Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20511
Title: A Time-Dependent Description of In-Core Gamma Heating in the McMaster Nuclear Reactor
Authors: Stoll, Kurt Jason Lorenz
Advisor: Luxat, John
Day, Simon
Department: Engineering Physics
Keywords: gamma heating;in-core;point kinetics;radiation transport
Publication Date: 2016
Abstract: Calculating or predicting the total in-core nuclear heating is a difficult tast. Full-core models can be constructed in a Monte Carlo code, such as MCNP6 or TRIPOLI4, and will allow an analyst to calculate the prompt-gamma heating at any given in-core location; however, such codes are generally unable to track the activated or fission-product isotopes and therefore the delayed-gamma sources can't be included in such a model. Some analysts have coupled Monte Carlo transport codes to burnup codes in an effort to include delayed-gamma sources, but the solutions tend to be reactor specific, time-independent and a lot of work. New ideas are required to calculate the total time-dependent in-core nuclear heating. Within this report, two new models have been derived: the nuclear heating equation, and the coupled neutron and nuclear heating point kinetics (NHPK) equations. These models can be used to calculate the time and position-dependent in-core heating. The nuclear heating equations are generalized expressions of the nuclear heating in a volume of interest, within an arbitrary geometry; these equations use Monte Carlo tallies as coefficients and treat the geometry's scalar neutron flux within as the independent variable. The NHPK model describes the nuclear heating in a volume of interest, within a critical assembly by coupling nuclear heating to the famous neutron point kinetics equations. A SCK-CEN gamma thermometer (GT) was commissioned in a materials testing reactor (MTR), the McMaster Nuclear Reactor (MNR), to measure the dynamic in-core nuclear heating in two locations. The nuclear heating equation was used to calculate self-heating of the SCK-CEN GT by neutron capture reactions. This calculation used CapGam and IAEA PGAA prompt-gamma emission data; delayed-particle emission data from NuDat 2.6 was also employed. Analysis of the GT's signal resulted in a quantitative description of the dynamic delayed-gamma heating in MNR, and provided the coefficients for the NHPK model. The NHPK model is capable of reproducing the measured time-dependent nuclear heating, and therefore should also be capable of predicting in-core nuclear heating as a function of reactor power.
URI: http://hdl.handle.net/11375/20511
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
STOLL_KURT_JL_2016SEPT_PhD.pdf
Open Access
9.96 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue