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CHAPTER I 

INTRODUCTION 

1.,1 Scope of Thesis 

There a:ce two alternative theoretical descriptions 

of the electronic transport properties of pure single 

crystals of simple {non-transition) metals in the absence 

of a magnetic field~ The variational methodv which is 

usually employedf uses trial solutions of the Boltzmann 

transport equations to calculate transport coefficients 

such as the electrical resistivity and the electronic 

contribution to the thermal resistivity; this approach is 

reviewed in the book by Ziman (ll) • The electrical 

resistivity has also been discussed by Robinson and Dow (26 ) 

in terms of a scattering time solution of the Boltzmann 

transport equation., In both formalisms the approximation 

of a spherical Fermi surface was made in order to simplify 

calculationso These methods will be extended in Chapters 

II, IIIv IV and V to consider a non-spherical Fermi surface, 

with a mul tiplel orthogonalized plane wave description of the 

conduction electrons; a scattering time formalism for the 

·electronic coni:ribution to the thermal resistivity will also 

be introduced~ The resulting expressions will be presented 

in terms of effective phonon frequency distributions which 

1 
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are generalizations of the ones previously used (4 , 21 , 22 , 

23 29 30 31) . . ' ' . ' for the case of a spherJ.cal Ferro~ surface; 

these distributions are particularly convenient for 

computation and it is hoped that our formulae will lead ·to 

quantitative results. 

For simple metals the electronic and lattice 

problems may be separated, with their coupling described by 

the electron-phonon interaction. In Section 2ol the theory 

of lattice dynamics in the harmonic approxima~ion is 

reviewed briefly, and in Section 2e2 an expression is 

obtained for the coupling between the conduction electrons 

and the lattice vibrations, utilizing a pseudopotential 

formalism based upon multiple orthogonalized plane waves 

for the conduction electrons. 

For ordinary transport phenomena, the application 

of constant outside constraints, such as temperature 

gradients and electric fields, prevents the establishment 

of a strict equilibrium state, and a s-"ceady state is 

established with the scattering (due to the electron-phonon 

interaction in pure single crystals) balancing the effect 

of the externa.l constraints. In Section 3.1 the linearized 

Boltzmann transport equations for the electrons and phonons 

in the absence: of a magnetic field are reviewed; these are 

the steady sta.te equations for the electron and phonon 

distribution functions. The explicit forms of the scattering 

terms in these equations are obtained in Section 3.2, using 
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the expression for the electron-phonon interaction from 

Section 2.2. 

The va.riational method approach to the calculation 

of transport coefficients is discussed in Chapter IV, using 

the results of Chapters II and III. In Section 4.1 we 

present the de!tails of a general formulation using a 

variational principle to express the solutions of the 

coupled electron and phonon Boltzmann equations in terms of 

given trial functions. In Sections 4.2 and 4.3 we generalize 

previous lowe~.t order trial function results for the 

electrical re~istivity and the electronic contribution to 

the thermal re:sistivity to the case of a non-spherical Fermi 

surfaceD Phonon drag effects are ignored {i.e., the phonons 

are assumed tc be in equilibrium) and our results are 

formula·ted in terms of effective phonon frequency distribu­

tions. 

The scattering time approach to the calculation of 

transport coefficients is discussed in Chapter V, using the 

results of Chapters II and III. In Section 5.1 the theory 

of Robinson and Dow (26 ) for the electrical resistivity of 

pure single crystals is presented for ~he case of a non­

spherical Fermi surface, and in Section 5.2 a scattering time 

theory for the electronic contribution to the thermal 

resistivity of pure single crystals is introduced. The 

resulting expressions are formulated in terms of effective 

phonon frequency distribut.ions. 
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The scattering time method of Robinson and Dow {26 ) 

has been· generalized (30, 31 ) to consider dilute 

nonmagnetic substitutional alloys of simple metals. In 

Chapter VI we show that the change in scattering time 

anisotropy resulting from the addition of small amounts of 

impurities to pure Zn leads to measurable changes in the 

temperature dependence of the resistivity ratio PJ 1/pl ; 
PI I (pl) is the electrical resistivity with the electric 

field parallel (perpendicular) to the c-axis. We also 

calculate the corresponding deviations from Matthiessen«s 

rule for polycrystalline samples. 

The Appendices contain the detailed derivation of 

several expressions used in Chapters IV, V and VI. 



CHAPTER II 

LATTICE DYNAMICS AND THE ELECTRON-PHONON INTERACTION 

2.1 Lattice Dynamics 

In thiE: section we review the theory of lattice 

dynamics in the harmonic approximation, following 

Maradudin et ale {l). For simple (non-transition) metals, 

we make the usual distinction between conduction electrons, 

which are nearly free, and core electrons, which are 

tightly bound i::o the ions, and separate the electronic and 

lattice problenls, describing their coupling by the electron-

phonon interaci::ion {Section 2. 2). Using the adiabatic 

. . (1, 2, 3) 'd h . f th approx~mat~on · , we may cons~ er t e mot1on o e 

core electrons to contribute to the effective interionic 

forces, and not: include them in the lattice dynamical 

problerno Then the crystal potential energy, ~, is a function 

of the instantaneous ion positions, where the ions are 

assumed to execute small excursions from their equilibrium 

positions due t:o thermal fluctuations. 

Consider a crystal with N unit cells and r ions per 

unit cell, and write 

R ( i I K i t:) = R 
0 ( i I K ) + ~ { i I K ; t) 

5 



6 

for the position vector of the Kth ion in the R,th unit cell 

at time i, where R0 {i,K) is the equilibrium position and u 

is the excursi-on from equilibrium. We may write 

= RO + Q_(K) 
-.Q, -

\vhere R~ locates the origin of the R-th unit cell and .e_(K) 

specifies the equilibrium position of the Kth ion with 

respect to the origin of a unit cell, with K = 1, 2, •.. , r. 

In the harmonic approximation, _valid for small 

displacements, the crystal potential energy ~ is expanded 

in a Taylor's series to second order in the displacements, 

and the classical lattice Hamiltonian is 

1 
+ :2 

D 2 
M U (i,K;t) 

K Ct 

(2 .1) 

where q, 0 is thE~ static equilibrium potential energy, MK is 

the mass of thn Kth type of ion, a = 1, 2, 3 are the 

Cartesian components, and 

~ etB ( R-K i~ .Q, I K I) 

are the atomic force constants, where the subscript zero 

means the derivatives are evaluated in the equilibrium 



con£ igura tion G From Hamil ton w s equa tio.ns and ( 2 .. 1) , we 

obtain the classical equation of motion: 

M U (i,K;t) = 
K a. >: ~a. 0 (iK;i'K')u 0 (i',K';t) 

i'K'S 1-l 1-.J 

If we assume a solution to (2.2) of the form 

U (i,K;t) = a. 

U (K 1 q) a. -

VMK 
e 

· t · R0 
-J.w + ~g_·-i 

the equation of motion (2.2) becomes 

l: Da. 0 (KK'Iq)u 0 (K',g) 
K'S IJ IJ 

where the dynamical matrix na.e is 

Da,fS (KK t I q) 
1 >: ~ ( iK • .Q, 1 K 1 ) e = 

{MKMK, i' 
a.S I 

. . ( 0 . 0) J._q• Ri'-Ri 

7 

(2 .. 3) 

(2. 4) 

(2. 5) 

which is Hermit.ian and independent of R. since ~a.S(iK;i'K') is 

a function of {t'-i) only and not i' and i separatelyo The 

original pr.oblem of solving 3rN coupled differential equations 

(2.2) has been reduced to the diagonalization of a 3r by 3r 

matrix Da.S(KK' lq) for each value of~· 

We assllme cyclic boundary conditions (l); that is, we 

consider an in3:inite periodic crystal composed of macrocrystals 

with N unit cells, and any one of the macrocrystals may be 

regarded as th1: physical crystal we are studying. Consideration 
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of t.he boundary conditions and the expression {2 .. 3) shows 

that all distinct solut·ions are obtained for the N allowed 

values of the -vravevector q uniformly distributed throughout 

the first Brillouin zone (F.B .. Z.). The eigenvalues w~(q), 
J -

j = 1, 2, ..... , 3r of the dynamical matrix are the squares 

of the phonon (normal mode) frequencies, and the eigenvectors, 

denoted by ~(KI~j), are the phonon polarization vectors, 

corresponding to the phonon of wavevector_q. 

We now write the equation of motion (2.4) in its 

usual form: 

w~ (q) E (K I qj) = 
J - ct -

(2.6) 

We assume orthonormality and closure for the eigenvectors, 

E~(t<lqj)Ea(Kiqj') = 0 I I I 
JJ 

where o is the Kronecker delta and * denotes the complex 

conjugate. We have w~(-q) = w~(q) and we adopt the 
J - J -

convention of Born and Huang (2): 

(2 .. 8) 

The frequencies and polarization vectors are periodic in the 
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reciprocal latt~ice since the dynamical matrix is. 

The excursions from equilibrium may be written in 

general as a superposition of normal modes (g_j) where the 

normal coordincLtes Q (s_j) diagonalize the Hamiltonian (2 .1) : 

u(t,K) = 1 (2 .. 9) 
{NMK qj 

(F. B. Z.) 

where the sum over q is restricted to the F.B .. Z. and we have 

suppressed the explicit time dependence of u and Q~ Since u 

is real, we have 

Q(-qj) = Q*{gj) ( 2 .. 10) 

The normal coordinates may be expressed in terms of the 

phonon creation (at) and annihilation (a) operators as (l) 

( 2 .11) 

where "h is Planck's constant divided by 21T, and the phonon 

operators satisfy the usual commutation relations for Bose 

operators. 

Finall:{, we note that for more than one ion per unit 

cell (r > 1), ·there is an alternative definition of the 

dynamical matrix (l, 4 ) as 

(2 .12) 
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which is not periodic in the reciprocal lattice. The 

polarization vectors are then 

such that 

w~{q)w {Kiaj) = J - Ct .:a.. 
(2 .. 14) 

is the equation of motion .. 



11 

2 .. 2 The Electron-Phonon Interaction 

In this section we obtain an expression for the 

coupling between the conduction electrons and the lattice 

vibrations (phonons), using a pseudopotential formalism (S) 

based upon orthogonalized plane waves.. For simple (non­

transition) metals we may separate the electron states into 

localized core states and nonlocal conduction band states, 

which must be orthogonal. In the pseudopotential method, 

the orthogonal:Lzation manifests its-elf as a repulsive 

contribution added to the attractive potential between the 

conduction electrons and the ions, and the resulting 

effective potential, the pseudopotential, w, is then weak .. 

The pseudopotential equation for the pseudo wave function 

is formally the same as the Schrt\dinger equation for a 

free electron qas with perturbing potential, W, and the 

true wave func·tion can be obtained from the pseudo wave 

function by or·chogonalization to the core states. Since W 

is weak, we may expand the pseudo wave function in plane 

waves, and if m plane waves are used, this is the m 

orthogonalized plane wave (OPW} approximation. 

In the diffraction model (S} we deal with pseudo 

wave functions and pseudopotentials, and the potential 

energy (pseudopotential} W of a conduction electron at 

position ~ may be separated into a sum of individual 

electron-ion pseudopotentials centred upon the individual 



ions: 

W (E_) = l: W (!:. = R ( .R,, K) ) 
R-K 

where we have assumed all ions to be identical (this 

implies M = M, K = 1, 2, 
K 

D D D f r in Section 2.2) and we 

suppress explicit time dependence. In the m OPW 

approximation the pseudo wave function may be written as 

, 

12 

( 2 D 15) 

where n is the crystal volume, k is the wavevector suitably 

restricted by the cyclic boundary conditions, and uk(r) 

has the Bloch form 

where K are rn reciprocal lattice vectors including the -n 

(2.17) 

origin; and the aK are coefficients in the expansion (with 
-n 

If we sum the interaction (2.15) over all 

conduction electrons, situated at positions r., we have 
-~ 
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which is a sum of one-body operatorse In the notation of 

second quantization this becomes 

(2.,18) 

where ~(~t) is the annihilation (creation) field operator 

for an electron at r., We may make the expansion 

and its adjoint:, where Ckcr annihilates an electron of spin 

a in the state ¢k" Then the interaction Hamiltonian (2.,18) 

becomes 

where qk 1 Jwl <!>~> = J d 3
r <!>~ 1 (r)W(r) <l>k (=:_) o 

Using (2.15), (2.16) and (2 .. 17), we have 

1 
(m) (m) 

= n r r a*, (k')a (k) 
~6 K - K -

K' K -n -n -n -n 

x L f 
R.K 

i(k+K ) "'r 
- -n -x e 

If we make the substitution y = r - R(R.,K) for each 
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term in the sum over i and Ku the integral in (2 .. 20) 

becomes 

-i(k'+K'-k~K.)., (RQ+p(K)) - -n- -n -i- [1 ~ i(k 1 +K'-k-K ) ~u(iuK)] e --n--n-

0 where we have used ~(t,K) = Rt + £(K) + u(t,K) and 
~i(ki+K 1 -k-K ) ou(l,K) 

expanded e -· -n - -n - to first order in u, since 

the displaceme:nts are assumed to be small.. The first term 

in (2 .. 21) when inserted in (2.,20) does not depend on the 

displacements from equilibrium and simply describes Bragg 

scattering from the static lattice., The second term gives 

the electron-phonon interaction, and we denote its 

contribution i:o <cpk w Jwl cJ>k> by <cf>k, JwJ cpk>, and write for the 

electron-phonon interaction 

using (2 .. 19) o 

Using (2.,9) and (2.11) to write ~(t,K) in terms of 

phonon operatorsv the sum over t in (2.,22) restricts q by 

k 1 = :k: = q + Kru 
~n 

(2.,23) 

where K" is a reciprocal lattice vector, and contributes a -n 



factor of No Defining the volume per ion as 

and 

<k g +K I I w I k+K > 
- -n - -n = 1 

no J 

3 ~i(k'+~)ox_ 
d y.e 

15 

(2.22) becomes, using the periodicity in the reciprocal lattice 

of wj (q) , £ {K I ~tj) , and the phonon operators: 

H e=p 

where the elec1:ron-phonon coupling constant is 

(m) (m) 
" { }": E 

K Ku 
-n -n 

a~ , ( k • ) aK ( k) 
-n -n 

We note that in the one OPW approximation this becomes 

(2.,27) 
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In terms of the alternative definitions discussed in Section 

2olr this becomes, using (2el3) and (2~23)~ 

= = i 

with 

k v = k = 9, + K 11 {2 ~ 23) 
-n 

where q is in the F~BoZ.,o This agrees with the result of 

Truant (4) 

Furthermore, in the one OPW approximation for a 

Bravais lattice (r = 1) we have 

gk' ,k::i =- i j2MNwj~~~-~) (k'-k) ·~((k'-k)j)<k'lwlk> 
(2.30) 

which is the usual result (G)., 

We nob~ for future reference that it is easily shown 

from ( 2. 27) th3.t 



using the facts that w is real, wj (·-~) = 

(2., 8) ., Thus we: have 

w. (q) v and also 
J -

17 

(2.,31) 



CHAPTER III 

THE BOL'J~ZMANN TRANSPORT EQUATIONS FOR 

THE ELECTRONS AND THE PHONONS 

3 .1 The Linear:i_zed Boltzmann Equations 

In this section we consider the linearized 

Boltzmann transport equations for the electrons and the 

phonons (3 , ?, B, 9 ) As mentioned previously, we consider 

independent sys·t.ems of conduction electrons and phonons for 

a pure single crystal of a simple metal, and the effect of 

the electron-phonon interaction is to produce transitions 

between the unperturbed states of these systemse The 

electron distribution function, fk' and the phonon 

distribution function, n ., are the probable occupation 
S.J 

numbers for the electron state of wavevector k and the 

phonon mode (~j), respectively. The explicit time 

dependence is suppressed, and the distribution functions 

depend on position E only through their dependence on 

external parame:ters such as the temperature T. We shall 

consider ordina.ry transport phenomena, in which the 

application of constant outside constraints (temperature 

gradients and electromagnetic fields) prevents the 

establishment of a strict equilibrium state, and a steady 

state is established, with the scattering due to the 

18 



19 

electron-phonon interaction balancing the effect of the 

external constraintso 

In the absence of interactions and external 

constraints, the equilibrium· electron distribution function 

is 

where 

1 B = 
kBT 

1 
(3 "1) 

with kB the Bol1:zmann constant and T the absolute temperature, 

11 is the chemical potential, and Ek is the energy of the 

electron state of wavevector k.. We assume that the 

equilibrium phonon distribution function is 

0 1 
n . = 

9_] B (fiw. (g)) 
e J - 1 

Considering first the electron distrib~tion functionv 

in the steady state we have <7 , B) 

afk afk afk afk 

~ = at-]diff + at-]field + at-]scatt = 0 

where the first, equality is the statement of a generalized 

equation of continuityo The diffusion term gives the rate 



of change of fk due to thermal gradients, the field term 

gives the change due to external electromagnetic fieldsy 

20 

and the scattering term gives the change due to the electron= 

phonon interaction.. This assumed Boltzmann equation may be . 

linearized (3 , 7 ' B, 9 ) under the assumption that the 

external constraints causing the deviation from equilibrium 

are small, in which case we may use f~ in the diffusion and 

0 field terms for small deviations of fk from fk, and neglect 

gradients of the correction terroo In the absence of a 

magnetic field, the linearized Boltzmann equation for the 

conduction elec·::rons is then 

at0 
k --= V ~ {eE = 

ae: -k -k -

atk 

VT} = at-]scatt , (3 .. 4) 

where vk 

ae:k 
1 :_ - ~ ak- is the velocity of an electron of wavevector 

k, e is the electronic charge, ~ is the observed (lO) electric 

field, and we have used (3.,1) to write af~/oT in terms of 

0 0 ofk/oe:k. We have also used the fact that fk depends on k only 

through Eku so that 

By similar reasoning, we obtain the linearized 

Boltzmann equa t.ion fC!:Jr the phonons g 



0 an . 
9.J 

aT Yqj ·VT = 

21 

an . 
9-J 

~]scatt {3 0 5) 

aw. Cg) 
where V . = ~-- is the group velocity of the phonon of 

~J og. 
wavevector q ana polarization branch j, and the scattering 

term is due only to-the electron-phonon interaction since we 

have assumed tha.t we have a pure. single crystal o 
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3&2 The Electron-Phonon Scattering Terms 

In this section we obtain the explicit form of the 

scattering terms in the linearized Boltzmann equations (3.,4) 

and (3.,5) for pure single crystalsu using the expression for 

the electron-phonon interaction from Section 2 .. 20 The 

Golden Rule transition probability per unit time for a 

conduction elect.ron of spin a scattering from k to k u with 

the absorption of a phonon of wavevector 

with 

(3 "6) 

where~ is the reduction (denoted by R) of Q to the F.,BGZ.y 

is 

(3. 7) 

where the deltct function expresses energy conservation .. 

Using (3 .. 6) and the periodicity of the phonon operators, we 

may write the e~lectron-phonon interaction (2., 26) in the form 



He-p = k~k gk',k;j C~,CYCkCY(a~qj + aqj) 

cj 

The matrix eleme~nt in (3. 7) is then 

23 

since the ¢k are! basis states for the electron operators and 

the phonon operators satisfy (l) 

aln> = /n ln-1> 

(3 "8) 

The transition probability (3.7) becomes 

2'IT 
I: I g ]!. I I k ; j I 2 n . 0 o(e:k' - 'fiwj (g)) h - £ 
j S.J (k'-k) ,q k 

- - R-

where the first delta is the Kronecker delta stating that 

is (k' -k) reduc,~d to the F. B. z. . In the same way, using 

(3.8) again, we find that the transition probability for 

scattering from k to k' with the creation of a phonon is 

(3. 9) 

9. 

¥ L Jg:,k_',k;jl
2 

(n .+l)o(k-k 1 ) o(e:k' + ilw. {g:) - Ek) • 
j S.J - - R' S. J 

(3.10) 

The rate of change of the electron distribution 

function is the difference between the probabilities 



for scattering into and out of the state-of wavevector k 

caused by emission and absorption of phononss These 

probabilities are given by (3.9) and (3.10) and their 

analogues for k 1 scattering into k, multiplied by the 

appropriate Fenni factors expressing the occupation 

probabilities of the electronic states concerned~ Using 

24 

(2.32) and the fact that the delta function is even, we may 

write this as 

{3 .11) 

In the equilibri~m situation this must vanish and thus we 

have the conditions 

(3 .12) 
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It is conventional (B) to express the deviation from 

equilibrium of the electron and phonon distribution functions 

in terms of deviation functions ~k and ~ . defined by 
S.J 

Using (3.1) and (3.2) we see that these equations can be 

written as 

n . 
9.J 

0 0 0 = n . + B~ .n .(n ~+1) 
~lJ g_] g_] S.J 

where B 1 = k T a::; before. 
B 

{ 3 .13) 

(3.15) 

(3.16) 

We now (~xpand the factors in {3.11) using (3 .. 15) and 

(3.16), and the conditions (3.12); the result to first order 

in the deviation functions <I>k and '¥ I is 
- qJ 

afk 

at-] scai:t = -2'ITS I 12{ 0 0 0 ~ L gk, k· I fk(l-fk,) (n ~+1) 
il k I j _ I _I ] _!. _ 9.J 

(3.17) 



Define 

k' P­
k;~j 

26 

pk I i g_j ·­
k 

2TI I 12 0 0 0 ' 
11 gk',k;j fk(l-fk,) (n~j+l)o(£k,-£~+nwj(~)) 

Then (3.17) becomes 

afk 

at-] scat:.t = 
k' P­k;gj 

We note that the spin cr of the conduction electron of 

wavevector k does not occur explicitly in the above 

equations since it is not changed by the scattering. 

{3 .19.) 

We now obtain the expression for the rate of change 

of the phonon distribution function n ., where q is in the 
S.J 

F.B.Z., due to electron-phonon scattering only. This 

distribution function is decreased by processes in which a 

conduction electron scatters from k to k' with the 

absorption of a phonon of reduced wavevector ~, such that 

k' - k = q + K - -n 

for any reciprocal lattice vector K , whereas it is -n 

increased by processes in which a conduction electron 

(3.21) 
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scatters from k' to k with the creation of a phonon of 

reduced wavevect:or s_ such that (3 o 21) again holds., (The 

roles of k and k 9 are interchanged in the second process for 

simplification in the following results.,) Using the 

.transition probcLbilities (3o9) and (3ol0) (with k and k' 

interchanged in the latter) multiplied by the appropriate 

Fermi factors, 'VTe obtain, summing over k, K , and spin a -n 

(k v is then fixed by (3. 21) since we know- 9) and omitting 

the sum over j since we are considering a particular 

polarization branch: 

an . 
9_] 

at]scatt = 2: 
kcrK 
- -n 

where we have also used (2.32) and the fact that the delta 

function is eve:n., In the equilibrium situation the rate of 

change (3o22) ffi'lSt J;>e zero and we have the condition 

0 0 0 
fk' (1-f.k) (n .+1) . q] 

(3., 23) 

Using the expressions (3.,15) and (3.16) (for the distribution 

functions in terms of the deviation functions) apd the 

condition (3e23) to expand the factors in (3s22) to first 

order in the deviation functions, we have 
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an . 
9.J 

at]scatt = 
-21T8 
- • .-- L:: 

11 kCJK 
I 1

2 0 0 0 
gkl k . fk(l-fk,)n . (~k+~ .-~k,) 

- , _; J ~ S,J - q] 
- -n 

By the definition (3.18), we obtain 

an . 
~J 

at]scatt = - s E 
kCJK 
- -n 

k' P- . k;q] 

(3. 24) 

(3.25) 

We may summarize the results of Sections 3.1 and 3.2 

in a convenient~ form by combining Eqs. (3. 4) and (3. 20) and 

Eqs. (3.5) and (3.25). The coupled linearized Boltzmann 

transport equat:ions for the electrons and phonons in the 

absence of a magnetic field are, to first order in the 

deviation functions, 

a£ 0 
k --= V • {eE ae: -k -
k -

and 

- 8 

VT} 

>: 
kOK 
- -n 

k' P­k;qj (3.27) 

We note that the situation in which the phonons are 

in equilibrium, expressed mathematically by 



and 

0 
n . = n . 

9:,] 9:.J 

'¥ • = c 
st,J 
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ll 

is often considered, in which case the linearized Boltzmann 

transport equat~ion for the conduction electrons in the 

absence of a magnetic field is (from (3o26)) 

af0 
k 

__=: V e {eE -
dE: -k -

k -. 

where 

VT} = (3.,28) 

i) 0 
We have used n~lj = n-qj, which follows from wj (q) = wj (=g), 

the definition::; (3 .. 18) and (3 .. 19), and Eq. (3 .2) (to express 

0 0 (n .+1) in terms of n .) o 

S[J q) 



CHAPTER IV 

FORMAL TRF.NSPORT THEORY~ VARIATIONAL METHOD 

4.,1 General Formulation 

The use~ of a variational principle to solve the 

coupled Bol tzmcLnn equations (3., 26) and (3 .. 27) is discussed 

by Ziroan (ll) u and we follow his formulation with slight 

changes in notationo We note that Ziman discusses in 

detail only thE~ case where the phonon system is assumed to 

be in equilibrium (' . ~ 0); therefore, we present some of 
9_] 

the details of the more general formulation including 

0 phonon drag ef::ects (n . :I n . ) , for which Ziman gives only 
9:_] S.J 

the results., It is important to note further that Ziman's 

expressions ignore dependence on the phonon branch index j., 

In cal•Julations which include phonon drag, it is 

usually assumed that (llu 12 u lJ, 14 ) 

\}' · - o/a (4.1) 9.J .:&!!, 

for j = lv 2 8 .,e.,, 3rc This is the case if we assign only 

wavevector (S,) dependence to the phonon deviation function, 

and assu~e it is independent of energy (~wj{~)) and 

polarization vector (£(Kj~j)) o The use of a branch-dependent 

30 
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phonon deviation function leads to a complexity in the 

formalism (for example, it would be necessary to introduce 

3r trial functions instead of the single trial function given 

by (4ol9)) which seems unwarranted in the present context; 

hence we adopt the convention (4Ql) o In this caseu the 

Boltzmann equation (3 .. 26) for the conduction electrons may 

be written as 

a£0 
k 

= --= V ~ {eE ~ 
dE -k -k -

'7T} 

where, by sununing (3olB) and (3 .. 19) over j, we have 

and 

(4. 4) 

The Boltzmann equation for the phonons (3.,27), summed over 

j, becomes 

0 an I 

9_] 
= E -- V . • V'r = S j 3T -q] 

E 
k<JK 
- -n 

(4. 5) 
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Using (2.,32)r (3~12), and the even property of the delta 

function,- it is easily shown that 

as expected., 

We next consider some definitions necessary for the 

formulation of the variational principle. A vector 

function of k and ~ may be formed from the deviation 

functions: 

(4., 7) 

Using the R .. H.S., of the Boltzmann equations (4.2) and {4.,5), 

we define an operator P which acts on 1 by 

where 

{4 "9) 

is a function of k and 



p2 (_2) = f3 l: 
· kcrK 
~ -n 
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is a function of g., Finally, for two vector functions of k 

and 51., 

and 

\'Te define an inner product by 

<<f>l,cp,..> 
- -L. 

l: 
q 

(F., B. Z.) 

Writing the LeH~So of the Boltzmann equations (4o2) and 

with 

. af~ (Ek-p) 
x

1
·{k) ·- - -= V ~ {eE - T VT} 

ae:k -k -

e (4.11) 
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and 

(4.,14) 

we may summarize the electron and phonon Boltzmann 

equations in thE~ form 

X ;:::: p (~J 

where explicit dependence on k and ~has been suppressede 

If 

and 

by (4.11) and (4o8), 

We use the expressions (4 .. 9) and (4el0), interchange k and 

k' in the second term of the first summation and use (4e6); 

in the second summation, the sum over k, q and K is - ...... -n 

equivalent to a sum over k and k' with q = (k'-k) • The 
- - R 

result is 

<iv ,P(Q>)> = S 2: 
kcrku 

In particularv 

(4.15) 
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(4.,16) 

The operator Pis obviously linear from its definition (4o8); 

moreover; from (4ol5) we have <1',P(1)> = <1,P(1')>;.and 

from (4.16) we hav~ <!,P($)> ~ 0~ From these properties one 

. can prove (ll) the variational principle: Of all functions 

1 which satisfy <i,P(!)> = <i,X>, the solution 

$(k;q) = (~k''g} of the coupled Boltzmann equations (4o2) 

and (4 ~ 5) giveE. to 

<_p _ _,!: (~) > 

. {<_tuX> J 2 

its minimum valuec 

(4"17) 

In orde~r to apply the variational principle to the 

calculation of transport coefficients, we expand the 

deviation func1:ions in terms of known trial functions 

<I> = k i==l 
n. <1>. (k) 

JL ~ -

where ni (i = 1, ..• , M) and nL are arbitrary coefficients 

to be determin,2!d by the minimization of ( 4 .. 17) G Contact 

with transport properties is made by noting that the 

electric current density 
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may be written, using (3ol3), (4.18}, and the fact that J is 

zero in the equilibrium situation, as 

1 
M 

J = n I: n.J. 
i=1 l.-l. 

where 

a£ 0 
k 

J. = - I: eVkcj>i(k) 
ae:k -J. kcr 

for i = 1, • • "' I M. 

If we introduce 

JL = 0 

we may write (4 .. 20) in the convenient form 

1 
J = n I: 

:L=1, .... ,M;L 
n.J. 
l.-l. 

Furthermore, the heat current density, given by (11 , 15) 

I: 
qj 

(F. B. Z.) 

V .1i.w . (g) n . 
--s[J J StJ 

may be written, using (3 .13), (3 .14), (4 .18), (4 .19), and 

the fact that Q is zero in the equilibrium situation, as 

(4.20) 

(4 .. 21) 

(4 .. 22) 

(4.23) 



1 
U=n. t .n.u. 

Ui ~-J_ 
J.=l, ••• ,M;L 

where 

fori= 1, ••• , M, and 

where 

UL = t 
qj 

(F. B. Z .. ) 

0 an . 
9_] 

Yaj-fiwj (q) cpL (g) d (1l<D. ( q) ) 
;:a. J -

Using (4.18) and (4~19) in (4.16), we have 

t n ·n .P .. 
• :L J ~] 
~=l, ••• ,M;L 
j=l, ••• ,M;L 

P .. 
l.J 

= B E 
kcrk' 

k' [ cp. (k) -cp. (k')] [ ¢ . (k) -cp. (k')] 8 (k, k) Pk- q 
.1. - l. - J - J - - ,n ; - -R2- --

for i = 1, ••• , M and j = l, ••• , M, 

PiL = B E 
kcrk' 

for i = 1 , ••.. , M, and 

PLL = B t 
kcrk' 
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(4.24) 

(4 .25) 

(4" 26) 

(4.27) 

(4.29) 

(4. 30) 
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From ( 4 e 11) I ( 4 e 12) I ( 4 " 18) I ( 4 • 19) I ( 4 • 21) I ( 4 • 2 2) I 

(4.25)1 and (4.26)1 and also 

we have 

-·bw. (g) 
J 
T 

<j_ 1 X> ·- I: 

0 an . 
g,J 

d en:w. (q)) 
J -

I 

i=l, .... 1 M;L 
n . [ J . • E - 1 U . • VT] 

J. -J. - T ~J. (4 .. 31) 

Using (4.27) and (4.31) we minimize (4~17) with respect to 

ni (i = l1 .•. , M) and nL; moreover, these parameters are 

determined by this procedure and we then use them in (4 .. 23) 

and (4.24) e The result is (l1 ) 

J 1 }: 
-1 

J. •E 1 }: 
-1 

U. ·VT (4.32) = n J. (P ) .. - r2T 
J. {P ) .. 

ij -J. J.] -] - ij -J. J.] -] 

u 1 }.; 
-1 

J. ·E 1 l: -1 U. e'i.JT (4.33) = n U. (P ) .• - QT U. (P ) .. 
ij -J. l.J -J - ij -J. l.J -J 

where the sum is over i = 1, • • • I M;L and j = 1, • • • I M:L, 

and P -1 is thE! inverse of the matrix P ..• 
1.] 

The transport 

coefficients such as electrical resistivity, thermal 

conductivity, and the thermopower can be obtained directly 

from (4.32) and (4.33). 
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4., 2 Phon·on-Lini ted Electrical Resistivity 

In this section we derive a formula for the ideal, 

phonon-limited electrical resistivity in terms of effective 

phonon frequency distributions, and demonstrate that this 

reduces to the forms previously obtained (20
r 

21 , 22 , 23) 

for a spherical Fermi surface (FoS .. )., The electrical 

conductivity b~nsor, g, is defined by 

J = cr • :8 = ·-

Using (4.,32) in the absence of a temperature gradient, we 

have 

1 -1 __ cr = n L J. (P ) . . J. 
l'lt. -1. ~J -] ij 

(4.,34) 

where i,j = 1, ooo 1 M;L., If we neglect phonon drag effects 

by assuming 

'¥ - (l q 

which 11 according to Bass (l 6), is likely to be a good 

approximation for most metals above 5-l0°K, and use only a 

single trial function <t> 1 (k), {4.34) becomes· 
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We note that calculations involving more than one trial 

function could be done by using (4.34); Greene and Kohn ( 2S) 

and Ekin and co-workers ll?, lB) have done this for the case 

of a spherical F.S •• 

For the trial function.we use the usual (ll, 12 ) 

lowest order approximation 

(4.36) 

where T is some characteristic relaxation time (which is 

unimportant since it will cancel out in (4.35)). One way of 

motivating this choice is to consider the Boltzmann equation 

for the conduction electrons, (3.4), in the absence of a 

temperature gradient, 

afk 

at-1scatt , 

and make the phenomenological assumption 

afk 

at-1scatt = 

(7) 

The use of definition (3.13) then leads to the solution 

(4. 37) 

(4.36). We stress that we are not making the approximation 

(4.37) in the following; we simply use (4.36) as a given 

trial function. 

It is shown in Appendix A that the use of the trial 

function (4.36) in the expression (4.35) for the conductivity 

tensor leads to the form 
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where the surface integrals in k-space are over the Fermi 

surface, ~ is a unit vector in the direction of E, and V 

denotes the variational method. The approximations used in 

deriving (4.38) are discussed in Appendix A, and the function 

R(w) is defined by 

R (0J) 

We note that R(w) also depends on the temperature. 

The electrical resistivity tensor, g, is the 

inverse of the conductivity tensor g, 

and therefore f4.38) gives us an expression for the 

resistivity gv in the variational method. 

So far we have not utilized any of the symmetry 

(4.40) 

properties of t:he crystal lattice involved; however, we now 

specialize our results and consider a lattice with cubic 
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symmetryc In this case, the conductivity tensor is 

0 0 0 

g = 0 CJ 0 (4 .. 41) 

0 0 CJ 

For a lattice with cubic symmetryr the F.S~ must 

also have this symmetry; therefore, suppressing k dependence, 

I ds v2 = m x 
F.S. -

whereas cross terms such as 

I 
dS V V = 0 TVT X y 

F.S. 

, 

dE:k 
- 1 -This is easily seen from the definition Vk = ~ ~ . 

Consider the x~~component of 

I 
dS lvl v V·u 

F.S. 

which is, by (4.42) and (4.43), 

Thus we have 

(4.42) 

(4.43) 
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The tensor character of (4.38) is now given by the dyadic 

BBi moreover, this may be replaced by unity in the scalar 

conductivity a defined by (4.41), since~ is a unit vector. 

Since the x, y, and z directions are equivalent in cubic 

synunetry, we may average over directions of u. and replace 

[(yk-y_k,)·~) 2 by~ lvk-Vk,! 2 in the denominator of (4.,38) .. 

The resultant resistivity from (4~38), (4.40), and (4.,41) is 

(4 .. 44) 

where the tempe!rature (T) dependence is now explicit and we 

again note that R(w) also depends on T. 

We now proceed to the definition of effective phonon 

frequency distributions analogous to those previously 

used (20, 21 , 22 , 23 ) for a spherical F.S •• For convenience, 

we incorporate a volume factor in the electron-phonon 

coupling constant: 

2 
= n I gk , , k; j I (4.45) 
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In practical tf:rms, this means that the factor of ~ in the 

square root of Eq. (2 .. 27) is replaced by (rn 0), where r is 

the number of ions per unit cell and n0 is the volume per 

ion. We define the isotropic (transport) effective phonon 

frequency distribution by 

- 2 1 
X L I gk I k • . I fi 0 ( w-w . ( k I - k) ) 

• I t] -J - -
J - - -

where the subscript tr denotes transport. It is convenient 

at this point i:o also define an anisotropic (transport) 

effective phonon frequency distribution by 

1
... 12 1 x I: gk , k • . r o { w-w . ( k 1 

- k) ) 
· , ,J n J - -
J - -

(4 .. 47) 

From (4.46) and (4.47), we then have 

dSk 
= 1 J - jv 12 82 F( k) 

4 7111 I V k I -k tr w '-
F .S. -

{4.48) 

The reason for the choice of numerical coefficients in 

(4.46) and (4.~:7) will become evident in the following. 
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For the case of a free-electron spherical FuSe, the 

anisotropic and isotropic transport effective phonon 

frequency distributions previously used (20, 21 , 22 , 23 ) are 

N(O)F.E. J 

dnk. 
47T (1- cos(k,k')) 

F.S. 

X L I gk I k I I 2 12- 0 ( w-w I ( k I - k ) } 
j - ,_;] -n J - -

(4 .. 49) 

and 

J , (4. 50) 

where the integrals are.over a solid angle at the F.So, 

cos(k,k') is the cosine of the angle between k and k' (which 

are on the F.S.), and 

N(O)F.E. (4.51) 

is the free-ele~~tron single spin density of states in energy 

at the Fermi en1:rgy £F, with m the electron mass and kF the 

!- 2 2 Fermi wavevecto:i:- defined by £F = n kF/2m • 

For a free-electron spherical F.S., Vk 'h = m k, and 

F.S. F.S. 



therefore, the distributions (4o46) and (4o47) take the 

forms 

and 

2 
[StrF(w)]spherical 

F .. S., 

46 

2 2 Since atrF(w) and atrF(w,k) are dimensionless, we see from· 

(4 .. 52) and (4o53) that st2 F(w,k) is dimensionless whereas r -

S~rF(w) has dimensions [(length) 3 (mass)]-l .. 

Consider now the expression (4 .. 44) for pv(T) o The 
"I 

factor IV k -v k, I £, is v on expanding, 

hence 1 if we interchange k and kv in the integration of the 

middle term above (noting that lg !2 and w. (k'-k) k I ,k; j J - - are 

invariant under this interchange), we may replace this 

expression by 

Then (4 .. 44) and (4c46) lead to the expression 
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The notable feature of this expression is that, aside from 

the 1/T factor, all temperature dependence is contained in 

the function R(u)) s The effect of the phonons is contained 

in S~rF (w) and i:his need only be calculated once., and not 

for each temperatureo 

For the case of a free-electron_ spherical FoS&, we 

have from (4~54) and (4o52), 

[pv(T)]spherical 
F~So 

J
oo 

m 4TI 2 = ~2 k T dwR(w)a.trF{w) 
ne B 0 

where 

is the number of conduction electrons per unit volumeo 

Equation (4 .. 55) is the usual result (2l, 23 ) for a 

spherical F"S"o 
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4 .. 3 Thermal Resistivity (Electronic Contribution) 

In this section we derive a formula for the idealu 

phonon~limited electronic contribution to the thermal 

resistivity in terms of effective phonon frequency 

distributions in which we do not assume the F"S" to be 

spherical" The thermal conductivity tensor, ~f is defined 

by 

U = = ~e\/T 

where U is the ::1eat current density (Section 4 .. 1)., 

According to Ziman (ll), the usual experimental situation 

for measuring thermal conductivity is that the electric 

current density J is zeroo Considering Eqe (4.32) r we 

would have an equation for E in terms of 'VT (related by 

the thermopower) which could be used in Eqo (4o33) for Uo 

It is conventional (ll) to ignore this (thermopower) 

contribution to the thermal conductivity, in which case 

we obtain from E!q., ( 4., 33) 

1 -1 
__ K = nT :~ U. (P ) . . U . 

~li -~ l.J ~J ij 

where i,j = lu oGOi MuLo We shall neglect phonon drag 

effects and use only a single trial function ¢2 (k}u and 

we then have 

(4.,56) 
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Calculations involving more than one trial function could 

be done by using (4o56) and Ekin (24 ) has done this for the 

case of a spherical FoSco 

For the trial function we use the usual (ll, 24 ) 

lowest order approximation 

V ~ 'VT 
-k 

where T is some characteristic relaxation time (which is 

unimportant sin.:::e it cancels in Eq. (4.57)) o This choice 

(4.,58) 

can be motivated by considering the Boltzmann equation (3o4) 

for the conduction electrons in the absence of an electric 

field, 

afk 

= at-]scatt fl 

and again makin9 the phenomenological assumption (4o37). 

By definition (~lol3) this leads to (4.58), but we stress 

againf as in Section 4.2, that we do not make the 

approximation (4,.37) and we simply use (4o58) as a given 

trial functiono 

It is shown in Appendix C that the use of the 

trial function (4o58) in the expression (4e57) for the 

thermal conductivity tensor leads to the form 
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where the surface integrals in k-space are over the Fermi 

surface (F. S .. ) ,, ~ is a unit vector in the direction of VT, 

V denotes the variational method, and R(w) is defined by 

(4.39) and depends on the temperature (T).. The 

approximations used in deriving (4.59) are- discussed in 

Appendix C. 

The thE~rmal resistivity tensor, ~, is the inverse 

of the thermal conductivity tensor, 

-1 
~ = ~ , 

and thus (4.59) gives us an expression for the electronic 

contribution to the thermal resistivity, l§._v, in the 

variational me1:hodo 

The result (4.59) is general in that we have not 

(4.60) 

used any of th(~ symmetry properties of the crystal lattice 

involvede We now specialize our results to consider a 
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lattice with cubic symmetry, in which case 

K 0 0 

0 K 0 

0 0 K 

For cubic symmetry we may write 

as in Section 4"2, and by (4 .. 61) the dyadic !!!:! in (4.,59) may 

be replaced by unity in the expression for the scalar 

v thermal conductivity K o The equivalence of the x, Y 11 and 

z directions in cubic symmetry implies that (Vk·~) 2 may be 

1 I 
1

2 1 replaced by 3 ~:k and (Vk e~) (Vk I~~) by 3 vk ·vk I in (4 .. 59) 

by averaging ove~r directions of u. The resultant 

electronic contribution to the thermal resistivity is 
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where t:he tempe:rature dependence is now explicit and we 

recall that R(w> also depends on the temperatureo 

In addition to the transport effective phonon 

frequency distributions already defined in Section 4o2, we 

shall introduce another two which are generalizations of 

·the anisotropic and isotropic distributions for a spherical 

FoS~ (4 , G, 23 ), which are given by 

and 

2 a. F(w) = 2 
ex F(w,k) (4 .. 64) 

As in (4.49) and (4.50), the integrals are over a solid 

angle. at the FoS~, and N(O)F.E. is given by (4.51)., We 

define the isotropic effective phonon frequency distribution 

by 

X L 
j 

and the anisotropic distribution by 
<? 



From (4o65) and (4o66) we see that 

We recall that 

1 
4'IT'h 
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As in Section (4o2), for a free=electron spherical FoSo~ we 

have the relations 

and 

2 
[B F(w}]spherical 

FoSo 

3 
kF 2 = - o: F (w) 
m 

2 2 
[SF(w,k)]spherical =a F(w,k) , 

F .. So 

which imply that S2F(w,k) is dimensionless whereas s2F(w) 

has dimensions [(length) 3 (mass)]-lo 

We now consider the expression (4o62) for the 

thermal resistivityo Using the definitions (4.46) and 

(4o65) and the Lorentz number (ll) 

{4. 69) 
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we have 

rdwR(w) [ (1 

0 

This expression has the advantage that the effect of the 

phonons is contained in the distributions S~rF(w) and 

s2
F(w) which are independent of temperature and need only 

be calculated oncee 

For the case of a free-electron spherical FoS., we 

have , from ( 4 D 71) u ( 4 • 52) u and ( 4 .. 6 8) , 

[WV(T)]spherical 
F.S. 

= 1 m 4n foodwR(w) 
LOT ne2 kBT 

0 

1 bw 2 2 
x [(1 = -2(k T) )at F(w) 

2'1T B r 

(4.,71) 

(4 0 72) 

where n, the nu~ler of conduction electrons per unit volume, 

is given by 



CHAPTER V 

FORMAL TRANSPORT THEORY: SCATTERING TIME APPROXIMATION 

5.1 Phonon-Limited Electrical Resistivity 

In this section we obtain a formula, written in 

terms of the anisotropic transport effective phonon 

frequency distribution defined in Section 4.2, for the 

ideal, phonon-limited electrical resistivity in the 

scattering time (SeT.) approximation introduced by 

Robinson and Dow ( 26 ). Our formulation will not assume a 

spherical Fermi surface, and cubic symmetry will be 

introduced as a special case. 

Neglecting phonon drag effects (see Section 4.2), 

the linearized Boltzmann transport equation for the 

conduction elec:trons ( 3. 2 B) is, in the absence of a 

temperature gradient, 

k' where Wk is given by (3.29). In the scattering time 

method, the electron deviation function ~k is written 

(9, 26, 27) as 

55. 

(5 .1) 

(5.2) 
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in terms of an unknown vector mean free path for the 

electrons, Ak, which is independent of'~· pince Ak is 

approximately :parallel to the electron velocity Vk,.·1 a 

temperature dependent anisotropic scattering time, T(k,T), 

may be defined by the approximation <27 ) 

( 5 e 3) 

At this point '>Je note the similarity of ( 5. 2) and ( 5. 3) to 

the elementary solution (4.36) of Section 4.2Q Robinson 

and Dow ( 26 ) showed that it was possible to obtain an 

approximation t:o the scattering time T (k ,T) from the 

Boltzmann equation (5.1) (We note that Robinson and Dow 

considered cub:~c systems and assumed a spherical F.S. in 

their calculations.). 

It is shown in Appendix D that inserting the 

deviation funci:ion (5.2) in (5.1) and integrating over sk 

leads to 

X E I gk I k . . I 2 0 ( w - w . ( k I - k) ) 
j - , .!.' J J - -

where k is on t~he F.S., R(w} is given by Eq. (4.39) and 

depends on the temperature, (3.29) has been used, and the 

surface integral in k'-space is over the Fermi surface. 

( 5. 4) 
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Using (So3) we may write 

where the temperature dependence has been suppressed~ We 

use (5oS) in (5a4) and take the dot product of Vk (k on the 

FoS.) with Eqe (5.4) to obtain 

vk ·•vk. 
+ [T(k)- T(k')] 1Ykl2}; lgk',k;ji20(w-wj(Js'-k)) 

{50 6) 

where k is on the F.,S.,o 

The first term in brackets in (5.6) may be written 

as 

Jvk,l 
T (k) [1 ~· ..,...~..,-- COS (Vk v Vk u)] 

IVkl 

where cos(Vk' Vk,) is the cosine of the angle between Vk 

(50 7) 

and Vk'' hence, it is expected to be mainly positive and, in 

factv for a sphE~rical F~S. it would be strictly greater than 

or equal to zeroo The second term in brackets in (5.6) may 

be written as 
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and is both positive and negative, and has a number of 

zeroes not shared by (So7) D It vanishes for scattering by 

90° when the cosine vanishes; moreover, whenever k' belongs 

to the star (2B) of ku T(k') will be equal to T(k) by 

symmetry and (5.8) will again vanish (for a general point k 

this will happen 48 times in cubic symmetry, 24 times in 

hexagonal symmetryu and so on)~ The positive and negative 

contributions to (5.,8) will lead to cancellations, and we 

make the reasonable approximation of retaining only the term 

(5G7}" Writing (5.,6) in the form 

1 
T(k) 

our approximation can also be viewed as the first iteration 

of (5e9). Further iterations could be carried out, but the 

considerable increase in computational labour seems 

unwarranted at presentc 

Using the definition (4o47) of the anisotropic 

transport effective phonon frequency distribution 

2 StrF(wuk), we have, as a first approximationu 
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(5 .. 10) 

We recall that R(w) depends on the temperature whereas 

2 StrF(w,k) does not, and need only be calculated once and not 

for each temperature .. 

For a spherical F.S. we have, by (4.53), 

1 
[ T (k, T) ·] spherical 

- F.S. 
( 5" 11) 

which is the usual (2l, 29 ) result. 

We now obtain an expression for the phonon-limited 

electrical resistivity in terms of the scattering time 

defined by {5.10). The electric current density is 

as in Section 4.1. Using the fact that J is zero in the 

equilibrium situation we may subtract a contribution with 

0 fk replaced by fk, and use (3.13) to write 

-2e 
J = ---;::;- z:: vk q, k -') -

H, k __ oE:k 

in terms_of the electron deviation function 4>k, where the 

factor 2 comes from the sum over spin. From (5.2) we then 

have 



and therefore the electrical conductivity tensor is 

') 
-2e'"' 

g = -('1-- l: Vkll.k -"" -
,H k __ oEk 

With the approximation (5~3) the conductivity is 
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( 5 ~ 13) 

where ST denotes the scattering ·time approximation., Using 

(A.,4), (A.S), and (A.7) of Appendix A, (5.13) becomes 

gST{T) (5.,14) 

where we have neglected derivatives with respect to energy 

(evaluated at th= F.S.,) of electron velocities, the 

scattering time, and the surface element. The resistivity 

tensor is then given by 

in the scattering time approximation. 

We now specialize our results to a lattice with 

cubic symmetry, in which case the conductivity is 



1 o = - Tro 
3 = 

where Tr denotes the trace~ Thus we have 

For purposes of comparison, we note that the variational 

method formula (4.54) can be written in terms of the 

scattering time defined by (5.10) as 

where we have used Eq. (4.48). 
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(5. 16) 

(5 .17) 

For the case of a free-electron spherical F.S., we 

have the usual result (2 l) 

ST 
[p {T)]spherical 

F.S. 

.. m .... "1 
= --2 -<-T.'""T(k~, T.,..,..._) -:> 

ne -

where n is the number of conduction electrons per unit 

volume and 

dQk 

<;L(k,T)> = f 41! 
F.S. 

[ T" ~k 1 T) J spherical 
F.S. 

(5 e 18) 

(5 .19) 

In (5.19) T (k,T) is. given by Eq. (5.11). By (4.50), (4.55), 



and (5.11) the variational method result is 

[pv(T)]spherical = 
F.S. 

m 1· . 
--2 <T {k, T} > 
ne 
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(5.20) 

where again T(k,T) is given by (5.11). Robinson and Dow (26 ) 

have pointed out that the variational formula (5~20) is 

equivalent to summing partial resistivities whereas the 

formula (5.18) is equivalent to summing partial conductivities 

which is more physical. 
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5,2 Thermal Resistivity (Electro·nic Cont·rtbution) 

In this section we derive an approximate formula 

for the ideal, phonon-limited electronic contribution to 

the thermal resistivityf written in terms of the effective 

phonon frequency distributions defined in Sections 4o2 and 

4 .. 3. vie use a scatteri~g time (S .. T .. ) approximation 

analogous to the one introduced by Robinson and Dow (26 ) 

for the electrical resistivity. As in Section 4o3, we take 

E to be zero, ·thus ignoring thermopower contributions to the. 

thermal resistivity. Neglecting phonon drag effects, the 

linearized Boli:zmann transport equation for the conduction 

electrons (3 .. 23) is 

V •VT -k 

where ~· is given by Eg> (3 .. 29) .. 

(5 .. 21) 

Having noted in Section 5.1 the similarity between 

the deviation function {5e2) in the scattering time 

approximation (5.,3) and the elementary solution (4 .. 36) for 

the case of·electrical resistivity, we are guided by the 

elementary solution {4.58) for the thermal resistivity case 

to write the deviation function .q>k as 



where. A~ is an unknown vector mean free path for the 

electrons., ThE! superscript W (denoting the thermal 

resistivity) is used to disti~guish this mean free path 

from the one in Section 5 ,.1.. We then make the S ... T. 

approximation 

where TW(k,T) is a temperature dependent anisotropic 

scattering tima for thermal resistivity w... From the 

Boltzmann equation (5 .. 21) it is possible to obtain an 

approximation to the scattering time TW(k,T) as we now 

demonstrate. 
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(5" 2 3) 

In Appendix E it is shown that inserting the 

deviation function (5.22) in the Boltzmann equation (5~21), 

multiplying both sides by (e:k-~), and int~grating both 

sides over e:k leads to 

vk = _sn IoodwR(w) 
.. , 2.,.e2 
~.'IT "ll 0 

" ( 11 w 11 w ) + 3 (11w ) 2 Aw · } ~ I 1 2 .(' ( (k, k) ) 
" .:.:k-.::k I 2"7 kB T . :....k I j g k I , k I j u w ~ w j - -=-

(5.24) 

where k is on the F.S., R(w} is given by Eq. (4Q39) and 

depends on temperature, (3 .. 29) has been used, and the 

surface int~g:ral in k '~space is over the F., S., ., 
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We now ·take the dot product of Vk (with k on the 

F.S.) with Eq. (5.24). The dot product of Vk with the 

quantity in bra,:kets in ( 5., 2 4) is, using the approximation 

(5.23), 

where explicit ·temperature dependence has been suppressed. 

This may be written in the form 

Thus we have 
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1 hw 2 r + ( l = -2 { k T) ) [ TW ( k) - TW ( k ) ] 2 
2rr B lvkl 

The redaction of (5 .. 25) to a form from which we can 

obtain a reasonable first approximation to the scattering 

time is not as straightforward as in the electrical 

resistivity cas~~ of Section 5o 1 because of the presence of 

thermal factors and the middle term in bracketso However, 

the first term in brackets is mainly positive (and in fact 

would be strictly non-negative for a spherical FoSo) whereas 

the third term is both positive and negative and therefore 

cancellations w:Lll occur.. The third term has the zeroes 

mentioned in Section 5.1 due to the Vk .. Vku factor and the 

symmetry of the scattering times.. In addition we note that 

the delta function restricts w to be less than the maximum 

phonon frequency and the thermal factor R{w) is a rapidly 

decreasing func1:ion of ~w T and thus . gives higher w values 
B 

lower weights. Thus we drop the third term, but we shall 

retain the second as well as the first, even though it also 

alternates in sign and may have a small coefficient if 
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(~w T) is small. This can be partially justified by noting 
B 

that the·third term still has additional zeroes (those 

required by thE! symmetry of the scattering times) not shared 

by the second t.erm.,, Alternatively, we can look at our 

resultant approximation {5.,26) as the first iteration of 

(5.25}., Further iterations could of course be done, but 

the resultant increase in computational labour is not 

warranted at present~ We also note that our approximation 

leads us to a scattering time which will be seen to be 

present in the variational formula for the thermal 

resistivity (see Eq .. (5. 32)) o 

In this approximation we then have (for k on the 

Vk·Vku 
--=--] 
jvkl2 

X l: I gk g k •. 1
2 

cS ( w - w . (k I-k) ) 
• i ,] J - -
J - -

with the temperature dependence of the scattering time now 

explicit. Using the definitions (4~47) and (4.66) of the 

anisotropic effective phonon frequency distributions, this 

may be written as (k on the FaSa) 
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(5 .. 27) 

The function R(w) depends on the temperature; however, the 

effect of the phonons is contained in St2 F(w,k) and 
r -

S2F(w,k) which need only be calculated once.. For a 

spherical F.S. we have, by (4.53) and (4.69), 

1 
[TW(~,T) 1 spherical 

F.S. 

where k is on t:~:1e F. S .. 

(5.28) 

We now obtain an expression for the phonon-limited 

electronic contribution to the thermal resistivity in terms 

of the scattering time defined by (5 .. 27). The heat current 

d ' u ' . b (11, 15) 
ens~ty _ ~s g~ven y 

as in Section 4 .. 1, where the phonon contribution vanishes 

since the phonons are in equilibrium (by our assumption of 

no phonon drag effects). U must be zero in the equilibrium 

situation; therefore, subtracting a (zero) contribution 

0 with fk replaced by fk, and using (3.13), we have 
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where ~k is the electron deviation function. The sum over 

spin gives a factor of 2, and the use of (5.22) and the 

definition of ·the thermal conductivity tensor ~ , 

U = - ~i • 'i/T , 

leads to 

With the S.T. approximation (5.23), and using {A.4), (A.S), 

and {A.7) of Appendix A, this becomes 

~ST{T) {5.29) 

where the Lorentz number is 

and we have neglected derivatives with respect to energy 

(evaluated at the Fermi energy) of the surface element, 

electron veloci·ties, and the scattering time. The 

superscript ST denotes the scattering time approximation. 

The thermal resistivity tensor is given by 
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We now :3pecialize our res~lts to a lattice with cubic 

symmetry in whi<:=h case the thermal conductivity is 

1 
K = J T:c~ 

where Tr denotes the trace. By (5.29) and (5.,30) we have 

(5.,31) 

for the thermal resistivity., We compare this with the 

formula (4.71) in the variational method, which may be 

written in terms of the scattering time defined by Eqc (5.27), 

by use of (4"48) and (4.,67), as 

1 = L0T 

dSk 

3 I IVkl 
12'IT 11 F.S., -

IV 12 1 
-k T (k,T) - . w-

2 
e 

dS 

J 
k 2 2 

[ lvkl lvkl ] 
FoSo -

Comparing the relationship between (5.32) and (5.31) to that 

between (5.,17) and (5016), we see that we might have 

predicted the form of Tw(k,T) (Eq. (5.,27)) from the 

variational method formula (4.71)1 however, as we have seen, 

the approximations made in deriving (5.27) are not as 

obvious or as justifiable as those leading to the scattering 
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time for electrical resistivity., 

For the c~se of a free-electron spherical F.S.,, we 

have 

where 

[WST (T) ·1 
spherical 
F .. S~ 

ank 
<Tw(k,T)> = J 4TI 

F .. S., 
[Tw(k,T)]spherical 

F.,S. 

, 

n is the number of conduction electrons per unit volume, and 

the scattering time is now given by Eq~ (5.,28)., The 

variational formula is 

[WV(T)]spherical 
F .. S., 

with the scattE~ring time again given by ( 5 .. 28) .. 

(5 .. 34) 



CHAPTER VI 

ELECTRICAL RESISTIVITY OF DILUTE Zn ALLOYS 

6.1 Introduction 

In Section 5.1, the electrical resistivity of pure 

single crystals of simple metals was expressed in terms of 

an anisotropic, temperature-dependent transport scattering 

time for the co:nduction electrons; this scattering time 

concept can be 9eneraliz.ed (30 ' 31 ) to dilute nonmagnetic 

substitutional alloys of simple metals. In this chapter we 

show that the change in scattering time anisotropy resulting 

from the addition of small amounts of impurities to pure Zn 

leads to measur,:tble changes in the temperature dependence 

of the resistivity ratio pll/pl; pll(pl) is the electrical 

resistivity with the electric field parallel (perpendicular) 

to the c-axis. We also calculate the corresponding 

deviations from Matthiessen's rule for polycrystalline 

samples. 

The arrangement of ions in hexagonal close-packed 

(h.c.p.) metals such as Zn consists of two interpenetrating 

simple hexagonal sublattices, and this crystal structure 

may be analyzed in terms of a unit cell containing two 

ions (4 , 23 ) (this implies that r = 2 in the results of 

72 
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Chapter II) . We note that it is conventional to refer to 

the z-axis as the c-axis in discussions of the hoc.p. metals. 

Furthermore, the electrical conductivity tensor in h.c.p. 

metals is given by 

0 0 

g = 0 

0 

and therefore the electrical resistivity tensor, g = g-1 , is 

0 

g = 

0 

0 ( 6 .1) 

where pi I (pl) is the electrical resistivity of the specimen 

with the electric field parallel (perpendicular) to the 

c-axis. 

Theoretical results for the temperat~re (T) 

variation of the resistivity ratio Pj I (T)/pl(T) of pure 

single crystal Zn have been obtained by Truant and 

Carbotte ( 29 ), using the concept of an anisotropic 

scattering time solution of the Boltzmann transport equation. 

They found that the scattering times due to the electron-

phonon interaction are very anisotropic as a function of 

position on the Fermi surface (F.S.). The amount of 
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anisotropy decrE~ases with increasing temperature, but it is 

still significant at higher temperatures.. The change in 

anisotropy with temperature implies that pi 1/pl in pure Zn 

depends on temperature, and the temperature variation 

calculated by T::uant and_ Carbotte <29 ) is in qualitative 

agreement with t~xperiment. 

More recently, Kus and Carbotte (JO, 31 ) have 

developed a theory of deviations from Matthiessen's rule 

for the resistivity of dilute metallic alloys, and this has 

been quite successful in applications to K, Li, and Al. The 

theory is based on the simple idea that the ideal (pure 

metal) scattering times are very anisotropic and that the 

addition of impurities will tend to change this anisotropy 

in the scattering times for the dilute alloy. Matthiessen's 

rule, which sta·t.es that the alloy resistivity at any 

temperature is simply the sum of the pure metal resistivity 

at that tempera-ture plus the residual resistivity of the 

alloy, is valid only when the scattering times are 

isotropic; hence deviations from the rule result, and these 

are of the right order of magnitude and have the qualitatively 

correct tempera·ture variation., The changes in the anisotropy 

of the scattering times on alloying will also lead to 

modifications in the temperature variation of the ratio 

Pll/pl in dilut(:! h.c.p. alloys, and we have calculated the 

magnitude of this effect for the case of Zn. We find that 

small amounts o:E impurities can change this ratio significantly 
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from the predici:ed and observed structure in the T variation 

of p II I p 1 for pure Zno 

In Sect:Lon 6.2 we present the basic theory of the 

effect and discuss the scattering times for Zn. Section 6 .. 3 

contains our results for the ratio pi l/pl as a function of 

temperature and impurity contentr and also our calculations 

of the deviation from Matthiessen's rule for polycrystalline 

sampleso 
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6 .. 2 Theory 

We begin by generalizing the scattering time concept 

of Section SQl to dilute nonmagnetic substitutional alloys 

of simple metals; we note that the scattering time approach 

is much more co::1venient than the variational method approach 

for a simple treatment of dilute alloys.. First of all, it 

is clear that the arguments leading to the expression (5.14) 

for the electrical conductivity tensor do not depend on the 

preceding explicit form (SolO) of the scattering time for 

pure single crystals, but only on the assumption that the 

electron deviation function can be written approximately as 

(6.2) 

in terms of an anisotropic, temperature-dependent scattering 

time T(k,T} for the conduction electrons. Hence we now take 

T(k,T) to be the scattering time for the dilute alloy; we 

will obtain an expression for this alloy scattering time 

which relates it to the ideal scattering time given by 

(5.10). Thus, in the anisotropic scattering time approximation 

for the solution of the linearized Boltzmann transport equation, 

the electrical conductivity tensor g is given by (Eq. (5.14)) 

( 6. 3) 
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where the surface integral is over the F.S •. 

In a pure single crystal the scattering times 

T{k,T) are entirely due to the electron-phonon interaction 

and we will write them as T 0 (k,T). Truant <23 ) has 

calculated T 0 (~_,T) for Zn in a one O.P.W. (orthogonalized 

plane wave) approximation with a spherical Fermi surface 

In this approximation we have, from Section 5.1, 

where {Eq e ( 4 • 4 9) ) 

= 1'1(0))1'.E. f 
F.S. 

ank. 
41T (~ - cos (k,k') 

and .. gk 1 ,k;j is. given by {2.28) or (2.29) with r = 2. The 

method of calculation of transport scattering times in h.c.p. 

metals has been discussed by Truant and Carbotte (4 ) and it 

would be repetitive to give further details here. Thus we 

simply show in Fig. 1 the results for T0 (k,T) in pure Zn ·at 

two temperatures, as obtained by Trua.nt (23 ) and reported 

briefly by Truani: and Carbotte (29 ). For a given temperature 

we have denoted ~~~ 0 (k,T) by T 0 (8,<P), ~here (S,<t>) are ordinary 

spherical coordinates giving the position on the irreducible 

.. i4 'th of the F.S., and the ratio T 0 (8,<P)/T 0 (0,0) is plotted 



Figure 1~ Comparison at two temperatures of the Zn ideal 

transport scattering times as a function of 

posii:ion < e' ¢ > on the Fermi surface 11 with 

T 0 (0r0) = 2.89 X 10-13 sec a at 20°K and 

T
0

(0r0) = 6.,36 X 10-15 sec., at 300°K., 
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as a function of 8 for two constant <P arcs. It is evident 

from the figure that T 0 (k,T) is very anisotropic and also 

that the anisotropy is quite temperature dependent. 

The resistivity ratio for h.c.pQ metals is, from 

( 6 . 3 ) and ( 6 . 1) , 

pI I (T) = 
p 1 (T} dS 

I 
k 2 

jvkl vzk T(k,T) 
F.S. 

where Vzk is the z-component of Vk. We first note that if 

the scattering times T(k,T) were isotropic they would cancel 

in (6.4), and this would lead to a temperature independent 

value for pi l/pl, even though the resistivity itself is, of 

course, a very strong function of temperature. The constant 

value of the resistivity ratio would then depend only on the 

band structure, through'the Fermi velocities Vk and the 

int~grals over the F.S. in (6.4). In the model of a 

spherical F.S. this constant value would in fact be unity, 

and hence deviations from one would reflect band structure 

effects. However, the ideal scattering times in Zn are far 

from being isotropic, as illustrated in Fig. 1, and thus 

(6.4) will depend on temperature. We will concentrate on 

this temperature variation of the resistivity ratio PI 1/pl, 
and discuss, in particular, the effect of the addition of 

small amounts of.impurities. 
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We now wish to find an expression for the alloy 

scattering tim·~s T (k,T). The addition of small amounts of 

impurities to a pure metal opens an extra channel for 

scattering of the conduction electrons and, in the presence 

of both the el·ectron-phonon interaction and impurity 

scattering, the alloy scattering times may be written 

approximately as (30, 31 ) 

1 
T (k 1 T) = ( 6. 5) 

In (6.5), TR accounts for the additional scattering due to 

the impurities, and it is related to the residual resistivity 

m = --2-
ne TR 

, (6. 6) 

where n is the number of conduction electrons per unit 

volume and m is the electron mass. The approximation (6.5) 

is discussed in Appendix F. Although we characterize the 

impurity scattering by the residual resistivity and do not 

concern ourselves with the specific type of impurity, there 

is some experimental evidence to support this viewpoint, as 

stated by Salvadori et al. (3 G) for their results on the 

deviation from Matthiessen's rule (DMR): 
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"The agreement of our results (representing ZnAl 
and ZnAg alloys) with the previous data (including 
mainly ZnCd alloys and various grades of pure zinc) 
seems to indicate the DMR in zinc alloys (as well 
as in aluminum alloys} merely depend on the 
residual resistivity and not on the particular type 
of impurity." · 

We have assumed in (6·. 5) that the residual 

scattering time TR is a constant. Although it is a good 

approximation to take TR to be independent of temperature, 

TR certainly must vary over the F.S.e For simplicity, we 

will ignore this complication here, as it does not affect 

our main arguments in any important way. 

It is clear from Eqe {6.5) that, in the temperature 

region where impurity scattering dominates {~ >> (~ T)), 
TR TO -' 

the effective scattering times T(k,T) become equal to TR' 

and the anisotropy in the ideal scattering times T0 (k,T) is 

no longer relevant. In our approximation TR is isotropic 

and we can say that the impurities completely wash out the 

anisotropy in the ·scattering times in this temperature 

r~gion; however, in a more realistic model, TR would depend 

on k and we could only say that the anisotropy is changed 

to that in TR. The important result is that the anisotropy 

in the effective scattering times T. (k,T) for the alloy can 

be quite different from the anisotropy in the ideal 

scattering times T0 (k,T); therefore the temperature 

dependence of the ratio pi 1/Pl can be affected in an impor­

tant way. This effect is discussed in detail in the next 

section. 
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The anisotropy of the scattering times also leads 

to deviations from Hatthiessen's rule in the case of a 

polycrystalline sample. There are two ways (3?) to derive 

from single crystal data mean resistivity values which would 

be appropriate for polycrystalline h.c.p. specimens of the 

same material. One formula is for the case of a specified 

direction of t~e current density and coiresponds to averaging 

the resistivities: 

(6.7) 

The other formula is for a specified direction of the 

electric field and corresponds to averaging the 

conductivities: 

(6. 8) 

We pointed out in Section 5.1 that the for.mula for the 

resistivity in the scattering time method is equivalent 

to summing partial conductivities; thus we will use (6.8) 

to be consistent. However, we will note the changes in 

our results if (6~7) is used instead of (6.8)e For a 

spherical F. S.. we then have, from ( 6. 1) , ( 6. 3) , and ( 6. 8) , 

ppoly(T) = m 1 
-2- <T(k,T)> 
ne 



which is easily seen by writing (6.,8) in the form 

3 The brackets < > in (6.9) denote an average 
2crl + al·l 
over the (spherical) F.S.; that is, 

dnk 

<T(k,T)> = f 4 ~ T(k,T) 
F.S. 
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where dOk is an element of solid angle on the FeS.e For an 

alloy we have, from Eqs. {6.5) and (6.9), 

ppoly (T) = 
alloy 

poly ( 
Pideal T) 

m 
~ 
ne 

1 

, 

plus the residual resistivity pR. Thus we define a 

deviation from Matthiessen's rule, n(c,T), for a given 

impurity concentration c .and temperature T, by 

This may be written as 

(6.10) 

(6.11) 



= ~· { 1 . '1 l_} 
2 T0·(k,T).TR - <T 0·(kfT)> - TR 

ne < . ~ 
T

0
·(k,T)+TR 

A {c, T) 

and we note that TR depends on c. In the next section we 

calculate the resistivity ratio pi 1/Pl and the deviation 

from Matthiessen(s rule 6(c,T). 
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( 6 .12) 
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6.3 Results 

In the approximation of a spherical Fermi surface, 

the expression (6c4) for the resistivity ratio takes the 

simple form 

J dQk ~ sin
2

6T(6,$) 

Pbll t~ = _F_ .. s_._-_____ _ 

f dQk cos
2

eT(6,$) 
F.S. 

where T(6,cp) is the total scattering time associated with 

(6 "13) 

the electron at position {6,¢) on the F.S .• Truant and 

Carbotte (29 ) evaluated (6.13) for pure single crystal Zn, 

using the ideal scattering times T 0 (e,cp) illustrated in 

Fig. 1, and obtained good qualitative agreement with the 

experimental data. In the case of dilute alloys, the 

scattering times in Eq. (6.13) are given by formula (6.5), 

and in Fig. 2(a) we present results for pure Zn and for 

several dilute Zn alloys characterized by differing values 

of the residual resistivity pR. We first note that at very 

low temperatures th:e ideal scattering times are large 

compared to the residual scattering times TR' since the 

ideal resistivities become small in this temperature region. 

The alloy scattering times are then essentially equal to TR 

by formula (6.5,), and our assumption of an isotropic TR 

implies that the resistivity ratio will approach a constant 

value (unity for our model of a spherical F.S.) at very low 

temperatures, a.s shown in Fig. 2 (a) for temperatures of 5 °K 



Figure 2(a) ~ The theoretical temperature variation in Zn 

of the resistivity ratio PI 1/pl" The solid 

rn1rve is for pure Zn and the other curves 

(:Erom top to bottom) are for alloys with 

residual resistivities pRof 09005, 0005, Oelu 

003, and Oe5 ~n-ero., 

(b) ~ The theoretical temperature variation in Zn 

alloys of .the ratio {pll-pR)/(pl-pR) for 

pR = OeOOS ~n-ero. (solid curve) and OcS ~n-cm. 

(dotted curve) ., 
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or lessQ Of course, TR should really be anisotropic~ 

however, ·these very low temperature effects are not of 

great interest here and do not affect our arguments in an 

essential way. From Figo 2(a) it is clear that the 

.temperature variation of the ratio PJ l/pl is affected in 

an important Wcty by the addition of impurities, and also 

that the effect. is large enough to be measured. 

We stress that the changes in T variation of the 
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ratio pi 1/pl with impurity concentration shown in Fige 2(a) 

are not simply the result of adding the residual 

resistivity pR to the ideal resistivities to form the ratio 

This addition would assume Matthiessen's rule which we will 

show to be invalid~ however, in order to avoid misinterpreta-

tion of our results, we subtract pR from the alloy 

resistivities pi I and pl and then form the resistivity ratio. 

If we had used Matthiessen's rule as mentioned above to form 

the alloy resistivities, this new ratio would be equal to 

ideal; ideal for the ideal ratio pi I pl all impurity concentrations. 

Our results are shown in Fig. 2(b) for the smallest and 

largest pR considered in Fig. 2(a) (curves for the other 

pR lie between the curves shown); we see from the figure that 

concentration dependence remains, and we note that these 

curves are qualitatively similar to those in Fig. 2(a). 
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Although we have used a very simple model for the 

electron-phonon interaction and for the electronic structure 

of Zn, there is some evidence that our model is quite 

reasonable for ·the present discussion. For example, we 

have calculated Pl~!~1 (T) given by (6.11), and the results 

are shown in Fi9., 3 where we compare with experimental data 

from Me aden ( 3 7 ) The agreement over this considerable 

temperature ranqe is quite good, and verifies that our model 

is reasonably adequate., We note that if the averaging 

procedure (6.7) is used instead of (6.8) the change (increase) 

poly in pideal is less than 2% above 60°K and less than 3.5% below 

60°K. 

There has been much recent interest in deviations 

from Matthiessen's rule (lG), and for this reason we have 

calculated fi(c,'r) given by our Eq. (6.12) for several 

impurity concentrations. These results are presented in 

Fig. 4 as a function of temperature and for several values 

of the residual resistivity. We note that if the averaging 

procedure (6.7) is used instead of (6.8), ~{c,T) is 

decreased by roughly 20% to 25% but this is not crucial since 

we attach only qualitative significance to our results for 

~(c,T). 

We are not aware of any experimental data to which 

we can compare Fig. 4 in any detail; the recent data of 

Salvadori et al. (36 ) on the resistivity of Zn alloys is 

. poly 
g~ven in terms of (palloy - pR) rather than ~(c,T), and is 



Figure 3: The temperature variation of the Zn ideal 

polycrystalline resistivity p~doly1 (T) in units 
1 ea 

of ~n-cm. The solid curve is the theoretical 

result and the experimental points (~) are from 

Meaden. 
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Figure 4: The ·theoretical deviations from Matthiessen' s 

rule ~{c,T) in vn-cm. for Zn as a function of 

temperature T.. The curves shown are {from 

bottom to top) for residual resistivities of 

Oo005, OoOS, Oel, 0.3, and 0.5 pn-cmo 
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unfortunately presented on a log-log plate Nevertheless, 

it is of interest to compare our results with their data, 

and this is done in Fig., 5., The agreement with experiment 

is reasonable, although it is clear that such a plot is not 

very discriminctting when it comes to the deviation from 

Matthiessen's rule !'1(c,T). If the averaging procedure (6.7) 

is used instead of {6oB) {ppoly - p ) increases by less alloy R 

than 1%. 

In sununary, we have calculated the effect of small 

amounts of impurities on the temperature dependence of the 

resist~vity rat:io pll/pl in Zn, and important changes are 

predicted which should be observable. We have also 

calculated the deviations from Matthiessen's rule which 

should result in polycrystalline samples, and they are in 

reasonable agre~ement with the presently available 

experimental data. Although our calculations are carried 

out within a very simplified model for the electron-phonon 

interaction and the electronic structure of Zn, we believe 

that our results are qualitatively significant. 



Figure 5: Compa:cison of the theoretical (a) and 

experimental (b) temperature variation of 

polycrystalline resistivities (units of nn-cm.) 

in ZnG In (a) the solid curve is p~doly 1 (T) and 
1.. ea 

the dotted curve is (p~~i;y(T) = pR) for a 

residual r~sistivity pR = 1905e6 nn-cma In (b) 

the corresponding experimental results of 

Salvadori et al~ are showne 
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APPENDIX A 

In order to derive the expression (4.38) for the 

conductivity tensor in the variational method, we begin 

with (4.35): 

(A .1) 

where the V denotes the variational method expression. The 

trial function (4.36) may be written as 

¢1 (k) = V ·u -k-

where u is a unit vector in the direction of E, since 

eTIEI of (4.36) cancels in (A.l). Using the definition 

(4,21) of J 1 , we. have 

Making the usual change from a sum to an integral (7) , 

, 
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(Ae 2) 

(A. 3) 

(A. 4) 
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and writing th·~ integral as the product of an energy 

integral and a surface integral over constant energy 

surfaces in k-:3pace (19) 

(A. 5) 

(A. 3) becomes 

(A. 6) 

where the sum over spin gives a factor of 2.. We note that 

f~ depends on l5. only through Ek. 

Making use of the well-known result (?, B) for the 

Fermi distribu·t.ion function, 

- rd£P(£) df~!£) = F(p) + 1T62 (kBT) 2 F(ii) (p) + 
0 

where F is somf3 function of energy s, 1l is the chemical 

potential, and (ii} denotes the second derivative, (A&6) 

becomes 

Jl 

(A. 7) 

(A. 8) 

where the inteqral is over .the Fermi surface (F. S.) and we 

have neglected derivatives of the quantity in square 

brackets at the F .. S .• 



Using (Av2) in the definition (4.28) we have 

~ 
kak~ 

kq 
where Pk;g_ is given by (4.,3). We use {Ao4) and (A .. S) to 

change the sums in (A.,9) to integralse The energy delta 

k' function in P- implies that Ek" ~ Ek and therefore 
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{Ac 9) 

k;~l ' 

f~(l-f~,) ~ f~(l=f~), which is propor~ional to 8f~/8Ek' and 

this is approx~nately a delta function peaked at the FoSo by 

(A&7). Thus we evaluate the surface integrals; electron 

velocities, and 9kv,k;j at the FcS.,, and we are left with 

the energy integrals 

By means of the: transformations 

and 

the above expression may be written as 



-oo 

where the lower limit of the integral, (-~/kBT), has been 

approximated by (-oo), which is justified for the 
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{A.lO) 

temperature range we will consider (T ~ 300°K). By Eq. (B.7) 

of Appendix B, (A.lO) is 

1 z a -z 1-e 

We now collect these results, using the periodicity 

in the reciprocal lattice of the phonon frequencies w. (q). 
J -

Inserting an integration over w with a delta function 

o(w- w. (k'-k)) 1 we obtain 
J - -

X [Vk·u- vk,·ul
2 ~ Jgk',k;ji

2 O(w-wj(~'-k))} 
(A .11) 

where 

R{w) 

Using (A. B) and (A.ll) in (A.l), we obtain the expression 

(4.38). 



APPENDIX B 

Consider the function of (finite) z defined by the 

integral 

I(z) = t"" F(n)dn 

-co 
(en+l) (l+e- (n+z)) 

where F is a polynomial in n. This may be written as 

I (z) = 1 

-co 

[F(n) - F(n-z)] dn 
-n 1 + e 

Define a function of n and z by 

H(n;z) = Jn F(n'ldn' 
n-z 

(B .1) 

(B. 2) 

(B. 3) 

which is a polynomial in n with coefficients depending on z. 

Integrating (B.2) by parts, and using (B.3), we obtain 

I(z) = -1 
-z e -1 

(B. 4) 

The Fermi function f 0 (n) is defined by 
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and has the property 

Thus we may wrj_ te (B. 4) as 

-1 reo a£ 0 
I (z) = H(n;z) -dn 

1 -z an - e 
(B .. 5) 

-oo 

As in (A .. 7) of Appendix A, the integral of H with the 

derivative of t.he Fermi function can b~ expanded (?' B) to 

give 

I ( z ) = l _ z { H ( 0 ; z) + 'ITG 
2 

H ( i i) ( 0 ; z ) + ·~ ~ ~ H ( i \! ) ( 0 ; z) 
1 - e 

311T6 H(vi) (O,·z) + + 15120 ••• } (B. 6) 

where the second, fourth, and sixth derivatives of H with 

respect to n are evaluated at n = 0. 

We note the following special cases: F(n) = 1 gives 

I (z) z (B. 7) = I -z 1 - e 

F(n) = n. gives 

1 2 
I ( z) = (~) I (B., 8) 

1 
-z 2 - e 



and F(n) = n
2 gives 

1 I(z) = -~-
1 -z 

= e 
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3 2 
{~ + 1I__ z} 

3 3 (B o 9) 



APPENDIX C 

In order to derive the expression (4.59) for the 

thermal conductivity tensor in the variational method, we 

begin with (4o57): 

(C .. 1) 

where V denotes the variational method. The trial function 

(4.58) may be written as 

$2 (k) = (s -~)V ·u k -k -

where u is a unit vector in the direction of VT, since 

(C. 2) 

(- T IV~!) of (4.58) cancels in (C.l). Using the definition 

(4.25) of u2, we have 

a£0 
.. 2 k 

u 2 = - E vk (sk-~) v ·u --= 
kcr -k - o£k 

Using (A. 4) and (A. 5) of Appendix A we have 

afo dS (e:k) 
n rde:k k 

rJ 
. 2 

u2 = 
4rr 311 

(-) 
ae:k IVkl VkVk·!!_(sk-~) ] 

0 

where a factor of 2 comes from the sum over spin cr. By (A.7) 
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of Appendix A t~his becomes 

u2 = , 

where the intesrral is over the Fermi surface and we have 

neglected derivatives with respect to energy {evaluated at 

the Fermi ener9y) of the surface element and the electron 

velocities a 

Using (Co2) in the definition (4~28) u we have 

k' where P- is c.Tiven by (4., 3).. We use (A, 4) and (A .. 5) of 
k;5i ' 

Appendix A to convert the sums in (C .. 4) to integrals, and 

by the same arquments as in Appendix A we evaluate surface 

integralsu electron velocities, and the electron-phonon 

coupling constant at the F.Sou leaving us with energy 

integrals to b1a evaluated., Thus we have 

s n 2 J dsk J dsk ' o 
= l61T5.n3 lvkl IY.:. I o (k'-k)R,g_ ~ Jgk' ,k;j 12 ng_j 

F.So - F .. S., -

X rde:k rde:k,[(e:k-)l)Vk·£- (e:k,-)l)Vk,·u]2 

0 0 

0 0 . ~ 
x fk(l-fk,)O(Ek' - £k- wj(~)) (Co 5} 
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By means of the transformations 

and 

the energy integrals in (C.S) may be written as 

2 
[n~k ·£ - (n+z) yk, •£] -

(en+l) (l+e- (n+z)) 
(C., 6) 

where (-~/kBT) has been replaced by (-oo) in the lower limit 

of the int-egral as in Appendix A. If we interchange k and 

k' in one term of (C.6) (noti~g that lgk',k;ji
2 

and n~j in 

(C.S) are invariant under this change), the squared factor 

in (C.6) may be written as 

Using (C.7) in {C.6), and the results (B.7), (B.B), and 

(B.9) of Appendix B, (C.6) becomes 

21T
2 

z {(Vk·~) 2 [l + ~) - (V ·u) (V ,·u) [l- ~)} 
3 -z 2 -k - -k -

2
'TT'2 38 1-e 1r .. 

(C. 7) 

(C. 8) 

Using (C.B) in (C.S), the periodicity of n~j' and inserting 
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an integration over w with a delta function o(w-w. (k'-k)), 
J - -

where R(w} is defined in Appendix A and by (4.39). Inserting 

(C.3) and (C.9) in (C.l), we obtain the expression (4n59} ~ 



APPENDIX D 

In order to derive Eqa {5.4) of Section 5.1, we 

begin with Eq. {5.1): 

(D., 1) 

kl 
where Wk is given by (3.29). Using the deviation function 

given by (5. 2) 1· 

in (D.l), we obtain 

af 0 
k Q Q k I --= v ., u = B r < !l.k I • u - !l.k • u > fk < 1-fk 1 > wk ClEk -k - k 1 

(D. 2) 

where u is a unit vector in the direction of E. We now 

integrate (D.2) over Ek. 

The integral of the L.H.S. of (0.2) is 

oo a£~ 
f dE:k :le- vk ·u 
0 - k -

which, by (A.7) of Appendix A, may be written as 
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- V ·u] 
-k - E =v - k 

(D. 3) 

where we have neglected derivatives with respect to energy 

of the electron velocity {evaluated at the Fermi energy). 

Convert:~ing the sum over k' in (D. 2) to an integral 

by means of {A .. 4) and {A. 5) of Appendix A, the integral of 

k' 
Since the delta. functions in Wk imply that Ek' ~ Ek' we may 

use the same a:cgument as in Appendix A to write {D.4) as 

s"hw. {q) 
+ e J - 5 { £k 1 -E:k +11w . (g) ) } 

- - J 
(D. 5) 

where the surface integral is over the F-. S., k is on the 

k' F.S., and we have used the expression (3.29) for Wk o The 

first energy integral in (D.S) is the same as the one 

considered in .~ppendix A and its value is, by (A.ll), 



1iw. (g) 
J 

-Whw. (g) 
1 - e J 
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It is obvious that the value of the second energy integral 

can be obtained from this result by replacing [hwj(~)] by 
Bhw. (9.) 

[-~wj(~)] and multiplying bye J ; hence, the second 

integral has the same value as the first~ Using the 

periodicity of n°. and inserting an integration over w with g,J 
a delta function o(w- w. (k'-k)), (D.S) becomes 

J - -

with k on the FeS. and R(w) given by Eq. (4.39). The 

results (D.3) and (D.6) then lead to Eq. (5.4). 



APPENDIX E 

In order to derive Eq. (5.24) of Section 5.2, we 

begin with the Boltzmann equation (5.21): 

3f~ (e:k-11) 

- ae:k T V •VT = -k 
(E .1) 

where w~' is given by (3.29). Using the deviation function 

given by (5.22), 

in (E.l), we obtain 

w 0 0 k' 
(e:k-11) ll.k ·ulfk (1-fk,) wk 

(E. 2) 

where u is a· ur~i t vector in the direction of 'VT. We now 

multiply (E.2) by (e:k-11) and integrate over e:k. 

The L.E.S. of (E.2) becomes 

which, by (A.7) of Appendix A, may be written as 
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2 
1T "(l' ] - -- v "'U 

2 --k - E: =11 
3S - k 

(E. 3) 

where we have neglected derivatives with respect to energy 

(evaluated at t.he Fermi energy) of the electron velocities. 

When we convert the sum over k' to an integral by 

means of (A.4) and (A.S) of Appendix A, the R.H.S. of (E.2) 

becomes 

(E. 4) 

k' 
Since the delta functions in Wk imply e:k' ~ Ek' we may use 

the same argument as in Appendix A to write (E.4) as 

where the surface integral is over the F.S., k is on the 

F.S., and we have used (3.29). By means of the transformations 
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and 

the first energ:r integral in the brackets of (E. 5) may be 

written as 

1 

63 -co 

where, as in~Appendix A, the lower limit of integration, 

(- kll T), has beE~n replaced by (-co). Using (B. 8) and (B .. 9) 
B 

of Appendix B, ·t.he value of this integral is 

~ 2 z z 2 W W 
- 3 --·- { (1 + - 2 ) (Ak, ·u - Ak·u) 
3S 1-e·-z 1T 

3z 2 W 
--2 Ak, ·u} 
21T 

It is easily seen that the second energy integral can be 

obtained from the first by replacing z by (-z) and 

multiplying by ez; hence, it also has the value given by 

(E.6). Using the periodicity of n°. and inserting an 
9.J 

integration oveJ.:- w with the delta function o (w-w. (k '-k)) , 
J - -

(E. 5) becomes, using the result (E. 6) , 

w A ·-u) -k-

(E. 7) 
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where k is on the FoSo and R(uJ) is given by Eq .. (4o39)., The 

results (E.,3) a:1d (Eo7) then lead to Eq., (5.,24)., 



APPENDIX F 

We discuss here the approximation (6.5) of Section 

6c2 for the (dilute) alloy transport scattering times: 

We make the initial assumpt.ion that the scattering of a 

conduction electron from k to k' due to the presence of 

small amounts of impurities in a metal may be characterized 

by !9-n intrinsic transition probability per unit time, 
k I k I 

denoted by Vk . The detailed structure of Vk does not 

concern us herE!, but we do assume elastic scattering (V~' 

contains o(Ek' - Ek)) and the principle of microscopic 

'b'l' - (32,-33) revers1 1 ~ty 

Then it follows: that the tenn 

(F. 2) 

(F. 3) 

should be added to the R.H.S. of the expression (3.11) for 
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afk 

--=1 when impurity scattering is included in addition at scatt 

to the scattering due to the electron-phonon interactiono 

Ziman (ll) also combines the impurity and phonon scattering 

effects in thi1:: way; however v this assumption that effects 

of scattering by lattice vibrations and by impurities are 

. d d ::I dd . . . . 1 ( 16 l' 31 , 3 4 Q 3 5) 1n epen ent an1A a ~t1ve 1s certa1n y not correct 

There will be additional scattering due to (1) interference 

between phonon and impurity scattering and (2) inelastic 

electron~impurity scattering; these processes result from 

the oscillations of the impurity ions about their 

equilibrium positions. Thus in our approximation we ignore 

dynamic effects of the impurities and retain only the 

static effects. 

Returning to the expression (F.3) we see that it may 

be written as 

(F" 4) 

using (F.2) o The equilibrium situation argument (3Dl2) is 

unaffected by the addition of (F.4) to the RoH.S" of (3cll) 

since the electron-phonon and impurity terms are 

independentv moreover, (F .. 4) automatically vanishes in the 

equilibrium situation due to the elastic scattering delta 
__ k v 0 

function in ~- (fk depends only on energy Ek at a given 

temperature) o Hence the expansion (3ol5) may be used 

exactly as in Section 3o2 and we have the additional ter.m 
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due to (F .. 4): 

0 0 k' where fk' = fk by the energy delta function in Vk D We note 

that at this point ~k is still unspecified and determined 

only by the definition (3.15). Assuming the phonons to be 

in equilibrium (no phonon drag effects) the linearized 

Boltzmann equat.ion for the conduction electrons (3. 28) in the 

absence of a b~mperature gradient (Eq. (5.1)) is now 

modified to 

(F. 6) 

k' where Wk is given by (3.29). 

We now use the approximation (6.2) 

but, in order to make the correspondence with the previous 

analysis for pure crystals as clear as possible, we write 

this as 

(F. 7) 
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where the mean free path is approximated by 

(F. 8) 

with T(k,T) the (dilute) alloy transport scattering time. 

As in Appendix D, the integration over Ek of (F.6) leads to 

the result (5.4) with the additional term 

(F. 9) 

kl 
due to Vk on ·the R.HoS., where k is on the F .. S .• 

Converting the sum over k' to an integral by (A.4) and (A.S) 

of Appendix A, the integral over Ek' is eliminated by the 

k' 
o(sk. - sk) in Vk and (F .. 9) becomes 

a f 
0 

ds < E: k , > 

- a~h r de:~ ae:: I IYk I I 
0 

using 

By (A.7) of Appendix A we have, ignoring energy derivatives 

(evaluated at the Fermi energy) of the surface element, 

k' electron velocities, mean free path, and Vk , 

dSk' 

_n_ J I - I (A - ~k' )Vkk' 
8 3-t. vk, -k 

7f n F.S. -

(F.lO) 
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where k is on t.he F .. S~., 

Using the approximation (F.B) and the expansion 

( 5" 5) 

we take the dot. product of Vk (k on the F.S.} with Eq., (5.,4} 

as before and divide by 1vk1 2 to obtain Eq. (5.6} with the 

additional tenn on the R.,H.Se (due to {F.lO)} 

Since we have a dilute alloy, the arguments following 

Eq. {5.6) are still approximately valid and we may drop 

the terms involving [T(k) - L(k')]., Thus as a first 

approximation we have 

where the firs.t term is the result (5.10) for the pure crystal 

scattering time which we denote by 1 The term -r 0 (k,T) • 

involving impurity scattering may be written simply as 

TR~~) in te~s of an anisotropic residual scattering time. 

Assuming TR to be isotropic we then have 



and we determine TR from the experimental value of the 

residual resis1:ivity pR by the relation 

m 
PR = --2-

ne TR 
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