[w (T)]spherical - LOT 2 kT J dwR (w)
F.S. ne” BT 7

1 hoe .2, 2

x [(1 - —5(==) Yo ,__F(w)
2,‘Tz BT tr

b 2B 2 (2p 0

27 B

(4.72)

where n, the number of conduction electrons per unit volume,

is given by

w
N



CHAPTER V
FORMAL TRANSPORT THEORY: SCATTERING TIME APPROXIMATION

5.1 Phonon-Limited Electrical Resistivity

In this section we obtain a formula, written in
terms of the anisotropic transport effective phonon
frequency distribution defined in Section 4.2, for the
ideal, phonon-limited electrical resistivity in the
scattering time (S.T.) approximation introduced by
Robinson and Dow (26). Our formulatioﬁ will not assume a
spherical Fermi surface, and cubic symmetry will be
introduced as a special case.

Negleciing phonon drag effects (see Section 4.2),
the linearized Boltzmann transport equation for the
conduction electrons (3.28) is, in the absence of a
temperature gradient,

, _ _ 0,._20 k!

where W% is given by (3.29). In the scattering time

method, the electron deviation function @, is written

k
0 (9 26, 27)

o, = e\, -E (5.2)

55
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in terms of an unknown vector mean free path for the

electrons, A, , which is independent of E. Since A, is

approximately parallel to the electron velocity yk,ﬂa
temperature dependent anisotropic scattering time, t(k,T),
" may be defined by the approximation (27)
A’k - T(£'T)Yk - (503)

At this point we note the similarity of (5.2) and (5.3) to
the elementary solution (4.36) of Section 4.20 Robinson

(26)

and Dow showed that it was possible to obtain an
approximation to the scattering time t(k,T) from the
Boltzmann equation {(5.1l) (We note that Robinson and Dow
considered cubic systems and assumed a spherical F.S. in
their calculations.).

It is shown in Appendix D that inserting the

deviation function (5.2) in (5.1l) and integrating over €1

leads to
BQ * ds_li'
Y = 37 J duR (w) f Vo Myhy!
- 27 fl 0 F. S X >
x 2_: |gkl'k;j12 (S(UJ - wj (E'-]_{_)) (5.4)

-]

where k is on the F.S., R{w) is given by Eg. (4.39) and
depends on the temperature, (3.29) has been used, and the

surface integrel in k'-space is over the Fermi surface.
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Using (5.3) we may write

ey —_—

Ay = Ay = T(E)[ZE'= EEEJ + [t(k) - T(&')]YE. (5.5)

where the temperature dependence has been suppressed. We

use (5.5) in (5.4) and take the dot product of V; (k on the
F.S.) with Eg. (5.4) to obtain
BQ * dsli' ¥ Y Y
1l = —%— I dwR (w) f T———T (k) [1 = ]
- v, . 2
2maT Yy F.s. & Yy
Y&’zkﬂ 2
+Lelk) = kD] = T gy, 5] T8 wmey (k1K)
I‘.Zkl J - =

< (5.6)
where k is on the F.S..
The first term in brackets in (5.6) may be written

as

1V |

—

TR [1 - g cos (Y, Y )] o (5.7)

where cos(V,, V;,) is the cosine of the angle between V,

and yk.; hence, it is expected to be mainly positive and, in
fact, for a spherical F.S. it would be strictly greater than
or equal to zerou. The second term in brackets in (5.6) may

be written as
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| | ¥ o
[t(k) = T(k")] LAR cos (Vyr Vy) (5.8)

and is both positive and negative, and has a number of
zeroes not shared by (5.7). It vanishes for scattering by
90° when the cosine vanishes; moreover, whenever k' belongs

to the star (28)

of k, t(k") will be equal to T(k) by
symmetry and (5.8) will again vanish (for a general point k
this will happen 48 times in cubic symmetry, 24 times in
hexagonal symmetry, and so on). The positive and negative
contributions to (5.8) will lead to cancellations, and we

make the reasonable approximation of retaining only the term

(5.7). Writing (5.6) in the form

1 _ e de R (w) ok ( Yg;ﬁ%id
Ky ~ . 2:2 wRlw I V. 1] B 2
T s F.s. & ||
(k") E&QYE" 2 .
T |Vk|2 } >; Ig}i.,h;jl 8 (w-wy (k'-K))

= {(5.9)
our approximaticn can also be viewed as the first iteration
of (5.9). PFurther iterations could be carried out, but the
considerable increase in computational labour seems
unwarranted at present.

Using the definition (4.47) of the anisotropic
transport effective phonon frequency distribution

BirF(wyg), we have, as a first approximation,
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1 _ 4m ® 2 .
T(}_{_,T) - kBT J dWR(w) Btrr(w’]i) . (5.10)

0

We recall that R(w) depends on the temperature whereas
BirF(w,E) does not, and need only be calculated once and not
for each temperature.

For a spherical F.S. we have, by (4.53),

1 A ® 2
&) spherical = KT | awrwrad P (5.11)
F.S. 0
which is the usual (21, 29) result.

We now obtain an expression for the phonon-limited
electrical resistivity in terms of the scattering time

defined by (5.10). The electric current density is

N N
=g > eVt
ko ==
as in Section 4.1. Using the fact that J is zero in the
equilibrium situation we may subtract a contribution with

f. replaced by f0

Xk k' and use (3.13) to write

of

n o

V.

x

@
|~

€

Fale

in terms of the electron deviation function @k, where the
factor 2 comes from the sum over spin. From (5.2) we then

have



0

0e? 9y

Ime —
g:-—-——:--—zv:[_\_. I
S

where ST denotes the scattering time approximation.

(A.4), (A.5), and {(A.7) of Appendix A,

gST(T) - _8

k
e |y
41h F.s. ¥

0
I
7, Vi Yy

(5.13) becomes

T (EIT)\_Z]{
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(5.12)

(5.13)

Using

(5.14)

where we have neglected derivatives with respect to energy

(evaluated at the F.S.) of electron velocities, the

scattering time, and the surface element.

tensor is then given by

oSTemy = 15T (m 17t

in the scattering time approximation.

We now specialize our results to a lattice with

cubic symmetry, in which case the conductivity is

The resistivity

.(5°15)



6l

1
0'-§Tr

a

where Tr denotes the trace. Thus we have

1273h " 2 1
ST T . > -
(T) = [ f T v, ]“ t(,T)] . (5.16)

For purposes cf comparison, we note that the variational
method formula (4.54) can be written in terms of the

scattering time defined by (5.10) as

ds
k -.IV l2 1
3 | Y_k I % T (__k_r Tj
\ _127"h F.8. = o
e k 2.2
[ f W];T 'Vk[ ]
F.5. = -

where we have used Eq. (4.48).

For the case of a free-electron spherical F.S., we

have the usual result (21)

ST _. o l .

FISQ

where n is the number of conduction electrons per unit

volume and

dﬂk
STk, > = 'I ZF_'[T(EJT)Jspherical
F‘S. F.S.

(5.19)

In (5.19) t(k,T) is given by Eq. (5.11). By (4.50), (4.55),



62

and (5.11) the variational method result is

v _om 1
" (M spherical = 7 T, T (5.20)
F.S‘

where again t(k,T) is given by (5.11). Robinson and Dow (26)
have pointed out that the variational formula (5.20) is
equivalent to summing partial resistivities whereas the

formula (5.18) is equivalent to summing partial conductivities

wvhich is more physical.
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5.2 Thermal Resistivity (Electronic Contribution)

In this section we derive an approximate formula
for the ideal, phonon-limited electronic contribution to
the thermal resistivity, written in terms of the effective
phonon frequency distributions defined in Sections 4.2 and
4.3. We use a scattering time (S.T.) approximation
analogous to the one introduced by Robinson and Dow (26)
for the electrical reéistivity. As in Section 4.3, we take
E to be zero, thus ignoring thermopowér contributions to the .
thermal resistivity. Neglecting phonon drag effects, the

linearized Bolizmann transport equation for the conduction

electrons (3.283) is

3£ (e ~u)
kK 0,1 £0 yik'

t
where W]i is giwven by Eq. (3.29).

W‘

~Having noted in Section 5.1 the similarity between
the deviation function (5.2) in the scattering time
approximation (5.3) and the elementary solution (4.36) for
the case of»electiical resistivity, we are guided by the
elementary solution (4.58) for the thermal resistivity case

to write the deviation function @k as

(e, 1)
L 5.22)
QE - T A-}S VT ‘ ( ®
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where(ﬁﬁ is an unknown vector mean free path for the
electro;;a The superscript W (denoting the thermal
resistivity) is used to distinguish this mean free path
from the one in Section 5.1. We then make the S.T.

approximation

=

1&5 = TW(E!T)Y£ . (5.23)
where TW(E,T) is a temperature dependent anisotropic
scattéring time for thermal resistivity W. From the
Boltzmann equation (5.21) it is possible to obtain an
approximation to the scattering time TW(EJT) as we now
demonstrate.

In Appendix E it is shown that inserting the
deviation function (5.22) in the Boltzmann equation (5.21),
multiplying bcth sides by (ek=u), and integrating both

sides over g, leads to

k
as
© j &
B8R [ = . 1 hoe (2
vV, = - dwR {w) {1+ = &=
X e’ Vet | n? kgt
0 FaS- -
W_,W 3 e 2w 25 e '
p (L\__‘ A_k_') + 2?- (%T)'{\'.}E‘}:Zj: Igli".]iﬁjl § (w wj(]i k))

(5.24)
where k is on the F.S., R(w) is given by Eg. (4.39) and
depends on temperature, (3.29) has been used, and the

surface integral in k'-space is over the F.S..
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We now take the dot product of V, (with k on the

F.S.) with Egq. (5.24). The dot product of Yk

quantity in brackets in (5.24) is, using the approximation

with the

(5.23),

1 ﬁw

3 A
+ Pl (k T) wik! )v Yy

where explicit temperature dependence has been suppressed.

This may be written in the form

(1 + (k 2 %) 1, (k) [Ivkl Vi Vo]
3 hw (2
+ ==y (o TRV Y
anl kgl WSk TTk
(1 - 25 (ﬁ‘*’T) ) It () - gk 1Y Ty
2m B -

Thus we have
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(o] dsku ‘rl 2 OZk'
- _Ba& 'I : J = 1 ,hw 2 - =
1= duwE (w) (1 + =(+==2)9) 1. (k) [1 - ————]
o1 2h 2 . Fose]\_;l{;.| 72 KT W |Y;k|2
V UA
3 hw (2 k=K
+ ()" Ty k) ————
on2 KT W l‘_lklz
T V, *V, ,
1 he 2 X =k
+ (1 = —s(-F) ) [T (kK)=1,(k"')] ——s—
2,”2 kBT W — W' = |Y_k’2
2
x L lgy p.a]® 8w = wilk'=k)) . (5.25)
3 k',ki3 J

The reduction of (5.25) to a fqrm from which we can
obtain a reasonable first approximation to the scattering
time is not as straightforward as in the electrical
resistivity cas2 of Section 5.1 because of the presence of
thermal factors and the middle term in brackets. However,
the first term in brackets is mainly positive (and in fact
would be strictly non-negative for a spherical F.S.) whereas
the third term is both positive and negative and therefore
cancellations will occur. The third term has the zeroes
Vs
symmetry of the scattering times. 1In adgition we note that

mentioned in Section 5.1 due to the Vk factor and the

°

the delta function restricts w to be less than the maximum

phonon frequency and the thermal factor R(w) is a rapidly

&

decreasing function of and thus gives higher w values

kBT

lower weights. Thus we drop the third term, but we shall
retain the secord as well as the first, even though it also

alternates in sign and may have a small coefficient if
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(%Qﬁﬁ is small. fhis can be partially justified by noting
thgt the  third term still has additional zeroes (those
required by the symmetry 6f the scattering times) not shared
by the second term. Alternatively, we can look at our
resultant apprcximation (5.26) as the first iteration of
(5.25) ., Further iterations could of course be done, but
the resultant increase in computational labour is not
warranted at present. We also note that our approximation
leads us to a scattering time which will be seen to be
present in the wvariational formula for the thermal
resistivity (see Eg. (5.32)).

In this approximation we then have (for k on the

12 §(w - w5 (k'=k)) (5.26)

with the temperature dependence of the scattering time now
explicit. Using the definitions (4.47) and (4.66) of the
anisotropic effective phonon frequency distributions, this

may be written as (k on the F.S.)
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SRS, | rodwR(w)[(l— 2 _he y2y02 0
TW(E'T) kBT A 21r2 k T tr —
+ -li-(@’-f)z B2F (w, k)1 . (5.27)
2T B

- The function R({w) depends on the temperature; however, the
effect of the phonons is contained in BirF(w,g) and
BZF(w,g) which need only be calculated once. For a

spherical F.S. we have, by (4.53) and (4.69),

1 _dr (7 1 b 2
[TW(E,T)]spherical " kgt j doR (w) [(1 —_———(k T) ap o F{w,k)
F.S. : 0 27
3 hw (2 2
+ =55 0“Flw,k)]
2ﬁ2 kBT =

(5.28)
where k is on the F.S.
We now obtain an expression for the phonon-limited
electronic contribution to the thermal resistivity in terms
of the scattering time defined by (5.27). The heat current

density U is given by (11, 15)

-1 -
8=a 0 Ylo

as in Section 4.1, where the phonon contribution vanishes
since the phonons are in equilibrium (by our assumption of
no phonon drag effects). U must be zero in the equilibrium
situation; therefore, subtracting a (zero) contribution

with fk replaced by fg, and using (3.13), we have
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of

O

I

1
g:—_zy(a_u)q)
T Y lewoy

@
=

€ r

where @k is the electron deviation function. The sum over

spin gives a factor of 2, and the use of (5.22) and the

definition of the thermal conductivity tensor x ,

leads to

£
2 2 -~ W
K === 2 (e, -0)" =— V, A, .
= T x k EE K=k

With the S.T. epproximation (5.23), and using (A.4), (A.5),

and (A.7) of Arpendix A, this becomes

ds

2 k

ST _ e =

K (T) = LoT —5- I T TW(E,T)ZkYk ' (5.29)
arh Ll ek ==

where the Lorentz number is

and we have neglected derivatives with respect to energy
(evaluated at the Fermi energy) of the surface element,
electron velocities, and the scattering time. The
superscript ST denotes the scattering time approximation.

The thermal resistivity tensor is given by
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whry = 3%t . | (5.30)

We now specialize our results to a lattice with cubic

symmetry in which case the thermal conductivity is

A
I}
Wi
=3
i
=

where Tr denotes the trace. By (5.29) and (5.30) we have

ds

' 3 k
ST .1 12n7h = 2 _ -1
W(T) = g T [ VT |V, [ 7 1 (ko) ] (5.31)
00 & pls. KT

for the thermal resistivity. We compare this with the
formula (4.71) in the variational method, which may be
written in terms of the scattering time defined by Eg. (5.27),

by use of (4.48) and (4.67), as

as,
3 Y [ 'k 1k, T)
V. _ 1 121h F.s. K |
0 e k
] g
Yy =
F.s. £

Comparing the relationship between (5.32) and (5.31) to that
between (5.17) and (5.16), we see that we might have
predicted the form of TW(5,T) (Eg. (5.27)) from the
variational method formula (4.71); however, as we have seen,
thé approximations made in deriving (5.27) are not as

obvious or as justifiable as those leading to the scattering
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time for electrical resistivity.

For the case of a free-electron spherical F.S., we

have
ST : _ 1 m 1
(W (T>Ispherical - LOT nez <TW(E,T)> (5.33)
FOSO
where
d9£
Ty kT > = J ar [TW(&’T)]spherical !
F.S. F.S.

n is the number of conduction electrons per unit volume, and
the scattering time is now given by Eg. (5.28). The

variational formula is

AV 1 m 1l
fw (T)] . = < >,
spherical LOT nez TW(£,T)

F.S.

(5.34)

with the scattering time again'given by (5.28).



CHAPTER VI
ELECTRICAL RESISTIVITY OF DILUTE Zn ALLOYS

6.1 Introduction

In Section 5.1, the electrical resistivity of pure
single crystals of simple metals was expressed in terms of
an anisotropic, temperature-dependent transport scattering
time for the conduction electrons; this scattering time

31) to dilute nonmagnetie

concept can be Jeneralized (30,
substitutional alloys of simple metals. In this chapter we
show that the change in scattering time anisotropy resulting
from the addition of small amounts of impurities to pure Zn
leads to measurable changes in the temperature dependence

of the resistivity ratio pll/pl; p|l(pl) is the electrical
resistivity with the electric field parallel (perpendicular)
to the'c—axis. We also calculate the corresponding
deviations from Matthiessen's rule for polycrystalline
samples.

The arrangement of ions in hexagonal close-packed
(h.c.p.) metals such as 2Zn consists of two interpenetrating
simple hexagonal sublattices, and this crystal structure
may be analyzed in terms of a unit cell containing two

(4, 23)

ions (this implies that r = 2 in the results of

72
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Chapter II). Wz note that it is conventional to refer to
the z—axis as the c-axis in discussions of the h.c.p. metals.
Furthermore, thz electrical conductivity tensor in h.c.p.

metals is given by

[
g = 0 o 0
= 1
0 0 (o] 7
! H

and therefore the electrical resistivity tensor, p = gul, is

pJ_ 0 0
g= 10 Pl 0 (6.1)
0 0 ey

where pl| (pl) is the electrical resistivity of the specimen
with the electric field parallel (perpendicular) to the
c-axis.

Theoretical results for the temperature (T)
variation of thz resistivity ratio pl|(T)/pl(T) of pure
single crystal Zn have been obtained by Truant and

Carbotte (29)

, using the concept of an anisotropic

scattering time solution of the Boltzmann transport equation.
They found that the scattering times due to the electron-
éhonon interaction are very anisotropic as a function of

position on the Fermi surface (F.S.). The amount of
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anisotropy decreases with increasing temperature, but it is
still significant at higher temperatures. The change in
anisotropy with temperature implies that pll/pl in pure Zn
depends on temperature, and the temperature variation

(29)

calculated by Truant and Carbotte is in qualitative

agreement with experiment.

(30, 31) have

More recently, Kus and Carbotte
developed a theory of deviations from Matthiessen's rule
for the resistivity of dilute metallic alloys, and this has
been quite successful in applications to X, Li, and Al. The
theory is based on the simple idea that the ideal (pure
metal) scattering times are very anisotropic and that the
addition of impurities will tend to change this anisotropy
in the scattering times for the dilute alloy. Matthiessen's
rule, which states that the alloy resistivity at any
temperature is simply the sum of the pure metal resistivity
at that temperature plus the residual resistivity of the
alloy, is wvalid only when the scattering times are
isotropic; hence deviations from the rule result, and these
are of the right order of magnitude and have the gqualitatively
correct temperature variation. The changes in the anisotropy
of the scattering times on alloying will also lead to
modifications in the temperature variation of the ratio
p|l/pl in dilute h.c.p. alloys, and we have calculated the
magnitude of this effect for the case of Zn. We find that

small amounts of impurities can change this ratio significantly
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from the predicited and observed structure in the T variation
of p||/pl for pure Zn.

In Section 6.2 we present the basic theory of the
effect and discuss the scattering times for Zn. Section 6.3
contains our results for the ratio p||/pl as a function of
temperature and impurity content, and also our calculations
of the deviation from Matthiessen's rule for polycrystalline

samples.
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6.2 Theorz

We begin by generalizing the scattering time concept
of Section 5.1 to dilute nonmagnetic substitutional alloys
of simple metals; we note that the scattering time approach
is much more coavenient than the variationél method approach
for a simple treatment of dilute alloys. First of all, it
is clear that the arguments leading to the expression (5.14)
for the electrical conductivity tensor do not depend on the
preceding explicit form (5.10) of the scattering time for
pure single crystals, but only on the assumption that the

electron deviation function can be written approximately as
¢ = etlk,MV, E , (6.2)

in terms of an anisotropic, temperature-dependent scattering
time tT(k,T) for the conduction electrons. Hence we now take
T(k,T) to be the scattering time for the dilute alloy; we

will obtain an expression for this alloy scattering time

which relates it to the ideal scattering time given by

(5.10). Thus, in the anisotropic scattering time approximation
for the solution of the linearized Boltzmann transport equation,

the electrical conductivity tensor g is given by (Eg. (5.14))

2 k
g = -& [ v, t(k, ™)V, (6.3)
= s ) ThT TR
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where the surface integral is over the F.S..

In a pure single crystal the scattering times
T(k,T) are entirely due to the electron-phonon interaction
and we will write them as TO(E,T). Truant (23) has
calculated TO(BJT) for Zn in a one 0.P.W. (érthogonalized
plane wave) approximation with a spherical‘Fermi surface

In this approximation we have, from Section 5.1,

1 _4m (7 2
Ty (kD) = kT J dwR(w)atrF(w,E)
0
where (Eq. (4.49))
5 Ay «
ap Flok) = N0 g & [ ~—4— (L - cos(k,k")
F.S.

R I L O )
J — —

and-gk‘,k;j is given by (2.28) or (2.29) with r = 2. The

method of calculation of transport scattering times in h.c.p.

(4)

metals has been discussed by Truant and Carbotte and it

would be repetitive to give further details here. Thus we

simply show in Fig. 1 the results for TO(EJT) in pure Zn at

two temperatures, as obtained by Truant (23)

briefly by Truani: and Carbotte (29). For a given temperature

and reported

we have denoted TO(E,T) by T0(6,¢), where (6,¢) are oxdinary

spherical coordinates giving the position on the irreducible

,gilth of the F.S., and the ratio 1,(0,¢)/7,(0,0) is plotted



Figure 1:

Comparison at two temperatures of the Zn ideal
transport scattering times as a function of

position (6,¢) on the Fermi surface, with

7,(0,0) = 2.89 x 10713 sec. at 20°K and

6.36 x 10~1° sec. at 300°K.

Ty (0,0)



To(e,¢>/To(0:0)

5.0

3.0

3.0

1.0

Figure 1

Zn ¢

T

.
T = 300°K
30
— 0
[
L l I
0 30 60 90

78



79

as a function of 6 for two constant ¢ arcs. It is evident
from the figurs that T0(£,T) is very anisotropic and also
that the anisotropy is quite temperature dependent.

The resistivity ratio for h.c.p. metals is, from

(6.3) and (6.1),

f T—r]'{‘ w12 - v3 1k,
p[l(T) F.S.'Z-]-{-‘ 2 "E ZE - .
pl(T) a as,_ , (6.4)
| T Vi T
F.S., =

where Vzk is the z=-component of Vi We first note that if

the scattering times t(k,T) were isotropic they would cancel
in (6.4), and this would lead to a temperature independent
value for p||/pl' even though the resistivity itself is, of
course, a very strong function of temperature. The constant
value of the resistivity ratio would then depend only on the
band structure, through'the Fermi velocities V, and the
integrals over the F.S. in (6.4). In the modeI of a
spherical F.S. this constant wvalue would in fact be unity,
and hence deviations from one would reflect band structure ‘
effects. However, the ideal scattering times in Zn are far
from being isotropic, as illustrated in Fig. %, and thus
(6.4) will depend on temperature. We will concentrate on
this temperature variation of the resistivity ratio p||/pl'

and discuss, in particular, the effect of the addition of

small amounts of impurities.
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We now wish to find an expression for the alloy
scattering times 1(k,T). The addition of small amounts of
impurities to a pure metal opens an extra channel for
scattering of the conduction electrons and, in the presence
of both the elzctron-phonon interaction and impurity
scattering, ths alloy scattering times may be written

approximately as (30, 31)

1 _ 1 1
D T, T, (6.5)

In (6.5), T, accounts for the additional scattering due to

R

the impurities, and it is related to the residual resistivity

Pr PY

Pp = = . | (6.6)

where n is the number of conduction electrons per unit
volume and m is the electron mass. The approximation (6.5)
is discussed in Appendix F. Although we characterize the
impurity scattering by the residual resistivity and do not
concern ourselves with the specific type of impurity, there
is some experimental evidence to support'this viewpoint, as
stated by Salvadori et al. (36) for their results on the

deviation from Matthiessen's rule (DMR):
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“"The agreement of our results (representing ZnAl
and ZnAg alloys) with the previous data (including
mainly ZnCd alloys and various grades of pure zinc)
seems to indicate the DMR in zinc alloys (as well
as in aluminum alloys) merely depend on the
residual resistivity and not on the particular type
of impurity."

We have assumed in (6.5) that the residual
scattering time TR is a constant. Although it is a good
approximation to take TR to be independent of temperature,
TR certainly must vary over the F.S.. For simplicity, we
will ignore this complication here, as it does not affect
our main arguments in any important way.

It is clear from Egqg. (6.5) that, in the temperature
region where impurity scattering dominates (%; >> ?ET%;TT)'
the effective scattering times 71(k,T) become equal to TR
and the anisotropy in the ideal scattering times TO(E,T) is
no longer relevant. In our approximation TR is isotropic
and we can say that the impurities completely wash out the
anisotropy in the scattering times in this temperature

region; however, in a more realistic model, T, would depend

R
on Xk and we could only say that the anisotropy is changed
to that in &R' The important result is that the anisotropy
in the effective scattering times t(k,T) for the alloy can
be quite different from the anisotropy in the ideal
scattering times TO(E,T); therefore the temperature
dependence of the ratio p]l/pl can be affected in an impor-

tant way. This effect is discussed in detail in the next

section.
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The anisotropy of the scattering times also leads
to deviations from Matthiessen's rule in the case of a

(37) to derive

polycrystalline sample. There are two ways
from single crystal aata mean resistivity wvalues which would
be appropriate for polycrystalline h.c.p. specimens of the
same material. One fo:mula is for the case of a specified

direction of the current density and corresponds to averaging

the resistivities:
1 1 '
= 2 + S . - 6.7
P 3 ( Pl P]I) ( )

The other formula is for a specified direction of the
electric field and corresponds to averaging the
conductivities:

Iy

poly = 5
+
Pl TPl

(6.8)

We pointed out in Section 5.1 that the formula for the
resistivity in the scattering time method is equivalent
to summing partial conductivities; thus we will use (6.8)
to be consistent. However, we will note the changes in
our results if (6.7) is used instead of (6.8). For a

spherical F.S. we then have, from (6.1), (6.3), and (6.8),

poly . m - 1
() = = Ik, T
ne =

(6.9)



which is easily seen by writing (6.8)

. . in the form
3 ‘, _
W ° The brackets <

over the (spherical) F.S.; that is,

aq

k
<t(k,T)> = Z?: T(k,T)

F'SD

where 4df

|~

is an element of solid angle on the F.S..

alloy we have, from Egs. (6.5) and (6.9),

poly (T) = m 1
alloy ne2 T (k, T)T
(k T)+'l' >

which does not separate to give the sum of the ideal

resistivity pggiil, given by

poly 1
p1deal(T)

m
> ’
nez <TO(E,T)>

plus the residual resistivity pp. Thus we define a
deviation from Matthiessen's rule, A{(c,T), for a given

impurity concentration ¢ and temperature T, by

Afc,T) = ppOly

_ .poly
alloy(T) P

1dea1(T) - Pr -

This may be written as

83

> in (6.9) denote an average

For an

(6.10)

(6.11)
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1
TO(EJT)TR

S
TO(E,T)+TR

m - 1 1
A(CrT) = 5 { - <T0'(.1{_,T)> - ;?;} (6.12)

ne .

¢

and we note that TR depends on c. In the next section we
calculate the resistivity ratio p||/pl and the deviation

from Matthiessen's rule A(c,T).
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6.3 Results

In the approximation of a spherical Fermi surface,
the expression (6.4) for the resistivity ratio takes the
simple form

d

P Els.
Dl(T)

SN

Qk sinzeT(e,¢)

(6.13)

ko COSZGT(6,¢)

L FQS.
where 1(6,¢) is the total scattering time associated with
the electron at position (6,¢) on the F.S.. Truant and

Carbotte (29)

evaluated (6.13) for puré single crystal Zn,
using the ideal scattering times T0(9,¢) illustrated in
Fig. 1, and obtained good qualitative agreement with the
experimental data. In the case of dilute alloys, the
scattering times in Eq. (6.13) are given by formula (6.5),
and in Fig. 2(a) we present results for pure Zn and for
several dilute Zn alloys$ characterized by differing values
of the residual resistivity PR+ We first note that at very
low temperatufes the ideal scattering times are large

compared to the residual scattering times T since the

RI
ideal resistivities become small in this temperature region.

The alloy scattering times are then essentially equal to T

by formula (6.5), and our assumption of an isotropic T,
implies that the resistivity ratio will approach a constant
value (unity for our model of a spherical F.S.) at very low

temperatures, s Shown in Fig. 2(a) for temperatures of 5°K



Figure Z(a):

(b) ¢

The theoretical temperature variation in Zn
of the resistivity ratio p||/pl° The solid
curve is for pure Zn and the other curves
(from top to bottom) areAfor alloys with
residual resistivities pR‘of 0.005, 0.05, 0.1,

0.3, and 0.5 ufl=cm,

The theoretical temperature variation in Zn
alloys of'the ratio (pll—pR)/(plpr) for

PR = 0.005 uft=cm. (solid curve) and 0.5 uQ=cm.
{dotted curve).



(Mo) &

00T

002

5
- :
(o |=Pg)/ (P =PR) : \ I
o - L
o 2 — 3 o \ . II
- " I
I‘.
n ; .
2 © ||,
| ::i’
| |1
| 5| -
S 1 lJ
S )
] | L L” 1 |

86



87

or less. Of course, should really be anisotropic;

R
however, these very low temperature effects are not of
great interest here and do not affect our arguments in an
essential way. From Fig. 2(a) it is clear that the
.temperature variation of the ratio pl|/pl is affected in
an important weay by the addition of impurities, and also
that the effect is large enough to be measured.

We stress that the changes in T variation of the
ratio p||/pl with impurity concentration shown in Fig. 2(a)

are not simply the result of adding the residual

resistivity PR to the ideal resistivities to form the ratio

(p??eal(T) + pp)

(T) + pp)

This addition would assume Matthiessen's rule which we will
show to be invalid; however, in order to avoid misinterpreta-
tion of our results, we subtract PR from the alloy
resistivities pil and pi and then form the resistivity ratio.
If we had used Matthiessen's rule as mentioned above to form
the alloy resistivities, this new ratio would be equal to

the ideal ratio p??eal/piéeal for all impurity concentrations.
Our results are shown in Fig. 2(b) for the smallest and
largest Pr considered in Fig. 2(a) (curves for the other

PR lie between the curves shown); we see from the figure that

concentration dspendence remains, and we note that these

curves are qualitatively similar to those in Fig. 2(a).
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Although we have used a very simple model for the
electron-phonon interaction and for the electronic structure
of Z2n, there is some evidence that our model is quite
reasonable for the present discussion. For example, we
have calculated pggizl(T) given by (6.11), and the results
are shown in Fig. 3 where we compare with experimental data
from Meaden (37). The agreement over this considerable
temperature ranjge is quite good, and verifies that our model
is reasonably adequate. We note that i1if the averaging
procedure (6.7) is used instead of (6.8) the change (increase)
in pggézl is less than 2% above 60°K and less than 3.5% below
60°K.

There has been much recent interest in deviations

(16), and for this reason we have

from Matthiessen's rule
calculated A(c,T) given by our Eg. (6.12) for several
impurity concentrations. These results are presented in
Fig. 4 as a function of temperature and for several values
of the residual resistivity. We note that if the averaging
procedure (6.7) is used instead of (6.8), A{(c,T) is
decreased by roughly 20% to 25% but this is not crucial since
we attach only qualitative significance to our results fox
Alc,T).

We are not aware of any experimental data to which
we can compare Fig. 4 in any detail; the recent data of

(36)

Salvadori et al. on the resistivity of Zn alloys is

poly

given in terms of (palloy

- pR) rather than A(c,T), and is



Figure 3: The temperature variation of the Zn ideal
polycrystalline resistivity pggizl(T) in units
of ufl-cm. The solid curve is the theoretical
result and the experimental points (A) are from

Meaden.
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Figure 4:

The theoretical deviations from Matthiessen's
rule A{c;T) in uf-cm. for Zn as a function of
temperature T. The curves shown are (from
bottom to top) for residual resistivities of

0e005§ 0@05y Oolf 0-3’ and 0-5 }JQ“’CH\»
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unfortunately presented on a log-log plot. Nevertheless,
it is of interest to compare our results with their data,
and this is done in Fig. 5. The agreement with experiment
is reasonable, although it is clear that such a plot is not
very discriminating when it comes to the deviation from
Matthiessen's rule A(c,T). If the averaging procedure (6.7)

is used instead of (6.8) (ppOly

alloy - pR) increases by less

than 1%.

In summary, we have calculated the effect of small
amounts of impurities on the temperature dependence of the
resistivity ratio pll/pl in Zn, and important changes are
predicted which should be observable. We have also
calculated the deviations from Matthiessen's rule which
should result in polycrystalline samples, and they are in
reasonable agreement with the presently available
experimental data. Although our calculations are carried
out within a very simplified model for the electron-phonon
interaction and the electronic structure of %Zn, we believe

that our results are qualitatively significant.



Figure 5:

Comparison of the theoretical (a) and
experimental (b) temperature variation of
polycrystalline resistivities (units of nQ-cm.)
in Zn. In (a) the solid curve is pggizl(T) and
the dotted curve is (pgiizy(T) = pR) for a
residual resistivity PR = 1905.6 ni=cm. In (b)
the corresponding experimental results of

Salvadori et al. are shown.
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APPENDIX A

In order to derive the expression (4.3B) for the

conductivity tensor in the variational method, we begin
with (4.35):

11 1-1

where the V denotes the variational method expression.

The
trial function (4.36) may be written as
o;(k) = ¥, *u (A.2)
where u is a unit vector in the direction of E, since
et|E| of (4.36) cancels in (A.l). Using the definition
(4.21) of El’ w2 have
0
BfE »
J, =- 1 eV,V,'u — . (A.3)
1 ko EE Bek
Making the usual change from a sum to an integral (7),
2> —L I adk , (A.4)
k (2w '
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and writing the integral as the product of an energy
integral and a surface integral over constant energy

surfaces in k-space (19),

ds(ek)

J adx Imdek J ,E-Ej— , (A.5)

0
(A.3) becomes

0
’c)fli ds(ek)

g3

e oy [
= 3 () J de

Vv, V, -u] (A.6)
4w 0

[ L3
k 3€£ ﬁlYk %k

where the sum over spin gives a factor of 2. We note that

fﬁ depends on Kk only through ¢

k.
Making use of the well-known result (7. 8) for the
Fermi distribution function,
oo 0 2 ..
- s 9f “(e) _ U 2 L (ii), -
I der (¢g) e - = T+ = (kgT)™ F (u) f cee
0 (A.7)
where F is some function of energy €, u is the chemical
potential, and (11) denotes the second derivative, (A.6)
becomes
g, = 22 “x V.V, *u (A.8)
3 ) TeT e -
47k F.g. K —7

where the integral is over the Fermi surface (F.S.) and we
have neglected derivatives of the quantity in square

brackets at the F.S..
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Using (A.2) in the definition (4.28) we have

= V

._.}i‘ §

k!
PE (A.9)

.E] Kiq

(E'_E)R'g

v : :
where PE,Q is given by (4.3). We use (A.4) and (A.5) to

change the sums in (A.9) to integrals. The energy delta

|
function in PE q implies that Ep1 = Ep and therefore

k:
0, .0 o . 0
E(l@fk), which is proportional to afk/aeﬁ, and

0 0, . N
fE(lwf£.) ~ £ k
this is approximately a delta function peaked at the F.S. by
(A.7). Thus we evaluate the surface integrals; electron

velocities, and Iyt k9 at the P.5., and we are left with
> I__l

the energy integrals

j ds]-sJ deEw f]i(lmf]i,)c‘s(ey "y T ’ﬁwj (@) -
o "~ 0

By means of the transformations

n = B(e]_i = 1)

and

N
Il

B “hwj (@) o

the above expression may be written as
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400

1[ 1 1

= dn - (A.10)
B e+l 1+e (n+z)

where the lower limit of the integral, (—u/kBT), has been

approximated by (-«), which is justified for the

temperature range we will consider (T X 300°K). By Eg. (B.7)

of Appendix B, (A.1l0) is

Z

1 ,

B 1-e77
We now collect these results, using the periodicity

in the reciprocal lattice of the phonon frequencies wj(g)n

Inserting an integration over w with a delta function

S(w ~- wj(g'—§)), we obtain

as 4as
2 @ k k!
P = dwR (w) {
11 5,3 A
(2m) "R~ /g F.S.,l—-k:‘ F.S.]—E |
x [V, u -~ V,,-ul? s lg .|2 S (w=w: (k'-k))}
% = k'= 5 TkUki] it=m o=
(A.11)
where
ho
R{w) — .
(ePBe_1) (1-eFBY)

Using (A.8) and (A.1ll) in (A.l), we obtain the expression

(4.38).



APPENDIX B

Consider the function of (finite) z defined by the

integral

+4-c0
F(n)dn
I(z) = I (B.1)
(eN+1) (1+e” N+2)

=-—C0

where F is a polynomial in n. This may be written as

o0
I(Z) = 1 J [F(ﬂ) - F(n-Z)] dn . (B.2)
-1

e feo 1l + e

Define a function of n and z by

n
H(n;z) = f F(n')dn' (B.3)
n-z

which is a polynomial in n with coefficients depending on z.
Integrating (B.2) by parts, and using (B.3), we obtain

a0 -
I(z) = = f Hinizle _ an . (B.4)
-1

e ? (1 + e"n)2

The Fermi function fo(n) is defined by

1

£2(n) = =
e +1
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and has the property

afo _ —e-n

n (1 + e—n)

2

~Thus we may write (B.4) as

0

4o
- -1 .y O£
O [Tamia Ean (5.5)

-0

As in (A.7) of Appendix A, the integral of H with the
derivative of the Fermi function can be expanded (7, 8),to

give

2 . s 4 .
- 1 : T (ii) 7 (iv)
I(z) = ——— {H(0;z) + — H (0;2z) + gzx H (072)
1 - e 2 6 360
+ 311° (i) 0;z) + } (B.6
Ts120 * 0 (092 F .. -6)

where the second, fourth, and sixth derivatives of H with
respect to n are evaluated at n = 0.

We note the following special cases: F(n) = 1 gives

I(z) = ~——§—:E ' (B.7)
l-e

F(n) = n gives

I(z) = = (B.8)
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and F(n) = n° gives

2
+ 5‘-"3— z} (B.9)



APPENDIX C

In order to derive the expression (4.59) for the
‘thermal conductivity tensor in the variational method, we

begin with (4.57):

v 1
QTP22 2—2

is

where V denotes the variational method. The trial function

(4.58) may be written as

¢, (k) = (Egu)y_k'g (C.2)

where u is a unit vector in the direction of VT, since
(- T ll%l) of (4.58) cancels in (C.l). Using the definition
(4.25) of gz, we have

Using (A.4) ancd (A.5) of Appendix A we have

- OE)  as(ey)
U, = ()fde — [ Vu(a—-u)]
2 41r3’ﬁ k B % | Ny

where a factor of 2 comes from the sum over spin o. By (A.7)
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of Appendix A this becomes

aikm? %k
U = - f v v °u ) (C03
2T T THT W )

~where the integral is over the Fermi surface and we have
neglected derivatives with respect to energy (evaluated at
the Fermi enerqy) of the surface element and the electron
velocities.
Using [(C.2) in the definition (4.28), we have
P =8 I [(e,.-uw)V_cu = (g, ,~W)V .°u]2 S, PEI
22 kok' £ KT k' k= (k'-k)prg "kig
(C.4)
where P%;g is given by (4.3). We use (A.4) and (A.5) of
Appendi;'A to convert the sums in (C.4) to integrals, and
by the same arguments as in Appendix A we evaluate surface
integrals, electron velocities, and the electron-phonon

coupling constant at the F.S., leaving us with energy

integrals to bz evaluated. Thus we have

P = Bl | Wy I W s 5| 12 0
22 167°h> F g iz&' P S Iy;fl (k'-kK)zrq 5 g£vr£7j nﬂj
x I deK . dsE.[(EEfu)y;°g - (SEE—u)Yk,og]
0 0

x fg(l»fg.)ﬂsl{_. - ey = hugl@) (C.5)
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By means of the transformations

3
Il

B(ek-ﬁ)
and
z = phus(a)

the energy integrals in (C.5) may be written as
4o MY ru = (n+2)V, .'312
1 = =
—3— d'ﬂ
B

- OO

(C.6)

(eN+1) (1+e” (N+2))

where (—u/kBT) has been replaced by (-«) in the lower limit

of the integral as in Appendix A. If we interchange and

k
2 0
|

ki3 and ngj in

(C.5) are invariant under this change), the squared factor

k' in one term of (C.6) (noting that |gk,

in (C.6) may be written as

(n%+nz) 2yw? - 207w (zﬁ.-p_n# z?u_r_}i-g)z :
(C.7)

Using (C.7) in (C.6), and the results (B.7), (B.8), and
(B.9) of Appendix B, (C.6) becomes

2 2 2
27 2 2 2 2
Sy (V) {1+ =] - (Y cw) (V  w) [1 - =1} . (C.8)
33 1-e7% R 2 k k' 212

Using (C.8) in (C.5), the periodicity of ngj, and inserting
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an integration over w with a delta function G(w—mj (k'-k)),

' . . das ds, .
P =——-—Q—-‘—deR(w){ J -I—I-]'{" J T——-T"' [ (v °u)2
22 s’ 0 F.S. i F.S. Yi! £
(gh) 2 (8ho) 2
x (1 + ==5=) - (¥, 'u) (Y., ) (1 - ——5)]
T — - 27
X ):’ |gk"k;j|2 S{w - U-‘J(_]E"']f-_))}
J — ———

where R(w) is defined in Appendix A and by (4.39).

(C.9)

Inserting

(C.3) and (C.2) in (C.l), we obtain the expression (4.59).



APPENDIX D

In order to derive Eg. (5.4) of Section 5.1, we

begin with Eq. (5.1):

= } _ _ 0 _ 0 _]-(_'
3o Y eB T B B (4 - 0 )£ (I-fy )W (D.1)

where W% is given by (3.292). Using the deviation function

given by (5.2).

in (D.l), we obtain

Qf
|E—h
|
1<
=
i
w0
™

ey £9(1-£0 yuk'
I (o - Ay w £ gy g (D.2)

m
i=
l

where u is a unit vector in the direction of E. We now

integrate (D.2) over €+

The integral of the L.H.S. of (D.2) is

which, by (A.7) of Appendix A, may be written as
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- \_Z]i-gle (D.3)

k¥

where we have neglected derivatives with respect to energy

of the electron velocity (evaluated at the Fermi energy).
Converting the sum over K' in (D.2) to an integral

by means of (A.4) and (A.5) of Appendix A, the integral of

the R.H.S. of [D.2) is

dS(ek,)

e ([ ® PR | IR O '
—— -[ dek df,k| _]-V_—T [Ak| u /_lk E]fk(l fk,)WE . (D.4)
onh ) O R A A

Since the delta functions in W% imply that g, , = €y s We may

use the same argument as in Appendix A to write (D.4) as

das

BS J £ [A,_,*u - A -ul % |g 1% nd.
4n%h? F.S VT 7k" = == 5 PkUkid Tad(k'-K)g.g

® ® 0 0 |
X I de£ J deg. fE(l—fE,){G(EE.“eEfﬁmj(g))
0 0

Bhu, (@)

+ e 6(€£,—5Efﬁwj(g))} - ‘ (D.5)

where the surface integral is over the F.S., k is on the

F.S., and we have used the expression (3.29) for W% . The

first energy integral in (D.5) is the same as the one

considered in Appendix A and its value is, by (A.l1),
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ﬁwj(g)
= B/‘hwj (g_)

1l -

It is obvious that the value of the second energy integral

can be obtained from this resulﬁ by replacing [ﬁwj(g)] by
Bhw. (q) .
[Jﬁwj(g)] and multiplying by e J : hence, the second

integral has the same value as the first. Using the

periodicity of n;j and inserting an integration over w with

a delta function 6(w - wj(E'—E)), (D.5) becomes
ds, .

B ImdwR(m) [ T Wyew = A oul T g .
21r2‘f12 0 Pl g y-_’_' %' = -k = 3 k l,}F_?JI
+S. (D.6)

28 (w=uy (k' k)

with k on the F.S. and R(w) given by Eq. (4.39). The

results (D.3) and (D.6) then lead to Eq. (5.4).



APPENDIX E

In order to derive Eg. (5.24) of Section 5.2, we

begin with the Boltzmann equation (5.21):

2E (e 1)

t
where W% is given by (3.29). Using the deviation function

given by (5.22),

(ek~u) -
0} I e ree—— A
& T -k

VT

in (E.1), we oktain

0
k
— - — — W . — — W. O - 0 E'

of

(E.2)

where u is a urit vector in the direction of VI. We now

multiply (E.2) by (ek—u) and integrate over €1+

The L.E.S. of (E.2) becomes

s £9
o .]i 2
I dey e (er~W) ™ ¥peu
o =k = £

which, by (A.7) of Appendix A, may be written as

107



108

1r2
- Vypeul o
g2 ~E T ey=H

(E.3)

w

where we have neglected derivatives with respect to energy
(evaluated at the Fermi energy) of the electron velocities.
When we convert the sum over k' to an integral by

means of (A.4) and (A.5) of Appendix A, the R.H.S. of (E.2)

becomes
ds(e, ,)
Ty dee dee = [ (e —u) (Ey =) AV, su~(e —u)zAW°u]
1 ' T = —_ _
814 0 k . k iY£-| k k =% k k
0 0 ..k'
X fk(lmfk,)WE . (E.4)

]
Since the delta functions in W% imply €1 & £y, We may use

the same argument as in Appendix A to write (E.4) as

ds
k! © 00
8% £ 2 0 .
) FJS ol 5 1% sl Pai® e pog {fo dey fo dey
% [lemm) (ep v =1 Ay s u- (e -w) Ay ul £ (1-£0,)
x [8(ey =gy ~huy(a))+e 8 (ey v =gy thuy (@)1} (E.5)

where the surface integral is over the F.S., k is on the

F.S., and we have used (3.29). By means of the transformations

n = B(ek—u)
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and
Zz = Bflw] (g) r

the first energy integral in the brackets of (E.5) may be

written as

[n(n+Z)Ak. ‘u - nZAw ‘u)

(eN+1) (1+e” (N¥2)

where, as in  Appendix A, the lower limit of integration,

(- EETJ' has been replaced by (-«). Using (B.8) and (B.9)
B

of Appendix B, the value of this integral is

2 - 2 2
T Z Z W W, 3z W
LI —— {(1 + 25 (A ‘u - A ) - 22_p _} .
.333 l—-e z 11-2 ""]5..' & 21]-2 !5.

(E.6)
It is easily seen that the second energy integral can be
obtained from the first by replacing z by (~-z) and
multiplying by e?; hence, it also has the value given by
(E.6). Using the periodicity of néj and inserting an
integration over w with the delta function G(w-wj(g'-h)),

(E.5) bécomes, using the result (E.6),

. as
© k!
Q : = hw W
6h%8 [ [ =y o G ugie - o
0 F.S. -
S, T N P AN § (w-w (k'~k)) (E.7)
21° 7B = 5 R R
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where k is on the F.S. and R(w) is given by Eg. (4.39). The

results (E.3) anad (E.7) then lead to Eg. (5.24).



APPENDIX F

We discuss here the approximation (6.5) of Section

6.2 for the (dilute) alloy transport scattering times:

1 _ - 1 __, 1
T (]_i!T) To?_]S_IT) TR )

We make the initial assumption that the scattering of a

conduction electron from k to k' due to the presence of

(F.1)

small amounts of impurities in a metal may be characterized

by an intrinsic transition probability per unit time,

]
denoted by VE . The detailed structure of VE

k

concern us here, but we do assume elastic scattering (V%

contains 6(ek, - ek)) and the principle of microscopic
reversibility (32, 33)

k' _ ok

v'k— - V]_{-| .

Then it follows that the term

k) Vi

k .
kz' [0 (1-£) Vg, = £, (£

kl

]

does not

(F.2)

(F.3)

should be addec to the R.H.S. of the expression (3.11l) for
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Bfk

it ]
to the scattering due to the electron-phonon interaction.

(11)

scatt when impurity scattering is included in addition

Ziman also combines the impurity and phonon scattering
effects in this way; however, this assumption that effects

of scattering by lattice vibrations and by impurities are
independent and additive is certainly not correct (16, 31. 34,
There will be additional scattering due to (1) interference
between phonon and impurity scattering and (2) inelastic
electron-impurity scattering; these processes result from
the oscillations of the impurity ions about their
equilibrium positions. Thus in our approximation we ignore
dynamic effects of the impurities and retain only the
static effects.

Returning to the expression (F.3) we see that it may

be written as

kﬂ
gu (f-}s,i = fB]E)VE . (Fm4)
using (F.2). The equilibrium situation argument (3.12) is

unaffected by the addition of (F.4) to the R.H.S. of (3.11)
since the electron-phonon and impurity terms are
.independent; moreover, (F.4) automatically vanishes in the
equilibrium situation due to the elastic scattering delta
function in V%v (fg depends only on energy € at a given

temperature). Hence the expansion (3.15) may be used

exactly as in Section 3.2 and we have the additional term

35)
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due to (F.4):

) 0 0 k!
B kz' ((P}i' ®£)fh(1 f]_{_,)vg (F.5)
o _ .0 . , k!
where fk' = fk by the energy delta function in VE . We note

o~ — —

that at this point @k is still unspecified and determined
only by the definitigﬁ (3.15). Assuming the phonons to be

in equilibrium (no phonon drag effects) the linearized
Boltzmann equat:ion for the conduction electrons (3.28) in the
absence of a temperature gradient (Eg. (5.1)) is now

modified to

of

w o

_ _ 0 - 0 E. El

IW?L

£

t
where W% is given by (3.29).

We now use the approximation (6.2)

QE = et(k,T)V, E

but, in order to make the correspondence with the previous
analysis for pure crystals as clear as possible, we write

this as

QE = el *E (F.7)
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where the mean free path is approximated by

A = TR,V (F.8)

with T(k,T) the (dilute) alloy transport scattering time.

As in Appendix D, the integration over €y of (F.6) leads to

—

the result (5.4) with the additional term

® 0 0 .. k'
B Jodeéi k):l (Al{_ - L\_li.)fh(l f]i.)V]—{- (F.9)

¢
due to V% on the R.H.S., where k is on the F.S..

Converting the sum over k' to an integral by (A.4) and (A.5)

of Appendix A, the integral over €pe is eliminated by the

1
G(Sk, - ek) in V% and (F.9) becomes
0
of ds (e, ,)
2 rd £ £ (A, - A, )vE'
— ~ c A —— v._
eroh J, £ 9% Ve T 7k - &K
using
5£0
..__.}i = - Bfo(l—fo)
Bek k k )

By (A.7) of Appendix A we have, ignoring energy derivatives

(evaluated at the Fermi energy) of the surface element,

electron velocities, mean free path, and V% '

as, ,

5 = A - A OVE . (F.10)

81k o Vi I =k &'k )
‘-S. -
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where k is on the F.S..
Using the approximation (F.8) and the expansion

(5.5)

;I_X_k - i\-_]_:l = T(_k_) [\_7_]5_ - Y_£I] + [T(E) - T(]j_')]\_?_]_{_. r

we take the dot product of V,
as before and divide by ]Yklz to obtain Eg. (5.6) with the

(k on the F.S.) with Eg. (5.4)

additional term on the R.H.S. (due to (F.10))

q dS]_E, Y‘E.EEI Yk'\l]i| K
— {1k [1 = ———] + [t(k)-1(k") ]——5) Vi
3 J [V, /] = 2 = = 27 Yk
gr h g ok |9 | v 2 =
Since we have a dilute alloy, the arguments following
Eg. (5.6) are still approximately valid and we may drop
the terms involving [t(k) - t(k')]. Thus as a first
approximation we have
4 00 Q ds 1 \._7. .y_k' X!
1 T [ 2 - = =
= dwR (w) B, F(w,k) + f T [1 - ———1v

—

where the first term is the result (5.10) for the pure crystal

—_t
To (__k_rT) '

involving impurity scattering may be written simply as

scattering time which we denote by The term

?“%ET in terms of an anisotropic residual scattering time.
R'—

Assuming T, to be isotropic we then have

R
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1 1 + L
Tk, T)  Tlk/T) TR

and we determine TR from the experimental value of the

residual resistivity PR by the relation
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