Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20551
Title: Secure and Trusted Partial White-box Verification Based on Garbled Circuits
Authors: Zhong, Hongsheng
Advisor: Karakostas, George
Wassyng, Alan
Department: Computing and Software
Keywords: Cryptography;Software Engineering;Software Verification
Publication Date: 2016
Abstract: Verification is a process that checks whether a program G, implemented by a devel- oper, correctly complies with the corresponding requirement specifications. A verifier, whose interests may be different from the developer, will conduct such verification on G. However, as the developer and the verifier distrust each other probably, either of them may exhibit harmful behavior and take advantage of the verification. Generally, the developer hopes to protect the content privacy of the program, while the verifier wants to conduct effective verification to detect the possible errors. Therefore, a ques- tion inevitably arises: How to conduct an effective and efficient kind of verification, without breaking the security requirements of the two parties? We treat verification as a process akin to testing, i.e. verifying the design with test cases and checking the results. In order to make the verification more effective, we get rid of the limitations in traditional testing approaches, like black-box and white-box testing, and propose the “partial white-box verification”. Taking circuits as the description means, we regard the program as a circuit graph. Making the structure of the graph public, we manage to make the verification process in such a graph partially white-box. Via garbled circuits, commitment schemes and other techniques, the security requirements in such verification are guaranteed.
URI: http://hdl.handle.net/11375/20551
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
ZHONG_HONGSHENG_2016Sep_M.Sc.pdf.pdf
Open Access
1.1 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue