
Secure and Trusted Partial White-box Verification

Based on Garbled Circuits

SECURE AND TRUSTED PARTIAL WHITE-BOX

VERIFICATION BASED ON GARBLED CIRCUITS

BY

HONGSHENG ZHONG, B.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

© Copyright by Hongsheng Zhong, Sep 2016

All Rights Reserved

Master of Science (2016) McMaster University

(Computig & Software) Hamilton, Ontario, Canada

TITLE: Secure and Trusted Partial White-box Verification Based

on Garbled Circuits

AUTHOR: Hongsheng Zhong

B.Eng., (Information Security Engineering)

Harbin Institute of Technology, Harbin, China

SUPERVISOR: Dr. Karakostas, Dr. Wassyng

NUMBER OF PAGES: ix, 101

ii

Abstract

Verification is a process that checks whether a program G, implemented by a devel-

oper, correctly complies with the corresponding requirement specifications. A verifier,

whose interests may be different from the developer, will conduct such verification on

G. However, as the developer and the verifier distrust each other probably, either of

them may exhibit harmful behavior and take advantage of the verification. Generally,

the developer hopes to protect the content privacy of the program, while the verifier

wants to conduct effective verification to detect the possible errors. Therefore, a ques-

tion inevitably arises: How to conduct an effective and efficient kind of verification,

without breaking the security requirements of the two parties?

We treat verification as a process akin to testing, i.e. verifying the design with test

cases and checking the results. In order to make the verification more effective, we get

rid of the limitations in traditional testing approaches, like black-box and white-box

testing, and propose the “partial white-box verification”.

Taking circuits as the description means, we regard the program as a circuit graph.

Making the structure of the graph public, we manage to make the verification process

in such a graph partially white-box. Via garbled circuits, commitment schemes and

other techniques, the security requirements in such verification are guaranteed.

iii

Acknowledgements

This thesis could not have been completed without the great support from numerous

people over the two years.

I would like to show my sincere gratitude to my supervisors, Dr.Karakostas and

Dr.Wassyng. I am grateful to them for letting me take part in the research. The

support, either academically or financially, provided me such a great opportunity to

realize something I could have never been able to do. Their guidance in the working

style, the learning habits and the academic attitude, made deep impressions on me,

and will be beneficial to my whole life.

Thanks are also due to my previous colleague, Yixian Cai. He built the theoretical

basis for my work, and provided some original ideas. In the meantime, he assisted me

in researching and understanding about the topics. His help mattered at the beginning

stage. Besides, I should acknowledge the contribution of another collaborator, Zhe

Ji. He implemented my theoretical work into the Java program.

In addition, I am appreciative of my friends, who offered the help of proofreading

and suggestions in both language and mathematics. Particularly, I am also very

grateful for the spiritual encouragement from Yiyi, Chen.

Everything would not happen without the excellent platforms. Special mention

goes to the Dept. of Computing and Software. Big thanks to the outstanding faculties,

iv

the kind staff. I need to express my deepest appreciation to McMaster University. I

have an unforgettable time here. These aspects contribute to the accomplishment of

my program.

I am indebted to my family and my relatives for supporting me to go abroad. I

have owed them a lot during the two years, but they always understood my situation

and still helped me.

To anyone that I may have forgotten. I apologize. Thank you as well.

v

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 1

1.2 Previous work . 3

1.3 Our contributions . 6

1.4 Organization . 9

2 Preliminaries 10

2.1 Means of Describing the Program . 10

2.1.1 Tabular Expressions . 10

2.1.2 Circuits . 12

2.2 Strategy of Evaluation and Verification 16

2.3 Pseudorandom Generators . 20

2.4 Garbled Circuits Protocol . 21

2.4.1 Defining Garbled Circuits . 22

2.4.2 Description of Garbled Circuits 23

vi

2.5 Oblivious Transfer Protocol . 30

2.6 Cut-and-choose Strategy . 32

2.7 Commitment Schemes . 34

2.8 Coin-tossing Protocol . 37

3 A Protocol for Secure and Trusted Partial White-box Verification 39

3.1 Problem Analysis . 39

3.2 Comparison with the Protocol Based on FHE 44

3.3 Scheme . 46

3.3.1 Notations . 46

3.3.2 Definitions for the Scheme . 48

3.4 Designing the Protocol . 51

3.4.1 Transforming the Program into Circuits 51

3.4.2 Encrypting the Circuits . 51

3.4.3 Encoding . 52

3.4.4 Evaluation . 52

3.4.5 Checking the Commitments . 53

3.4.6 Third Party Verification . 55

3.5 Auxiliary Functions . 56

3.5.1 TF . 56

3.5.2 Type . 60

3.6 Construction for Malicious Cases . 63

3.6.1 Algorithmic representation for protocol 64

3.6.2 Interaction Illustration of Our Protocol 71

3.7 Correctness proof . 73

vii

3.8 Security proof for malicious case . 82

3.8.1 Simulators in the Case of External Inputs 83

3.8.2 Simulators in the Case of Intermediate Inputs 85

3.8.3 Proving Security . 87

4 Conclusion 93

viii

List of Figures

2.1 A single table (from Cai et al., 2016) 11

2.2 A typical table graph (from Cai et al., 2016) 12

2.3 A simple circuit with its gates and wires (from Bellare et al., 2012) . 14

2.4 A demonstration of a circuit graph . 15

2.5 A demonstration of the evaluation process 18

2.6 An example of multiple gates (from Snyder, 2014) 26

2.7 The truth table and the garbled truth table for Gate g1 26

2.8 The truth table and the garbled truth table for Gate g3 26

2.9 The protocol of garbled circuits . 28

2.10 An example of how OT exchanges bits for garbled keys 32

2.11 A demonstration of applying the cut-and-choose strategy 33

3.1 An example of the challenge string . 54

3.2 The interaction diagram of function TF 58

ix

Chapter 1

Introduction

1.1 Motivation

Subcontracting the development of product to a third-party is a common phenomenon

nowadays. For example, a finished car consists of various components, which are often

designed by different manufacturers. For a automobile manufacturer, he possesses a

specification of required behavior about the components (e.g, engines, tyres) and

subcontracts other manufacturers to design or implement the corresponding units.

When the automobile manufacturer obtains the delivery from the subcontractors, an

intuitive question is raised: if the finished car assembled by the components, which

are implemented by the subcontractors, complies with the specification? Thus, the

automobile manufacturer has to verify if the functionality of the components matches

the specification. To realize this type of system verification is the core of our work.

The verification in the above case involves two problems. The first problem is

that the subcontractors want to conceal the design and implementation from clients

or third-party. The requirement stems from the fact that the subcontractors want to

1

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

protect the proprietary information of the components. The second problem is the

limitations in traditional strategies of verifying. The common means of verifying is to

test a product with test cases and check if the results match the specification. There

are two most typical strategies to conduct a test: “black box” and “white box”. The

black-box strategy hides the implementation and only allows the verifier observing

the external inputs and outputs. In the white-box strategy, the developer (namely

the subcontractors) can expose everything of implementation. However, both of the

strategies cannot work on the example that the automobile manufacturer verifying

the subcontracted components. If adopted white-box test strategy, the proprietary

information of the components must be revealed; if adopted black-box test strategy,

the little information from the external behavior cannot help the verifier find the failed

components. From the perspective of the verifier, he always hopes that the verification

can be more powerful, even taking advantage of the developer’s information. This

fact leads to a dilemma between the information privacy and the power of verification.

In this work, we try to find a balanced way to make the verification adequate

and secure. Combining the benefits of the black-box test and white-box test exactly

realizes this point. We allow to leak the positions of the components, to enable

the verification to perform in a path or a network. So the internal relations can

be revealed and tested. But in the meantime, the secure requirements should not

be compromised. Therefore, what we try to realize is a secure and trusted “partial

white-box verification”.

We are interested in applying such kind of verification to the development of

software programs. A software system also consists of many components and these

components may be designed/implemented by the subcontractors. A verifier who

2

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

owns the specification wants to verify if the components in the software systems

work well, like what the above automobile manufacturer does. The verification on

software systems should not break the privacy of the program too, since the developer

(the subcontractors) regards the content of the program as proprietary information.

Verifying software systems is often conducted remotely and the two parties, a verifier

and the developer, distrust each other. The protocol should satisfy the following

properties:

• Correctness - With test cases, the protocol enables both parties to execute the

verification with correct procedure and obtain final result complying with the

specification. If the execution deviates from the standard procedure, the result

should not be correct.

• Security - The protocol should protect the secrets of the developer from leak-

ing to the verifier, specifically, the content of a program. Besides, the protocol

should make sure the two parties to obey the correct procedure and avoid ma-

licious behavior.

In this thesis, we will propose a protocol to realize the secure and trusted “partial

white-box verification” and satisfy the above properties.

1.2 Previous work

Our goal relates to the privacy of information (hiding the content of the program) and

trusted computation (honestly following the predefined procedure). Much previous

research has been invested in these fields. Obfuscation is a method of transforming a

program into a form that has the same functionality as the original program but is

3

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

difficult to reverse engineer. The ideal obfuscation makes the obfuscated program a

“virtual black box”–nothing leaked beyond the input-output behavior (Goldwasser

and Rothblum, 2007). However, the ideal “black-box” obfuscation is hard to achieve.

As a fact was proved in (Barak et al., 2001), a certain family of functionality can

always breach the “black-box” property. Although choosing certain classes of func-

tions or relaxing the security properties produces positive results (Garg et al., 2013;

Boyle et al., 2014; Wee, 2005), this concept still remains in a theoretical level.

In 2009, Craig Gentry proposed the first Fully homomorphic encryption (FHE)

scheme (Gentry et al., 2009), which makes this powerful technique closer to the

practical applications. FHE is a cryptography scheme that supports arbitrary com-

putation on encrypted texts. Based on FHE’s powerful features, Yixian Cai made

the first attempt to build the secure and trusted “partial white-box verification” (Cai

et al., 2016). His work made the following contributions: 1. Cai posed the problems

for the first time, and provided the strict definitions of correctness and security; 2.

He proposed a protocol to solve the partial white-box verification in the honest and

malicious cases. The limitation of FHE is the efficiency. As discussed in (Wang

et al., 2015), FHE is restricted by its expensive computational overhead. Although

the implementation of FHE has been presented (Gentry and Halevi, 2011), FHE

is still not the perfect tool.

An alternative technique to FHE is garbled circuits. Garbled circuits (or Yao

garbled circuits for short) was proposed by Andrew Yao (Yao, 1982, 1986). The

security goal of garbled circuits is to protect the privacy of the target circuit and the

inputs owned by each party who participates the protocol of garbled circuits (Section

2.4). Recent work provides garbled circuits a mature basis in the aspects of theory

4

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

and implementation. The first rigid proof about the security of garbled circuits was

proposed in (Lindell and Pinkas, 2009). A system, Fairplay (Malkhi et al., 2004),

was the first attempt to implement garbled circuits, and it was updated to support

multi-parties afterwards (Ben-David et al., 2008). Other important attempts in

implementing garbled circuits were made in (Huang et al., 2011; Kreuter et al.,

2012).

Nevertheless, the scheme of Yao garbled circuits only works against semi-honest

adversaries, who honestly follow all required steps but record all the received infor-

mation (Goldreich, 2004, Chapter 7). In terms of our problem, because both the

developer and the verifier may conduct malicious behavior, the scheme of garbled

circuits must be secure more than against semi-honest adversaries. Much efforts were

invested in this field to improve the security of garbled circuits. The work in (Naor

and Pinkas, 2001, 2005) proposed an advanced oblivious transfer protocol (or OT ,

Section 2.5) that is secure in the malicious case. A solution against malicious behavior

based on zero-knowledge proof was designed in (Goldreich et al., 1987), but it is not

practical concerning the computational inefficiency. A more practical and well-known

way is a cut-and-choose strategy. The idea behind this approach is that each circuit

should be garbled multiple times. Consequently, each circuit corresponds to more

than one garbled circuits. Among these circuits, some of them can be used to check

the data integrity. This method eliminates the success chance when the protocol

fails in detecting corrupt circuits. The cut-and-choose approach has different variants

to defend malicious behavior. The work in (Shen et al., 2011) proposed a solution

for two-output function in malicious case. Mohassel (Mohassel and Riva, 2013) de-

signed a protocol with malicious security by two stages of cut-and-choose checking.

5

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Particularly, Lindell and Pinkas (Lindell and Pinkas, 2007) presented the most com-

prehensive explanation about cut-and-choose strategy against malicious case. Their

work provided an efficient paradigm, which is adopted in our construction. Apart

from the above approaches, other researchers also provided original ideas to make

garbled circuits secure against malicious behavior (Nielsen and Orlandi, 2009).

In terms of checking the data integrity of computation results, verifiable computa-

tion(V C) is a concept related to our problems, which responds a question: how can

we trust a result computed by a third party? (Walfish and Blumberg, 2015). In other

words, V C can be used to check the integrity of computation. Intuitively, repeating

the computation is the simplest way to realize VC. But the double cost of execution

is too expensive, and the credibility of the second execution cannot be guaranteed.

Another idea is to return the computational result with a proof. This approach is

the proof-based verifiable computation which employs probabilistic checkable proofs

and interactive proofs from complexity theory. Although the work in (Ben-Sasson

et al., 2013; Braun et al., 2013; Setty et al., 2013; Parno et al., 2016) has proposed

implemented systems, the problem of inefficiency and incomplete expressiveness (the

class of computations that the system supports) is still not solved. Nonetheless, V C

is still a valuable subject related to our work.

1.3 Our contributions

We build a cryptographic construction to realize the secure and trusted “partial white-

box verification”. Our work takes garbled circuits as the fundamental tool. Our

contributions are as following:

6

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

1. We propose a theoretical implementation satisfying the properties of security

and correctness. The program is decomposed into many modules which are

represented by a standard means of description, tabular expressions. The theo-

retical implementation contains algorithmic construction (Section 3.6) and def-

initions of the cryptographic schemes (Section 3.3.2). Through breaking down

the requirements of security and correctness, we realize three specific targets:

• Protecting the privacy of program: We present a protocol which protects

the content of the program from leaking to other parties except the devel-

oper.

The protocol of garbled circuits guarantees the content privacy towards

the target circuits, and thus we apply this tool to encrypt the program.

Particularly, the original program should be transformed from tabular ex-

pressions into circuits (Section 2.1). The security of garbled circuits can

be reduced to the security of pseudorandom generators (Section 2.3).

• Protecting the real values of intermediate results: An intermediate result

indicate the output of computing a certain circuit and becomes the input

for other circuits. In partial white-box verification, the leakage of interme-

diate results may expose the secrets. When a program is transformed into

many circuits and these circuits are encrypted into garbled circuits, each

circuit has different garbled keys to encode its inputs and outputs. If a

value is communicated between two garbled circuits, it would need a step

of “translation”. For instance, when a circuit CTu generates a computa-

tional result y, y is encoded by CTu’s garbled keys. In this case, another

circuit CTv cannot directly compute y, because y is encoded by different

7

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

garbled keys. The step of “translation” means that the value encrypted by

the garbled keys should be decrypted first, and then encrypted by another

set of keys.

The real values behind the encrypted intermediate results often contains

some sensitive information, so the step of “translation” should also protect

the real values from exposing. However, this requirement is a challenge to

the protocol garbled circuits. Inspired by the related work (Bellare et al.,

2012; Snyder, 2014; Mohassel and Riva, 2013), we design an algorithm TF

(Section 3.5.1) to solve this problem.

• Being secure in the malicious case: In our problem, both the developer and

the verifier can conduct arbitrary behavior to break the security require-

ments. To avoid this type of threats, the protocol should be secure in the

malicious case. As introduced in Section 1.2, we employ the cut-and-choose

approach to enhance the security of garbled circuits and make the protocol

secure against malicious behavior. Our work incorporates the paradigm in

(Lindell and Pinkas, 2007). According to the requirements of our problem,

we make some changes and design different mechanisms to check the data

integrity, while the security is not compromised. The description about

the cut-and-choose approach is in Section 2.6, and the details about how

to incorporate it into our construction is located in Section 3.6.

Admittedly, the construction based on FHE in (Cai et al., 2016) provides

stronger capability to detect malicious behavior than our protocol, as the

former allows the protocol to conduct a reverse computation to detect the

wrong results. Nevertheless, our protocol provides a more efficient and

8

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

reliable solution. The comparison between our protocol with the FHE’s

construction is in Section 3.2.

2. Feasibility is an important aspect in our work. Derived the framework from

(Lindell and Pinkas, 2007), our construction also has the particular advantages

in implementation.

In Chapter 3, we specify the design of our framework and present algorithms in

pseudocode. These algorithms, we believe, are sufficiently detailed and the pseu-

docode can be directly implemented without consulting secondary references.

The illustration in Section 3.6.2 can be easily transformed into an interaction

diagram for a design specification. Actually, based on the framework of Fairplay

(Malkhi et al., 2004), my colleague Ji has implemented our construction in Java

(Ji, 2016). This inspiring news gains our confidence in assessing our work.

1.4 Organization

In Chapter 2, we introduce the preliminaries which are used in the following construc-

tion, e.g. the concept of tabular expressions, garbled circuits and the cut-and-choose

approach. In Chapter 3, we present the definitions and construction for the secure

and trusted “partial white-box verification” protocol. In Section 3.7 and 3.8, the

proof of correctness and security for our construction is presented. In Chapter 4,

open questions are provided for future study.

9

Chapter 2

Preliminaries

2.1 Means of Describing the Program

2.1.1 Tabular Expressions

A tabular expression, or called as a table, is a standard means to document software

(Janicki and Wassyng, 2005). This notation can be dated back to decision tables

and state transition tables. In the late 1970s, David Parnas introduced this concept

(Alspaugh et al., 1992). Now, tables are widely used in analyzing requirements and

documenting specifications for critical software.

In our protocol, we apply tabular expressions as the means to represent the original

program. A program verified in our work is expressed as a table graph Gt, which

is organized by a bundle of tables by certain relations. Gt consists of a table set

T = (T1, T2, ..., Tn) and a graph structure Gstruc, where Ti ∈ T is an individual table.

If not specifically claimed, Gt = [T,Gstruc]. If an encryption scheme is applied to such

a table graph, the encryption version of Gt is G′

t = [T ′,G′

struc].

10

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

x →

Condition Function
p1(x) f1(x)
p2(x) f2(x)
.

pn(x) fn(x)

→ T (x)

Figure 2.1: A single table (from Cai et al., 2016)

Among the variants of tables, we adopt a simple version of tables (Wassyng and

Janicki, 2003) with two columns. Observing figure 2.1, a table consist of a Condition

column and a Function column. Given an input x, if it satisfies the predicate p(x)

in the condition column, x can be computed with the corresponding function f() in

the function column.

Definition 1. T = {T1, T2, ..., Tn} is a set of tables with size n. ∀i ∈ {1, ..., n}, Ti =

(r1,i, ...rir,i, ...rrni,i), where ir ∈ {1, ..., rni}. riri = (pir,i, fir,i) is a row of Ti and rni

denotes the number of rows in table Ti. pir,i is the left hand side or lhs predicate of

rir,i and fir,i is the right hand side or rhs function of rir,i. Ti accepts an input xi

and computes it row by row. If pir,i(xi) = True, xi is computed by fir,i and fir,i(xi)

becomes the output of Ti(xi).

According to the properties of tabular expressions (Wassyng and Janicki, 2003),

the predicates in a table should satisfy the properties of disjointness and completeness :

Completeness: ∀x, p1(x) ∨ p2(x) ∨ ... ∨ pn(x) = True

Disjointness: ∀x, pu(x) ∧ pv(x) = False,∀u, v ∈ [1, n], u ≠ v

In our case, a program is represented as a table graph Gt = [T,Gstruc]. Each

individual table Ti ∈ T is defined as above. Gstruc denotes the geometric structure of

11

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

how the tables are organized. In Gstruc, row rir,i in table Ti ∈ T represents a vertex,

and the connections between two vertices is an edge. The practical meaning of edges

is the output of the start row is the input of the destination row. For this reason,

Gstruc is a directed graph. An example of table graph is shown in figure 2.2.

In the table graph Gt, a source vertex Input denotes where the external inputs

come from, and a sink vertex Output denotes where the table’s results output. For

simplicity, we make an assumption:

Assumption 1. The table graph of a program is acyclic.

Figure 2.2: A typical table graph (from Cai et al., 2016)

Definition 2. Gstruc = (V,E) is a rooted directed graph which is called the struc-

ture graph of Gt. E is the set of edges, and V is the set of vertices. An edge

e = (rur,u, rvr,v), e ∈ E connects two vertices rur,u, rvr,v ∈ V , where rur,u, rvr,v are the

rows in table Tu, Tv, and ur, vr are the row indices. e = (rur,u, rvr,v) is directed and

starts from the uth row of Tu to the vth row of Tv.

2.1.2 Circuits

As garbled circuits is the major technique in our construction, the original table

graph should be transformed into a format which the protocol of garbled circuits can

12

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

process. The format is Boolean circuits. A Boolean circuit, or circuit, is a concept

derived from electrical engineering, indicating a combination made up of individual

electronic components. Applied to computer science, the circuit represents a model

of computation (Vollmer, 1999). Each gate in the circuit is a function, computing

the most basic Boolean operation, like conjunction, disjunction, and negation (xor

may also be included).

In order to use this concept without ambiguity, we should first provide the defini-

tion of what is a circuit. Our definition is a simplified version derived from the work

of (Bellare et al., 2012). An illustrative example of a standard circuit is shown in

Figure 2.3.

Definition 3. A circuit CT is a 6-tuple f = (lIN , lOUT ,m, gn,W,G). lIN is the length

of the input bits and lOUT is the length of output bits. m denotes the number of wires,

and it satisfies m = lIN +gn, where gn is the number of gates. W is the set of all wires

included in CT . A wire wj ∈W denotes the jth wire, where j ∈ [1,m]. w0
j = 0,w1

j = 1 is

the bit value of wj. G is the set of all gates included in CT . A gate gi ∈ G, i ∈ [1, gn],

represents a Boolean gate with certain functionality g ∶ {0,1}2
→ {0,1} or {0,1} →

{0,1}. The functionality of each gate is basic Boolean gates such as AND,OR,XOR

and NOT .

To simplify the discussion, Boolean circuits in our case have the same length of

input wires and output wires.

Assumption 2. In a Boolean circuit CT has the same length l of input wires and

output wires, i.e. lIN = lOUT = l.

By the theory of computation complexity, the computational power of the cir-

cuit model is equivalent to the power of Turing Machine model (Kaye et al., 2007,

13

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Figure 2.3: A simple circuit with its gates and wires (from Bellare et al., 2012)

Chapter 7). In other words, any computation executed in a Turing Machine can be

translated into circuits with the same functionality. In this work, we skip the discus-

sion about how to transform the normal program into Boolean circuits and regard

this transformation as a plausible process by default. Based on this fact, we make

this assumption:

Assumption 3. A table T as specified in Definition 1 can be transformed into a

Boolean circuit CT which obeys Definition 3 and CThas the equivalent semantics to

T .

Now we define the concept circuit graph. Likewise, a circuit graph Gc consists of a

circuit set CT = (CT1, ...,CTn) and a structure graph Gstruc. The structure graph in

Gc is similar to the one in Gt, but the concepts like rows, condition columns and result

columns are not used. additionally, the vertices in Gstruc become circuits rather than

rows. An example of circuit graph is shown by figure 2.4. Consequently, we present

the definition for the circuit graph.

Definition 4. A circuit graph Gc = [CT,Gstruc] is derived from a table graph Gt.

CTi ∈ CT is the ith circuit transformed from ith table Ti, so the input to Ti also works

on circuit CTi. An input to CTi is denoted as xi = (x1,i, ...xj,i, ...xli,i), where li is the

14

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

input length of CTi. xj,i ∈ xi is the bit value of jth wire in CTi’s input and j ∈ [1, li].

The output of CTi yi = (y1,i, ...yj,i, ...yli,i) is also a bit sequence, and here we assume

the length of the output is the same as the input. An edge in Gc is a tuple (u, v), u

represents CTu and v represents CTv.

Figure 2.4: A demonstration of a circuit graph

Replacing tabular expressions by circuits to document the program is a necessary

step. First, it is a prerequisite of the protocol of garbled circuits (actually FHE is

also executed on circuits (Gentry et al., 2009)). Second, the structure of a program

can be simplified in a circuit graph. If the program is represented as a table graph

Gt, the rows represent the vertices in Gt. Assumed that n denotes the number of

tables in Gt and rn denotes the average number of rows in each table, the number

of edges in Gt is estimated at n ⋅ rn. Representing the program in such a way brings

difficulty in encrypting the program directly, so the tables in Gt may be necessarily

transformed into single-row tables, like what the work of (Cai et al., 2016) did.

This transformation also changes the way to represent functions and introduces some

auxiliary symbols, like � and ⊺. In this case, the representation of program has been

complicated. If the program is represented as a circuit graph Gc, the vertices in such

15

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

a circuit graph are circuits. Without further transformation, the relations between

circuits can be maintained, even after encrypting.

Circuit graph Gc does not contain the logic structures like “row” or ”column”,

but this change does not affect the functionality of the circuits. Because a row in a

table may be just a cluster of gates or a small-size circuit after transformation, while

a column is just a logic structure of organizing the rows. Nevertheless, in Boolean

representation, the structure of the rows can still be maintained. This job involves a

technique called gate soldering (Mood et al., 2014; Nielsen and Orlandi, 2009), but

we do not adopt it into our construction.

From now on, we always use circuits to represent the program and replace the

table graph Gt by a circuit graph Gc.

2.2 Strategy of Evaluation and Verification

Before proposing the construction of partial white-box verification, a definition about

what kind of verification is in discussion should be provided. For ease of explanation,

we regard the circuit graph and the specification as functions Gc and Gspec, and denote

the domains, all the possible inputs, of Gc and Gspec as D or Dspec. The range, all

the possible outputs, of Gc and Gspec, are denoted as R or Rspec.

Evaluation.

The process of evaluating Gc obeys the precedence constraints : In a graph G =

[V,E], a edge e(vi, vj) implies that the task in vertex vi must occur before vj, where

e ∈ E,vi, vj ∈ V . In our case, if a circuit CTi’s input is the result of CTj’s output, CTj

must be evaluated before evaluating CTi. The Assumption 1 indicates the structure

graph of Gt,Gc are directed acyclic graphs (DAG). For this reason, we need to assign

16

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

the vertices of Gt,Gc, namely the tables or circuits, by a topological ordering.

Definition 5. A topological order in a directed graph G = (V,E) is an ordering of its

vertices as v1, v2, ..., vn so that for every edge (vi, vj) we have i < j.

By such a topological order, each circuit CTi ∈ Gc is assigned with a unique index.

Particularly, the source vertex Input, which represents the external inputs to the

program, is indexed as CT0; the sink vertex Output, which represents the external

outputs of Gc, is indexed as CTn+1.

Gc can accept one or more inputs, and output one or more results. The type

of inputs which are incident from vertex Input is called as external inputs, and we

denote the set of actual external inputs (the set may contain multiple inputs, or only

one input) which is used to evaluate Gc as EX. In contrast, we define the results

which are incident to vertex Output as external outputs, and the set of actual external

outputs coming out from Gc as EY . According to the types of inputs, the circuits are

categorized into three sets. IC represents the set of circuits accepting external inputs

and OC represents those end circuits producing external outputs. Those circuits CTi

that are in neither IC and OC are intermediate circuits, which are run with the

results derived from previous circuits.

Now we can define the concept of evaluation. Focused on an external input ex ∈

EX, the circuits that are passed by during evaluating Gc with ex form a direct path

P = (CThead, ...,CTend), where CThead ∈ IC,CTend ∈ OC. By Assumption 1, P is

acyclic. Presently we define the strict meaning of evaluation. A demonstration of the

evaluation process is shown in Figure 7.

Definition 6. Evaluating Gc is a process of repeated composition of executing circuits

CTi ∈ CT . For a circuit CThead ∈ IC, CThead takes as input ex ∈ EX. For an

17

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

intermediate circuit CTi or an end circuit CTend ∈ OC, it takes as input the outputs

of previous circuits. A successful path of evaluating Gc is that given an external input

ex ∈ EX, the execution starts from the vertex Input, ending at the vertex Output.

The paths of red lines are successful processes of evaluation. An input x is evaluated by all
connected circuits, only successful evaluation would be colored in red.

Figure 2.5: A demonstration of the evaluation process

Verification. After clarifying how to evaluate the circuit graph, we can move for-

wards to discuss the what type of verification should be here. The first thing is to

obtain the test cases. In our settings, we use an algorithm V GA to generate the

test cases. V GA takes publicly known Gstruc,Gspec, and a security parameter K as

the inputs, generating the test cases for Gspec and Gc (Hayhurst et al., 2001). Gspec

denotes the specification described as a table graph. It must be revealed as the ref-

erence to check the verification results, which will be used in V S.Eval (Section 3.4.6

and Algorithm 8). For this reason, the specification can be held by the developer, the

verifier or a third party.

The verifier executes either the whole system, or a subsystem along a partial path.

In the latter way, executing Gc with the test cases may not cover the complete logic

of the software system. By a set of known inputs X and a set of known outputs Y ,

the verifier can conduct a partial path taking X as inputs, and verify if the results

18

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

match the outputs in Y . The input-output tuples (X,Y) are critical points (CP).

Now we can provide the strategy of verification. With the same test cases gener-

ated from V GA, the verifier executes the circuit graph Gc and the specifications Gspec.

If the results of Gc and Gstruc coincides, we can say that Gc passes the verification.

The test cases can be replaces by the tuples of CP . For x ∈ EX, if y = Gc(x) and

y ∈ Y , the verification succeeds on the pairs of CP .

A security parameter K can be used as a unary parameter in a function, represent-

ing K 1’s. With the above basis, we define a trusted verifier (or trusted verification

algorithm, derived from (Cai et al., 2016)):

Definition 7 (Trusted verifier). A trusted verifier V is an algorithm that uses r

random bits, and such that

Prr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V (1K ,Gc,Gspec,CP,V GA)(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0, if ∃X ∈ EX: Gc(X) ≠ Gspec(X)

0, if (CP /= ∅) ∧ (∃(X,Y) ∈ CP : Gc(X) ≠ Y)

1, if the previous two conditions are not true

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 1 − negl(K)

The properties of security and correctness can be elicited from the the above

definitions about evaluation and verification, while the rigid description is specified

in definitions 15 and 16.

• The security requirements contains:

– Protecting the privacy of contents in each table;

– Concealing the intermediate values which are the results of executing cir-

cuits;

19

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

– Guaranteeing the security of protocol can hold even in the malicious case.

• The correctness requirements contains:

– The results of executing the circuit graph is the same as the results of

executing the specification.

– A trusted third party can obtain the same results if repeating the verifica-

tion.

A trusted verifier satisfies Definition 7, as it behaves in the way that a verifier is

supposed to behave and does not deviate from the normal procedure. The verification

is judged as failure if the results do not coincide with the outputs of Gspec or CP .

The problem in this work (or in the real-life situation) is that the verifier can only

get access to an encrypted program, namely an encrypted circuit graph G′

c. Thus, we

need to design a protocol to realize the verification executing on the encrypted circuit

graph. Throughout this thesis, our work is around this core question.

2.3 Pseudorandom Generators

A pseudorandom generator refers to a deterministic algorithm that takes a short,

truly random string as a seed and expands the short string into a much longer string

that appears to “random” (Goldreich, 2006, p. 3). Many encryption schemes are

built upon pseudorandom generators and play a fundamental role in cryptography.

Pseudorandom generators rely on an important assumption: the existence of one-

way functions can lead to the existence of pseudorandom generators (Katz and Lin-

dell, 2007). The pseudorandom generator is an important component in our whole

20

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

cryptographic construction. Here we borrow the authoritative explanation from (Gol-

dreich, 2006, Chapter 3) and present the definition for pseudorandom generators.

Definition 8. p(.) is a function N → N, representing the length of a string with a

parameter. For any input s ∈ {0,1}n, n is the length of seed s. G, a deterministic

polynomial-time algorithm, is a pseudorandom generator that two following conditions

hold:

1. For all n ∈N, G expands s and satisfies G(s) = p(s).

2. For a probabilistic polynomial time (or “p.p.t.” for short) distinguisher D, there

exists a negligible function negl(.) such that:

∣Pr[D(r) = 1] − Pr[D(G(s)) = 1]∣ ≤ negl(n) (2.1)

where r is chosen uniformly at random from {0,1}p(n), the seed s is chosen

uniformly at random from {0,1}n.

2.4 Garbled Circuits Protocol

In this section, we present a brief description about the protocol of Yao garbled

circuits. Secure function evaluation (SFE) indicates a problem about how two parties

can compute a function without leaking their private inputs to the opponent. To solve

this problem, Andrew Yao proposed garbled circuits (Yao, 1982, 1986). The original

garbled circuits for SFE did not relate to protecting the content of the circuit. The

following work, like (Abadi and Feigenbaum, 1990) extends the security of garbled

circuits to guarantee function privacy.

21

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Following the work in (Goldwasser et al., 2013), we provide the definition of

garbled circuits such that:

2.4.1 Defining Garbled Circuits

Definition 9. C is a circuit with n bits of input and output. A scheme for garbled

circuits protocol is a tuple of p.p.t. algorithms GB=(GB.Garble,GB.Enc,GB.Eval) as

following:

1. GB.Garble(1K ,C) takes as input the security parameter K and a circuit C,

outputting a garbled circuit Γ and a series of garbled keys gk = {k0
j , k

1
j}
m
j=1 for

all wires in C, where j denotes the index of wires and m is the total number of

wires in C.

2. GB.Enc(gk, x) takes as input the value x = (x1, x2, ..., xn), xj ∈ {0,1} and gar-

bled keys gk for the circuit C, outputting an encoded x′ = (kx1 , kx2 , ..., kxn),

where kxj indicates the corresponding garbled key of bit xj.

3. GB.Dec(gk, y′) takes as input gk and y′, and outputs a decrypted value y =

(y1, y2, ..., yn), yj ∈ {0,1}.

4. GB.Eval(Γ, x′) takes as input a garbled circuit Γ and an encoded value x′,

outputting y′ = (ky1 , ky2 , ..., kyl) which is an encrypted value of y = C(x).

Correctness: For a polynomial length n, a sufficiently large K, a circuit C, and

all x ∈ {0,1}n,

Pr[(Γ, gk)← GB.Garble(1K ,C);x′ ← GB.Enc(gk, x);

y′ ← GB.Eval(Γ, x′); y ← GB.Dec(gk, y′) ∶ C(x) = y] = 1 − negl(K)

22

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Security: It is assumed that there exists a p.p.t. simulator SGB and a p.p.t.

adversary A, distinguisher D. For a garbled circuits scheme GB, its security guar-

antees the privacy of the input x and the circuit C. For a sufficiently large security

parameter K:

∣Pr[(x,C,α)← A(1K); (Γ, gk)← GB.Garble(1K ,C);

x′ ← GB.Enc(gk, x) ∶D(α,x,C,Γ, x′) = 1]

−Pr[(x,C,α)← A(1K);

(Γ̃, x̃′)← SGB(1
K ,C(x),1∣C∣,1∣x∣) ∶D(α,x,C, Γ̃, x̃′) = 1]∣

= negl(K),

where α represents any state that A may want to convey to D. SGB representing a

simulator of garbled circuits protocol is able to simulate the view of the real protocol

only by the result of computing C, and the size of the circuit and input.

2.4.2 Description of Garbled Circuits

In this section provides a brief explanation about how the protocol of garbled circuit,

GB works. Here we focus on the execution on a single circuit. The involved two

parties are the verifier and the developer. The protocol can be divided into five

stages (Snyder, 2014).

Step 0. Transforming the table into a circuit

Originally, the program is in the form of tables and owned by the developer. Thus,

the developer should transform the tables into a Boolean circuits C so that GB can

process the program.

Step 1. Garbling the circuit

23

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

This step describes how GB.Garble works and garbles a circuit. The circuit C

consists of many gates and wires, which are organized in an intricate structure (Section

2.1.2). Garbling a circuit is actually to garble the gates and wires within the circuit.

• Garbling a wire. By the requirement of input privacy, the bits for wires should

be hidden from the verifier. Here GB uses pseudorandom generator to encrypt

each wire.

Produced from a pseudorandom generator G on a seed s, two pseudorandom

strings v0
j , v

1
j correspond to the bit 0 and 1 for a wire wj. With an extra

random binary permutation bit pj, the garbled keys for a wire are created as

k0
j = (v0

j ∥ (0⊕ pj)) and k1
j = (v1

j ∥ (1⊕ pj)) (Malkhi et al., 2004), where symbol

∥ represents the operation of concatenation, and ⊕ represents the exclusive or.

• Garbling a gate. The content of the circuit C should also be hidden from the

verifier. As the functionality of a circuit is organized by the gates, what GB

encrypts is each gate.

Any kind of gates can be expressed as truth tables. Considering a typical gate g

with two input wires and one output wire, its truth table has four entries which

can be represented as A0,0
g ,A0,1

g ,A1,0
g ,A1,1

g , namely the results of four possible

input tuples: (X = 0, Y = 0), (bX = 1, bY = 0), (bX = 0, bY = 1), (bX = 1, bY = 1),

where X,Y denote the two input wires.

Garbling a gate is to garble the entries of the corresponding truth table. Prior

to that, the wires of the gate (two inputs wires and an output wire) should

be encoded into garbled keys as the last step. In the garbled truth table, four

entries are denoted as c0,0, c0,1, c1,0, c1,1. Using SHA − 1 (Huang et al., 2011),

24

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

the garbled entries are produced by

cX,Y = SHA-1(kbXX ∥kbYY ∥Z)⊕ k
g(bX ,bY)
Z , (2.2)

where Z represents the output wire. Regarding g as a function, the bit values

of X,Y,Z should be in such a relation

bZ = g(bX , bY). (2.3)

Overall, a gate is replaced by the four garbled entries

c0,0
= SHA-1(k0

X ∥k0
Y ∥Z)⊕ k

g(0,0)
Z

c0,1
= SHA-1(k0

X ∥k1
Y ∥Z)⊕ k

g(0,1)
Z

c1,0
= SHA-1(k1

X ∥k0
Y ∥Z)⊕ k

g(1,0)
Z

c1,1
= SHA-1(k1

X ∥k1
Y ∥Z)⊕ k

g(1,1)
Z

Importantly, this process can be spread over multiple gates. Just like what the

gates are computed in real circuit, the computation on a garbled circuit can be

passed through the garbled truth tables. The garbled keys in a garbled truth

table can appear in another garbled truth table, which carries the results of the

previous gate forward into the next gates. A demonstration about this process

is shown in Figure 2.6. The garbled keys of the output wire w3 in gate g1 (Figure

2.7(b)) appear in the garbled truth table of gate g3 (Figure 2.8(b)).

Dealing with all wires and gates in circuit C as the above construction, the job of

building a garbled circuit is finished, and a garbled circuit Γ, as well as the garbled

keys {k0
j , k

1
j}
m
j=1, is generated.

25

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Figure 2.6: An example of multiple gates (from Snyder, 2014)

w1 w2 w3

0 0 0
0 1 0
1 0 0
1 1 1

(a) Truth table for
a AND gate g1

w1 w2 w3

k0
1 k0

2 k0
3

k0
1 k1

2 k0
3

k1
1 k0

2 k0
3

k1
1 k1

2 k1
3

(b) Garbled truth
table for gate g1

Figure 2.7: The truth table and the garbled truth table for Gate g1

w3 w5 w6

0 0 0
0 1 1
1 0 1
1 1 1

(a) Truth table for
a OR gate g3

w3 w5 w6

k0
3 k0

5 k0
6

k0
3 k1

5 k1
6

k1
3 k0

5 k1
6

k1
3 k1

5 k1
6

(b) Garbled truth
table for gate g3

Figure 2.8: The truth table and the garbled truth table for Gate g3

It is important to note, the developer knows the mapping tuplesmap = ([k0
j ,0], [k

1
j ,1])

m
j=1

between garbled keys (k0
j , k

1
j) and its corresponding real values. The mapping tuples

can be used to decrypt the outputs of evaluating the garbled circuit Γ. The garbled

26

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

keys produced in this phase will be used to encode the input in next step.

Step 2. Encoding the inputs

This step describes how to use garbled keys to encode the given input x. The core

of this job is the protocol of oblivious transfer. An oblivious transfer protocol (or OT

for short) is a technique allowing two parties, a client and a receiver, to exchange the

requested value without leaking other unauthorized information. The principles of

OT is provided in Section 2.5.

At the beginning, the developer owns the garbled keys {k0
j , k

1
j}
n
j=1, j ∈ [1, n]. Via

1-out-of-2 OT, the verifier exchanges each bit xj ∈ x = (x1, ...xn) for the corresponding

garbled keys kxj . As specified in Algorithm 1, the verifier sends a set of public keys

(kpub0,j , k
pub
1,j)

n
j=1 to the developer, rather than the original input bits x = (x1, ...xn).

Then, the developer uses these public keys to encrypt the garbled keys {k0
j , k

1
j}
n
j=1

at hand, returning the pairs of cipher {c0,j, c1,j}
n
j=1. Particularly, in a pair of cipher

(c0,j, c1,j), the verifier can only decrypt one piece of them, and xj decides which one

can be decrypted. If xj = 0, c0,j can be decrypted; if xj = 1, c1,j can be decrypted.

Consequently, the verifier only receives the corresponding garbled keys {kxj}nj=1. In

the whole procedure, the developer does not know the values {xj}nj=1, xj ∈ x, and

the verifier cannot acquire the other garbled keys {k1−xj}
n
j=1. The procedure can be

illustrated in Figure 2.9.

In the above discussion, only the verifier has the input to participate the compu-

tation. If the developer also has inputs, he can encode the inputs by himself before

encoding the verifier’s inputs. Becasue the developer generates the garbled circuit,

he owns the mapping tuples map = ([k0
j ,0], [k

1
j ,1])

m
j=1. For an input ẋ from the devel-

oper, the developer can replace each bit of ẋ with the corresponding garbled key by

27

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

The verifier: The developer:
Γ,{k0

i , k
1
i }
l
i=1

Γ Γ
←Ð

x = (x1, ..., xl) {k0
i , k

1
i }
l
i=1

{kpub0,i , k
pub
1,i }

l
i=1

ÐÐÐÐÐÐÐÐ→

{E(k0
i),E(k1

i)}
l
i=1

←ÐÐÐÐÐÐÐÐÐÐÐ

x′ = (kx1 , ..., kxl)
Evaluate (x′, y′,Γ)→ z

Figure 2.9: The protocol of garbled circuits

the mapping tuples map = ([k0
j ,0], [k

1
j ,1])

m
j=1. Then, the developer sends the encoded

x̄′ to the verifier as well as the garbled circuit. As the verifier does not have the

mapping tuples map, the real bits behind x̄′ is blind to the verifier.

Step 3. Computing the garbled circuit

This step corresponds to GB.Eval. Reversing the Equation (2.2), the garbled

keys for the output wire can be computed by the following equation:

k
g(bX ,bY)
Z = SHA-1(kbXX ∥kbYY ∥Z)⊕ cX,Y . (2.4)

Equation (2.4) indicates that, with the complete set of garbled entries CX,Y for a

gate and two garbled keys for two input wires respectively, the garbled key for output

wire Z can be computed.

Take the gate g1 in Figure 2.7(b) as example. Assuming that X is the value of

wire w1 and Y is the value of wire w2, if X = 0 and Y = 1, the garbled keys for

the two wires are k0
1, k

1
2. In Step 1, the verifier obtains the garbled entries for gate

g1, c0,0, c1,0, c0,1, c1,1. Taking as input the garbled entries and garbled keys for each

wire, the verifier can compute Equation (2.4). Particularly, only the correct garbled

28

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

entry can work out. By Equation (2.3) and Figure 2.7(a), Z = g(0,1) = 0. With

garbled keys k0
1, k

1
2 at hand, the verifier acquires k0

3 as the result of computing gate

g1. If computing the garbled entries with incorrect garbled keys, we use a symbol �

to represent the result.

Given the input x = (kx1 , kx2 , ..., kxn), the above computation can be spread over

all the garbled truth tables in Γ until the process reaches the the output gates.

Eventually, an output y′ = (ky1 , ky2 , ..., kyn), which consists of a sequence consisting

of garbled keys, comes out from garbled circuit Γ.

Step 4. Decrypting the results

Lastly, the verifier needs a decrypted output. There are two ways to decrypt y′

(Lindell and Pinkas, 2007). The first one is that the developer uses the mapping

tuples map = ([k0
j ,0], [k

1
j ,1])

m
j=1 to decrypt y′ = (ky1 , ky2 , ..., kyn). Each garbled key

kyj can always find a tuple [k0
j ,0], [k

1
j ,1] and acquire the corresponding bit. Then the

developer returns the sequence of decrypted bits to the verifier. This job denotes to

GB.Dec. The another way is that the end gates of Γ directly output the decrypted

values directly. If the garbled keys of output wires is replaced by the corresponding

bits (see Figure 2.1), the results of the garbled truth tables become real bits. In this

method, decrypting the outputs is integrated into the circuits and GB.Dec is not

necessary to invoke. Both of the two ways still protect the privacy of the circuit. In

our settings, we choose the second way and thus GB.Dec is omitted in the scheme of

garbled circuits.

29

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

w1 w2 w3

k0
1 k1

2 0
k1

1 k0
2 0

k0
1 k1

2 0
k1

1 k1
2 1

Table 2.1: A garbled truth table outputs a real bit directly

2.5 Oblivious Transfer Protocol

An oblivious transfer protocol (OT) is a building block in garbled circuits. Its func-

tionality can be described as (Goldreich, 2004, Section 7.3.2)

(i, (s1, .., sk))↦ (si, λ). (2.5)

Equation (2.5) means that, in a 1-out-of-k OT, one party (the sender) can request

a value si by sending an index i to another party (the receiver), who holds k values

s1, ..., sk. The symbol λ indicates that the OT returns nothing to the receiver at the

end of the protocol. An OT guarantees that the sender cannot know the remaining

values s1, ..., sk except si, and the receiver cannot know the index.

What we interest is the 1-out-of-2 OT . The two garbled keys k0, k1 owned by the

developer are requested by the verifier. The verifier sends the input bit, xj, as the

index to request the corresponding garbled key. If the input x = (x1, ..., xn), there are

∣n∣ rounds of OT to exchange the garbled keys. A brief algormic description for 1-out-

of-2 OT (Snyder, 2014) is shown in Algorithm 1, which is secure in the semi-honest

case. To present the concept of OT more clear, we provide an example in Figure 2.10.

Particularly, we regard the oblivious transfer as a building block in our construc-

tion. So the security of the protocol of garbled circuits, and even our protocol, can

be reduced to the security of OT .

30

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Definition 10 (Security of Oblivious Transfer).

For the sender: V iewsender(i,{s0, s1}) ≈ SOT (i, si)

For the receiver: V iewreceiver(i,{s0, s1}) ≈ SOT ({s0, s1}, λ)

SOT is the simulator who manages to generate the indistinguishable views of the sender

and the receiver. Operation ≈ represents a computational indistinguishable relation

between two distribution ensembles.

Algorithm 1 Semi-honest 1-out-of-2 Oblivious Transfer.
E = (E.Enc,E.Dec) is a public-key encryption scheme.

1: The receiver has a set of strings {s0,i, s1,i}
n
i=1.

2: The sender has a bit sequence x = (x1, ..., xi, ..., xn), where xi ∈ [0,1] and i ∈ [1, n].

Each bit xi corresponds to an expected string. If xi = 1, the sender expects s1,i;

if xi = 0, the sender expects s0,i.

3: for all i ∈ [1, n] do

4: The sender generates a public/private key pair (pki, ski) along with an aux-

iliary value pk′i that is computationally indistinguishable with from pki. But the

sender does not have the private key that pk′i corresponds to.

5: The sender then advertises (kpub0,i , k
pub
1,i) as public keys. If xi = 0, kpub0,i = pki,

while kpub1,i = pk′i; if xi = 1, kpub0,i = pk′i, k
pub
1,i = pki.

6: The receiver generates c0,i = E.Enc(s0, k
pub
0,i) and c1 = E.Enc(s1, k

pub
1,i), and

sends c0,i, c1,i to the sender.

7: The sender decrypts c0,i, c1,i and obtains sb,i = E.Dec(cb,i, ski), where b is the

value of xi.

8: end for

31

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Note: Suppose x = (0110). � indicates a meaningless string. The blue cells in the first table
represent which bits’ garbled keys the sender wants to obtain; the blue cells in the second table are

the ones that the sender can decrypt.

Figure 2.10: An example of how OT exchanges bits for garbled keys

In this work, OT should be secure in malicious cases. Fortunately, the work in

(Bellare and Micali, 1989; Naor and Pinkas, 2001, 2005) has proposed the stronger

OT which is secure against malicious behavior. So we use this fact in following

construction.

2.6 Cut-and-choose Strategy

The cut-and-choose approach is a strategy that can enhance the security of the pro-

tocol of garbled circuits and address the malicious behavior. Compared to the zero-

knowledge proofs approach (Goldreich et al., 1987), the cut-and-choose strategy is

more plausible and thus it receives more attention (Lindell and Pinkas, 2007; Shen

et al., 2011; Mohassel and Riva, 2013; Nielsen and Orlandi, 2009). The core idea

32

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

behind this method is that each original circuit will have more than one garbled cir-

cuits and sets of garbled keys. Figure 2.11 is an example to depict the cut-and-choose

strategy. Among the multiple garbled circuits for one circuit C, some of them can

be used for consistency check, while the rest of garbled circuits are used for being

evaluated. By this feature, if the garbled circuits are built incorrectly, the garbled

keys are altered, or the results from evaluated circuits are not consistent, the proto-

col can detect such behavior with high probability. Here we introduce a new security

parameter s, which is used to indicate how many garbled circuits are generated for a

single original circuit.

Figure 2.11: A demonstration of applying the cut-and-choose strategy

The cut-and-choose approach has evolved into many variants. In this work we

adopt the framework in (Lindell and Pinkas, 2007), but some changes have to be

made so as to adjust it to our problems. First, Lindell’s strategy is designed for the

case which both the developer and the verifier provide inputs. However, the inputs

33

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

only come from one party (the verifier) in our case. On the other hand, in order

to check if the garbled circuits are built correctly, Lindell’s construction allows the

developer to make the content of circuits public. This setting conflicts with the core

requirement of the circuit security and it must be removed in our construction.

Besides duplicating garbled circuits in multiple copies, the cut-and-choose ap-

proach also involves other techniques to defend malicious behavior. The commitment

scheme is an efficient two-party protocol which is used for checking data integrity

(Goldreich, 2006, Section 4.4.1). Commitment schemes are important components in

many cryptography protocols. In our protocol, we apply the commitment scheme to

prevent the garbled keys from being altered. For example, in Step 2 of the protocol

of garbled circuits, the verifier sends an input xi and requests the developer to encode

it. It is possible that, the developer uses different garbled keys to encode xi, and thus

breaches the security and correctness. In this work, we adopt the bit-commitment

scheme as the commitment scheme (Section 2.7).

An important issue about the cut-and-choose approach is the overhead. Concern-

ing the s versions of garbled circuits, the protocol generates ns tuples of commitments,

com(k0
i,j,r), com(k1

i,j,r), where i, j, r are the indices of circuits, wires, and garbled

copies. In each circuit CTi, the commitments for the inputs are 2 ⋅(∣s garbled copies∣) ⋅

(∣wires∣) = 2 ⋅s ⋅n = 2sn. As n is usually fixed, the computation overhead often depends

on the parameter s.

2.7 Commitment Schemes

In this section we introduce the concept of the bit-commitment scheme. In this work,

we adopt the construction from (Naor, 1991) and present the commitment scheme for

34

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

a single bit and the commitment scheme for many bits. The former is used in coin-

tossing protocol (Section 2.8) and the latter is used in the cut-and-choose approach.

The protocol of the bit-commitment scheme has two stages, the commit stage and

the reveal stage. At the commit stage, P1 commits to a piece of information and sends

the commitments for the information to P2. In the reveal stage, the commitment can

be “opened” and the P2 can check if the information from the “opened” commitment

is consistent with the expected information. In our case, the committed information

indicates the garbled keys.

Definition 11 (A commitment scheme for a single bit). It is assumed that G() is

a pseudorandom generator satisfying the definition 8. Gi(s) denotes the first i bits

of the pseudorandom sequence on seed s ∈ {0,1}n. Bi(s) denotes the ith bit of the

pseudorandom sequence on seed s. The construction of the commitment scheme for

a single bit is as following:

• The commit stage–

1. P2 sets a random vector R⃗=(r1, ...ri, ..., r3n) where ri ∈ {0,1} for 1 ≤ i ≤ 3n

and sends R⃗ to P1.

2. P1 selects a seed s ∈ {0,1}n and sends to P2 the vector D⃗ = (d1, d2, ..., d3n)

where

di =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

Gi(s) if ri = 0

Gi(s)⊕ b if ri = 1
(2.6)

• The reveal stage–

35

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

P1 sends s and P2 verifies that:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

if ri = 0, check if di = Bi(s)

if ri = 1, check if di = Bi ⊕Gi(s)
(2.7)

A more general case is to commit a long message rather than a single bit. Sticking

to one pseudorandom sequence, we can propose a commitment scheme for many bits:

Definition 12 (A commitment scheme for many bits). Based on Definition 11, party

P1 commits M = (b1, b2, .., bm) to P2.

• The commit stage–

1. P2 selects a random vector R⃗=(r1, ...ri, ..., r2q) where ri ∈ {0,1} and ∣q∣ of

the ri’s are 1. P2 sends R⃗ to P1.

2. P1 computes a hamming code c for message M , where c ∈ {0,1}q. c =

Hm(b1, b2, ..., bm) and the hamming distance between any ci, ci+1 ∈ c is at

least ε ⋅ q. P1 chooses a seed s ∈ {0,1}n and makes a commitment M ′
=

(b′1, ..., b
′

q):
⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

if ri = 0, b′i = Bi(s)

if ri = 1, b′i = ci ⊕Bi(s)
(2.8)

P1 sends M ′ to P2. The commit stage ends.

• The reveal stage – P1 sends s and M to P2 and then P2 verifies the correctness of

M ′. To distinguish from the values in the commit stage, G′
(s) and c′ represent

the new pseudorandom sequence and hamming code. P2 conducts such check:

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

if ri = 0, check if b′i = G
′

i(s)

if ri = 1, check if b′i = c
′

i ⊕G
′

i(s)
(2.9)

36

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Note: Enlarging the Hamming distance between two different original strings reduces

the probability of conflicts when generating pseudorandom strings. So we need an

efficiently computable function Hm ∶ {0,1}m ↦ C, where C is a string with satisfactory

hamming distance.

2.8 Coin-tossing Protocol

In the cut-and-choose approach (Section 2.6), each circuit has multiple garbled cir-

cuits and commitments which can be used for checking or evaluating. Thus, a mech-

anism that decides which circuits are used for checking or evaluating should be de-

signed. Particularly, selecting which circuits should satisfy fairness and randomness.

To achieve this task, we use the coin-tossing protocol (Goldreich, 2004, Section 7.4.3).

The coin-tossing protocol is to help two parties agree on a random string which

is unbiased towards both of them. In our problems, the developer and the verifier

are mutual distrustful with each other. To make an agreement on choosing which

circuits are used for checking or evaluating, an efficient way is that both the two

parties decide a string cooperatively. The idea of coin-tossing protocol to decide a

random bit agreed by the two parties is to force each of the two parties to contribute

a random bit, and reliably compute the shared random bit.

Definition 13. A coin-tossing protocol is a two-party protocol for securely computing

the random function (1n,1n)↦ (b, b), where b is uniformly distributed in {0,1}.

For a random vector r and the commitment Cr(b) with r for a bit b,

37

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

The coin-tossing protocol:

1. Both parties take as input security parameter 1n.

2. P1 randomly selects a bit σ ∈ {0,1} and s ∈ {0,1}n, and sends c=Cs(σ) to

P2.

3. P2 randomly selects σ′ ∈ {0,1} and sends σ′ to P1.

4. P1 receives σ′ and output b=σ ⊕ σ′, and sends σ, s to P2.

5. P2 receives σ, c and checks if the c he received in Step 1 is equal to Cs(σ).

If the equality holds, return σ ⊕ σ′; if not, return ⊥.

38

Chapter 3

A Protocol for Secure and Trusted

Partial White-box Verification

This chapter we introduce the protocol for the secure and trusted partial white-box

verification.

3.1 Problem Analysis

In this section, we dig deeper to analyse the problems. The analysis involves how to

use the preliminaries, introduced in Chapter 2, to design the protocol.

Means of describing the program. As a default setting, the original program

is described by tabular expressions. The software program consists of components,

which are implemented by the developer (components may come from different par-

ties, but in our situation, we regard all of the developers as one party). Using

tables to describe these components, the orignal program becomes a table graph

Gt = [T,Gstruc], where Ti ∈ T = (T1, ..., Tn) denotes each component described by

39

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

tabular expressions (Section 2.1).

In order to apply garbled circuits, tables in Gc should be transformed into circuits.

By the assumption 3, this transformation is an automatic step before we run the

protocol. Thus, a table graph Gt is transformed into a directed circuit graph Gc =

[CT,Gstruc], where CTi ∈ CT = (CT1, ...,CTn) denotes the circuit transformed from

table Ti.

Executing the circuit graph. Evaluation is a process of computing a program

with inputs. The Definition 6 specifies the notion of how to execute the program on

a circuit graph. The evaluation is conducted by the verifier. Given a set of external

inputs xi ∈ EX,xi = (x1,i, ..., xn,i), the process of evaluating the original circuit graph

Gc can be specified as following steps:

1. xi ∈ EX is the input for circuit CTi ∈ IC, where IC represents the set of circuits

accepting external inputs. Computing xi with the corresponding circuits, the

verifier obtains the results yi for CTi.

2. Except circuits CTi ∈ IC, the inputs of the remaining circuits are the results of

previous computation. Executed like iterative function, the process continues

until the end circuits output the results externally. The external outputs are

the final result of Gc

Secure verification. As introduced in Section 1.1, the goal of verification is

to check if the program coincides with the specification. The goal is realized by

evaluating the program, i.e. the circuit graph Gc and the specification with the same

test cases and checking if the results are equal (Section 2.2).

In the meantime, the process of verification must satisfy the security. A trusted

verifier, which is defined in Definition 7, is asked to guarantee that the function

40

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

privacy of the developer is not violated. For this reason, the process of evaluation

cannot be performed publicly.

As garbled circuits has the property of function privacy, we apply the technique in

the process of evaluation to protect the function privacy during executing Gc. Before

the process of evaluating Gc starts, the developer calls GB.Garble (Definition 9) to

garble every circuit CTi, producing the corresponding garbled circuits and garbled

keys for all the wires in CTi. This measurement can manage to hide the functionality

of each circuit as all the bits are replaced by pseudorandom strings.

Protecting the intermediate results. The function privacy also includes the

protection of the intermediate results.

Intermediate results indicate the outputs from computing the previous circuits and

being inputs of the following circuits. An intermediate result consists of garbled keys

and thus the corresponding bits. As the intermediate results contains the internal

runtime information, a malicious verifier may try to know it and gain the information

about the content of circuits. But the intermediates result should also be hidden from

the developer, who may be able to tamper the intermediate results and undermines

the verification.

The problem about how to securely evaluate the intermediate results is a challenge

for garbled circuits. The challenge originates from a fact: If the developer garbles

each circuit by calling GB.Garble independently, the garbled keys for each circuit are

irrelative. We can look back on how the gates in a circuit connect with each other.

As mentioned in Section 2.1.2, sharing the same garbled keys between two immediate

garbled truth tables realizes the computation between two adjacent gates. However,

the garbled keys for two circuits are generated independently. Before being an input

41

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

to the target circuit, the result of a circuit has to be decrypted, and then encoded by

the garbled keys of target circuit. For example, a result y′ from a circuit CTi is the

input to a circuit CTi+1 (all circuits are indexed by topological order). y′i is encoded

by CTi’s garbled keys, so y′i has to be decrypted by the CTi’s garbled keys first, and

then is transformed into x′i+1 by encoding the decrypted value yi, with CTi+1’s garbled

keys.

The problem is that these operations can leak secrets to the verifier or the de-

veloper inevitably. The decryption action needs the mapping tuples between garbled

keys and real values. If the verifier requests the developer to decrypt an intermediate

result y′i, the developer must learn the decrypted value yi once he decrypts y′i. On

the other hand, the verifier cannot acquire the mapping tuples to decrypt y′i, or he

would not just be able to know yi, but use the mapping tuples to know the content

of the wires and garbled truth tables.

In this case, we make use of two-input garbled circuits to solve the problem. The

garbled circuits mentioned above are suited to our case: the inputs are only from the

verifier. But in fact, the protocol of garbled circuits is often applied to deal with the

two-input case, which provides the input privacy for the inputs from two parties. This

feature can be used in our case. The mapping tuples is the input from the developer

and the intermediate result is the input from the verifier. Garbled circuit for two-input

case can provide the input privacy to both the verifier and the developer. On the other

hand, the process of translating the intermediate result can also be performed by the

garbled circuits. Through the circuit privacy of garbled circuits, the internal runtime

information is under protection and the secrets is avoided leaking. The details will

be specified in Section 3.5.1.

42

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Malicious behavior A defect of Yao garbled circuits is that the security only

holds on semi-honest cases and cannot carry over against malicious adversaries. But

our protocol has to guarantee the protocol to be secure in malicious case, or the

practical value of our work would be at a discount. Before designing a more secure

protocol, we need to specify what kinds of behavior is malicious.

First of all, we should admit that it is impossible to enumerate all threats in real

life. The attacks may come from arbitrary fields and unexpected – which humans

cannot anticipate. Accordingly, it is meaningless to define specific threats rather

than provide reliable mathematical definitions (Katz and Lindell, 2007, Chapter 1.4).

Derived from the work (Cai et al., 2016), we provide the explicit security definition

against malicious behavior (Section 3.3.2). Definition 16 contains the restraints for

both the verifier and the developer:

• The developer cannot do any changes to deviate the results from the correct

procedures of verification, regardless of the intermediate results or external re-

sults;

• In the whole process of verification, the verifier cannot acquire any other infor-

mation beyonds the external inputs, external outputs and the structure of the

circuit graph, and cannot tamper the verification results.

Aimed at defending the malicious behavior of the developer, the protocol employs

the cut-and-choose approach (Section 2.6). The usage lies in two aspects. The first

aspect is that, the commitment scheme can help the verifier detect the inconsistent

behavior with high probability, if a malicious developer uses different the garbled keys

that are agreed with the ones generated in GB.Garbled. The commitment scheme

involves the function V S.Checker, which is introduced in Section 3.4.5. The second

43

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

aspect is that the malicious behavior can be detected with high chance if a malicious

developer tampers the encoded inputs and changes the values.

The protocol should also contain the mechanisms to guard against the malicious

behavior conducted by the verifier. The most possible case is that the verifier sends

corrupt queries when he requests the developer to encode the inputs. In this way,

we design a specific algorithm to check the queries, which is performed by Algorithm

Type.

Besides, the verifier may denies the correct results of verification deliberately.

Aimed at such a threat, we allow a third-party trusted verifier to repeat the original

verification. This replication needs the running records of the original verification,

and we call the records as a Certificate. A certificate is a piece of public information,

and any third party can repeat previous verification by the corresponding certificate.

Therefore, if a third-party trusted verifier runs the verification with the certificate, the

second verification must be able to to detect the inconsistent results, and the malicious

behavior like tampering the result of the original verification, must be detected.

3.2 Comparison with the Protocol Based on FHE

The topic, secure and trusted partial white-box verification, originates from the work

of (Cai et al., 2016). It is worthwhile to compare the Cai’s protocol, which is based

on Fully homomorphic encryption, with the our protocol, which is based on garbled

circuits.

First, the two protocols adopt different means to represent the program. The

protocol based on FHE adopts tables (Section 2.1.1) to represent the program and

thus executes the protocol on the tables. Accordingly, the table graph in Cai’s work

44

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

is also different from the circuit graph in our work. Since the protocol based on FHE

requires to works on single row tables, the original tables with multiple rows should

be transformed into the single-row tables.

Second, the protocol based on FHE uses different procedures to realize the se-

cure verification. As FHE enables computation to execute on encrypted data, an

intermediate result can participate the next computation without the complicated

translation like what we do in our protocol. From this point of view, it is an obvious

advantage in Cai’s work.

Compared to the protocol based on FHE, our protocol has the advantage in prac-

ticability. The current work reveals that only a partial version of fully homomorphic

encryption can be implemented. For example, the representative work about imple-

menting FHE (Gentry and Halevi, 2011) only realized the “somewhat homomorphic

encryption”, which means a limited number of homomorphic operations. This fact

reveals the bottleneck of FHE in implementation. On the other hand, the work on

the implementation of garbled circuits has been mature. Apart from the framework

of Fairplay (Malkhi et al., 2004), the work of (Huang et al., 2011) and (Kreuter

et al., 2012) also presented their own frameworks to implement the garbled circuits.

Other research, like the optimization of garbled circuits (Nielsen and Orlandi, 2009),

has made attempts to apply garbled circuits to the large-scale industrial practice.

45

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.3 Scheme

3.3.1 Notations

For ease of accurate representation, our work involves many notations. Table 3.1

summarizes the important notations which appear in previous sections and will be

used in following sections.

Notations Meanings

Gc,G′

c Gc is a circuit graph consisting of a set of n circuits {CTi}ni=1 and a

structure graph Gstruc. G′

c is the encrypted version of Gc.

CTi,CT ′

i,r CT ′

i,r is a garbled circuit for CTi, where i ∈ [1, n] and j ∈ [1, s].

In the cut-and-choose strategy, each CTi corresponds to s garbled

circuits, so CTi,r denotes CTi’s rth garbled copies.

IC,OC IC is a set of circuits accepting external inputs, while OC is a set

of circuits outputting external outputs.

EX x ∈ EX is an external input to Gc. EX is the complete set of

external inputs provided by the verifier. External inputs are just

the test cases generated from V GA().

wj,i wj,i denotes a wire in circuit CTi, where j ∈ [1,mi]. mi denotes the

total wires in circuit CTi.

k0
i,j,r or k1

i,j,r In a garbled circuit CT ′

i,r, if the bit value of a wire wj,i is 0, its

garbled key is k0
i,j,r; if the bit of wj,i is 1, k1

i,j,r is its garbled key.i, j, r

indicate the indices of circuits, wires and garbled copies respectively,

where i ∈ [1, n], j ∈ [1,mi] and r ∈ [1, s].

gki,r gki,r indicates a set of garbled keys for all input and output wires in

CTi,r, gki = {k0
j,i,r, k

1
j,i,r}

li
j=1.

46

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

xi, x′i,r xi = (x1, ..., xli) is the input to circuit CTi, where li indicates the bit

length of xi. x′i,r = (k
x1,i
r , k

x2,i
r , ..., k

xli,i
r) is the encrypted value of xi

and the input to the garbled circuit CT ′

i,r.

yi, y′i yi = (y1, ..., yli) is the output from computing circuit CTi with xi,

with the same length li as xi. y′i,r = (k
y1,i
r , k

y2,i
r , ..., k

yli,i
r) is the en-

crypted value of yi and the output from CT ′

i,r.

mapi,r mapi,r = [(k0
i,j,r,0), (k

1
i,j,r,1)]

li
j=1 is a set of mapping tuples which

contain the corresponding relationships between the garbled keys,

only used for encoding inputs and outputs, and their bit values.

Com(.) Com(.) is a function that takes a parameter as the input and gen-

erates the corresponding commitments. Particularly, Com(inputi)

denotes the set of commitments for {CT ′

i,r}
s
r=1’s input wires

{k0
j,i,r, k

1
j,i,r}

li,s
j=1,r=1.

Gr Gr is a pseudorandom generator

sdi sdi is the seed for pseudorandom generator Gr, where i is the circuit

index.

M Memory M can store and retrieve the record (w, z, q, t) generated

when encoding the inputs. A tuple (w, z, q, t) indicates that a result

z is the circuit of computing CTq with an input w, and z is the input

to the next circuit CTt.

τi τi = (t1,i, ..., tr,i, ..., ts,i) is the challenge string during evaluating CTi.

If tr,i = 1, the commitments of CT ′

i,r would be chosen to conduct

consistency check.

47

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

dci,r dci,r is a set of decommitments to decommit the commit-

ments Com(inputi) for garbled circuits {CTi,r}
n,s
i=1,r=1. dci,r =

({k̄0
i,j,r, k̄

1
i,j,r}

li
j=1, sdi), where r is decided by τi. {k̄0

i,j,r, k̄
1
i,j,r}

li
j=1 are

the garbled keys sent from V S.Checker. sdi is the seed for pseudo-

random generator of generating commitments in circuit CTi.

Ri If tr,i ∈ τi and tr,i = 1, the index r ∈ Ri.

QAE QAE = (QE,AE) are the interaction records during executing

V S.Encode. QE = (w, z, s, t) are records of queries sent from the

verifier. AE is the response of V S.Encode from the developer.

QAC QAC = (QC ,AC) are the interaction records during executing

V S.Checker. QC = (τi) are the queries sent from the verifier. AC is

the response of V S.Checker from the developer, AC is exactly the

records of dci,r.

Table 3.1: Notations

3.3.2 Definitions for the Scheme

Definition 14 (Scheme for partial white-box verification). A scheme for secure and

trusted partial white-box verification is a tuple of p.p.t algorithms such that

VS.Encrypt(Gc,1K): VS.Encrypt is an algorithm that takes as input a set of

circuits {CT1, ...,CTn} and a security parameter 1K, and outputting a set of gar-

bled circuits {CT ′

i,r}
n,s
i=1,r=1, a complete set of garbled keys {k0

i,j,r, k
1
i,j,r}

n,mi,s
i=1,j=1,r=1 for

all wires in each circuit, and the commitments for all input wires in each circuit

{Com(inputi)}ni=1 = {Com(gki,r)}
n,s
i=1,r=1 where gki,r = {k0

i,j,r, k
1
i,j,r}

li
j=1.

48

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

VS.Encode(gki, xi): VS.Encode is an algorithm that takes as input the set of

garbled keys gki,r = {k0
j,i,r, k

1
j,i,r}

li
j=1 and xi, outputting a garbled input, x′i,r.

VS.Checker(τi): VS.Checker is an algorithm takes as input a challenge string

τi = (t1,i, ..., ts,i), and returns a set of decommitments {dci,r}r∈Ri
, where Ri is a set of

r’s which satisfy tr,i ∈ τi, tr,i = 1.

VS.Eval(1K ,QAE,QAC ,G′

c): VS.Eval is an algorithm that take as input a secu-

rity parameter 1K, records of VS.Encode QAE, records of VS.Checker QAC and the

encrypted version of objective circuit graph G′

c, returning 0 or 1 to indicate whether

the verification succeeds or not.

Having defined the strategies and security requirements of evaluating the protocol

in Section 2.2, we can provide the definitions for correctness and security.

Definition 15 (Correctness). A verification scheme is correct iff a trusted third-party

verifier V ′ and a real-life verifier V can obtain such results: V S.Eval(1K ,QAE,QAC ,G′

c) =

1 if and only if both of the following equations hold:

Prr[V (1K ,Gc,Gspec, V GA,CP)(r) = V (1K ,G′

c,Gspec, V GA,CP)(r)]

≥ 1 − negl(K) (3.1)

Prr[V (1K ,G′

c,Gspec, V GA,CP)(r) = V ′
(1K ,G′

c,Gspec, V GA,CP)(r)]

≥ 1 − negl(K) (3.2)

where V is the verifier hardwired in V S.Eval, r a string of random bits and Gc is

the original circuit graph.

Definition 16 (Security). For A = (A1,A2) and S = (S1, S2, S3) which are tuples of

p.p.t algorithms, consider the two experiments in Table 3.2,3.3.

49

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Expreal(1K)

1. (Gc,CP, stateA)← A1(1K)

2. G′

c ← V S.Encrypt(1K ,Gc)

3. α ← AV S.Encode,V S.Checker2 (1K ,G′

c,Gc,CP, stateA)
4. Output α

Table 3.2: Exp1: real experiment

Expideal(1K)

1. (Gc,CP, stateA)← A1(1K)

2. G̃c ← S1(1K)

3. α ← A
S
O1
2 ,S

O2
3

2 (1K , G̃c,Gc,CP, stateA)
4. Output α

Table 3.3: Exp2: Ideal experiment

Simulators S1, S2, S3 are used to simulate V S.Encrypt, V S.Encode and V S.Checker.

S2, S3 are augmented with access to oracle O1,O2:

1. O1 provides the information as V S.Encode obtains in Expreal, except the orig-

inal value xi of the intermediate input {x′i,r}
s
r=1.

2. O2 provides the information as V S.Checker obtains in Expreal, except the de-

commitments {dci,r}r∈Ri
, where Ri is a set of r’s which satisfy tr,i ∈ τi, tr,i = 1.

A verification scheme V S is secure if there exists a tuple of p.p.t. simulators

S = (S1, S2, S3) and oracles O1,O2 such that for all pairs of p.p.t. adversaries A =

(A1,A2), the following is true for any p.p.t. algorithm D:

∣Pr[D(Expideal(1K),1K) = 1] − Pr[D(Expreal(1K),1K) = 1]∣ ≤ negl(K),

i.e. the two experiments are computationally indistinguishable.

Note: Memory state StateA is the information of communication between adver-

saries {A1,A2}. α represents the view outputted from the experiments.

50

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.4 Designing the Protocol

Now we can design the the protocol for partial white-box verification. The ideas are

derived from the analysis in Section 3.1.

3.4.1 Transforming the Program into Circuits

At the very beginning, we need to make the program represented by the desired means

of description, Boolean circuits (Snyder, 2014). It is a necessary step to apply the

garbled circuits to our construction. According to the Assumption 3, it is plausible

to transform a program described by tables into the corresponding circuits. Through

this step, the original table graph Gt becomes a circuit graph, Gc (Section 2.1). We

skip specifying how to implement the transformation, as it is function specific and

beyond our discussion scope.

3.4.2 Encrypting the Circuits

The first step of the protocol is to encrypt the circuits. The developer calls V S.Encrypt

to encrypt the circuit graph Gc. In fact, V S.Encrypt applies GB.Garble to garbling

each circuit CTi. By the cut-and-choose strategy, the developer generates s different

garbled circuits for a single CTi. Calling GB.Garble also generates the garbled keys

for all wires {wi,j}
n,mi

i=1,j=1 of each circuit, where mi denotes the total number of wires

in CTi.

Another job of V S.Encrypt is to generate commitments for garbled keys. We are

curious about a certain part of garbled keys, {k0
i,j,r, k

1
i,j,r}

n,li,s
i=1,j=1,r=1. These garbled keys

are used to encode the inputs and outputs. V S.Encrypt commits these garbled keys

51

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

and obtains the commitments {com(gki,r)}
n,s
i=1,r=1 = {com(k0

i,j,r), com(k1
i,j,r)}

li,n,s
i=1,j=1,r=1.

3.4.3 Encoding

V S.Encode has two jobs. The first one is to encode an input with its corresponding

garbled keys. The fact of encoding is to replace each bit xj,i of input xi = (x1,i, ..., xli,i)

by the garbled keys k
xj,i
i,r . Given an external input xi, the verifier can directly call

enter GB.Encode, obtaining the encoded input x′i,r = (k
x1,i
r , k

x2,i
r , ..., k

xli,i
r). If the

input is an intermediate result y′i,r from garbled circuit CT ′

i,r, the verifier calls TF ()

(Algorithm 2) to translate the intermediate input into the correct encoded input.

The second job is to prevent the malicious queries from the verifier, as mentioned

in Section 3.1. Thus, before calling GB.Encode or TF to encode an input, the

verifier invokes Type() to check if the input is out of place. In the meantime, Type

also involves the consistency check. Through retrieving the tuple (w, z, q, t) with the

same circuit indices q and t from memory M , Type can detect if the current input is

consistent with the previous record. Type is introduced in Section 3.5.2.

3.4.4 Evaluation

Section 2.4.2 has stated the mechanisms of how to evaluate a garbled circuit with an

input. The process of evaluation within a circuit is actually running on the garbled

truth tables, as shown in Figure 2.6. Calling GB.Eval to evaluate an individual

circuit is the same effect. Evaluating across circuits involves the transformation of

different garbled keys to encode the intermediate values, which is exactly realized by

V S.Encode. Then the next round of evaluating within the circuit starts again.

When the process continues until the end circuits, the verification should generate

52

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

a decrypted result rather than cipher. Section 2.4.2 specifies two ways to decrypt a

garbled output. In our situation, we follow the trend that the end gates can output

real bits directly. Therefore, our protocol save an extra step to decrypt the garbled

outputs.

Considering the cut-and-choose strategy, the s garbled circuits for CTi will gen-

erates s garbled outputs. After evaluating {CTi,r}sr=1 for each round, the verifier can

check whether the results {yi,r}sr=1 are consistent. If the check fails, the verifier can

abort the verification. Among the garbled results like {yi,r}sr=1, the verifier can choose

any of them to be the input to next circuit.

3.4.5 Checking the Commitments

As described in Section 2.7, we apply the bit-commitment scheme to check the data

integrity. The bit-commitment scheme has two phases, the “commit stage” and the

“reveal stage”. In our protocol, the “commit stage” is the step of calling V S.Encrypt.

The “reveal stage” is the step of calling V S.Checker and the following consistency

checks.

Before the “reveal stage”, the two parties should take rounds of interaction to

set a challenge string τ . This challenge string is to indicate which circuits are used

for being checked and which circuits are used for being evaluated. In order to pre-

vent the two parties affecting fairness of deciding the challenge string, the protocol

employs the coin-tossing protocol to generate it. As we adopt the cut-and-choose

strategy, a circuit CTi has s garbled copies, {CTi,1, ...,CTi,s}. In a challenge string

τi = (t1,i, ..., tr,i, ..., ts,i), if tr,i = 1, the commitments and garbled keys for CT ′

i,r will

be chosen to check; if tr,i = 0, the garbled keys for CT ′

i,r will be chosen to evaluate

53

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

CT ′

i,r, which is shown in the steps of “DECOMMITTING,CHECKING” and “EVAL-

UATION” in Algorithm 4. An example about the challenge string is illustrated in

Figure 3.1.

Note: In this example, τ = (10110100), s = 8. li denotes the length of xi. The garbled keys in blue
are chosen to be checked.

Figure 3.1: An example of the challenge string

We design V S.Checker to perform the “reveal stage” in the bit-commitment

scheme. The decommitments is the “keys” to “decrypt” the commitments and reveal

the committed values. What V S.Checker should do is to send the decommitments

to the verifier. Which set of decommitments to be sent is decided by the challenge

string τ . The verifier can use the decommitments to conduct such checks: 1. Given

the decommitments, the verifier can build a new set of commitments by the same

method as generating the original commitments. Thus, he can check whether the

new commitments are equal to the original commitments. 2. Through decommitting

the commitments, the verifier obtains the original garbled keys. So the verifier can

check if the garbled keys in x′i,r match with any of original garbled keys. If there exist

garbled keys in x′i,r but not in the original garbled keys, it proves that the developer

may fabricate the garbled keys. The idea is shown in Table 3.4 and 3.5.

54

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Note: It is assumed that x′i,r = (k
x1,i
r , k

x2,i
r , ..., k

xli,i

r), and its original value is x = (011, ...,0). So the

check is to see if the garbled keys in Table 3.4 exist in Table 3.5.

Bit values w1,i w2,i w3,i ... wli,i

0 k
x1,i
r - - ... k

xli,i
r

1 - k
x2,i
r k

x3,i
r ... -

Table 3.4: The mapping relations between garbled keys and bits in x′i,r

Bit values w1,i w2,i w3,i ... wli,i

0 k0
i,1,r k0

i,2,r k0
i,3,r ... k0

i,li,r

1 k1
i,1,r k1

i,2,r k1
i,3,r ... k1

i,li,r

Table 3.5: The garbled keys from opened commitments

3.4.6 Third Party Verification

As mentioned in Section 3.1, the protocol provides a publicly known information, a

certificate, to repeat the previous verification by a third-party trusted verifier. The

certificate consists of two parts. One part is the records of all the original garbled

circuits and commitments. The other part is the transcripts of the communication

between the verifier and the developer. These transcripts are produced during exe-

cuting V S.Encode and V S.Checker. Thus, in the communication transcripts QAE of

calling V S.Encode, we denote the queries from the verifier as QE, the response from

the developer as AE. Likewise, the communication transcripts of calling V S.Checker

can be denoted as QAC . The queries from the verifier is represented as QC and the

response from the developer is represented as AC .

V S.Eval is designed to finish the third-party verification. The detailed implemen-

tation is specified in Algorithm 8. The ideas behind V S.Eval is that repeating the

55

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

original verification with the certificate can detect if any results are not consistent

with the current execution. In this case, the new verifier should not be any of the

parties executing the previous verification, and he should be trusted to be a authori-

tative verifier. Such a third-party trusted verifier is defined in Definition 7, which is

denoted as V ′.

Eventually, V ′ should also evaluate the specification, which is stipulated in the

strategy of verification (Section 2.2). Regarding the specification as a circuit graph

Gspec, V ′ can evaluate Gspec with the same external inputs EX and conduct the checks

like, if the evaluation paths on Gspec corresponds to the verification paths on G′

c, or

if the final result of the verification is the same as the final result of evaluating Gspec.

3.5 Auxiliary Functions

3.5.1 TF

As introduced in Section 1.3 and Section 3.1, we need to design a function that

realizes securely encoding intermediate results without leaking secrets of two parties

to the opponent. It is assumed that the two sets of garbled circuits {CT ′

u,r}
lu
j=1 and

{CT ′

v,r}
lv
j=1 participate the process. The inputs of the two parties are: the verifier

provides an intermediate result y′u,r; the developer provides the mapping tuples mapu,r

for the output wires of {CT ′

u,r}
lu
j=1, and another mapping tuples for the input wires of

{CT ′

v,r}
lv
j=1.

The functionality of TF is divided into two parts. The first part is to decrypt the

intermediate result y′u,r. With the mapping tuples mapu,r = [(k0
u,j,r,0), (k

1
u,j,r,1)]

lu
j=1

from the developer, the real value behind y′u,r can be computed and denoted as yu.

56

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

The other part of TF is to encode yu with the garbled keys of {CTv,r}sr=1. With the

mapping tuples mapv,r = [(k0
v,j,r,0), (k

1
v,j,r,1)]

lv
j=1, each bit yj,u ∈ yu can be replaced by

corresponding garbled keys. Combined the steps into one, the process of TF can be

perceived as translating an encrypted value, which is first encoded by a set of garbled

keys, into a different value, which is also encoded by another set of garbled keys, but

the bit values behind the two encrypted values are the same. Table 3.6 depicts the

mapping relations.

real values garbled values of CTu garbled values of CTv
0 k0

j,u k0
j,v

1 k1
j,u k1

j,v

Table 3.6: Mapping tuples between CTu and CTv

Thus, we have such security requirements:

The intermediate result y′u,r and the mapping tuples {mapu,r}sr=1 and

{mapv,r}sr=1 are sensitive information and owned privately by the verifier

and the developer respectively. In the meantime, the above execution of

decrypting y′u,r and encoding yv should be confidential to both the verifier

and the developer.

To securely realize TF , we introduce a two-party garbled circuit. First, the process

of decrypting y′u,r and encoding yv can be wrapped as a function compare. This

function is doing the substantive job of TF . Then, the function compare is garbled by

the developer, and the garbled keys gkcompare for garbled circuit Γcompare are generated.

The developer uses the garbled keys gkcompare to encode its inputs, the mapping tuples

{mapu,r}sr=1 and {mapv,r}sr=1, and sends the encoded inputs to the verifier as well as the

garbled circuit Γcompare. Subsequently, the verifier encodes his input y′u,r via oblivious

57

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

transfer (OT , see Section 2.5). As specified in Step 2 in Section 2.4.2, the verifier

exchanges each bit in y′u,r for the corresponding garbled key from gkcompare. In this

way, the verifier obtains the encoded input y′′. Finally, the verifier uses his encoded

input y′′u,r to compute the garbled circuit Γcompare as well as the garbled inputs from

the developer. The results of this computation would be an encoded input {x′v,r}
s
r=1

to the circuit {CTv,r}sr=1.

In terms of the security, the inputs privacy of the two parties is protected by the

garbled keys, while the function security of compare is guaranteed by garbled circuit

Γcompare. TF is realized in Algorithm 2. Similar to Figure 2.9, the principles of TF

can be depicted as an interaction diagram (Figure 3.2).

The verifier The Developer
Ccompare → Γcompare

Encode mapu,mapv to
map′u,map

′

v

Γcompare,map′u,map
′

v ←Ð

y′u = (ky1,u
±
101..1

, ..., kyl,u) {kpub0,t , k
pub
1,t }

∣y′u∣
t=1

ÐÐÐÐÐÐÐÐ→

{k̄0
t , k̄

1
t }
∣mcompare∣

t=1

{E(k̄0
t),E(k̄1

t)}
∣y′u∣
t=1

←ÐÐÐÐÐÐÐÐÐÐÐ

y′′u = (k̄1
1, k̄

0
2, ..., k̄

1
p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ky1,u

, ...)

Evaluate Γcompare with
y′′u ,map

′

u,map
′

v → {x′v,r}
s
r=1

This diagram includes an example. It is assumed that garbled key ky1,u
= 101..1. After the job of

OT , ky1,u
= 101..1 are encoded into k̄11, k̄

0
2, ..., k̄

1
p.

Figure 3.2: The interaction diagram of function TF

58

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Algorithm 2 TF (y′u,r,{mapu,r}
s
r=1,{mapv,r}

s
r=1, u, v). y′u,r comes from the verifier.

{mapu,r}sr=1 and {mapv,r}sr=1 come from the developer. u, v are circuit indices and
publicly known.

1: Garble compare: GB.Garble(1K ,Ccompare) = Γcompare, gkcompare ▷ Ccompare is a

Boolean circuit with the functionality of function compare.

2: y′u,r is encoded into y′′u,r by garbled keys gkcompare = {k̄0
t , k̄

1
t }
mcompare

t=1 ▷ mcompare

indicates the total number of wires in Ccompare. t is the index for garbled keys of

Γcompare.

3: Evaluate Γcompare: GB.Eval(Γcompare, y′′u,r,{mapu,r}
s
r=1,{mapv,r}

s
r=1, u, v). That

is, compute compare(y′u,r,{mapu,r}
s
r=1,{mapv,r}

s
r=1, u, v)

4: return {x′v,r}
s
r=1.

5:

6: Build a function, compare(y′r,{mapu,r}
s
r=1,{mapv,r}

s
r=1, u, v) ▷

y′u,r = (k
y1,u
r , k

y2,u
r , ..., k

ylu,u
r). Assumed that k

yj,u
r ∈ y′u,r’s length is p, the length of

y′u,r would be lu ⋅ p.

7: function Compare(y′u,r,{mapu,r}
s
r=1,{mapv,r}

s
r=1, u, v)

8: Replace k
yj,u
r by its corresponding bit yj,u from {mapu,r}sr=1.

9: Obtain the bit sequence of yu = (y1,u, ..., yj,u, ...ylu,u), where yj,u ∈ [0,1]

10: xv = yu = (x1,v, ..., xj,v, ...xlv ,v), where xj,v = yj,u

11: for r = 1 to s do

12: Replace xj,v by the corresponding garbled key k
yj,v
r from {mapv,r}sr=1

13: Obtain an encoded input x′v,r = (k
x1,v
r , k

x2,v
r , ..., k

xlv,v
r)

14: end for

15: return {x′v,r}
s
r=1

16: end function

59

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.5.2 Type

Type is used to judge the types of inputs sent from the verifier. Similar to TF , Type

takes as input the indices of circuits, u, v and an input x. The meaning behind u, v

is that an input xv of the circuit CTv is the output of the circuit CTu.

Based on the topological structure of Gstruc, Type can check if the received input

x corresponds to the locations which u, v indicate:

• If u, v indicate that x is an external input, x should be an unencrypted value.

• If u, v indicate that x is an intermediate input, x should be an encoded value

and consist of garbled keys.

To conduct more advanced check, like consistency check, Type can recall the

previous records to check if the input x exists ever in previous computation. It is

assumed that the protocol has a memory M which stores previous computational

record, in a form of (w, z, q, t). In such a tuple (w, z, q, t), w is the garbled input to

garbled circuits {CT ′

q,r}
s
r=1, while z is the output of computing {CT ′

q,r}
s
r=1 and will be

the input to {CT ′

T,r}
s
r=1. These records are produced when evaluating garbled circuits

with the encoded inputs, as specified in Section 3.4.4. Type can make use of M,Gstruc

to conduct the following checks:

• Given u, v, Type can take out all the outputs which are incident from {CTu,r}sr=1

in M , and see if x is equal to any of these outputs. If x does not correspond to

any of outputs from {CTu,r}sr=1, the check detects that the intermediate input

x may be fabricated by the verifier.

For example, (x′u,r, y
′

u,r, q, u) is a tuple taken from memory M . When the verifier

sends the encoded input y′′u,r (suppose that its next circuit is {CTv,r}sr=1) and

60

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

claim that y′′u,r is the output of computing {CTu,r}sr=1. Type can check if y′u,r is

equal to y′′u,r when q = u.

• Given u, v, Type can take out all the circuits, like {CTi,r}
n′,s
i=1,r=1, that the current

verification passes by, where n′ is the biggest circuit index in topological order

and n′ < n. If the previous data from the memory M did not reach the circuits

u, v, e.g. n′ < u or n′ < v, the process of verification must be intermittent and x

may be fabricated by the verifier.

61

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Algorithm 3 Type(u, v, x) is to recognize the type of input x and check if x is valid.
Returning 0 means x is not a valid input; returning 1 means x is a valid external
input; returning 2 means x is a valid intermediate input.
A tuple (w, z, q, t) is the records retrieved from memory M . The tuple means that
a computational result z is outputted from computing circuit CTq with its input w,
and z is the intermediate input to the next circuit CTt.

1: if In each tuples (w, z, q, t) from M , there are no circuit index t equal to u then

▷ u has not been traversed

2: return 0

3: end if

4: if u, v indicate x is external input but x is an encrypted value then

5: return 0

6: else

7: return 1

8: end if

9: if u, v indicate x is an intermediate input and x consists of garbled keys then

10: for each tuples (w, z, q, t) from M do

11: if there exists no circuit index t = u and previous outputs z = x then

12: return 0

13: end if

14: end for

15: else

16: return 2

17: end if

62

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.6 Construction for Malicious Cases

Based on the work in previous sections, we present the construction for the protocol

of secure and trusted partial white-box verification. The construction are described

by pseudocode.

In next section, Algorithms 4 to 7 implement the designs in Section 3.4. Algorithm

4 specifies the main procedure of the protocol. Algorithm 5, 6, 7 and 8 implement the

key steps in Algorithm 4. To illustrate the procedures better, Section 3.6.2 provides

an interaction diagram to specify how the two parties interact in the protocol. Some

steps in the interaction diagram are numbered in circle, like ÀÁ. These notations are

used to mark the steps which can correspond to certain pieces of algorithms of next

section.

63

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.6.1 Algorithmic representation for protocol

Algorithm 4 Main Procedures of the Protocol

1: Setting:

2: 1.Transform the program from a table graph Gt into a circuit graph Gc.

3: 2.The execution follows the topological order i, so the verification starts from CT1

and ends at CTn.

4: 3.EX represents the set of external inputs (or test cases).

5: À ENCRYPTING:

6: V S.Encrypt(1K ,Gc)→

7: (G′

c,{k
0
i,j,r, k

1
i,j,r}

n,mi,s
i=1,j=1,r=1,{CT

′

i,r}
n,s
i=1,r=1,{Com(inputi)}ni=1) ▷ Where i

denotes the index of circuits in the circuit graph Gc, j denotes the index of wires

in circuit CTi, and r denotes the index of circuits in the s garbled copies of CTi.

8: {k0
i,j,r, k

1
i,j,r}

n,mi,s
i=1,j=1,r=1 denote the complete sets of garbled keys for all the wires in

every circuit, where mi indicates the total number of wires in CTi.

9: Com(inputi) denotes the commitments for all input wires in {CT ′

i,r}
s
r=1, i.e.

Com(inputi) = {k0
j,i,r, k

1
j,i,r}

li,s
j=1,r=1.

10: Send G′

c,{Com(inputi)}ni=1 to the verifier

11:

12: Á ENCODING:

13: while traversing circuits CTi in Gstruc do

14: Take x from EX OR an intermediate result y′i,r

15: {x′i,r}
s
r=1 ← V S.Encode(x) OR {x′i,r}

s
r=1 ← V S.Encode(y′i,r)

16: The verifier obtains the encoded inputs {x′i,r}
s
r=1 ▷ An encoded input x′i,r is

illustrated as Table 3.4

64

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

17: Â SETTING A CHALLENGE STRING: ▷ Execute the coin-tossing

protocol

18: for r from 1 to s do

19: The developer chooses a random bit σr,i ∈ {0,1} and a seed seedr,i ∈ {0,1}n,

where seedr,i is used in generating commitment for σr,i. Then the developer sends

the commitment of σr,i, com(σr,i) to the verifier.

20: The verifier chooses a random bit σ′r,i ∈ {0,1} and sends it to the developer.

21: The developer computes a bit value τr,i = σr,i⊕σ′r,i and sends σr,i and seedr,i

to the verifier.

22: The verifier receives σr,i and seedr,i and verifies whether he can generate

the same commitment, by seedr,i and σr,i, as com(σr,i).

23: end for

24: τi = (τi,1, ...τr,i, ...τs,i)

25:

26: ÃÄ DECOMMITTING, CHECKING:

27: ({k̄0
i,j,r, k̄

1
i,j,r}

li
j=1, sdi)r∈R = {dci,r}r∈R ← V S.Checker(τi), where Ri is a set of r’s

which satisfy tr,i ∈ τi, tr,i = 1. ▷ V S.Checker only returns the decommitments

chosen in the challenge string τi.

28: for all index r where tr,i = 1 in τi = (t1.i, ..., ts,i) do

29: The verifier computes a new commitment Com(inputi) by receiving {dci,r}r∈Ri
=

{k̄0
i,j,r, k̄

1
i,j,r}

li
j=1,r∈Ri

, sdi.

30: if Com(inputi) is not equal to Com(inputi) then

31: return 0

65

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

32: end if

33: The verifier decommits the Com(inputi) by the decommitments {dci,r}r∈Ri
,

and obtains the sets of garbled keys for the inputs of CTi, i.e. {k0
j,i,r, k

1
j,i,r}

li
j=1,r∈Ri

.

34: if the garbled keys in {x′i,r}r∈Ri
= (k

x′i,1
r , ..., k

x′i,li
r)r∈Ri

do not appear in

{k0
j,i,r, k

1
j,i,r}

li
j=1,r∈Ri

then

35: return 0

36: end if

37: end for

38:

39: Å EVALUATING:

40: for circuit index r where tr,i = 0 in τi = (t1,i, ..., ts,i) do

41: y′i,r ← GB.Eval(CT ′

i,r, x
′

i,r)

42: end for

43: Pick up one y′i,r from {y′i,r}r∉Ri
as the evaluating result.

44: Æ After evaluating the garbled circuits {CTi,r}sr=1, the verifier stores (x′i,r, y
′

i,r, u, v)

into Memory M , where u is the index of current circuit i, and v is the index of

the circuit which takes y′i,r as the input.

45: end while ▷ start the evaluation for the next circuit CTi+1

46: Ç After evaluating all circuits, the protocol conducts the third-party verification.

47: if V S.Eval(1K ,QAE,QAC ,G′

c) = 0 then

48: return 0

49: end if

50: return 1

66

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Algorithm 5 VS.Encrypt(1K ,Gc)

1: GARBLING CIRCUITS: ▷ Generate s different garbled circuits for each

circuit CTi

2: for all CTi in Gc do

3: for r from 1 to s do

4: (CT ′

i,r,{k
0
i,j,r, k

1
i,j,r}

n,mi

i=1,j=1) = GB.Garble(1
K ,CTi) ▷ Generate all wires in

CTi

5: end for

6: end for

7:

8: GENERATING COMMITMENTS:

9: for all Wires which are used to encode inputs just for the inputs, in {CT ′

i,r}
n,s
i=1,r=1,

where index j ranges from 1 to li and index r ranges from 1 to s do

10: Adopting the method in Definition 12, the developer generates the commit-

ments for each wire:

11: {com(k0
j,i,r), com(k1

j,i,r)}

12: Add {com(k0
j,i,r), com(k1

j,i,r)} to the set of commitments, {Com(inputi)}ni=1.

13: end for

14: G′

c = [Gstruc,{CT ′

i,r}
n,s
i=1,r=1]

15: return G′

c and {Com(inputi)}ni=1 to the verifier.

67

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Algorithm 6 V S.Encode(xu)
This algorithm accepts two types of inputs, the external inputs and intermediate
inputs. Type is used for checking the validity of the inputs.

1: Acquire u, v, which indicate the circuit indices of previous circuit and current

circuit.

2: if Type(xu, u, v) = 1 then ▷ x is an external input

3: x′v ← GB.Encode(xu,{k0
u,j,r, k

1
u,j,r}

lu,s
j=1,r=1)

4: return x′v

5: else if Type(xu, u, v) = 2 then ▷ x is an intermediate input

6: x′v ← TF (xu,{mapu,r}sr=1,{mapv,r}
s
r=1, u, v) ▷ {mapu,r}sr=1 and {mapv,r}sr=1

7: return x′v

8: end if

9: return 0

Algorithm 7 VS.Checker(τi)
The developer sends the decommitments {dci,r}r∈Ri

to the verifier, where dci,r =

({k̄0
i,j,r, k̄

1
i,j,r}

li
j=1, sdi).

1: for all circuit index r where tr,i = 1 in τi = (t1,i, ..., ts,i) do

2: The developer sends the decommitments {dci,r}r∈Ri
, which contain seed sdi

and the garbled keys {k̄0
i,j,r, k̄

1
i,j,r}

li
j=1 to the verifier. ▷ Where Ri is a set of r’s

which satisfy tr,i ∈ τi, tr,i = 1.

3: end for

68

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Algorithm 8 V S.Eval(1K ,QAE,QAC ,G′

c)

1: Check the transcripts of V S.Checker

2: for (QE,AE)∈ QAE do ▷ check the computational result.

3: QE is (x′v, y
′

v, u, v), AE is x̄′v ▷ Involving CTu,CTv

4: var ← GB.Eval(CT ′

v, x
′

v),

5: if var is not equal to x̄′v then

6: return 0

7: end if

8: end for

9: for (QC ,AC)∈ QAC do

10: QC is (τi), AC is (sdi,{k̄0
r,j,i, k̄

1
r,j,i}

li
j=1)r∈Ri

. ▷ Where Ri is a set of r’s which

satisfy tr,i ∈ τi, tr,i = 1

11: Build the commitments Com(inputi) by (sdi,{k̄0
r,j,i, k̄

1
r,j,i}

li
j=1)r∈Ri

.

12: if Com(inputi) are not equal to Com(inputi) in QC then

13: return 0

14: end if

15: end for

16: Authorize an honest verifier, V ′, to repeat the above verification

17: Execute V ′
(1K ,G′

c,CP,EX,QAE,QAC)

18: for all CT ′

i that V ′ evaluates do

19: QAE,QAC are new transcripts that are generated by V ′

20: if QAE,QAC are not equal to QAE,QAC then

21: return 0

22: end if

23: end for

69

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

24: V ′ executes verification on the specification: (1K ,Gspec,EX,CP).

25: if the result is not the same as executing G′

c then

26: return 0

27: end if

28: if All the check above is run without problems then

29: return 1

30: end if

70

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

3.6.2 Interaction Illustration of Our Protocol

The verifier The developer

À V S.Encrypt(1K ,Gc)→ G′

c,

{k0
i,j,r, k

1
i,j,r}

n,mi,s
i,j,r=1 ,Com(inputi)ni=1

G′

c,Com(inputi)
n
i=1

←ÐÐÐÐÐÐÐÐÐÐ

− − − − − − − − − − − − − − −Evaluating {CT ′

1,r}
s
r=1 with x − − − − − − − − − − − − − − − −

x = (x1, ..., xl1), x ∈ EX

x
Ð→ Á V S.Encode(x, gk1)→ {x′1,r}

s
r=1

{x′1,r}
s
r=1

←ÐÐÐÐ

{x′1,r}
s
r=1 = (kx1r , ..., k

xl1
r)

s
r=1

Â Set the challenge string

τ1 = (τ1,1, ...τ1,s)

Each τ1,r is set as:

Choose σr, seedr
Com(σr),seedr
←ÐÐÐÐÐÐÐ Produce commitment Com(σr)

Choose a random σ′r
σ′r
Ð→

τ1,r = σr ⊕ σ′r

Verify Com(σr)
σr,sd
←ÐÐ

Obtain challenge string τ1

Ã V S.Checker(τ1)

→ {dc1,r}r∈R1

{dc1,r}r∈R1
←ÐÐÐÐÐ

Ä Use {dc1,r}r∈R1 to check

Å Evaluate {CT ′

1,r}r∉R1 ,

Obtain y′1,r

71

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

− − − − − − − − − − − − − − −Evaluating {CT2,r}
s
r=1 with y′1,r − − − − − − − − − − − − − −−

y′1,r = (k
y1,2
r , k

y2,2
r , ..., k

yl2,2
r)

y′1,r
ÐÐ→ Á V S.Encode(y′1,r, gk2)→ {x′2,r}

s
r=1

{x′2,r}
s
r=1

←ÐÐÐÐ

{x′2,r}
s
r=1 = (kx1r , ..., k

xl2
r)

s
r=1

Â Set the challenge string

τ2 = (τ2,1, ...τ2,s)

Each τ2,r is set as:

Choose σr, seedr
Com(σr),seedr
←ÐÐÐÐÐÐÐ Produce commitment Com(σr)

Choose a random σ′r
σ′r
Ð→

τ2,r = σr ⊕ σ′r

Verify Com(σr)
σr,seedr
←ÐÐÐÐ

Obtain challenge string τ2

Ã V S.Checker(τ2)

→ {dc2,r}r∈R2

{dc2,r}r∈R2
←ÐÐÐÐÐ

Ä Use {dc2,r}r∈R2 to check

Å Evaluate {CT ′

2,r}r∉R2

Obtain y′2,r

Æ Store (x′1,r, y
′

2,r,1,2)

into Memory M

72

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

− − − − − −Repeat the process in {CT3,r}
s
r=1,{CT4,r}

s
r=1... with y′2,r, y

′

3,r, ... − − − −−

⋮

⋮

− − − − − − − − − − − − − −Evaluating {CTn,r}sr=1 with y′n−1,r − − − − − − − − − − − − − −

⋮

Å Evaluate {CT ′

n,r}r∉Rn

Obtain y′n,r

Æ Store (x′n,r, y
′

n,r, n − 1, n)

into Memory M

Output the decrypted result yn

3.7 Correctness proof

We now proceed to prove if the construction in Section 3.6 satisfies Definition 15. The

idea behind the proof is the comparison between real verification and ideal verification.

The real verification is conducted by a real verifier and a real developer, executing

an encrypted circuit graph G′

c, which is built as specified in our construction, with

an input x. The honest verification is conducted by an honest verifier and an honest

developer, executing an unencrypted Gc, which is the original circuit graph, with x

as well. If the results from the two kinds of verification are equal with respect to the

real values, the correctness property of our protocol holds. In this case, we call G′

c is

equivalent to Gc. Here we present the formal definition.

73

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Definition 17. CT ′

r is a garbled circuit for circuit CT . x is an input and its cor-

responding garbled input for CT ′

r is x′r. If the result y of evaluating CT with x is

equal to the decrypted value of the result y′r of evaluating CT ′

r with {x′}sr=1, CT and

its corresponding encrypted circuit {CT ′

r}
s
r=1 are equivalent (with respect to x). The

equivalence is written as CT (x) ≡ CT ′

r(x
′

r).

If we expand this property to a whole circuit graph, the equivalence can hold on

Gc and G′

c, i.e. Gc(x) ≡ G′

c(x
′

r)

This proof of correctness is expanded by induction on the number of circuits in

circuit graph Gc.

Base Case: Concerning the case of evaluating a single circuit CT with a given

external input x.

The information owned by the verifier

x (x is an external input)

{CT ′

r}
s
r=1,Com(k0

r,j, k
1
r,j)

s,l
s=1,j=1, x← V S.Encrypt(CT) (calling V S.Encrypt) (1)

{CT ′

r}
s
r=1,Com(k0

r,j, k
1
r,j)

s,l
s=1,j=1,{x

′

r}
s
r=1),← V S.Encode(x) (2)

where x′r = (kx1r , ..., k
xl
r)

s
r=1 and l denotes the length of x. (calling V S.Encode)

{CT ′

r}
s
r=1,Com(k0

r,j, k
1
r,j)

s,l
r=1,j=1,{x

′

r}
s
r=1, τ,{dcr}r∈R ← V S.Checker(τ) (3)

where R is a set of r’s which satisfy tr ∈ τ, tr,i = 1. (call V S.Checker)

⇒ {CT ′

r}
s
r=1,{x

′

r}r∉R (decommitting and conducting consistency check) (4)

⇒ {CT ′
(x′r)}r∉R ≡ CT (x) (evaluate CT ′ via GB.Eval) (5)

In the base case, the honest verification is run on a single circuit CT . Before

executing the verification, the verifier has the input x and the developer holds the

74

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

original circuit CT . Thus, the result of the honest verification is CT (x).

Now we observe the case of real verification. In Equation (1), the developer

first invokes V S.Encrypt in Algorithm 5 and obtains the garbled circuits and com-

mitments. By the cut-and-choose strategy mentioned in Section 2.6, a circuit CT

has s different garbled circuits. The developer sends the garbled circuits and com-

mitments to the verifier, except the garbled keys. In Equation (2), the verifier ex-

changes each bit of input x for the garbled key at the developer’s hand via OT

protocol. As realized in V S.Encode (Algorithm 6), the verifier obtains the encoded

x′ = (kx1r , ..., k
xl
r). In Equation (3), the two parties cooperate to set the challenge

string τ = (t1, ..., tr, ..., ts), tr ∈ {0,1}. Here, R is denoted as a set of r’s which satisfy

tr ∈ τ, tr = 1. Thus, by the chosen decommitments from V S.Checker (Algorithm 7),

the verifier chooses CT ′

r to conduct the checks as specified in the Ä step of Algorithm

4, where r ∈ R. In Equation (4), the verifier chooses to evaluate the circuits whose

indices r’s satisfy r ∉ R.

With the garbled input x′ = (kx1r , ..., k
xl
r), the garbled circuit CT ′

r can be computed

and the result is equal to evaluate CT with x.

Inductive step: First, we present the assumption for the case of n circuits.

Assumption 4. It is assumed that the equivalence defined in Definition 17 holds for

the case of n circuits.

The Assumption 4 means that, the result of computing an unencrypted circuit

graph Gn, consisting of n circuits, with x is the same as verifying its encrypted

circuit graph G′

n with x. We now proceed to prove that the result of computing an

unencrypted circuit graph with n + 1 circuits is equivalent to the result of verifying

its encrypted version.

75

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

The verification executed by an honest verifier V ′ on the unencrypted circuit graph

of n circuits is denoted as:

V ′
(Gn, x) = V

′
(CT1,CT2, ...,CTn)(x), (3.3)

where Gn represents an unencrypted circuit graph with n circuits.

On the other hand, the verification run by a real verifier V on the encrypted circuit

graph of n circuits is denoted as:

V (G′

n, x) = V ({CT ′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1)(x), (3.4)

where G′

n represents an encrypted circuit graph with n circuits.

Then, we extend the verification to the case of n + 1 circuits. Adding an extra

circuit CTe into Gn and G′

n, the new circuit graphs, Gn+1 and G′

n+1 have three ways

to organize the circuits:

Case 1 CTe is located as the head circuit to accept external inputs.

Case 2 CTe is located as the end circuit to output external outputs.

Case 3 CTe is located between two circuits, say CTi,CTi+1. Thus, it accepts the in-

termediate input from CTi and its output becomes an intermediate input for

CTi+1.

In Case 1, the sequences of the honest verification and the real verification are

76

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

as following:

V ′
(Gn+1, x) = V

′
(CTe,CT1,CT2, ...,CTn)(x) (3.5)

⇒ V ′
(CT1,CT2, ...,CTn)(CTe(x)) (3.6)

V (G′

n+1, x) = V ({CT ′

e,r}
s
r=1,{CT

′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1)(x) (3.7)

⇒ V ({CT ′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1)({CT

′

e,r(x)}
s
r=1) (3.8)

Here we make some transformations. In Equation (3.5), honest verifier V ′ takes x

as the input to compute Gn = (CTe,CT1,CT2, ...,CTn), which is equal to computing

(CT1,CT2, ...,CTn) with the result of CTe(x) (in Equation (3.6)). Similarly, verifying

G′

n+1 = ({CT ′

e,r}
s
r=1,{CT

′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) with x in Equation (3.7) is

equivalent to verifying ({CT ′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) with (CT ′

e,r(x))
s
r=1 in

Equation (3.8).

As the equivalence between the honest verification and the real verification holds

in the Gn,G′

n, the equivalence between Equation (3.6) and Equation (3.6) depends on

whether CTe(x) is equal to {CT ′

e,r(x)}
s
r=1. As proved in the base case, the correctness

property of our protocol holds on a single circuit. Thus, the result of computing CTe

is equal to computing CT ′

e,r.

But the results of {CT ′

e,r(x)}
s
r=1 are garbled and there are s different garbled

outputs. To solve the first problem, we call TF (Section 3.5.1) to transform the

garbled results. In terms of the second problem, after evaluating x, {CT ′

e,r(x)}
s
r=1

only outputs a majority value CT ′

e(x).

In the above ways, Equation (3.8) is equivalent to Equation (3.6). The deduction

77

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

process can be shown as:

({CT ′

e,r}
s
r=1,{CT

′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1

´¹¹¹¸¹¹¹¶

garbled circuit graph G′

n

)← V S.Encrypt(CTe,CT1,CT2, ...,CTn
´¹¹¸¹¹¹¶

circuit graph Gn

)

({x′r}
s
r=1,{CT

′

e,r}
s
r=1,{CT

′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1)← V S.Encode(x)

⇒ ({CT ′

e,r(x
′

r)}r∉Re ,{CT
′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) (evaluate {CT ′

e,r}
s
r=1)

⇔ (CTe(x),{CT
′

1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1

´¹¹¹¸¹¹¹¶

garbled circuit graph G′

n

) (by the base case on a single circuit)

⇔ G′

n(CTe(x))

≡ Gn(CTe(x)) (by Assumption 4)

In Case 2, the proof is quite similar to Case 1. Adding the extra circuit CTe as

an end circuit, we still list the sequences and make some transformations:

V ′
(Gn+1, x) = V

′
(CT1,CT2, ...,CTn,CTe)(x) (3.9)

⇒ V ′
(CTe)(Gn(x)) (3.10)

V (G′

n+1, x) = V ({CT ′

1,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1,{CT

′

e,r}
s
r=1)(x) (3.11)

⇒ V ({CT ′

e,r}
s
r=1)(G

′

n(x)) (3.12)

We can observe that the extra circuit CTe takes the output of CTn as the input,

and generates the final result of Gn+1. Accordingly, in the real verification, {CT ′

e,r}
s
r=1

is computed with the outputs of {CT ′

n,r}
s
r=1 and generates the final result of G′

n+1. As

verification on Gn and G′

n satisfies the correctness property, the outputs from Gn and

G′

n are equivalent, which means the decrypted value of G′

n(x) is identical to Gn(x).

Through TF , G′

n(x) can be transformed into the input of {CT ′

e,r}
s
r=1. Therefore,

78

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Equation (3.10) can be derived from Equation (3.12) as follows:

({CT ′

1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1

´¹¹¹¸¹¹¹¶

garbled circuit graph G′

n

,{CT ′

e,r}
s
r=1)← V S.Encrypt(CT1,CT2, ...,CTn

´¹¹¸¹¹¹¶

circuit graph Gn

,CTe)

({x′r}
s
r=1,{CT

′

1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1,{CT

′

e,r}
s
r=1)← V S.Encode(x)

⇒ ({x′2,r}
s
r=1,{CT

′

2,r}
s
r=1, ...,{CT

′

n,r}
s
r=1,{CT

′

e,r}
s
r=1), where x′2,r = {CT ′

1,r(x
′

r)}r∈R1 .

⋮

⇒ ({x′n,r}
s
r=1,{CT

′

n,r}
s
r=1,{CT

′

e,r}
s
r=1), where x′n,r = {CT ′

n−1,r(x
′

n−1,r)}r∉Rn−1 .

⇒ ({CT ′

n,r(x
′

n,r)}r∉Rn ,{CT
′

e,r}
s
r=1)

⇔ (G′

n(x),{CT
′

e,r}
s
r=1) (G′

n(x) = ({CT ′

1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1)(x))

⇒ {CT ′

e,r(G
′

n(x))}r∉Re

⇔ {CT ′

e,r(Gn(x))}r∉Re (by Assumption 4)

≡ CTe(Gn(x)) (by the base case on a single circuit)

In Case 3, CTe appears between two circuit CTi and CTi+1. Through the trans-

formations of TF , the outputs of {CT ′

i,r}
s
r=1 become the inputs to {CT ′

e,r}
s
r=1 and

{CT ′

e,r}
s
r=1’s outputs become the inputs to the next circuits. The sequences of the

honest verification and the real verification are as follows:

V ′
(Gn+1, x) = V

′
(CT1, ...CTi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gi

,CTe,CTi+1...,CTn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ḡi+1

)(x), (3.13)

V (G′

n+1, x) = V ({CT ′

1,r}
s
r=1, ...,{CT

′

i,r}
s
r=1

´¹¹¹¸¹¹¶

G′

i

,{CT ′

e,r}
s
r=1,{CT

′

n+1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1

´¹¹¹¸¹¹¹¶

Ḡ′

i+1

)(x),

(3.14)

where Gi,G′

i denote the circuit graph with first i circuits, while Ḡi+1, Ḡ′

i+1 denote the

79

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

circuits starting from (i + 1)th circuit to nth circuit.

← V S.Encrypt(CT1...,CTi,CTe,CTi+1...CTn)

({CT ′

1,r}
s
r=1...,{CT

′

i,r}
s
r=1

´¹¹¹¸¹¹¹¶

G′

i

,{CT ′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1...,{CT

′

n,r}
s
r=1

´¹¹¹¸¹¹¶

Ḡ′

i+1

)

({x′r}
s
r=1,{CT

′

1,r}
s
r=1...,{CT

′

i,r}
s
r=1,{CT

′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1...,{CT

′

n,r}
s
r=1)← V S.Encode(x)

⇒ ({CT ′

1,r(x
′

r))}r∉R1

´¹¹¹¸¹¹¹¶

{x2,r}
s
r=1

...,{CT ′

i,r}
s
r=1,{CT

′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1...,{CT

′

n,r}
s
r=1)

⇒ ({CT ′

2,r(x
′

2,r)}
s
r=1

´¹¹¸¹¹¶

{x′3,r}
s
r

, ...,{CT ′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1...,{CT

′

n,r}
s
r=1)

⋮

Proceeding the execution to CTi, the result is

(G′

i({x
′

i,r}
s
r=1),{CT

′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1). (3.15)

The Assumption 4 can be applied here. When n = i, G′

i({x
′

i,r}
s
r=1) in Equa-

tion (3.15) is equivalent to Gi(xi). In this case, CTe,{CT ′

e,r}
s
r=1 are located as end cir-

cuits to Gi,G′

i and we can apply the fact of Case 2 to G′

e = ({CT ′

1,r}
s
r=1...,{CT

′

e,r}
s
r=1)

and G′

e = (CT1...,CTi)here

(G′

i({x
′

i,r}
s
r=1),{CT

′

e,r}
s
r=1,{CT

′

i+1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) (3.15)

⇒ (G′

e({x
′

e,r}
s
r=1),{CT

′

i+1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) (3.16)

⇔ (Ge(xe),{CT
′

i+1,r}
s
r=1, ...,{CT

′

n,r}
s
r=1) (by the conclusion of Case 2) (3.17)

This fact indicates that circuit graph G′

e({x
′

e,r}
s
r=1) is equivalent to Ge(xe). Con-

sequently, Ḡi+1, Ḡ′

i+1 accept the equivalent results Ge(x),G′

e(x), and thus the task

80

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

of proving the equivalence between Gn+1 and G′

n+1 becomes the one of proving the

equivalence between Ḡi+1, Ḡ′

i+1.

Repeatedly using the conclusion of Case 2, we can make circuit-by-circuit deriva-

tions on Equation (3.17):

(G′

e({x
′

e,r}
s
r=1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{x′
i′+1,r

}
s
r=1

,{CT ′

i′+1,r}
s
r=1, ...,{CT

′

n′,r}
s
r=1) (3.16)

⇒ (G′

i+2({x
′

i′+1,r}
s
r=1)

´¹¹¸¹¹¶

{x′
i′+2,r

}
s
r=1

,{CT ′

i′+2,r}
s
r=1, ...,{CT

′

n′,r}
s
r=1

´¹¹¹¸¹¹¹¶

Ḡ′

i′+2

), (3.18)

⇔ (Gi+2(xi′+1),{CT
′

i′+2,r}
s
r=1, ...,{CT

′

n′,r

´¹¹¸¹¹¹¶

Ḡi′+2

}
s
r=1) (by the conclusion of Case 2) (3.19)

where i′ denotes the original circuit index in G′

n,Gn to distinguish from the i in

G′

n+1,Gn+1. Similarly, n′ denotes the original total number of circuits before adding

CTe.

Based on the equivalence betweenG′

e({x
′

e,r}
s
r=1) is equivalent toGe(xe), {CT ′

i′+1,r}
s
r=1

and CTi′+1 can be regarded as end circuits toG′

i+2 = ({CT ′

1,r}
s
r=1...,{CT

′

e,r}
s
r=1,{CT

′

i′+1,r}
s
r=1)

and Gi+2 = (CT1...,CTe,CTi). So Equation (3.18) and (3.19) are proved to beequiva-

lent as well.

This process can be repeated to {CT ′

n′−1,r}
s
r=1 and CTn′−1.

(G′

n({x
′

n′−1,r}
s
r=1)

´¹¹¹¸¹¹¹¶

{x′
n′,r
}
s
r=1

,{CT ′

n′,r}
s
r=1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ḡ′

n′

) (extend the equivalence to the case of n′ − 1 circuits)

⇒ {CT ′

n′,r(x
′

n′,r)}r∉Rn′
({CT ′

n′,r}
s
r=1 and CTn′ are end circuits to G′

n+1,Gn+1)

⇔ G′

n+1({x
′

n′,r}
s
r=1)

≡ Gn+1(xn′) (by the conclusion of Case 2)

81

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

By the above calculations, the honest verification on Gn+1 is equivalent to the real

verification on G′

n+1 in Case 3. Combined with the results in Case 1 and Case 2,

the inductive step is also proved. Finally, the correctness property of the protocol

holds. ◻

3.8 Security proof for malicious case

Our security is based on the simulation paradigm (Goldreich, 2006, Section 4.3.1).

A protocol in this paradigm is secure if a simulated party only has access to the input

and output of an original party, he can still manage to simulate any behavior that

this party may conduct in this protocol. This definition implies that the behavior of

parties is so constrained by the protocol that any information, which the party can

acquire, cannot goes beyond the scope of the known information.

To realize the simulation, we design experiments to generate the indistinguishable

distribution ensembles. The view of a party is all the information that the party

has received and owned in a certain procedure. What kind of information is private

has been defined in Section 2.2 and 3.1. The work in (Goldreich, 2004, 2006) and

(Lindell and Pinkas, 2009) includes more detailed explanation about these concepts.

The definition of security has been provided in Definition 16, which involves a

real experiment and an ideal experiment. The real experiment is actually what the

protocol runs on an encrypted circuit graph G′

c. The ideal experiment is a virtual pro-

cedure to simulate the real experiment without giving access to private information.

Thus, the ideal experiment needs three simulators S1, S2, S3 to simulate the behavior

of V S.Encrypt, V S.Encode and V S.Checker respectively. As mentioned in Section

82

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

1.1, the protocol allows leaking some extra information to the verifier during verifica-

tion, like the structure graph Gstruc. For this reason, the parties in ideal experiment

should also have access to the extra information. This job is performed by Oracles,

which can be regarded as “black boxes” that are able to respond the answers for the

queries from a party.

The idea of this proof is to realize the indistinguishability between the real exper-

iment and the ideal experiment, which are specified in Definition 16. The security

holds if the view in the real experiment is indistinguishable with the view in the ideal

experiment. Given test cases as external inputs, we execute these experiments on the

whole circuit graph and check if the views in these experiments are indistinguishable.

The process of executing the experiments is similar to the process of evaluation (de-

fined in Section 2.2) – that is, the process of running the experiments can be viewed

as the repeated computation on each circuit. We provide the proof in two cases:

running the experiments with external inputs or intermediate inputs.

3.8.1 Simulators in the Case of External Inputs

The execution starts from evaluating external inputs. It is assumed that the index of

first circuit is 1 and the last circuit is n. As defined in Section 2.2, IC denotes the

set of circuits accepting external inputs. Therefore, for a circuit CTi ∈ IC, we build

the simulators S1, S2, S3 in ideal experiment in Definition 16 as following:

Build S1:

1. Take as input circuit structure Gstruc.

2. Choose a different pseudorandom generator G̃r from Gr in the real experiment.

83

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

G̃r is used to generate commitments.

3. Build garbled circuits {C̃T
′

i,r}
n,s
i=1,r=1 and garbled keys {k̃0

i,j,r, k̃
1
i,j,r}

n,mi,s
i=1,j=1,r=1.

4. Generate commitments for the garbled keys which are used to encode inputs:

{Com(ĩnputi)}
n
i=1 = {Com(

̃gki)}
n
i=1, where ̃gki = {k̃0

i,j,r, k̃
1
i,j,r}

li,s
j=1,r=1.

Build S2:

1. Take an external input x ∈ EX and garbled keys in the real experiment

{k̃0
j,r, k̃

1
j,r}

l,s
j=1,r=1 as the inputs.

2. Given access to oracle O1, S2 obtains the result of Type(x).

3. Compute the result GB.Encode(x,{k̃0
j,r, k̃

1
j,r}

l,s
j=1,r=1).

Build S3:

1. Take a challenge string τi in the real experiment as the input.

2. Given access to oracle O2, S3 obtains the seed sdi that participates the coin-

tossing protocol to generate the challenge string τi. S3 fetches the garbled keys

for inputs, {k̃0
i,j,r, k̃

1
i,j,r}

n,li,s
i=1,j=1,r=1, from S1.

3. Return sdi and {k̃0
i,j,r, k̃

1
i,j,r}

li,s
j=1,r=1

Now we can present the unfinished views of real experiment and ideal experiment

84

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

when the experiments accept external inputs:

V iewreal = (G,CP, stateA,Gstruc,{CT
′

i,r}
n,s
i=1,r=1,{Com(inputi)}

n
i=1, x,{x

′

r}
s
r=1

{k0
j,i,r, k

1
j,i,r}

li,s
j=1,r=1, sdi, τi, ...) (3.20)

V iewideal = (G,CP, stateA,Gstruc,{C̃T
′

i,r}
n,s
i=1,r=1,{Com(ĩnputi)}

n
i=1, x,

GB.Encode(x,̃gk1}),{k̃
0
j,i,r, k̃

1
j,i,r}

li,s
j=1,r=1, sdi, τi, ...) (3.21)

3.8.2 Simulators in the Case of Intermediate Inputs

The above views are incomplete because only the circuits accepting external inputs

are considered. Now we discuss the case when circuits accept intermediate inputs,

which derived from previous circuits.

The simulators in the case of intermediate inputs are slightly different. S1 is

not invoked any more after generating garbled circuits and garbled keys. As the

V S.Encode adopts different strategies to cope with intermediate inputs, the way of

building S2 is changed accordingly. The way to build S3 is still the same as above.

Now we need to rebuild S2 to simulate the views in the real experiment. In

this case, intermediate outputs {y′i,r}
n−1
i=1 and inputs {x′i,r}

n,s
i=2,r=1 are confidential to

the developer. Particularly, {y′i,r}
n−1
i=1 only have n − 1 values, while {x′i,r}

n,s
i=2,r=1 have

(n − 1) ⋅ s values. Thus, S2 cannot get access to {y′i,r}
n−1
i=1 and {x′i,r}

n,s
i=2,r=1 as well. In

order to simulate the intermediate inputs {y′i}
n−1
i=1 , S2 has to make use of the simulator

SGB for garbled circuits (see Definition 9) and the oracle O1.

Let us review how TF works. In the function TF , the developer holds the input

{mapi−1,r}
s
r=1,{mapi,r}

s
r=1. Similarly, S2 can also own {mapi−1,r}

s
r=1,{mapi,r}

s
r=1. In

real experiment, {x′i,r}
s
r=1 are the inputs to the current garbled circuits {CT ′

i,r}
s
r=1. But

85

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

at the meantime, {x′i,r}
s
r=1 are also the actual outputs of computing TF . As explained

in Section 3.5.1, running TF is actually running Γcompare. In the garbled circuit

Γcompare, {y′i,r}
n−1
i=1 are the inputs from the verifier, while {mapi−1,r}

s
r=1,{mapi,r}

s
r=1 are

the inputs from the developer. {x′i,r}
s
r=1 is the output from computing Γcompare and is

returned to the verifier.

What S2 tries do is to simulate the intermediate input y′i−1,r from the verifier,

where i − 1 indicates that y′i−1,r is the result from a previous circuit. Here S2 needs

to cooperate with oracle O1, but he cannot request to acquire the confidential infor-

mation {x′i,r}
s
r=1 from O1. As O1 has access to the garbled circuit Γcompare, O1 can

compute Γcompare with the inputs provided by S2. Therefore, S2 provides the map-

ping tuples {mapi−1,r}
s
r=1,{mapi,r}

s
r=1 to oracle O1, and the latter runs the simulator

of garbled circuits SGB for Γcompare. According to Definition 9, SGB can manage to

simulate the input from the verifier by the developer’s input {mapi−1,r}
s
r=1,{mapi,r}

s
r=1

and the verifier’s output {x′i,r}
s
r=1, as well as the size of target garbled circuit 1∣Γcompare∣

and target input 1∣y
′

i−1,r ∣. In this way, a simulated ỹ′i−1,r is generated.

In the meantime, S2 can take as input the simulated y′i−1,r to compute the simu-

lated {x̃′i,r}
s
i=1. For circuit CTi ∈ Gc and CTi ∉ IC, CTi’s input derives from circuit

CTi−1. So the construction for simulator S2 is such as:

Build S2 for intermediate inputs:

1. Take as input the mapping tuples {mapi−1,r,mapi,r}sr=1.

2. Build a garbled circuit Γ̃compare as specified in Algorithm 2 and obtain the

garbled keys ̃gkcompare.

3. Given access to oracle O1, S2 obtains the result of Type(x) and requests O1

86

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

to compute ỹ′i−1 = SGB({mapi−1,r,mapi,r}sr=1,{x
′

i,r}
s
r=1,1

∣Γcompare∣,1∣y
′

i−1,r ∣) (Defi-

nition 9).

4. Then, S2 computes {x̃′i}
s
r=1 = TF ({mapi−1,r,mapi,r}sr=1, ỹ

′

i−1, i − 1, i).

5. Return ỹ′i−1 and {x̃′i}
s
r=1.

Overall, combined with the views in Equation (3.20) and (3.21), the complete

views for two experiments are such as:

V iewreal = (G,CP, stateA,Gstruc,{CT
′

i,r}
n,s
i=1,r=1, x, x

′,

{y′i,r}
n−1
i=1,r∉Ri

,{x′i,r}
n,s
i=2,r=1,{dci,r}

n
i=1,r∈Ri

,{{Type(x′i,r)}
s
r=1, τi}

n
i=1,

{k0
j,i,r, k

1
j,i,r}

n,li,s
i=1,j=1,r=1,{Com(inputi)}

n
i=1), (3.22)

V iewideal = (G,CP, stateA,Gstruc,{C̃T
′

i,r}
n,s
i=1,r=1, x,GB.Encode(x,

̃gk1),

{ỹ′i,r}
n−1
i=1,r∉Ri

,{x̃′i,r}
n,s
i=2,r=1,{

̃dci,r}
n
i=1,r∈Ri

,{{Type(x′i,r)}
s
r=1, τi}

n
i=1,

{k̃0
j,i,r, k̃

1
j,i,r}

n,li,s
j=1,r=1,{Com(ĩnputi)}

n
i=1), (3.23)

where Ri is a set of r’s which satisfy tr,i ∈ τi, tr,i = 1

3.8.3 Proving Security

Now we can start proving the indistinguishability between real experiment Expreal

and ideal experiment Expideal. First, we build a hybrid experiment ExpHE−1 to assist

the proof.

Note: In the hybrid experiment, the garbled keys outputted by V S.Encrypt() are

different.

87

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

ExpHE1(1
K
)

1. (G,CP, stateA)← A1(1K)

2. Ĝ′
← V S.Encrypt(1K)

3. a← A
S
O1
2 ,S

O2
3

2 (1K , Ĝ′,G,CP, stateA)
4. Output a

Table 3.7: Hybrid experiment ExpHE−1

The hybrid experiment ExpHE−1 derives the the simulators S2, S3 from the ideal

experiment, but it also calls V S.Encrypt of the real experiment. Because the com-

plete sets of garbled keys are also private information, the developer in ExpHE−1 has

to generate different garbled keys. This is simply done by invoking pseudorandom

generator twice, and the new pseudorandom strings would be indistinguishable with

the garbled keys in the real experiment. Accordingly, the commitments in ExpHE−1

are different but indistinguishable with the commitments in the real experiment.

S2, S3 use the above garbled keys and follow the construction in Section 3.8.1 and

3.8.2. Thus, the view of hybrid experiment is:

V iewHE−1 = (G,CP, stateA,Gstruc,{ĈT
′

i,r}
n,s
i=1,r=1, x,GB.Encode(x,

̂gk1),

{ŷ′i,r}
n−1
i=1,r∉Ri

,{ ̂dci,r}
n
i=1,r∈Ri

,{x̂′i}
n
i=2,{{Type(x

′

i,r)}
s
r=1, τi}

n
i=1,

{k̂0
j,i,r, k̂

1
j,i,r}

n,li,s
j=1,r=1,{Com(înputi)}

n
i=1) (3.24)

where Ri is a set of r’s which satisfy tr,i ∈ τi, tr,i = 1

The indistinguishability between Expideal and ExpHE−1. It is obvious to

achieve the indistinguishability between the ideal experiment and the hybrid exper-

iment. The garbled circuits in Expideal are built with the same structure as the

ones in ExpHE−1. As described in Section 2.4.2, a garbled circuit consists of gar-

bled truth tables, which are composed of garbled keys for each wire. As the garbled

88

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

keys in ExpHE−1 and Expideal are generated by the same pseudorandom generator,

{k̂0
j,i,r, k̂

1
j,i,r}

n,li,s
j=1,r=1 in ExpHE−1 are indistinguishable with {k̃0

j,i,r, k̃
1
j,i,r}

n,li,s
j=1,r=1. This fact

leads to the indistinguishability of the construction on this basis. For this reason,

the garbled circuits and commitments in the hybrid experiment are indistinguishable

with the ones in ideal experiment.

S2, S3 in the hybrid experiment generate the similar view as the ideal experiment,

regardless of the cases of external inputs or intermediate inputs. So the view of the

hybrid experiment is computationally indistinguishable with the view of the ideal

experiment.

The indistinguishability between Expreal and ExpHE−1. Next, we need to

prove the view of the hybrid experiment is also computationally indistinguishable

with the view of the real experiment. The proof is by contradiction.

It is assumed that a distinguisher D can distinguish the views of ExpHE−1 and

Expreal. Thus, there is a polynomial p(⋅) such that for infinitely many K,

∣Pr[D(Expreal(1
K
)) = 1] − Pr[D(ExpHE−1(1

K
)) = 1]∣ ≥

1

p(K)

(3.25)

We will use such a distinguisher D to challenge the existing assumptions. The

views of of V iewHE−1 and V iewreal can be categorized by the message sources.

Table 3.8 presents the comparison of views between the real experiment and the

hybrid experiment. Except the shared information, the messages in the hybrid ex-

periment are different from the ones in the real experiment. Thus, if distinguisher D

detects the distinctions between the two views, the distinctions must be fell in one of

the four categories.

Firstly, we assume that D can distinguish the messages in Row 2, Table 3.8. As

89

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Real experiment Hybrid experiment
Row 1 Shared
information

G,CP, stateA,Gstruc,{τi}ni=1 G,CP, stateA,Gstruc,{τi}ni=1

Row 2 Garbling
circuits

When invoking V S.Encrypt:
({CT ′

i,r}
n,s
i=1,r=1,{Com(inputi)}ni=1,

{k0
j,i,r, k

1
j,i,r}

n,li,s
i=1,j=1,r=1)

When invoking V S.Encrypt:

({ĈT
′

i,r}
n,s
i=1,r=1,{Com(înputi)}

n
i=1,

{k̂0
j,i,r, k̂

1
j,i,r}

n,li,s
i=1,j=1,r=1)

Row 3 Encoding
external inputs

When invoking V S.Encode:
(x,Type(x), x′)

When invoking SO1
2 :

(x,Type(x),GB.Encode(x,̂gk1)

Row 4 Encoding
intermediate
inputs and eval-
uating

When invoking V S.Encode:
({y′i,r}

n−1
i=1,r∉Ri

,
{x′i,r}

n,s
i=2,r=1,{Type(x

′

i,r)}
n,s
i=2,r=1)

When invoking SO1
2 :

({ŷ′i,r}
n−1
i=1,r∉Ri

,{x̂′i,r}
n,s
i=2,r=1,

{Type(x′i,r)}
n,s
i=2,r=1)

Row 5 Obtaining
decommitments

When invoking V S.Checker:
{dci,r}ni=1,r∈Ri

When invoking SO2
3 :

{
̂dci,r}ni=1,r∈Ri

Table 3.8: Decomposition of the views of V iewHE−1 and V iewreal

mentioned earlier, the hybrid experiment follows the same ways of building the gar-

bled circuits and commitments as specified in Algorithm 5, except generating different

garbled keys. Consequently, the fact that D can distinguish the messages of Row 2

leads to the fact that D can distinguish the garbled keys, which are just pseudoran-

dom strings. Obviously, this assumption contradicts the security of pseudorandom

generators.

Secondly, we assume that D can distinguish the messages in Row 3, Table 3.8. Row

3 indicates the information which is generated in the phase of computing external in-

puts. In this phase, the developer in experiment Expreal calls V S.Encode (Algorithm

6), while in experiment ExpHE−1 he calls the simulator S2. x is an external input

and it is publicly known. Type(x) is the result of running function Type (Algorithm

3) with x. As Type(x) is not private information, S2 in the hybrid experiment can

90

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

request it from oracle O1. In this case, the information distinguished by D is x′ and

GB.Encode(x,̂gk1).

In fact, x′ is computed by GB.Encode(x, gk1) in the real experiment. The dif-

ference GB.Encode(x,̂gk1) is using different garbled keys. However, distinguishing

garbled keys conflicts with the security of pseudorandom generator. For this reason,

the assumption that D can distinguish the messages of Row 3 contradicts.

Thirdly, we assume that D can distinguish the messages in Row 4, Table 3.8. The

information in Row 4 is produced during encoding intermediate inputs. First of all,

Type(x′i) is shared by the both parties, so it cannot be distinguished.

Then, we assume thatD can distinguish ŷ′i−1,r = SGB({mapi−1,r,mapi,r}sr=1, {x′i,r}
s
r=1,

1∣Γcompare∣,1∣y
′

i−1,r ∣) and y′i−1,r ∈ {y′i−1,r}
n
i=2,r∉Ri

= {CT ′

i,r(x
′

i−1,r)}
n
i=2,r∉Ri

. By Definition 9,

the simulator of garbled circuits SGB can generate a party’s view by the computa-

tional result C(x), the input of the party, along with the size of the circuit and input

1∣C∣,1∣x∣. In our case, {mapi−1,r,mapi,r}sr=1 are the inputs owned by the developer, x′i,r

is the computation result of Γcompare (Algorithm 2), and 1∣Γcompare∣,1∣y
′

i−1,r ∣ denote the

size of garbled circuit Γcompare and input y′i−1 respectively. With these values, invok-

ing SGB({mapi−1,r,mapi,r}sr=1, x
′

i,r,1
∣Γcompare∣,1∣y

′

i−1,r ∣) can generate a simulated input

for the verifier, which is exactly ŷ′i−1,r.

Therefore, by the security of garbled circuits, y′i−1,r are indistinguishable from

ŷ′i−1,r = SGB({mapi−1,r,mapi,r}sr=1, x
′

i,r,1
∣Γcompare∣,1∣x

′

i−1,r ∣), which contradicts the as-

sumption that D can distinguish the two values.

Subsequently, the assumption that D can distinguish {x′i,r}
s
r=1 and {x̂′i,r}

s
r=1 =

TF ({mapi−1,r,mapi,r}sr=1, ŷ
′

i−1,r, i − 1, i), which can be also proved as contradiction.

Basically, {x′i,r}
s
r=1 or {x̂′i,r}

s
r=1 are generated from y′i−1,r and ŷ′i−1,r. As {y′i−1,r}

n
i=2,r∉Ri−1

91

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

in the real experiment have been proved to be indistinguishable with {ŷ′i−1,r}
n
i=2,r∉Ri−1

in the hybrid experiment, it leads to the fact that {x′i,r}
s
r=1 or {x̂′i,r}

s
r=1 are also indis-

tinguishable.

Lastly, we assume that D can distinguish the messages in Row 5 Table 3.8. In

the real experiment, the developer calls V S.Checker and returns the decommitments

{dci,r}ni=1,r∈Ri
= (sdi,{k0

j,i,r, k
1
j,i,r}

li
j=1)

n
i=1,r∈Ri

. In the hybrid experiment, the developer

calls the simulator S3 and obtains {
̂dci,r}ni=1,r∈Ri

= (
̂sdi,{k̂0

j,i,r, k̂
1
j,i,r}

li
j=1)

n
i=1,r∈Ri

. Obvi-

ously, the distinctions between {dci,r}ni=1,r∈Ri
and {

̂dci,r}ni=1,r∈Ri
are simply the garbled

keys. As the previous case, the assumption that D distinguishes {dci,r}ni=1,r∈mathbbRi

from {
̂dci,r}ni=1,r∈Ri

contradicts the security of pseudorandom generator.

Therefore, the view in real experiment is indistinguishable with the view in the

hybrid experiment. As the indistinguishability has been proved between the views of

the ideal experiment and hybrid experiment, we finally achieve that the view in ideal

experiment is indistinguishable with the view in real experiment. ◻

92

Chapter 4

Conclusion

Our work proposes a protocol, based on garbled circuits, to realizes the secure and

trusted “partial white-box verification”. With a certain leakage of information, like,

revealing the structure of the program, the protocol satisfies the requirements about

security and correctness. Particularly, through a series of consistency checks or va-

lidity checks, the protocol can efficiently defend against the malicious behavior.

However, this work is not the end of the research about this subject. The updates

for existing techniques or new techniques for existing problems may bring better

solutions, like the possible advance in implementing FHE and verifiable computation.

Or the changes about the security requirements may pose new questions, like how to

hide the graph structure. Here we present some subjects as our future work.

Comparison with FHE’s construction. As our work derived from the proto-

col based on FHE (Cai et al., 2016), comparison between the two protocols will be

the most possible job in the next step. The comparison may focus on the implemen-

tation difficulty and computational efficiency. Although the current protocol based

on garbled circuits has been implemented in (Ji, 2016), the implementation of the

93

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

FHE’s version is still missing. This part of job will be supplied as the next plan.

Computational efficiency and optimization. Improving the efficiency of our

protocol has much work to do. Since the birth of garbled circuits, the optimization

around the technique has never ended. Usually, people care about three aspects that

affect the computational efficiency of the protocol of garbled circuits: the communi-

cation cost, the execution cost and the circuit cost (Snyder, 2014).

The execution cost and the circuit cost mainly rely on the size of the circuit graph

Gc, for example, the number of circuits, the number of gates in each circuit, and the

security parameter s etc. The work about such optimization can bee seen in (Pinkas

et al., 2009; Malkhi et al., 2004; Huang et al., 2011; Kreuter et al., 2012).

Specifically, we need to pay more attention to the communication cost. The

number of rounds of executing oblivious transfer is the key factor in this kind of cost.

If the protocol does not adopt the cut-and-choose strategy, encoding an input with

n bits needs n rounds of OT protocol, which can only exchange one bit in one round

(Section 2.5). If the cut-and-choose approach is applied to the protocol, the number

of inputs that need be encoded increase to n ⋅ s. Accordingly, encoding the inputs

corresponding to a same circuit generates n ⋅ s rounds of OT protocol. On the other

hand, a feature in our protocol is to realize the function TF to securely encode the

intermediate inputs. However, as presented in Section 3.5.1, this method also brings

a rather big communication cost. In the garbled circuit Γcompare, the input from the

verifier is a garbled value {y′i,r} = (y
ki,1
r , ..., y

ki,li
r). If the length of a garbled key is p

and {y′i,r} has li garbled keys, the total bits in such a {y′i,r} are p ⋅ li. Consequently,

the rounds of OT that are invoked may reach s ⋅ p ⋅ li.

Discussed in (Lindell and Pinkas, 2007), this paper presented a probabilistic

94

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

construction to reduce the wires of input, which also reduces the number of rounds

of calling OT . The related work can be added to the implementation of our protocol

(Ji, 2016) and optimize its computation.

Limitations of garbled circuits. A key limitation of garbled circuit is that a set

of garbled circuits and the garbled keys can only be used once. This problem severely

restrains the application scope of garbled circuits. Some work has been invested in

implementing the reusable garbled circuits, like the attempts made by Goldwasser et

al. in (Goldwasser et al., 2013), which is baed on FHE. If this defect about garbled

circuits can be solved in the future, the application scenarios of garbled circuits, as

well as our protocol, would be much broader.

Verifiable computation. We have mentioned verifiable computation in section

1.2. Although V C is not contained in our construction, the discussion about this

technique is still valuable to our subject. In the work of (Cai et al., 2016), the author

made use of FHE to reverse the computation and realized checking the validity

of V S.Encode’s results. However, this approach actually repeats the computation.

As FHE is “notorious” for its low computational efficiency, this kind of checks is

not acceptable. Alternatively, V C provides the more precise and efficient notions to

conduct such checks. The probabilistically checkable proofs (PCP), harwired in V C,

provides a good hint. As the PCP theorem implies that an assertion can be checked

effectively by a proof in only a few of bits (Arora and Safra, 1998), this possible

approach would significantly save the cost when checking the computational results.

When the research on practical V C takes the essential breakthrough, checking the

results of V S.Encode would have better solutions.

95

Bibliography

Abadi, M. and Feigenbaum, J. (1990). Secure circuit evaluation. Journal of Cryptol-

ogy, 2(1), 1–12.

Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker, R. A., and Parnas, D. L. (1992).

Software requirements for the a-7e aircraft. Technical report, DTIC Document.

Arora, S. and Safra, S. (1998). Probabilistic checking of proofs: A new characteriza-

tion of np. Journal of the ACM (JACM), 45(1), 70–122.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., and

Yang, K. (2001). On the (im) possibility of obfuscating programs. In Advances in

cryptology-CRYPTO 2001, pages 1–18. Springer.

Bellare, M. and Micali, S. (1989). Non-interactive oblivious transfer and applications.

In Advances in Cryptology-CRYPTO’89 Proceedings, pages 547–557. Springer.

Bellare, M., Hoang, V. T., and Rogaway, P. (2012). Foundations of garbled circuits.

In Proceedings of the 2012 ACM conference on Computer and communications

security, pages 784–796. ACM.

Ben-David, A., Nisan, N., and Pinkas, B. (2008). Fairplaymp: a system for secure

96

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

multi-party computation. In Proceedings of the 15th ACM conference on Computer

and communications security, pages 257–266. ACM.

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. (2013). Snarks

for c: Verifying program executions succinctly and in zero knowledge. In Advances

in Cryptology–CRYPTO 2013, pages 90–108. Springer.

Boyle, E., Chung, K.-M., and Pass, R. (2014). On extractability (aka differing-inputs)

obfuscation.

Braun, B., Feldman, A. J., Ren, Z., Setty, S., Blumberg, A. J., and Walfish, M.

(2013). Verifying computations with state. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, pages 341–357. ACM.

Cai, Y., Karakostas, G., and Wassyng, A. (2016). Secure and trusted white-box

verification. arXiv preprint arXiv:1605.03932.

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., and Waters, B. (2013). Can-

didate indistinguishability obfuscation and functional encryption for all circuits. In

Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium

on, pages 40–49. IEEE.

Gentry, C. et al. (2009). Fully homomorphic encryption using ideal lattices. In STOC,

volume 9, pages 169–178.

Gentry, C. and Halevi, S. (2011). Implementing gentrys fully-homomorphic en-

cryption scheme. In Advances in Cryptology–EUROCRYPT 2011, pages 129–148.

Springer.

97

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Goldreich, O. (2004). Foundations of Cryptography: Volume 2, Basic Applications.

Cambridge University Press, New York, NY, USA.

Goldreich, O. (2006). Foundations of Cryptography: Volume 1. Cambridge University

Press, New York, NY, USA.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How to play any mental game.

In Proceedings of the nineteenth annual ACM symposium on Theory of computing,

pages 218–229. ACM.

Goldwasser, S. and Rothblum, G. N. (2007). On best-possible obfuscation. In Pro-

ceedings of the 4th Conference on Theory of Cryptography, TCC’07, pages 194–213,

Berlin, Heidelberg. Springer-Verlag.

Goldwasser, S., Kalai, Y., Popa, R. A., Vaikuntanathan, V., and Zeldovich, N. (2013).

Reusable garbled circuits and succinct functional encryption. In Proceedings of the

forty-fifth annual ACM symposium on Theory of computing, pages 555–564. ACM.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., and Rierson, L. K. (2001). A

practical tutorial on modified condition/decision coverage.

Huang, Y., Evans, D., Katz, J., and Malka, L. (2011). Faster secure two-party

computation using garbled circuits. In USENIX Security Symposium, volume 201.

Janicki, R. and Wassyng, A. (2005). Tabular expressions and their relational seman-

tics. Fundamenta Informaticae, 67(4), 343–370.

Ji, Z. (2016). An implementation of secure verification using garbled circuits. Tech-

nical report, Dept. of Computing and Software, McMaster University.

98

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Katz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography (Chapman &

Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC.

Kaye, P., Laflamme, R., and Mosca, M. (2007). An Introduction to Quantum Com-

puting. Oxford University Press, Inc., New York, NY, USA.

Kreuter, B., Shelat, A., and Shen, C.-H. (2012). Billion-gate secure computation with

malicious adversaries. In Presented as part of the 21st USENIX Security Symposium

(USENIX Security 12), pages 285–300.

Lindell, Y. and Pinkas, B. (2007). An efficient protocol for secure two-party com-

putation in the presence of malicious adversaries. In Advances in Cryptology-

EUROCRYPT 2007, pages 52–78. Springer.

Lindell, Y. and Pinkas, B. (2009). A proof of security of yao’s protocol for two-party

computation. Journal of Cryptology, 22(2), 161–188.

Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al. (2004). Fairplay-secure two-party

computation system. In USENIX Security Symposium, volume 4. San Diego, CA,

USA.

Mohassel, P. and Riva, B. (2013). Garbled circuits checking garbled circuits: More

efficient and secure two-party computation. In Advances in Cryptology–CRYPTO

2013, pages 36–53. Springer.

Mood, B., Gupta, D., Butler, K., and Feigenbaum, J. (2014). Reuse it or lose it: More

efficient secure computation through reuse of encrypted values. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’14, pages 582–596, New York, NY, USA. ACM.

99

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Naor, M. (1991). Bit commitment using pseudorandomness. Journal of Cryptology,

4(2), 151–158.

Naor, M. and Pinkas, B. (2001). Efficient oblivious transfer protocols. In Proceedings

of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 448–

457. Society for Industrial and Applied Mathematics.

Naor, M. and Pinkas, B. (2005). Computationally secure oblivious transfer. Journal

of Cryptology, 18(1), 1–35.

Nielsen, J. B. and Orlandi, C. (2009). Lego for two-party secure computation. In

Theory of Cryptography, pages 368–386. Springer.

Parno, B., Howell, J., Gentry, C., and Raykova, M. (2016). Pinocchio: Nearly prac-

tical verifiable computation. Commun. ACM, 59(2), 103–112.

Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C. (2009). Secure two-party

computation is practical. In Advances in Cryptology–ASIACRYPT 2009, pages

250–267. Springer.

Setty, S., Braun, B., Vu, V., Blumberg, A. J., Parno, B., and Walfish, M. (2013).

Resolving the conflict between generality and plausibility in verified computation.

In Proceedings of the 8th ACM European Conference on Computer Systems, pages

71–84. ACM.

Shen, C.-h. et al. (2011). Two-output secure computation with malicious adversaries.

In Advances in Cryptology–EUROCRYPT 2011, pages 386–405. Springer.

Snyder, P. (2014). Yao’s garbled circuits: Recent directions and implementations.

Literature review, Dept. of Computer Science, University of Illinois at Chicago.

100

M.Sc. Thesis - Hongsheng Zhong McMaster - Computing and Software

Vollmer, H. (1999). Introduction to Circuit Complexity: A Uniform Approach.

Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Walfish, M. and Blumberg, A. J. (2015). Verifying computations without reexecuting

them. Communications of the ACM, 58(2), 74–84.

Wang, W., Hu, Y., Chen, L., Huang, X., and Sunar, B. (2015). Exploring the feasi-

bility of fully homomorphic encryption. Computers, IEEE Transactions on, 64(3),

698–706.

Wassyng, A. and Janicki, R. (2003). Tabular expressions in software engineering. In

Proceedings of ICSSEA, volume 3, pages 1–46.

Wee, H. (2005). On obfuscating point functions. In Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing, pages 523–532. ACM.

Yao, A. (1986). How to generate and exchange secrets. In Foundations of Computer

Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE.

Yao, A. C. (1982). Protocols for secure computations. In Foundations of Computer

Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE.

101

