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Abstract

Calculating or predicting the total in-core nuclear heating is a difficult tast. Full-core models can
be constructed in a Monte Carlo code, such as MCNP6 or TRIPOLI4, and will allow an analyst to
calculate the prompt-gamma heating at any given in-core location; however, such codes are generally
unable to track the activated or fission-product isotopes and therefore the delayed-gamma sources
can’t be included in such a model.

Some analysts have coupled Monte Carlo transport codes to burnup codes in an effort to include
delayed-gamma sources, but the solutions tend to be reactor specific, time-independent and a lot of
work. New ideas are required to calculate the total time-dependent in-core nuclear heating.

Within this report, two new models have been derived: the nuclear heating equation, and the
coupled neutron and nuclear heating point kinetics (NHPK) equations. These models can be used
to calculate the time and position-dependent in-core heating. The nuclear heating equations are
generalized expressions of the nuclear heating in a volume of interest, within an arbitrary geometry;
these equations use Monte Carlo tallies as coefficients and treat the geometry’s scalar neutron flux
within as the independent variable. The NHPK model describes the nuclear heating in a volume of
interest, within a critical assembly by coupling nuclear heating to the famous neutron point kinetics
equations.

A SCK-CEN gamma thermometer (GT) was commissioned in a materials testing reactor (MTR),
the McMaster Nuclear Reactor (MNR), to measure the dynamic in-core nuclear heating in two
locations. The nuclear heating equation was used to calculate self-heating of the SCK-CEN GT
by neutron capture reactions. This calculation used CapGam and IAEA PGAA prompt-gamma
emission data; delayed-particle emission data from NuDat 2.6 was also employed. Analysis of the
GT’s signal resulted in a quantitative description of the dynamic delayed-gamma heating in MNR,
and provided the coefficients for the NHPK model.

The NHPK model is capable of reproducing the measured time-dependent nuclear heating, and
therefore should also be capable of predicting in-core nuclear heating as a function of reactor power.
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Chapter 1

Introduction

This chapter provides context for this work by summarizing the motivation to measure and describe
the in-core delayed-gamma heating; the objectives of this work are also defined in this chapter.
Chapter 2 outlines the prerequisite physics. Chapter 3 reviews the methods other researchers have
used to measure and calculate in-core gamma heating; literature shows there is a lack of analytical
methods available to describe the time-dependent heating. Chapter 4 proposes two new models for
spatially and temporally describing in-core gamma heating: the nuclear heating equations and the
coupled neutron-photon point kinetics equations. Chapter 5 describes the methods used to process
the SCK-CEN GT signal obtained from measurements in MNR. Chapter 6 contains the experimental
results, a discussion of the findings and the development of the coupled neutron and nuclear heating
point kinetics equations. Chapter 7 summarizes the results and suggests new efforts for future
research.

1.1 Objective

The objectives of this study are: 1) to measure the total time-dependent nuclear heating within a
materials testing reactor (MTR) core, 2) isolate and describe the signal component caused by delayed
gamma heating, 3) to develop a new time-dependent nuclear-heating model capable of predicting
in-core nuclear heating and of reproducing the measured heating, as a function of neutron flux.

These objectives were defined because a literature review (summarized within this thesis) found
no other works which have dedicated an experiment to measuring and describing the dynamics of
the in-core nuclear heating. Experimental devices have incidentally recorded this time-dependent
heating, but no description or models have been developed with these observations.

Therefore, a measurement and model of the total time-dependent heating within a MTR core
are novel contributions to the field of nuclear engineering. The measurement will give others an
understanding of the magnitude and dynamics of in-core nuclear heating to be expected in an MTR
core, and the proposed model could be implemented in any reactor to predict the in-core nuclear
heating, with the use of reactor-specific coefficients.

1.2 Motivation

Although the fraction of the total fission energy carried by gamma radiation is not large, gammas
can induce as much as 90% of the local nuclear heating in non-fueled in-core components (Zisis
et al. 2010; 837). But since gammas do not mediate the fission chain reaction as do neutrons nor
carry a large fraction of the total fission energy, their presence has been considered to be of minor

1



2 CHAPTER 1. INTRODUCTION

consequence compared to neutrons. Unlike neutrons, physicists haven’t developed the mature tools
and methods required to predict the dynamics of in-core gamma populations or heating.

Radiation transport codes can be used to simulate the emission, transport and energy deposition
of in-core photons but these codes still have large biases and uncertainties on heating calculations
(Zisis et al. 2010; 837). Recent nuclear heating experiments in low-power critical assemblies suggest
the nuclear data used in gamma-heating calculations are primarily to blame for systematic differences
between calculated and measured gamma heating (Blanchet et al. 2008, Vaglio-Gaudard et al. 2014).

This lack of accuracy is a problem because some new reactor designs will induce large nuclear
heating rates. This heating will cause in-core components to operate closer to their thermal limits;
calculating the margins to thermal limits requires accurate design tools. Since the nuclear heating
in many components is dominated by gamma heating the designers of new reactors such as France’s
Jules Horowitz reactor (JHR) are aiming to reduce the uncertainty of the gamma-heating calcula-
tions. The CEA and Areva have a goal of reducing the total nuclear-heating uncertainty to 5% (1σ)
in the JHR experimental zones (Rimpault et al. 2012; 4).

Apart from the accuracy problem caused by erroneous or completely missing nuclear data, there
is also a lack of simplified models capable of describing the dynamics of in-core gamma heating.
Tracking the concentrations of the hundreds of in-core radioisotopes which birth delayed gammas
and the transport of these emissions, in all regions of the core at once, is possible but not yet practical.
As an approximation, the core’s inventory of these radioisotopes could be assumed constant. This
approximation may be acceptable for safety studies concerned with maximum heating rates, or for
power reactors which operate for long periods at a constant power, but not when trying to determine
the time-dependent behaviour of the delayed-gamma heating in a research reactor with a daily on-off
schedule.

To help engineers predict the time-dependent behavior of the in-core energy deposition, this thesis
aims to measure and describe the time-dependent in-core component of nuclear heating caused
by delayed gammas and incorporate this description into a new time-dependent nuclear heating
model. If this model is capable of predicting the total in-core gamma heating without tracking the
radioisotope concentrations, it could be used to predict the in-core time-dependent nuclear heating.

Such a model might also be useful in the optimization of commercial MTR processes. The Szilard-
Chalmers radiochemistry process is used to manufacture radioactive tracers for use in biochemical,
medical or environmental studies; the products of this process are contaminated by the ionizing
potential of gamma radiation (Vértes et al. 2003; 70). If those who manufacture tracers have detailed
knowledge of the simultaneous in-core neutron and gamma fluxes, it would be possible to model and
optimize the production of tracer materials (Armstrong 2013).



Chapter 2

Background

This chapter summarizes the physics which must be understood to discuss gamma transport and
in-core nuclear heating. Not all topics reviewed in this chapter are used in the analysis contained
in later chapters, but all have been included for the benefit of those new to the topic of gamma
heating. This chapter begins with an introduction to gamma radiation and a discussion of how the
fission energy is divided amongst the particles produced by fission. The chapter concludes with the
mechanics of energy deposition in materials by neutrons and photons.

When discussing physics it is often useful to present empirical values which quantify the topical
processes, thus some sections in this chapter present data retrieved from the ENDF/B-VII.1 nuclear
data library. This library is compiled by the US Cross Section Evaluation Working Group (CSEWG)
using evaluated data from decades of experiments (Chadwick et al. 2001). ENDF/B-VII.1 is a
ubiquitous reference within the industry and is employed in later chapters in calculations.

2.1 The basics of in-core gamma radiation

Gamma radiation is the name given to electromagnetic radiation of the highest energy. The definition
of gamma radiation varies between sources, and there appears to be no clear energy boundary between
gamma radiation and lower-energy x rays. Some consider photons of wavelength shorter than 0.01
nm to be gamma radiation (Beiser 1995; 69). This implies gamma photons have an energy and
frequency greater than:

E =
hc

λ
=

(4.136× 10−15 eV·s)(3.00× 108 m
s )

1.00× 10−11 m
≈ 124 keV (2.1)

f =
c

λ
=

3.00× 108 m
s

1.0× 10−11 m
= 3.0× 1019 1

s
= 30 EHz. (2.2)

Others define each by their origin: x rays originate from atoms (or more specifically, the atom’s
electrons) and gamma rays from nuclei (Lamarsh and Baratta 2001; 18).

X rays are emitted when an atomic electron transitions from a higher to lower energy orbital.
These photons have energies equal to the difference in binding energies between the initial and final
shells (Knoll 2010; 14). Such transitions are usually not capable of producing photons of a very high
energy since the energy difference between the ground state electron of the innermost orbital (which
is the lowest energy and thus most tightly bound to the nucleus) and ionization is small.

Additionally, since every atom has a unique electron configuration, the photons emitted when
the electrons de-excite are also unique, thus they are called characteristic x rays.

As electrons, nuclei also exist in quantized states of energy, called energy levels. The difference
between quantized states is usually much larger in nuclei than between electron orbitals so the

3



4 CHAPTER 2. BACKGROUND

photons released upon de-excitation are much more energetic; as do x rays, gamma rays result
during de-excitation and are equal in energy to the difference between energy levels.

There are a number of phenomenon which can create high-energy electromagnetic radiation. The
phenomena most relevant within a nuclear reactor core are:

Fission. Fission produces prompt fission gammas during the fission event, and delayed fission gam-
mas through the decay of the fission products. Prompt fission gammas are discussed in sec-
tion 2.2.4 and delayed gammas in section 2.2.5 as part of the review of the particles which
result from actinide fission.

Neutron capture. Neutron capture reactions by nuclei produce prompt capture gammas at the
time of capture, and delayed capture gammas through the decay of the product nucleus. These
processes are discussed in section 2.5.1 as part of the review of neutron-material interactions,
since neutron capture is one such interaction.

Annihilation. The positron emitted by β+ decay or pair production will, upon losing its kinetic
energy, combine with an electron in the surrounding material and annihilate. This process
results in two oppositely-directed photons of 0.511 MeV (Knoll 2010; 12).

2.2 Actinide fission

Nuclear fission is usually induced in reactors when a single neutron is absorbed by a fissionable
isotope. Fission occurs when the sum of the neutron’s kinetic energy and its binding energy exceedes
the fission energy barrier created by the nuclei’s strong nuclear force (Knoll 2010; 9). The products
of fission are energy and six particles: fission products, neutrons, electrons, positrons, neutrinos and
photons.

The fission neutrons offer the potential to induce fission in other surrounding actinide nuclei,
and may result in a fission chain reaction in a suitably-designed geometry; sustaining such a chain
reaction is the main design requirement of all reactors.

This section reviews fission energy and the prompt and delayed fission particles. An awareness of
all particles emitted by fission, and the energy they carry is required while studying nuclear heating.
Some particles travel great distances and others are deposited very near their point of emission, thus
allowing some fission particles to be discounted in the study of heating in materials distant from the
reactor’s fuel assemblies.

2.2.1 Fission energy

Form Emitted Energy (MeV)
Fission fragments 168
Fission product decay

β rays 8
gamma rays 7
neutrinos 12

Prompt gamma rays 7
Fission neutrons 5
TOTAL 207

Table 2.1: Emitted energies for fission of 235U (Lamarsh and Baratta 2001; 88)

Table 2.1 presents the particles resulting from 235U fission and their associated kinetic energies.
The total energy released by fission is equal to the sum of these kinetic energies.
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The energy released by a specific nuclear reaction is designated with the variable Q; Q = 207
MeV for fission of 235U and the vast majority of this energy appears as fission product kinetic energy
— about 168 MeV of the total 207 MeV released upon fission. Fission products have large electric
charges and interact readily with the fuel material (Lamarsh and Baratta 2001; 89); consequently,
they travel a very small distance within the reactor and the energy they carry is usually deposited
entirely within the fuel material from which they originate (Hill and Luxat 2006; 39).

In contrast to fission products, β particles possess either a charge of only +e or -e and have a rest
mass 1.8 × 103 times smaller than a resting proton, and thus travel further in any given material.
However, even in very sparse material β particles still have a small mean path length; for example,
19.6 keV electrons travel an average of only 0.64 cm in 0 ◦C oxygen at 1 atm (Evans 1955; 612).
This path length reduces even further with increases in material densities and with the number of
protons per nuclei, Z. Thus, it is usually assumed the energies of β particles do not leave the fuel
matrix from which they orginate (Hill and Luxat 2006).

Famously, neutrinos rarely interact with any material and thus their energy is not recoverable by
the reactor.

Neutron and gamma radiation are quite capable of moving beyond the fuel matrix, the fuel
cladding, into the surrounding coolant and all other materials within the reactor core. Thus, their
energies account for all the nuclear heating of non-fuelled components within the reactor1.

Of the fission energy which is possible to recover (207 - 12 = 195 MeV), the fraction of this energy
neutrons and gammas carry is 5/195 = 0.026 and 14/195 = 0.072, respectively. Half of this gamma
energy appears promptly, with the remainder appearing over a long duration following fission.

Although Table 2.1 is useful as a guide for this discussion, experiments show neither the total
energy released per fission nor the energy of each component is constant, but are dependent upon
the incident neutron energy E′. The total kinetic energy of each fission particle can be retrieved
from ENDF/B-VII.1 in one of two formats within file MF=1 (general information), section MT=458
(components of energy release due to fission). In one format (when NPLY=0) the total energy
of each component is described by a dedicated linear equation using coefficients stored in MF=1;
the total fission energy is equal to the sum of the components. This format has shown to produce
incorrect component energies but sum to the correct total energy (Herman and Trkov 2009; 46).
Thus, a second format has been implemented (when NPLY6=0) which describes the energy of each
component by a polynomial of degree NPLY.

Detailed energy spectra of the fission particles are stored in other sections of ENDF/B-VII.1 in
file numbers MF=5 (energy distributions) and MF=15 (energy distributions for photon production);
these spectra are referenced later in this section while discussing neutrons and photons. Note that
when retrieving total fission energy from ENDF/B-VII.1 the authors recommend integrating the
spectra (from MF=5 and MF=15) instead of using the energy totals contained in MF=1 (when
NPLY=0); when NPLY 6=0, differences are known to exist between the total energies listed in MF=1
and the integrated spectra (Herman and Trkov 2009; 47).

2.2.2 Prompt fission neutrons

Most fission neutrons are released within 10−14 seconds of fission and are thus called prompt neutrons;
delayed neutrons make up the remainder and are less than 1% of the total number per fission.
Delayed neutrons are released much later through decay of dozens of fission products (Duderstadt
and Hamilton 1976; 61).

The prompt neutron energy distribution from 235U and 239Pu fission are shown in Figure 2.1
where the units result from the following multiplication (Herman and Trkov 2009; 111):

dσ(E′ → E)

dE
= ν̄p(E

′)σ(E′)p(E′ → E) (2.3)

1It must be remembered that non-fuelled components within the reactor are not only heated by neutrons and
gammas, but also by conduction, convection and radiative heat ransfer from other in-core components.
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where:
ν̄p(E

′) = average number of fission neutrons induced by a neutron of energy E′, shown in
Figure 2.2
p(E′ → E) = normalized probability of obtaining a fission neutron of energy E from an
incident neutron of energy E′

σ(E′) = microscopic cross section of fission (MT=18) from an incident neutron of energy E′.

Figure 2.1: Normalized 235U and 239Pu prompt neutron energy distribution resulting from inci-
dent neutrons of 1.0 × 10−5eV. Data was retrieved from the ENDF/B-VII.1 library MF=5 (energy
distributions), MT=18 (particle induced fission) with the program Sigma (Herman 2014).

Figure 2.2: ν̄p(E
′) of 235U and 239Pu as a function of incident neutron of energy E. Data was

retrieved from the ENDF/B-VII.1 library MF=1 (general information), MT=456 (average number
of promt neutrons released per fission event) with the program Sigma (Herman 2014).

2.2.3 Delayed fission neutrons

The delayed birth of delayed neutrons make reactor power dynamics slow enough to be controllable
(Duderstadt and Hamilton 1976; 79). Although most delayed neutrons result from fission product
decay, some may be produced by photo-nuclear reactions.

The fission product isotopes at the beginning of a delayed-neutron-producing decay chain are
called the neutron precursors. For analysis purposes, the net delayed neutron production is often
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modeled as coming from the decay of six fictional fission product isotopes which are defined to
decay simply with the emission of a single delayed neutron. In aggregate, these six isotopes have
been found to closely describe the measured temporal yield of delayed neutrons when the associated
decay constants and fission yields are carefully chosen. Because each fictional isotope describes a
cluster of real neutrons, one says there are ”six groups.” The equation describing the delayed source
Sd(E

′, t) is assumed to be a summation of six exponential decay terms, corresponding to the six
groups (Keepin et al. 1957; 6):

Sd(E
′, t) = ν̄(E′)

[
6∑
i=1

βi(E
′)e−λi(E

′)t

]
(2.4)

where:
ν̄(E′) = average number of neutrons (both prompt and delayed) released, per fission of a given
actinide induced by a neutron of energy E′

βi(E
′) = fraction of all fission neutrons (both prompt and delayed) emitted per fission that appear

from ith precursor group, βi(E
′) =

ν̄id(E′)
ν̄(E′)

λi(E
′) = decay constant of the ith precursor group (Duderstadt and Hamilton 1976; 63).

Figure 2.3 shows ν̄d(E
′) from the ENDF/B-VII.1 library for 235U and 239Pu. Notice ν̄d(E

′) is
much lower at higher incident neutron energies for both isotopes. Also notice ν̄d(E

′) remains flat
over 11 orders of magnitude before drastically changing at higher energies.

The numerical values for ν̄(E′), βi(E
′) and λi(E

′) are not shown here but are contained in
ENDF/B-VII.1 (MF=1, MT=455).

An energy distribution of neutrons from each delayed group is also included in ENDF/B-VII.1.
Simple energy spectra are usually designated as χ(E)dE, equal to the average number of particles
emitted with energy E within the energy bin of width dE (Duderstadt and Hamilton 1976; 61);
χ(E)dE is usually normalized. Access to an energy spectrum allows one to develop an energy-
dependent description of the particle source, Sd(E,E

′, t), where the E refers to delayed neutrons
produced at energy E within the energy bin of width dE, induced by a neutron of energy E′ within
the energy bin of width dE′ (Bell and Glasstone 1970; 465):

Sd(E,E
′, t) =

∑
i

χi(E,E
′)βiλiν̄(E′)e−λit (2.5)

where χi(E,E
′) is the normalized energy spectra of group i. The total S(E,E′, t) neutron source

can then be written as:

S(E,E′, t) = χp(E,E
′) [1− β(E′)] ν̄(E′)δ(t) +

∑
i

χi(E,E
′)βiλiν̄(E′)e−λit (2.6)

where χp(E,E
′) is the normalized energy spectra of prompt neutrons, and δ(t) is the Kronecker

delta.

2.2.4 Prompt fission gammas

The prompt gamma (sometimes called fission gamma) energy distribution of 235U and 239Pu fission
are shown in Figure 2.4; according to ENDF/B-VII.1 the same spectra results for all incident neutron
energies between 1.0× 10−5eV and 2.0× 107eV.

2.2.5 Delayed fission gammas

As delayed fission neutrons, delayed fission gammas are birthed within the decay chains of the fission
product isotopes. Fission products have a high probability of being neutron-rich and therefore tend
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Figure 2.3: ν̄d(E) of 235U as a function of incident neutron of energy E. Data was retrieved from the
ENDF/B-VII.1 library MF=1 (general information), MT=455 (average number of delayed neutrons
released per fission event) with the program Sigma (Herman 2014).

to convert a neutron into a proton; an electron (a β− particle) and an anti-neutrino are then emitted
in what is called β− decay. Proton-rich isotopes can convert a proton into a neutron and then emit
a positron, β+, and a neutrino in β+ decay (Lamarsh and Baratta 2001; 19). Following β− or β+

decay the daughter nuclei may remain in an excited energy level, which then promptly decays to a
lower energy level by emitting a gamma ray, γ.

Each specific β decay is characterized by a fixed Q value. This value is normally presented in a
data library assuming the decay transition is between ground states of both the parent and daughter
nuclei; since the recoil energy of the nucleus is very small, Q is shared between the β particle, the
neutrino and any gammas which may be emitted (Knoll 2010; 4). Although Q values are quantized,
because of the energy sharing the β particle energy distribution is continuous rather than discrete; its
maximum energy is equal to Q and is called the β endpoint energy. Since the neutrino energy is lost
from a reactor completely, a conservative nuclear heating estimate would assume the β particle and
gamma energy sum to Q; a conservative β-heating calculation would assume the β particle energy
is equal to the endpoint energy, Q.

Since nuclides often have long lives prior to the β decay, relative to the time which passes before
a gamma emission of the subsequent daughter nuclei, the emission of this γ radiation is effectively
described by the β decay half-life of the parent nuclide.

Describing the intensity of all delayed fission gammas emitted over time by a volume of irradiated
fissionable material requires knowing the time-dependent concentrations of many of the hundreds
of fission products. Furthermore, some of these radionuclides move through a rather complicated
cascade of multiple β decays and γ emissions, and each decay step may have multiple possible paths;
all these processes must be considered in the description.

Delayed gamma data is contained within the ENDF/B-VII.1 library. The source of delayed
gammas of energy Eγ within the energy bin of width dE, released at time t, after being released
by a fission product induced by a neutron at energy E is denoted as Sγ(E,Eγ , t). This source can
be described in two formats from ENDF/B-VII.1: a) when LO=1, the decay photons are described
discretly; and b) when LO=2, continuously (Herman and Trkov 2009; 48).

However, the ENDF/B-VII.1 authors recommend using a code such as CINDER or ORIGEN to
obtain a detailed delayed-particle source description (Herman and Trkov 2009; 47); these codes are
discussed further in this thesis.
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Figure 2.4: Normalized 235U and 239Pu prompt gamma energy distribution resulting from incident
neutrons of 1.0 × 10−5eV. Tabulated data was retrieved from the ENDF/B-VII.1 library MF=15
(energy distributions for photon production), MT=18 (particle induced fission) with the program
Sigma (Herman 2014).
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2.3 In-core neutronic processes

Since neutrons sustain the fission chain reaction and induce changes in material compositions through
capture and fission, neutron physics must be considered before seriously looking at any problem in
reactor physics. Even if one is motivated to determine only the in-core gamma flux, analysis must
begin with neutrons because photon production is coupled to neutron absorption and neutron-
induced fission. Only after the neutron population has been fully characterized can in-core gamma
analysis begin.

This section reviews the physics and equations related to the neutron life-cycle: transport, diffu-
sion and fuel burnup.

2.3.1 Neutron transport

Software codes which calculate the movement of neutrons through materials usually employ some
approximation of the neutron transport equation. The equation is presented here but is derived
completely in (Duderstadt and Hamilton 1976); derivation is accomplished by considering fission,
absorption, scattering and leakage with the purpose of counting the number of neutrons within the
energy bin dE about the energy E within the solid angle d~Ω about the direction ~Ω within a discrete
volume d3r about the position ~r at time t:

1

υ

∂ϕ(~r,E, ~Ω, t)

∂t
+ ~Ω · ∇ϕ(~r,E, ~Ω, t) + Σt(~r,E)ϕ(~r,E, ~Ω, t) =∫

4π

d~Ω′
∫ ∞

0

dE′Σs(~r;E
′ → E, ~Ω′ → ~Ω, E′)ϕ(~r,E′, ~Ω′, t)+

χ(E)

4π

∫
4π

d~Ω′
∫ ∞

0

dE′ν(E′)Σf (E′)ϕ(~r,E′, ~Ω′, t) (2.7)

where:
ϕ(~r,E, ~Ω, t) = angular neutron flux; dependent on the listed variables
ν(E′) = average number of fission neutrons induced by a neutron of energy E′

χ(E) = fission spectrum energy distribution
Σf (E′) = macroscopic fission cross section
Σt(~r,E) = total macroscopic collision and absorption cross section

Σs(~r;E
′ → E, ~Ω′ → ~Ω, E′) = macroscopic scattering cross section from dE′, d~Ω′ to dE, d~Ω.

2.3.2 Diffusion equation

Since only simplified versions of the neutron transport equation can be solved, even numerically, a
number of dependent variables are eliminated and approximations made. First, the angular depen-
dence is usually eliminated by integrating the equation over angle and expressing the equation in
terms of scalar flux, defined as (Duderstadt and Hamilton 1976; 125):

φ(~r,E, t) =

∫
4π

ϕ(~r,E, ~Ω, t)d~Ω. (2.8)

The scattering term of the transport equation is dependent upon two energies, E and E′. By
assuming neutron scattering changes only the neutron direction the E′ dependency is eliminated,
and every term in the simplified equation is evaluated at a single energy E (Duderstadt and Hamilton
1976; 128); the explicit dependency on E′ is thus eliminated to create the single-speed approximation
to the transport equation.

The equation is made more tractable by approximating the current density term J(~r,E, t), which
appears during angular integration, with Fick‘s law which is a simple gas diffusion model. The
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resulting simplified equation is called the one-speed diffusion equation (Duderstadt and Hamilton
1976; 137):

1

υ

∂φ(~r, t)

∂t
−∇ ·D(~r)∇φ(~r, t) + Σa(~r)φ(~r, t) = νΣf (~r)φ(~r, t) (2.9)

where:
D(~r) = neutron diffusion coefficient
Σa(~r) = macroscopic absorption cross section.

When considering a simple homogeneous reactor or reactor segment, D(~r), Σa(~r) and Σf (~r) no
longer depend on position and the equation simplifies further (Duderstadt and Hamilton 1976; 156):

1

υ

∂φ(~r, t)

∂t
−D∇2φ(~r, t) + Σaφ(~r, t) = νΣfφ(~r, t) (2.10)

Applying this differential equation to simple reactor geometries provides many insights into the
static and kinetic behaviours of reactors. Furthermore, the above single-speed equation can be
applied to each energy group within an energy grid spanning the multiple orders of magnitude
between fission-energy and thermal-energy neutrons. A series of coupled single-energy diffusion
equations can be used to obtain a multi-energy description of φ(~r,E, t) if each equation includes a
term to account for inter-bin neutron scattering (Duderstadt and Hamilton 1976; 287).

2.3.3 Burnup and isotope conversion

Having an accurate description of the fuel composition is a prerequisite to many reactor physics
calculations. But determining a subject composition is difficult because the concentration of each
isotope is dependent on neutron flux and isotopic decay constants. The fission process burns the
235U inventory and builds an inventory of fission products, many of which decay to other isotopes.
Simultaneously, neutron capture reactions and the subsequent decay converts many isotopes into
other species; most notably in uranium-fuelled reactors, neutron capture creates the entire 239Pu
inventory from 238U. Thus a time-dependent description of the reactor’s fuel composition must
account for these processes. Descriptions must also consider the fact there are hundreds of direct
fission product isotopes and some are simultaneously produced by the decay of other fission products,
or by neutron capture reactions and subsequent decay.

The Bateman equations (or rate equations, as they are sometimes called) count these isotopes
by summing all gain and loss terms for each isotope (Cacuci 2010; 1244):

dNi(t)

dt
=
∑
j

[∫ ∞
0

γij(E, t)σ
f
j (E, t)φ(E, t) dE

]
Nj(t)+

σci−1(E, t)φ(E, t)Ni−1(t) + λi′Ni′(t)−{[∫ ∞
0

(σfi (E, t) + σci (E, t))φ(E, t) dE

]
+ λi

}
Ni(t) (2.11)

where:[∫∞
0
γij(E, t)σ

f
j (E, t)φ(E, t) dE

]
Nj(t) = creation rate of isotope i due to fission of isotope j

σci−1(E, t)φ(E, t)Ni−1(t) = creation rate of isotope i from neutron capture in isotope i-1
λi′Ni′(t) = creation rate of isotope i due to radioactive decay of isotope i′[∫∞

0
(σfi (E, t) + σci (E, t))φ(E, t) dE

]
Ni(t) = destruction rate of isotope i due to fission

and radiative neutron capture
λiNi(t) = destruction rate by radioactive decay of isotope i.
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When solving equation (2.11) for each isotope i, the neutron flux φ(E, t) is often assumed constant
within discreet time steps.

2.4 Interaction of radiation with matter

The calculation of energy absorption is accomplished in two steps: first determining the energy
carried by the incident radiation field, the intensity, and then determining the fraction of the incident
energy which is deposited within the material, the dose. It is the dose, the absorbed energy, not the
intensity of the radiation field, which heats the subject material and causes biological or material
damage.

Calculating the energy deposited within a material by incident radiation is difficult because the
primary radiation field may create secondary radiation. Energy deposition by both the primary and
secondary radiation must be considered, and every particle species deposits energy in a different
manner, requiring different models. The energy spectrum of the primary radiation field may also
change as it is transported through the material.

To cover these topics thoroughly, this section discusses radiation energy conversion, exposure and
dose; this review demonstrates the significance of charged particles in the energy deposition process.

2.4.1 Energy conversion between radiation and internal energy

The temperature of an object is dependent upon its internal energy. In the case of a gas, the internal
energy is measured by the velocity of its free molecules. In the case of a liquid and a solid, the
internal energy is measured by the frequency of the molecular vibrations. Increasing the rate of
molecular vibration in a solid or liquid raises its temperature.

The alternating polarization of even very-low-energy non-ionizing photons can induce molecular
rotation and vibration; high-energy non-ionizing photons can excite orbiting electrons to more ener-
getic shells. The very-high-energy photons of ionizing radiation can fully remove an atomic electron,
while giving the ionized electron great kinetic energy.

2.4.2 Charged particle interactions with material

Energetic charged particles induce great disturbances while moving through material by their colom-
bic forces; their electric fields induce ionization, electronic excitation, vibration and molecular disso-
ciation and result in an increase in the material’s internal energy (Hurst and Turner 1970; 39).

Gamma rays are not charged, but incident gamma rays can produce electrons of great velocity.
The kinetic energy of the electrons can carry the vast majority of the gamma ray’s energy, which
is then deposited in the surrounding material; most of an incident gamma ray’s energy is deposited
in the material by these secondary electrons. Therefore, uncharged particles such as photons and
neutrons are refered to as indirectly-ionizing radiation because they first transfer kinetic energy to a
charged particle before this energy is transferred to the surrounding material (Podgorsak 2005; 5).
Radiation fields of charged particles are considered directly ionizing.

The average energy lost by a specific charged particle, in a specific material, per unit length, is
defined by the stopping power dE/dX. Although some of this energy will be converted directly into
heating energy, some may be converted to photons through radiative-loss processes: Bremsstrahlung,
Cherenkov or annihilation (Podgorsak 2005; 49).

Bremsstrahlung radiation results when a charged particle (such as an electron) is accelerated.
Energetic electrons decelerating within a material are often significant sources of Bremsstrahlung
radiation, carrying energy from the particle’s the kinetic energy. The energy spectrum of the
Bremsstrahlung radiation produced by a monoenergetic electron beam impinging on a target is
a continuum, with photon energies extending as high as the electron energy itself (Knoll 2010; 18).
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Bremsstrahlung is important for electron energies above 10 MeV and therefore is not an important
gamma source in reactors (Lüthi 1998; 18).

Cherenkov radiation also results from the deceleration of charged particles, specificially, charged
particles which exceed the speed of light in the medium through which they are passing. Since the
Cherenkov photon yield is so small this radiative-loss mechanism can also be neglected in the context
of in-core gamma heating (Knoll 2010; 734).

Very-high-energy charged particles can create a chain reaction of several generations of secondary
photons and charged particles, in what is called an electromagnetic shower by high-energy physicists.
Although such chain reactions don’t need to be considered by reactor physicists, the material volume
of origin may not be where the secondary charged particles deposit their kinetic energy (Podgorsak
2005; 57). If electron transport is significant, this effect must be considered with either a radiation
trasport code, or with a cavity correction factor (Podgorsak 2005; 61).

2.4.3 KERMA, CEMA and absorbed dose

Given the importance of charged particles in the process of gamma energy deposition into a material,
it is important to quantify the amount of energy transferred from indirectly ionizing radiation to the
kinetic energy of charged particles; the mean of this quantity is called the KERMA, Kinetic Energy
Released per unit MAss. Similarly, for directly ionizing radiation, CEMA, Converted Energy per
unit MAss, describes the kinetic energy lost from the primary directly ionizing radiation; CEMA
doesn’t include energy lost by secondary charged particles (Podgorsak 2005; 48).

Charged particles with kinetic energy, from either primary or secondary sources, tranfer some of
their kinetic energy to the surrounding material, this energy is the absorbed dose when expressed
per unit mass. Absorbed energy is distinguished from the energy converted to radiative losses. To
illustrate, the conservation of energy can be used to describe the destination of the kinetic energy of
an electron as it enters a volume of interest:

KEincident = KEexit + absorbed energy + radiative loss energy . (2.12)

If a radiation beam of charged particles are incident on a volume, none of the charged particles
leave the volume and there are no radiative losses, the absorbed energy is equal to the entire kinetic
energy of all incident particles (Hurst and Turner 1970; 82).

The KERMA, CEMA and absorbed dose are all expressions of energy per unit mass (Podgorsak
2005; 48):

O =
dĒ

dm
[O] =

J

kg
= Gy or

MeV

kg
(2.13)

where O is either KERMA, CERMA or absorbed dose and Ē is the associated mean energy quantity.
Radiation physicists are most concerned with the absorbed dose. Absorbed energy is the energy

which heats and induces material or biological damage; the local absorbed dose is the quantity one
must calculate to determine the heating of each reactor component.

KERMA can be considered equal to absorbed dose under the conditions: a) electronic equilibrium,
a consideration of geometry; and b) no radiative losses, which is often the case with low energy
electrons (Podgorsak 2005; 58).

2.4.4 Exposure

To fully describe the energy contained within a primary radiation field, its itensity is required, which
can be calculated if its scalar flux and energy spectra are known. However, since these parameters
were difficult to obtain before the availability of radiation transport software, the intensity of gamma
fields have historically been quantified by their ability to ionize air (Hurst and Turner 1970; 82). This
quantity is termed exposure, X, and is equal to the total electric charge (of either sign) produced
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when all the secondary electrons and positrons are stopped in a gas, per unit mass (Podgorsak 2005;
60).

X =
dQ̄

dm
, (2.14)

where Q is the total accumulated electric charge. The charge carrying ions are usually pairs of one
negatively charged electron and its associated positively charged ionized atom.

Exposure, in units of C/kg can be converted to absorbed dose, in units of MeV/kg, conveniently
because gases have been found to absorb, on average, the same amount of energy per ion pair
produced, W (Hurst and Turner 1970; 74). Since the measurement of exposure is complete once the
secondary particles have come to a stop, all kinetic energy is expended within the gas, exposure is a
measurement of dose, and equal to KERMA when there are no radiative losses.

2.5 Mechanisms of neutron-material interaction

Neutrons do not interact with an atom’s electron cloud but interact in many ways with nuclei; this
section considers the reactions of greatest relevance to nuclear heating calculations (apart from fission
which was previously discussed).

2.5.1 Neutron capture

Nuclei can absorb nucleon particles, such as neutrons and alpha particles. Such an absorption releases
binding energy and results in an excited nuclear state as illustrated in Figure 2.5. The capture of
a neutron by a stable isotope A

ZX results in the excited nuclei A+1
Z X∗ which de-excites very quickly

(promptly) by gamma emission; these prompt capture gammas can be as energetic as 9 MeV (Knoll
2010; 13).

The new isotope A+1
Z X may be radioactive, with its decay rate described by half life λ. Gammas

released in this manner are considered delayed in comparison to the appearance of the prompt gam-
mas. The process of creating radioactive isotopes by neutron capture is called activation. Activation
of reactor structural material, coolant and other stable in-core material nuclei must be considered
as a significant source of both prompt and delayed gamma rays.

An equation describing the number of activated nuclei in a volume, NA(t), during constant
neutron irradiation can be derived by starting with the following expression relating the rate of
active nuclei created from target nuclei, NTσφ, and the decay rate of the active nuclei, λNA(t):

dNA(t)

dt
= NTσφ− λNA(t) (2.15)

where NT is the number of target nuclei per unit volume and σ is the microscopic activation cross
section. Notice this equation assumes NT to be constant over time, not subject to burn-up, which
is an acceptable approximation when NT >> φ. The equation also assumes the only mode of
destruction of the activated isotope is through decay; in reality some active nuclei may have a large
neutron absorption cross section, and thus may absorb another neutron and convert to another
isotope.

Separation of variables provides the expression for NA(t):



2.5. MECHANISMS OF NEUTRON-MATERIAL INTERACTION 15

dNA(t)

NTσφ− λNA(t)
= dt (2.16)∫

dNA(t)

NTσφ− λNA(t)
=

∫
dt (2.17)

−1

λ
ln |NTσφ− λNA(t)| = t+ C (2.18)

ln |NTσφ− λNA(t)| = −λt+ C (2.19)

|NTσφ− λNA(t)| = e−λt+C = eCe−λt = De−λt (2.20)

NA(t) =
1

λ

[
NTσAφ−De−λt

]
. (2.21)

If the initial population of the active nuclei isNA(0) = 0, D = NTσφ, the equation becomes (Glascock
1996; 1):

NA(t) =
NTσφ

λ

[
1− e−λt

]
. (2.22)

Knowing the gamama yield per decay, Y , one can use equation (2.22) to describe the delayed gamma
source resulting from this isotope at time t, SA:

SA(t) = λY NA(t). (2.23)

Figure 2.5: Illustration of the neutron capture, showing the resulting release of a prompt gamma,
and later through decay, a delayed gamma (Glascock 1996).
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2.5.2 Neutron absorption reactions

While neutron capture (n,γ) reactions are most probable at thermal energies, (n,α), (n,2n) and (n,p)
reactions are also possible in the thermal energy range (Glascock 1996; 16).

2.5.3 Elastic neutron scattering

Since neutrons have no electric charge, they are capable of penetrating the electronic cloud of an atom
and interacting with a nucleus. Elastic neutron-nucleus collisions (in which energy and momentum
are conserved) transfer significant amounts of neutron energy to nuclei and are responsible for neutron
thermalization.

In the centre of mass reference frame, the average recoil energy, Ē, transferred to a nucleus of
mass M by a neutron of mass m and energy Eo is (Hurst and Turner 1970; 64):

Ē =
2Mm

(M +m)2
Eo. (2.24)

This equation shows much less energy is converted from the neutron if the collision involves heavier
nuclei; which is why light elements are used as neutron moderators.

Neutrons are an indirectly ionizing particle since they impart no coulombic force in an electric
field. Thus, no ionizations are induced by neutrons until the collision; the recoiling nucleus itself is
the charged secondary radiation which transfers kinetic energy to the host material (Knoll 2010; 54).

2.5.4 Inelastic neutron scattering

Inelastic neutron scattering (n,n’) takes place when the neutron is absorbed by the target nucleus,
and then ejected again with a different energy. If the neutron is sufficiently energetic, the recoiling
nucleus may be promoted to an excited state (Knoll 2010; 54). The nucleus then promptly decays
with the emission of one or more inelastic gamma rays (Lamarsh and Baratta 2001; 53).

2.6 Mechanisms of gamma-material interaction

The different types of gamma-material interaction are reviewed here. There are three interactions of
particular importance because they are the most probable and result in abrupt changes in the energy
of the interacting photons, they are a) the photoelectric effect; b) the Compton effect; and c) pair
production. These three interactions are usually the only interactions taken into account in nuclear
engineering problems (Lamarsh and Baratta 2001; 90). In addition to being important processes in
energy deposition, these interactions are also essential in the field of radiation instrumentation and
detection since each generates free electrons; electrons are charge carriers and are used to ionize gas
or build electrical potentials within various types of radiation detectors.

2.6.1 Rayleigh (coherent) scattering

Rayleigh scattering is actually a two part process whereby a very-low-energy photon is first absorbed
and then re-emitted with a new direction and identical energy (Gilmore and Hemingway 1995; 24).
Since this is an elastic interaction between the photon and atom, the atom involved in the interaction
is neither ionized nor excited by the scattering event (Knoll 2010; 21). Since no energy is deposited
by the photon, this reaction cannot be used in radiation detectors to generate a detector signal nor
does it contribute to the heating of a material (Gilmore and Hemingway 1995; 24).
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2.6.2 Photonuclear reactions

Sometimes photons can interact directly with an atomic nucleus. If a nucleus absorbs a high-energy
gamma ray, photon-induced fission can occur or neutrons can be liberated (Duderstadt and Hamilton
1976). Generally though, photonuclear reactions are insignificant for photon energies below the
binding energy of a neutron or proton (Evans 1955; 673). For most in-core gamma studies these
reactions are discounted completely and are generally considered only when large numbers of photons
above 5 MeV are present (Gilmore and Hemingway 1995; 24).

An important exception is the non-negligible 2
1H(γ,n) cross section. Given the large inventory of

deuterium in heavy water reactors (such as CANDU), analysis of these reactors must consider this
source of neutrons in criticality calculations. Another exception is 9

4Be(γ,n) which is used in many
reactors as a neutron moderator or reflector. The thresholds for these reactions are 2.33 and 1.67
MeV, respectively (Bell and Glasstone 1970; 467).

2.6.3 The photoelectric effect

The photoelectric effect is the process where a photon interacts with a bound electron, resulting
in a free electron and photon death (Harris 1999). The ejection of the electron from the atom is
accomplished by a single photon. Each atom requires a different amount of energy to liberate (ionize)
an electron, and this quantity is called the work function φ. The work function designates the energy
required to remove the least strongly bound electron from a specific metal; other electrons on the
same atom may require more energy to free, depending on their orbital shell.

In this process all the photon’s energy is imparted upon the electron; the photon disappears and
the electron is left with a kinetic energy equal to the difference between the photon’s energy and the
energy required to free the electron from its orbit. The maximum kinetic energy of an electron from
isotope i is:

KEiMAX = hf − φi, (2.25)

where h is Planck’s constant and f is the incident photon’s frequency.

2.6.4 The compton effect

The Compton effect is the interaction of an photon with a free electron in which the photon survives
but loses some of its energy (Harris 1999). While electrons bound to atoms aren’t truly free, some are
so weakly bound (relative to the energy of a gamma ray) they can be considered free. The collision
conserves momentum and energy:

x direction momentum
h

λ
=

h

λ′
cos θ + γumeu cosφ (2.26)

y direction momentum 0 =
h

λ′
sin θ − γumeu sinφ (2.27)

energy h
c

λ
+mec

2 = h
c

λ′
+ γumec

2. (2.28)

The above equations can be combined to show the difference in initial photon wavelength λ and
post-collision photon wavelength λ′:

λ′ − λ =
h

mec
(1− cos θ), (2.29)

where θ is angle between the initial and resulting photon velocity vectors.
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2.6.5 Pair production

Pair production is the transformation of a photon into an electron and positron pair (Harris 1999).
This process cannot occur in a vacuum because the photon must electromagnetically interact with
a near-by nucleus. Knowing mass and energy to be equivalent, the smallest energy photon capable
of producing two charged particles of mass me can be determined:

2mec
2 = 1.62× 10−13J ≈ 1 MeV. (2.30)

A photon of greater-than-minimum energy which produces an electron and positron pair will give
the particles a non-zero momentum (the particles produced with the above minimum energy photon
will have zero velocity and thus zero momentum).

2.6.6 Symbolic representation of photon energy absorption

This section analytically presents the photon energy absorption processes discussed above, and illus-
trates the steps between radiation exposure and energy absorption. This symbolic representation is
based upon the work found in (Turner 2008).

To begin, a standard nomenclature is established. The term fluence refers to number of particles
(photons) per unit area and is designated as ϕ with units of:

[ϕ] =
1

cm2
. (2.31)

The fluence rate, or flux, is time dependent and is designated as:

Φ =
dϕ

dt
[Φ] =

1

cm2s
. (2.32)

The energy fluence refers to energy per unit area and is designated as [ψ] = J
cm2 or = MeV

cm2 . The
time dependent energy fluence is often refered to as energy flux or intensity:

Ψ =
dψ

dt
[Ψ] =

J

cm2s
=

W

cm2
or =

MeV

cm2s
. (2.33)

For photons, the energy fluence and intensity is related to the photon frequency f with:

ψ = ϕhf and Ψ = Φhf. (2.34)

For neutrons, macroscopic cross sections are noted as Σ. To distinguish between neutron and
photon interaction, macroscopic cross section for photon reactions are noted as µ.

Just as the macroscopic cross section for neutron reactions, Σ, has units of cm−1, so does µ.
Photon attenuation and energy absorption reactions routinely use the mass attenuation coefficient
µ
ρ which has units of cm2g−1.

The attenuation coefficient µ is the sum of contributions from all the photon/matter interactions,
such as the photoelectric effect, Compton effect and pair production, τ , σ and κ, respectively:

µ = τ + σ + κ. (2.35)

In an attempt to determine the energy a material of thickness x absorbs when bombarded with
a photon beam of intensity Ψ0, one might suggest using the attenuation coefficient µ to determine
e−µx, the fraction of photons in Ψ0 which didn’t interact with the material, and then say the rate
of energy deposition in the material slab is equal to Ψ0(1 − e−µx). There is a problem with this
idea though, namely that µ is only capable of describing the fraction of the original beam which has
interacted though photoelectric effect, Compton scattering or pair production. µ does not describe
the the amount of energy deposited. Upon interaction, the energy of any single photon may be
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converted into different forms after the photon interacts with matter, and each of these possible
energy paths must be considered separately.

Specifically, the three dominant mechanisms of photon-material interactions all produce charged
particles with kinetic energy. These electrons may escape the material totally or emit Bremsstrahlung
radiation, which may escape. Additionally, the atom which lost the electron may exist in an excited
state following the interaction and may emit a flourescent photon or an Auger electron and both
may escape from the material.

Electrons removed from their atomic orbit through the photoelectric effect have initial kinetic
energies of KE0 = hf − φ. The vacant shell is filled by an electron originating in a higher energy
orbit, resulting in a transition photon or Auger electron. If δ is the average energy produced in the
form of fluorescence radiation, after the photoelectric ejection from orbit, then the fraction of initial
photon energy transferred to both photoelectrons and Auger electrons is hf−δ

hf = 1− δ
hf . The transfer

coefficient describing the photon energy which is transferred to electrons through the photoelectric
effect is:

τtr
ρ

=
τ

ρ
(1− δ

hf
). (2.36)

During Compton scattering, if the incident photons transfer their energy with a fractional average
of

Tavg
hf into initial kinetic energy of Compton electrons, the mass energy-transfer coefficient is:

σtr
ρ

=
σ

ρ

Tavg
hf

. (2.37)

Incident photons terminating through pair production will result in electrons with initial kinetic
energies of hf − 2mec

2, where me is the mass of the electron/positron and 2mec
2 is the rest energy

of the pair. The mass energy-transfer coefficient for pair production is then:

κtr
ρ

=
κ

ρ
(1− 2mec

2

hf
). (2.38)

Contributions from all the considered energy-transfer mechanisms results in a total energy-
transfer coefficient - it expresses the total fraction of incident photon energy transferred into electron
kinetic energy:

µtr
ρ

=
τ

ρ
(1− δ

hf
) +

σ

ρ

Tavg
hf

+
κ

ρ
(1− 2mec

2

hf
). (2.39)

To account for the portion of initial electron kinetic energy subsequently emitted as Bremsstrahlung
radiation, the factor g is designated as that fraction. It is assumed the remaining electron kinetic
energies are deposited entirely within the material. The mass energy-absorption coefficient is then:

µen
ρ

=
µtr
ρ

(1− g). (2.40)

During the derivation of µenρ the target slab material was assumed to be very thin so that multiple
photon scattering could be considered negligible and that fluorescence and Bremsstrahlung photons
could be assumed to escape totally from the slab. Also, it was assumed all the electron’s energy
not transmitted to fluorescence or Bremsstrahlung photons were deposited in the material. These
assumptions must be considered anytime µen

ρ is applied.
The intensity of a photon beam transmitted through a slab of thickness x is:

Ψ = Ψ0e
−µenx. (2.41)

When µenx� 1 the first two terms of a Taylor series approximation can be used to express the
exponential as: e−µenx = 1− µenx. The difference in intensity between the initial photon beam and
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the transmitted is then Ψ0 − Ψ = Ψ0µenx. If the slab area normal to the incident beam is A, the
rate of energy absorption over the entire slab is Ψ0µenxA. The total mass of the slab is ρAx and so
the specific energy absorption rate, the dose rate, Ḋ, is:

Ḋ =
Ψ0µenxA

ρAx
= Ψ0

µen
ρ
. (2.42)

Similarily, the fraction of initial photon energy transferred into electronic kinetic energy is 1−e−µtrx,
which is simplified with the Taylor series approximation:

1− e−µtrx = 1− (1− µtrx) = µtrx. (2.43)

The energy transferred to electrons over the entire slab is then Ψ0µtrxA and the specific rate
transfer of energy to electrons is the KERMA rate:

K̇ =
Ψ0 − µtrxA

ρAx
= Ψ0

µtr
ρ
. (2.44)

2.6.7 Dependencies on gamma energy and atomic number

To illustrate the probability of interactions of the three different gamma-material processes, Fig-
ure 2.6 shows the relative importances. It is obvious that at high energies, for all materials, pair
production is the dominant mechanism in the creation of charged particles.

Continuing with the τ , σ and κ notation, Figures 2.7 and 2.8 give absolute values for mass energy
absorption and total mass attenuation coefficients of water and lead, respectively. Note the high-Z
lead generally has coefficient an order of magnitude greater than water.

These figures are used for illustrative purposes. Total (from all interactions) mass attenuation
coefficients and mass energy absorption coefficients for use in calculations can be obtained from the
US National Institute of Standards and Technology (NIST) for photons up to 100 MeV (Hubbell
and Seltzer 2014).
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Figure 2.6: The relative importances of the three major mechanisms of gamma-material interaction,
as a function of Z and gamma energy (Evans 1955; 712).
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Figure 2.7: Mass attenuation coefficients for water as a function of gamma energy (Evans 1955; 714)
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Figure 2.8: Mass attenuation coefficients for lead as a function of gamma energy (Evans 1955; 716)
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Chapter 3

Review of practices and literature

This chapter reviews the most common instruments used for in-core gamma dosimetry, the gamma
thermometer manufactured by SCK-CEN which has been commissioned in MNR as part of this
study, the common software tools used to calculate in-core nuclear heating, and finally, the most
relevant efforts of others which sought to calculate in-core gamma fluxes and nuclear heating in low
and high-powered reactors.

A review of published calculations has revealed a large number of computational and experimental
campaigns by French authors over the last decade. These works were motivated by the CEA’s interest
in: a) the Jules Horowitz Reactor (JHR) project; b) investigations regarding the conversion of fast
spectrum reactors into plutonium burning configurations; c) the evaluation of radiation damage to
PWR structural material; d) the design of generation IV reactors; and e) the materials challenges of
plasma-facing components within the ITER program.

Many of the reviewed works were seeking to develop methods of calculating in-core gamma
dosimetry. Although the calculated results were compared to TLD experimental results and this
report makes no use of TLDs the calculational methods are still relevant to this report’s goal of
developing a new time-dependent nuclear heating model. By reviewing the experiences and methods
of others we can see where further efforts could be focused to make new and novel contributions in
the field.

Of all the experimental works reviewed, none have purposely measured the in-core delayed-
gamma heating; nor has any work isolated this component of nuclear heating to describe its dynamic
behavior. Of all the computational methods reviewed, none are able to describe gamma heating
as a function of time in a high-power reactor; low-power reactor analyses have only calculated
integrated delayed gamma doses, and high-power reactor analyses have only attempted to caclulate
gamma heating at a single moment. Therefore, this thesis aims to measure and describe the time-
dependent in-core component of nuclear heating caused by delayed gammas in a high-power MTR
and incorporate this description into a new time-dependent model of the delayed-gamma heating.

The calculational methods of the CEA’s AMMON program is reviewed within this chapter. The
author of this thesis conducted some analysis on the AMMON program while in residence at CEA
Cadarache and contributed to the content of (Vaglio-Gaudard et al. 2014).

3.1 Review of gamma measurement instruments

There are three instruments commonly used to experimentally determine in-core gamma fluxes or
energy deposition: self-powered gamma detectors (SPGD), thermoluminescent detectors (TLD),
calorimeters/gamma thermometers. This section considers each briefly.
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3.1.1 Self-powered gamma detectors

Self-powered gamma detectors (SPGD) operate by collecting the electrons liberated by photon in-
teractions within the SPGD emitter to induce a measurable current. The electrical current travels
through a lead wire to allow the instrument to produce a real-time signal proportional to the gamma
flux. SPGDs are often manufactured with diameters of 5 mm and lengths of 150 mm, making them
suitable for in-core placement.

SPGDs are valuable for their sensitivity to doses lower than those of calorimeters and their very
accurate relative measurements (Nieuwenhove and Vermeeren 2002; 827). However, these instru-
ments are activated by neutron capture reactions in the emitter material; the subsequent decay
results in decay betas which contribute to the SPGD signal, and decay gammas which produce
secondary electrons which contribute to the signal. This process obscurs the signal and must be
corrected for; the activation component of the signal can be minimized with a judicious choice of
emitter material.

Absolute calibration of SPGDs must be achieved with a known gamma source, or a radiation
transport simulation.

3.1.2 Thermoluminescent detectors

Thermoluminescence materials are doped crystals. The dopant atoms provide locations where excited
electrons may become trapped for extended periods of time. When such a material is introducted into
a radiation field, incident radiation excite electrons in the crystal structure and give them the energy
required to move from the valence band into the trap sites. These excited electrons remain trapped
in their excited state until phonons (created by heating the crystal) induce the electrons to fall back
to lower energy levels; this results in the emission of luminescent photons with energy equal to the
difference between excited and de-excited electron energy states. The measurement of absorbed
dose depends upon the assumption the energy absorbed from the radiation field is correlated to the
intensity of the light emitted (Amharrak et al. 2014; 58).

To determine this light intensity, following irradiation the crystals are heated in ovens which
contain the required photomultiplier tubes and associated electronics required for counting.

TLDs are widely used for monitoring personnel dosimetry; they have also been used extensively to
measure in-core radiation fields (Silva 1992, Santos et al. 2007, Torkzadeh et al. 2007, Herminghuysen
and Blue 1994, Senn and Mixon 1971, Kim 1994, Ji et al. 1995, Blanchet et al. 2008, Lüthi et al.
2001, Yamaguchi et al. 1988, Tanaka and Sasamoto 1985, Batistoni et al. 2004, Lüthi 1998, Blanchet
et al. 2005, Amharrak et al. 2011; 2010; 2012, Vaglio-Gaudard et al. 2014, Ravaux 2013).

The value of TLDs is their sensitivity to a large range of radiation fields, including fields which
are too small to appreciably raise the temperature of the absorbing material - such a field precludes
the use of a calorimeter. They are used to measure a total accumulated dose over time, thus the
duration of exposure must be recorded to determine an average dose rate.

Users must ensure the TLD does not exhibit significant fading. Fading is the spontaneous de-
excitation of the electrons and can be unacceptably large over long periods of time. Users must also
be aware that some TLDs can lose their sensitivity with repeated use. Most importantly though,
even slight changes between similiar TLD dosimeter materials can have large effects on the signal -
even a group of TLDs originating from a common manufactured batch can display large variations
in sensitivity (Blanchet 2006).

TLDs have a number of restrictions: a) since TLDs measure only accumulated dose and must be
removed from the radiation field to extract a signal, they cannot be used for real-time measurement;
b) they must be calibrated against a known radiation dose so that the intensity of the field under
investigation is relative to the reference signal; c) employing TLDs in a mixed neutron and gamma
radiation field requires determining the the neutron contribution to the TLD signal, if one is looking
to measure only the gamma dose.
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Optically stimulated thermoluminescence dosimeters (OSLD) are also available and function in
the same manner as TLDs, except the trapped electrons are induced to recombine with electron
holes with light rather than heat.

The works of (Amharrak et al. 2010; 2012, Ravaux 2013, Vaglio-Gaudard et al. 2014) are the
most recent authors to use TLDs and OSLDs for the purpose of determining in-core gamma energy
deposition.

3.1.3 Calorimeters and gamma thermometers

Calorimeters are bodies which have had their temperature profiles correlated with known rates of
energy absorption. When a calorimeter is placed within an unknown radiation field the user can
observe the resulting steady-state temperature and determine the rate of energy deposition. These
instruments have been designed in many physical variations, but all measure energy deposition
according to the temperature of the sample mass. (Silva 1992, Varvayanni et al. 2008, Senn and
Mixon 1971, Bernnat and Siegel 1987, Reilly and Peters 1971, Lee et al. 2001, Carcreff et al. 2013,
Fourmentel et al. 2013).

Calorimeters are usually calibrated by correlating the temperature of the calorimeter’s mass to
known quantities of power deposited by an electric current (Joule heating). If heating the sample
mass is not possible, one must resort to developing an analytical or numerical heat-transfer model
of the sample mass to correlate temperature to energy deposition.

The advantage of calorimeters is their ability to provide an absolute measurement of nuclear
heating while in-core (Van Nieuwenhove, R. 1996; App.Pg.3). However, calorimeters can be large in
size and are often designed for only steady-state measurements. Furthermore, large calorimeter sam-
ple masses have long thermal responses and can be incapable of real-time measurement of dynamic
radiation fields.

Gamma thermometers (GT) are simply small calorimeters designed specifically for use in gamma
fields. Their small size provides a relatively-quick thermal response and a nearly real-time measure-
ment of nuclear heating of in-core spaces without greatly perturbing the radiation field.

Calorimeters and GTs are non-adiabatic; heat is deposited within the body and conducts along
a designed path to the ultimate heat sink, which is usually the reactor coolant. The instrument’s
signal is one or more temperature measurement of the body.

The most recent calorimeter designed specifically to measure the in-core heating was the CEA’s
calorimeter commissioned in the 70 MW MTR OSIRIS reactor as part of the CALMOS program.
This differential calorimeter consists of two components as shown in Figure 3.1: the sample and
reference cells. The top sample cell contains graphite in the head, the bottom reference cell contains
only N gas in the cell head. The calorimeter is installed in-core and measures nuclear heating at ver-
tical positions in a two-step process. First, the sample cell obtains thermal equilibrium at the desired
vertical location and the user determines the temperature difference between the sample head and
its aluminum base; second, both cells are raised and the reference cell moves into the measurement
location and the temperature difference between the reference head and base are recorded. The
energy deposition in the graphite is determined after observing the difference in heating between the
sample and reference cells (Carcreff et al. 2013).

Figure 3.2 shows the longitudinal cross section of a common cylindrical GT design with arrows
showing the direction of the thermal gradient; the middle of the GT will have a small thermal
gradient in the radial direction because of the insulating gas gap on the outer radius.

3.1.4 Calorimeter/GT measurement of in-core, steady-state nuclear heat-
ing

Investigators have demonstrated the ability to measure in-core static nuclear heating with calorime-
ters (Silva 1992, Santos et al. 2007).
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Figure 3.1: The CALMOS differential calorimeter (Carcreff et al. 2013; Fig1).

Figure 3.2: A GT design which uses gas to insulate a small section of the heated body. The associated
temperature profile is shown above (Waring and Smith 1983; Fig.2).
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GTs have also been used for this purpose; their most common application is in power reactors
to map the in-core power distribution. GTs may even be better suited to this task than neutron-
based instruments since the gamma fields have less spatial variation than the thermal neutron flux
(Johnson and Burns 1981, Bernnat and Siegel 1987).

3.1.5 Calorimeter/GT measurement of in-core, time-dependent nuclear
heating

GTs have proven successful at measuring dynamic behaviours, such as fluid level and void measure-
ments (Johnson and Burns 1981, Tosi et al. 1995) and for estimating the moderator temperature
coefficient of reactivity (Demaziere et al. 2003). When used to monitor reactor power, GTs have
recorded reactor power transients over minutes and hours (Haaland et al. 1991). Even fuel burnup
over weeks (Haaland et al. 1991) and incremental increases of research reactor power (Kizhakkekara
et al. 1998) have been recorded by GTs. Strings of vertically-placed GTs installed in PWR power
reactors were even able to detect the spatial evolution of a Xe transient, as shown in Figure 3.3 (L).

In other work, as Figure 3.3 (R) shows, a GT signal proved sensitive to the delayed gammas;
heating of the GT continued to increase after the reactor had reached a constant fission rate. The
delayed gammas were also observed heating the GT post-shutdown (Waring and Smith 1983). No
subsequent quantitative description of the dynamics of the delayed gamma heating were published
despite the author’s acknowledgement of this phenomenon.

The author of this thesis is unaware of any study which specifically sought to measure the delayed
component of nuclear heating in a power or MTR-type core. Some researchers have specifically noted
the existance of the delayed gamma heating component in a GT signal, but since they were interested
in determining the fission rate this time-dependent component of the GT signal was considered
problematic, rather than worthy of dedicated examination.

Figure 3.3: (L) Local linear power during a Xe transient as recorded by a string of Radcal GTs in
a PWR; (R) Reactor power transient (top curve) and the corresponding GT signal showing slow
growth from the delayed gamma component (Waring and Smith 1983).

3.2 The SCK-CEN GT

To measure the nuclear heating within MNR a GT has been commissioned in the McMaster Nuclear
Reactor; details of this work are supplied in later chapters. This GT was manufactured by the
SCK-CEN and was designed with small dimensions such that it can be placed within a MTR core.

Figure 3.4 shows a section view, displaying the inner body contained within the GT’s outer body.
The inner body of the GT is the ”active” component of the GT; it is heated by radiation and the
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temperature of its tip is measured. The inner and outer body are both made of AISI 304 stainless
steel and the gap between them is filled with Ar gas (SCK-CEN 2009).

The temperature of the inner body is measured with a differential thermocouple. The hot junction
is embedded within the tip of the GT inner body, while the cold junction is embedded within the
metal-sheathed signal lead, a few centimeters from the GT body. Appendix F describes the operation
of this differential thermocouple in detail.

3.2.1 GT use at Halden

The design of the SCK-CEN GT is based upon the design developed by staff at the OECD/NEA
Halden Reactor Project, for their boiling water test reactor in Halden, Norway. GTs have been fab-
ricated and used at the Halden reactor since the 1960s for power monitoring, liquid level monitoring
and for comparison to GTs from other manufacturers (Aarrestad 1993; 8).

At Halden, gamma thermometers were once used for fuel channel power measurement - a task
which is now accomplished with SPNDs (Van Nieuwenhove, R. 1996; 2). The GT’s were (and the
SPNDs are now) calibrated to the channel power by assuming the channel power is equal to the
power deposited within the channel coolant (as determined by measuring the temperature increase
of the coolant through the channel). However, since gamma radiation from surrounding fuel channels
heats the structures within the measured fuel channel, the channel’s fuel power can be sytematically
high; Halden now uses the GTs to correct these measurements during the calibration of the SPNDs,
by measuring the absolute gamma energy deposition.

Halden calibrates their GTs directly from the instrument’s time constant which is determined by
heating the GT’s inner body to a high, uniform temperature and then observing its cooling decay.
To heat the GT, usually an electrical current is sent through the thermocouple to heat the inner
body (Joule heating); this method can be used at anytime, even when the GT is inside the reactor
(Liu 1994; 4). Section 5.5 discusses the theory behind this method in detail.

3.2.2 Use of the SCK-CEN GT in BR2

Halden developed miniaturized GTs with an outer length of approximately 50 mm, and this is the
design SCK-CEN based their GT design upon for use in the SCK-CEN BR2 reactor. The Halden GT
design could not be used because of BR2’s much higher nuclear heating values (≈15 W/g compared
to ≈1 W/g in Halden) (Van Nieuwenhove, R. 1996; 2); BR2 is a 100 MW PWR with a Be and H2O
moderator.

SCK-CEN use the GT in the BR2 reactor to determine absolute nuclear heating; the GTs are
used to measure gamma heating in fuel channels for predicting thermal heating of in-core irradiation
devices.

3.2.3 Use of the SCK-CEN GT at the CEA

The SCK-CEN gamma thermometers are used by multiple research reactor operators but the CEA
is the only institution which has published results or analysis of the instrument.

The CEA made comparisons between the responses of a SCK-CEN GT and a CEA differential
calorimeter within the OSIRIS reactor. This work was part of the effort to develop instruments for
the measurement of experimental conditions (nuclear heating and neutron flux) within the JHR. The
goal of this work was to determine which instrument is best suited for use in the JHR (Fourmentel
et al. 2013; 328).

The differential calorimeter was of the same two-cell design as was used in the CALMOS project
with the exception that the size had been changed to increase the instrument’s sensitivity. This
increased sensitivity was required since all measurements were conducted outside the OSIRIS core
where the nuclear heating was expected to be lower than in-core, around 2 W/g (Fourmentel et al.
2013; 330).



3.3. COMMON RADIATION TRANSPORT SOFTWARE TOOLS 31

Four experimental locations (beside the core) were chosen for the irradiation of both instruments.
Each location had a different expected ratio of neutron to photon heating. All irradiations were con-
ducted at steady reactor power of 68 MW (Fourmentel et al. 2013; 331). The differential calorimeter
measured the nuclear heating at 3 vertical positions in each experimental location; the GT measured
the heating at the same 3 locations, plus 1 other. An ionization chamber and a SPGD were irradiated
simultaneously to measure the total photon flux; wires were irradiated to measure the total neutron
flux (Fourmentel et al. 2013; 332).

The irradiations showed the SCK-CEN GT consistently predicted greater heating than the
calorimeter. The authors speculated this is a result of the inner body being made of stainless
steel, which has a larger Z than the calorimeter’s graphite sample (Fourmentel et al. 2013; 333).

Simple 2D (slab) models of the calorimeter and GT were made in MCNP5 using neutron and
gamma spectra specific to the experimental locations, as calculated by a TRIPOLI4 model of the
OSIRIS reactor. The predictions of the MCNP5 models were correlated with experiments but pre-
dicted heating about 20% higher than was measured by the calorimeter and 30% higher than was
measured by the GT; this difference was attributed to the crude MCNP5 modeling and uncertainties
in the ionization chamber signal which was used to define the gamma source in the model (Fourmentel
et al. 2013; 334).

The authors concluded the GT‘s size is convenient but noted its 10% (a priori) absolute uncer-
tainty is not small enough for the standards of the JHR (Fourmentel et al. 2013; 334).

3.3 Common radiation transport software tools

Practically all radiation transport calculations are conducted with at least one software tool; the
most commonly used software packages are briefly reviewed in this section. Most of these tools have
been employed by the authors reviewed within this chapter to calculate the transporation of gamma
radiation and energy deposition.

3.3.1 CINDER90

CINDER90 is a transmutation nuclide inventory code originally developed for accelerator applica-
tions (ORNL 2012). It can be used as a burnup code in reactor analysis since it tracks the buildup of
fission products. It also tracks the production of activated material. CINDER90 contains a library
of 63 energy groups for 3400 nuclides between Z=1 and Z=103.

CINDER90 contains a script called GAMMA SOURCE which prepares decay gamma source
descriptions for subsequent MCNPX calculations.

3.3.2 PEPIN2

PEPIN2 is the point depletion module of the CEA’s burnup code DARWIN and is available through
the Nuclear Energy Agency (NEA) and is capable of calculating concentrations, activities, gamma
ray spectra and residual heat from fission product decay (OECD-NEA 2012).

3.3.3 ORIGEN-S

ORIGEN-S is the point depletion module of the SCALE (Standardized Computer Analyses for Li-
censing Evaluation) modular code system (ORNL 2011a). ORIGEN-S is based directly upon the
now-unsupported, but still relevant, ORIGEN2.2 which solves the decay chain equations. Both
ORIGEN-S and ORIGEN2.2 contain libraries which can be used to determine concentrations, ac-
tivities, gamma ray spectra and residual heat from fission product decay. ORIGEN-S comes with
one-group cross-section libraries for PWRs, BWRs, LMFBRs and CANDUs — which is required for
conducting the depletion calculation; the user can also define a custom one-group library.
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3.3.4 TRIPOLI4

TRIPOLI4 is a Monte Carlo program maintained by the CEA. TRIPOLI4 is capable of transporting
neutrons, photons, electrons and positrons and features a variety of score options treating criticality,
reaction rate, current, flux and energy deposition. TRIPOLI4 uses continuous-energy libraries and
evaluates the properties in a point-wise manner (i.e. it determines cross sections for each particle
and nuclei interaction individually, on a case-by-case basis, as opposed to properties averaged over
energy groups) (Diop et al. 2006).

Users of TRIPOLI4 can construct 3D geometries within the program with either predefined
shapes or custom volumes defined with user-defined surfaces. TRIPOLI4 can then use this geometry
to conduct shielding, criticality, core physics or instrumentation calculations. The code is capable
of running in parallel on multiple processors, so it is of use to large applications — such as the
simulation of radiation transport within an entire core.

3.3.5 MCNP6

The MCNP code series developed by the Los Alamos National Laboratory (LANL) is one of the
world’s most utilized radiation transport codes (Goorley et al. 2012; 305). Its validated capabilities,
ample documentation and large number of users, make it a dependable analysis tool.

MCNP6, as is TRIPOLI4, is a continuous-energy (i.e. no energy groupings of cross-sections or
flux) Monte Carlo program (Pelowitz 2013). MCNP6 has all the capabilities of TRIPOLI4, plus
extensive statistical tally checks, biasing techniques and an interactive geometry and tally plotter.

The difference between MCNP6 and the previous version MCNP5 is more than just an update,
it includes all the features of what used to be a completely separate Monte Carlo package, MCNPX.
This gives MCNP6 a number of capabilities which make it useful for scientists who work with more
than neutrons; it is capable of modeling the transport of 34 particle species and 2205 heavy ions over
a much larger energy range than MCNP (up to 1 TeV particles) (LANL 2012).

MCNP6 has two input cards which may evolve into valuable tools for the study of in-core gammas,
BURN and particularly ACT. Neither were available in MCNP5, but their implementation in MCNP6
restricts their use to small problems, unfortunately.

BURN is the burnup/depletion feature which uses CINDER90 data in KCODE criticality simu-
lations only. This feature is of great value in the determination of fuel element inventories, and thus
the delayed gamma source, but the use of this feature requires great computational time.

ACT permits MCNP6 users to include the delayed particles which result from activation or
fission. Delayed gamma emission spectra data can be described in two ways: multigroup and line
data, both are based on ENDF/B-VI evaluations (Durkee et al. 2012; 7). The multigroup library is
available in a 25 group format for 3400 radionuclides, and is considered more comprehensive than
the line data. The atom densities of activated or fission-product nuclides are calculated with the
isotopic transmutation code CINDER90 (Durkee et al. 2012; 10).

However, ACT has a number of limitations. ACT can be used only in defined-source simulations
(Pelowitz 2013; 3-81), and CINDER90 data, which is retrieved during ACT calculations, cannot be
used to describe delayed particles with multi-processors. Thus employing the ACT card in a full core
model, in criticality mode, to calculate the heating resulting from delayed particles is unfortunately
not possible. Most importantly, the delayed particles are integrated over 1.0 × 1010 seconds, thus
preventing MCNP6 from giving a time-dependent description of the source radionuclides, or of the
resulting delayed particles.

3.4 Energy deposition models in TRIPOLI4 and MCNP6

Of the literature reviewed, the two most common Monte Carlo codes employed in gamma heating
studies are TRIPOLI4 and MCNP6. Therefore it is important to understand how these codes
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calculate energy deposition.

3.4.1 TRIPOLI4 DEPOSITED ENERGY scores

The content of this section is a summary of the reference (CEA 2016) and shows the TRIPOLI4
energy deposition scores are based on KERMA theory.

KERMA is an important quantity because charged particles (fission products, electrons and
positrons) deposit their kinetic energy very close to where they originate, relative to gamma rays.
Thus it is often assumed the local energy deposited by neutrons or photons is equal to the neutron
or photon KERMA, respectively.

However, the amount of kinetic energy attributed to the secondary charged particles changes
drastically depending upon the number of particles TRIPOLI4 is tracking; the following discussion
explains this in detail.

Two-particle TRIPOLI4 transport

In the case of two-particle transport (coupled neutrons-photons) in TRIPOLI4, the neutron DE-
POSITED ENERGY score calculates heating (energy deposition) values equal to the neutron KERMA
within the volume of interest, and the photon DEPOSITED ENERGY score calculates values equal
to the photon KERMA.

The neutron or photon heating scores can be expressed with KERMA factors ki,j(E) which have
units of eV · cm2:

H(E) =
∑
i

∑
j

Ni · ki,j(E) · φ(E), (3.1)

where i is the index of elements, j of reactions and Ni is the atomic concentration.
KERMA factors are calculated by the energy balance method. Knowing that the total energy

available for any reaction j of element i is the sum of the incident particle energy E and the binding
energy released Qeff

i,j during the reaction, the total kinetic energy of all resulting particles is known:

E +Qeff
i,j =

∑
c

Ēci,j(E) + Ēγi,j(E) + Ēn
i,j(E), (3.2)

where Ēγi,j(E) and Ēn
i,j(E) are the average kinetic energies of gammas and neutrons which may result

from the reaction.
The sum of average kinetic energies of each type c of charged particles can be calculated with

the following equation: ∑
c

Ēci,j(E) = E +Qeff
i,j − Ē

γ
i,j(E)− Ēn

i,j(E). (3.3)

The KERMA factors are equal to this sum of kinetic energy of charged particles, times the
microscopic cross-section corresponding to that reaction in that isotope:

ki,j(E) = Ēci,j(E) · σi,j(E). (3.4)

The value Qeff
i,j is taken directly from nuclear data libraries for simple reactions such as neutron

absorption. However, for more complex reactions such as fission, the total energy given in the
libraries Qtotal

i,j must have various quantities subtracted because these quantities are not considered
by the TRIPOLI4 code:

Qeff
i,j = Qtotal

i,j − Ēνi,j(E)− ĒγD
i,j (E)− ĒβD

i,j (E). (3.5)
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Where Ēνi,j(E) is the average kinetic energy of neutrinos, ĒγD
i,j (E) is the average kinetic energy of

delayed gammas, and ĒβD
i,j (E) is the average kinetic energy of delayed beta particles.

Single-particle TRIPOLI4 transport

In the case of single-particle transport (neutron-only transport) photons are not tracked and the
photon energy which would be carried away by photons in the case of coupled neutrons-photons
is assumed to be deposited at the site of neutron-material interaction. The term Ēγi,j(E) is not

subtracted from the total available energy E +Qeff
i,j :∑

c

Ēci,j(E) = E +Qeff
i,j − Ēn

i,j(E). (3.6)

Thus the neutron KERMA is much larger in single single-particle transport than in two-particle
transport.

Four-particle TRIPOLI4 transport

Reference (CEA 2016) does not explicitly discuss the implementation of DEPOSITED ENERGY
scores with four-particle (coupled neutrons-photons-electrons-positrons) transport in TRIPOLI4.
However, since electrons and positrons are transported the calculated energy deposited by photons
will be much less than the photon KERMA.

3.4.2 MCNP6 energy deposition tallies

MCNP6 has two energy deposition tallies: F6 and F7 tallies. F7 tallies are fission energy tallies only
and simplistically treat the photons by assuming them to be deposited at the point of fission; this
simplification precludes their use in gamma heating analysis requiring transport. F6 tallies are total
energy deposition tallies and transport photons in an analogous manner. The heating quanitity Ht

calculated by an F6 tally over a volume V is (X-5 Monte Carlo Team 2008; 2-88):

Ht =
ρa
m

∫
dE

∫
dt

∫
dV

∫
dΩσt(E)H(E)ψ(~r, Ω̂, E, t) (3.7)

where:
Ht = energy deposition in a cell volume V in units of MeV

g

ρa = atom density in units of atoms
barns·cm

m = volume mass in units of g
σt(E) = microscopic total cross section in units of barns
H(E) = heating number in units of MeV

collision

ψ(~r, Ω̂, E, t) = flux in units of particles per cm2 per shake per MeV per steradian.

The heating number H(E) for neutrons is:

H(E) = E −
∑
i

pi(E)[Ēi,out(E)−Qi + Ēi,γ(E)] (3.8)

where:
pi(E) = σi(E)

σT (E) = probability of reaction i at neutron energy E

Ēi,out(E) = average exiting neutron energy for reaction i at neutron incident energy E
Qi = Q value of reaction i
Ēi,γ(E) = average exiting gamma energy for reaction i at neutron incident energy E.

The heating number H(E) for photons is calculated while assuming all energy transferred to electrons
is assumed to be deposited locally:
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H(E) = E −
3∑
i=1

pi(E)[Ēi,out(E)] (3.9)

where:
i = 1 is Compton scattering with form factors
i = 2 is pair production; Ēi,out(E) = 2mec

2 = 1.62× 10−13J ≈ 1MeV
i = 3 is photoelectric absorption; Ēi,out(E) = 0
pi(E) = probability of reaction i at gamma incident energy E
Ēi,out(E) = average exiting gamma energy for reaction i at neutron incident energy E.

Running a MODE P E simulation in MCNP will track electrons and photons individually.

3.5 Calculations of gamma heating in low-power reactors

This section reviews the methods others have developed to calculate the gamma heating within the
core of low-power reactors. By reviewing these methods the existing nuclear and gamma heating
models are discovered as are opportunities for improved modeling techniques.

In support of the JHR project the CEA has conducted a number of experimental campaigns
to measure the gamma heating within low-power critical assemblies: a) the ADAPh program; b)
Amharrak’s further analysis of ADAPh; c) the PERLE program, and; d) the AMMON program.
Following measurement (all programs used TLDs) gamma heating within the same geometries was
calculated for the purpose of comparison to experimental data; these methods of calculation are
reviewed. Despite the fact these programs have been conducted in low power reactors with TLDs,
instead of in MTRs, these programs are reviewed because they are the most extensive known efforts
to calculate in-core gamma heating.

3.5.1 The ADAPh program

ADAPh was an experimental program designed to measure integral gamma doses within two low-
power, pool-type reactors at CEA Cadarache: EOLE and MINERVE. ADAPh is a French acronym
for Amelioration des Donnees de bAse Photonique - Improvement of Basic Photonics Data. The
primary goal of the program was to use TLD measurements to determine the accuracy of the HO-
RUS3D/P calculational scheme and the uncertainties in photonic heating originating from the nuclear
data.

Prior to commencing ADAPh, the cumulative uncertainties on gamma heating calculations were
estimated to be 30% (2 σ) as a result of nuclear data uncertainties (Blanchet et al. 2008; 732).
ADAPh was meant to help reduce these large uncertainties and to validate procedures for the in-
core use of thermoluminescent detectors, in anticipation of the then-planned AMMON experimental
program (Cacuci 2010; 2070).

Experimentally, the ADAPh program used thermoluminescent dosimetry to measure the in-core
heating of the EOLE core, which was loaded with MOX fuel, in early 2004 and also within the UO2-
fuelled MINERVE reactor in early 2005 (Blanchet 2006; 110). TRIPOLI and MCNP were used to
calculate gamma energy deposition in the TLD of these experiments. Summaries of the comparisons
between the EOLE experimental results and the calculated values are outlined in a 2005 paper
(Blanchet et al. 2005). A 2008 paper summarizes the MINERVE experimental and calculated values
(Blanchet et al. 2008). Blanchet’s PhD thesis (which is written in French) contains the full narration
of the entire ADAPh program (Blanchet 2006).

The ADAPh work is important because its experimental and calculation methodology has served
as a basis for others working at CEA Cadarache on the JHR project; specifically, the PERLE
and AMMON gamma heating investigations at CEA Cadarache have both built upon the Blanchet
methodology, with improvements.
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The ADAPh experimental configurations of EOLE and MINERVE

The EOLE core is a critical facility, where the fuel is assembled within a cylindrical light-water tank
1 m in diameter and 1 m in height at 20 ◦C (Blanchet 2006; 103). The assembly is made critical by
adding fuel elements and further controlled by a single control rod.

During the ADAPh experimental campaign the EOLE core was loaded with MOX fuel. The
specific EOLE configuration was BASALA-C/16Gd, which had 16 fuel pins containing Gadolinium
in each of the 81 fuel pin assemblies. BASALA was a joint Japanese/French experimental program
which supported investigations into MOX-fuelled boiling water reactor analysis (Blanchet 2006; 103).
Figure 3.5 shows a cross section of the BASALA-C/16Gd configuration of EOLE. There were three
grid locations where the TLD were inserted into the EOLE core (labelled ”Position des tubes guides
pour l’irradiation des TLD” in Figure 3.5). Two fission chambers were used to monitor core power
(their positions are labelled ”Position des chambres a fission” in Figure 3.5).

The MINERVE reactor has an HEU driver zone with plate-type fuel surrounded by a graphite
reflector at the bottom of a 3 m deep light-water pool. The central experimental zone is inside the
driver zone and can be configured as required. During the ADAPh TLD irradiations, the experi-
mental zone was filled with an aluminum block containing 776 UO2 fuel pins, enriched to 3% 235U
(Blanchet et al. 2008; 734). This test zone was configured for another test program, MELODY IV,
and was designated core assembly R1-UO2. Figure 3.6 shows a cross section of the MINERVE driver
zone and Figure 3.7 shows the MINERVE experimental zone.

A miniaturized fission chamber was present in one of the peripheral core locations during the
irradiations to monitor reactor power, and a microinization chamber was used to measure the in-core
fluxes (Blanchet et al. 2008; 735).

In-core cavity correction factors

Blanchet didn‘t have access to sufficient computing resources to run a whole-core TRIPOLI4 simu-
lation which transported neutrons, γ, e+ and e− in a coupled manner to calculate absorbed photon
energy. To work around this problem, the calculation of TLD deposited energy was split into two
steps.

The first step used the TRIPOLI4 full-core model to calculate both the gamma spectrum and
exposure at the TLD in-core locations, from both prompt and delayed sources; these processes are
explained later in detail.

The second step predicted the absorbed TLD dose by multiplying the total TLD exposure by an
in-core cavity correction factor, based upon the Burlin cavity theory (Blanchet 2006; 157). This cav-
ity correction factor is the ratio between two calculated terms, EDreactor/Kγreactorair , where EDreactor

is the TLD deposited energy (in units of Gy), and Kγreactorair the TLD exposure at the in-core location
(KERMA air, measured in units of Gy). The superscript ”reactor” was used to distinguish these
values from a similar correction factor used for TLD calibration.

EDreactor was obtained by calculating the energy deposited in the TLD by γ, e+ and e− in a
MCNP model of the TLD and its immediate environment (Blanchet et al. 2008; 738). The MCNP
model consisted of a sphere of 6 cm radius with the TLDs at its centre. An inward-pointing gamma
source was defined isotropically on the inside of the sphere surface. This gamma source spectra was
calculated using the full-core TRIPOLI4 model.

Rather than calculate a cavity correction factor specific to each TLD and each exposure, cavity
correction factors were calculated for each TLD type with a typical exposure Kγreactorair (Blanchet
et al. 2008; Table 3).

The radius of the MCNP model sphere was carefully selected with a parametric study to optimize
between the need to have each TLD within the Lucoflex containers exposed equally (which improves
with sphere radius) and the Monte Carlo uncertainty (which decreases with increases in sphere
radius) (Blanchet 2006; 161).
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Figure 3.4: Cutaway of GT (SCK-CEN 2009; Tab 1).

Figure 3.5: The EOLE core configuration BASALA-C/16Gd (Blanchet 2006; 104).
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Figure 3.6: MINERVE driver zone showing the fuel, graphite reflector (Element Graphite) and test
zone within the solid aluminium block (Massif MELODIE) (Blanchet 2006; 107).

Figure 3.7: The solid aluminium block (Massif MELODIE), central TLD irradiation location and
fuel pins in the MINERVE experimental zone MELODY IV R1-UO2 (Blanchet 2006; 108).
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Simplified core model

Full core calculations are computationally expensive, so homogenized materials of each reactor core
were used to determine the mean free path of a 1 MeV photon (the average prompt photon energy).
This mean free path was then taken into account to define a small TRIPOLI model of the fuel
geometry with reflective surrounding surfaces, which was thought to be representative of the cores,
with respect to photons. These simplified models were used to conduct parametric studies - such
as sensitivity analyses and to determine the relative contributions of different isotopes or neutron
reactions to the gamma total dose (Blanchet 2006; 166).

Calculation of total dose

The formula used to calculate the total absorbed TLD dose was (Blanchet et al. 2008; 736):

Dtot,calc =
Tfexp

Tfcalc

[
(KγP

air +KγD
air) ·

(
EDreac

Kγreac
air

Kγcalib
air

EDcalib

)
+Dn

]
, (3.10)

where Dn is the TLD neutron dose calculated with TRIPOLI4, and adjusted with energy-dependent
factors which account for the sensitivities of the TLD to neutrons; the prompt and delayed gamma
exposures at the TLD locations are (KγP

air) and (KγD
air), respectively;

Tfexp
Tfcalc

the power normalization

factor; EDreac

Kγreac
air

the calibration cavity correction factor.

Thus the TLD energy deposition was not calculated directly, only the exposure, which was then
translated into absorbed TLD energy with the cavity correction factor.

Calculating prompt gamma dose

To calculate the prompt gamma dose, a full-core model was constructed in TRIPOLI4 using the
ENDF/B-VI/R4 library. The code was used in CRITICALITY mode to transport neutron-γ in a
coupled manner, with fuel compositions having zero burnup (Blanchet 2006; 168). During such a
simulation, all neutron sources (including delayed) are included, as are gammas from prompt fission,
neutron capture and inelastic neutron scattering (Blanchet et al. 2008; 736). This TRIPOLI4 model
calculated both the gamma spectrum and the exposure (in units of Kerma of air) at the location of
the TLD, KγPair (Blanchet 2006; 161).

The exposure was calculated using track length estimate tallies (this is the DEPOSITED ENERGY
score in TRIPOLI, which is equivalent to the F6 tally in MCNP).

A photon cutoff energy of 100 keV was used in both EOLE and MINERVE to save on process-
ing time; Figure 9.10 of Blanchet’s thesis shows that the contribution from <100 keV gammas is
negligible, and thus this energy cutoff is acceptable (Blanchet 2006; 169).

Figure 3.8 shows the resulting spectra at central TLD locations; it was determined that the
prompt gamma spectrum was not spatially-dependent, only that the intensity of the spectrum de-
creased with proximity to the core periphery (Blanchet 2006; 169).

The model of the MOX EOLE core determined that neutrons and gammas from 239Pu, 240Pu,
241Pu, 235U and 238U provide 95% of the prompt gamma heating and 47% of the prompt gamma
heating was the result of fission gammas from these isotopes (Blanchet et al. 2005; 5). In the UO2

MINERVE model 81.5% of prompt gamma heating was attributed to 235U and 238U and fission
provided 49% of prompt gamma heating (Blanchet et al. 2008). The average prompt gamma energy
was determined to be 1.2 MeV in both reactor cores.

Calculating delayed gamma dose

Blanchet assumed the fission product inventory created prior to the TLD irradiation to be negligible;
thus the associated delayed gamma dose was assumed negligible.
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Figure 3.8: The TRIPOLI4 calculated, prompt gamma spectra from the center of the MOX EOLE
and UO2 MINERVE cores (Blanchet 2006; 170). Note the 511 keV peak from positron annihilations.
Photons below 100 keV were not counted.
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TRIPOLI4 does not inventory fission products nor consider the gammas which result from the
decay of fission products. A mult-step process was employed to link TRIPOLI4 and PEPIN2 in a
way which calculated the delayed gamma dose resulting from the fission products produced only
during the TLD irradiation.

First, a model of TRIPOLI4 was used to calculate the neutron flux in each fuel pin. It was assumed
that the neutron flux distribution within the reactor remained identical to the TRIPOLI4 results,
varying only in magnitude, proportional to reactor power. The fission chamber signal recorded
during the TLD irradiation was modelled by many discreet steps of constant power. The neutron
flux at each power level was then passed to PEPIN2, with the initial fuel composition, to calculate
the delayed gamma source term at each time point of the discritized grid, in each fuel element of
the simplified core model (Blanchet 2006; 178,193). Analytically, the decay gamma intensity in each
fuel segment is expressed as (Blanchet et al. 2008; 737):

D(Eγ , t) =
allFP∑
i

λiN
i(t)Ēiγd

i(Eγ), (3.11)

where:
D(Eγ , t) = the delayed gamma source of energy Ēiγ at time t for all isotopes i

N i(t) = the time-dependent fission product inventory of each fission product i
λi = the fission product decay constant from JEF2
Ēiγ = the average gamma ray energy within di(Eγ)

di(Eγ) = normalized delayed gamma ray spectrum of nuclide i per decay from JEF2.

The delayed gamma source terms of each fuel pin was distributed within the simplified core
TRIPOLI4 model. Instead of defining the delayed gamma source in each fuel pin at each discretized
time segment and calculating the TLD exposure from delayed gammas at each time point, a single
delayed gamma source was developed by weighting the source terms by the time-integrated neutron
flux (Blanchet 2006; Fig.9.18). Thus TRIPOLI4 calculated the integrated TLD exposure in a single
defined-source photon transport calculation.

This method of defining delayed photon sources in each fuel pin of a TRIPOLI4 photon transport
calculation was validated by defining the prompt 239Pu spectra from ENDF/B-VI within each fuel
pin of a TRIPOLI4 photon transport model, normalized to the power, and comparing the results to
a full TRIPOLI4 neutron-gamma coupled model which allowed only the production of prompt 239Pu
gammas - the difference was only 0.88% (Blanchet 2006; 178).

The delayed gamma and the prompt gamma spectrum are compared in Figure 3.9. The average
prompt gamma energy of 239Pu and 235U, as described by ENDF/B-VI, was calculated to be 0.87
MeV and 0.94 MeV, respectively; the mean delayed gamma of the same isotopes was 1.3 MeV and
1.57 MeV, as calculated at equilibrium using PEPIN2 with JEF2 (Blanchet 2006; 178).

The calculated delayed gamma fraction of the total gamma dose was found to be 29% in the
case of the 15 W, 10 minute irradiation in EOLE and 24.4% for the 10 W, 20 minute irradiation
in MINERVE; at equilibrium the delayed gamma contribution was calculated to be 32.2% in EOLE
and 29% in MINERVE (Blanchet 2006; 195). Additionally, it was observed that both prompt and
delayed spectrum shapes are similar after attenuation through the core, thus Blanchet proposed that
a simple approximation to total gamma exposure would be increasing the intensity of the prompt
gamma ray spectrum by the delayed gamma portion of the total gamma dose (Blanchet et al. 2008;
737). This method has been adoped by analysts within Service du RJH (SRJH) to account for the
delayed gamma dose, however they have assumed the delayed gamma dose is 30% of total (a number
given by Blanchet in (Blanchet et al. 2008; 737) but not explicitly in his thesis) and scale the prompt
gamma dose by 1/0.7 ; section 3.6.1 discusses this process further.

Blanchet also used the simplified core model to investigate the delayed gamma source. The
delayed sources were calculated for each fuel pin in the model, at each time point, using PEPIN2. The
prompt and delayed gamma exposure rates calculated over the approach to full power, the constant
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Figure 3.9: Comparison between the prompt (from ENDF/B-VI) and delayed gamma spectra (cal-
culated with PEPIN2 at equilibrium) for the EOLE reactor (Blanchet 2006; 180).

10 minute irradiation and shutdown are shown for each discretized time point in Figure 3.10(L).
Figure 3.10(R) shows the same calculated values, summed and normalized to the raw fission chamber
signal obtained during the TLD irradiation.

Figure 3.10: (L) The calculated prompt and delayed gamma doses; (R) prompt and delayed gamma
doses normalized to the fission chamber’s signal (Blanchet 2006).

Figure 3.11(L) shows the fission products which contribute the most to the TLD dose over
the constant 10 minute irradiation, normalized to the maximum dose rate experienced just before
shutdown; Figure 3.11(R) shows the most significant fission products after shutdown.

Comparisons between experimental and calculated dose

After correcting the TLD signal for the energy deposited by neutrons, Blanchet found the total
calculated gamma energy dose compares to MINERVE experimental values with an average ratio of
C
E = 0.72± 15%(2σ). The EOLE ratio was C

E = 0.75± 15%(2σ) (Blanchet et al. 2005; 740).
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Figure 3.11: The fission products which contribute the most delayed gamma dose during the constant
10 minute irradiation (L) and following shutdown (R); as calculated with PEPIN2 using the MOX
fuel compositions (Blanchet 2006).

Blanchet speculated the systematic bias was a result of errors in the nuclear data libraries JEF2
and ENDFB-VI; specifically ”...a lack of gamma ray emission data (Blanchet et al. 2008; 740).”
Specifically addressing the methods used to model the delayed gamma dose, Blanchet commented
”...the only biases imaginable would be by uncertainties or missing radioactive decay data” in the
JEF2 library used by PEPIN2 (Blanchet 2006; 193).

Dose comparisons between ionization chamber and calculation

During the TLD irradiation in MINERVE, the signal from a miniature in-core ionization cham-
ber was also recorded. These intruments respond to both neutron and gamma flux, so the signal
interpretation requires a calibration factor for both particles. Large uncertainties existed on the
neutron calibration factor, thus the signal was not useful for measuring absolute gamma doses while
MINERVE was near full power. The signal was considered valuable after shutdown when the dose
from delayed neutrons was considered negligible, allowing for a measurement of the delayed gamma
exposure (Blanchet 2006; 204).

Figure 3.12 shows the ionization chamber signal during the TLD irradiation in comparision
to calculated exposures. The integrated measured delayed gamma component compared to the
integrated calculated value with a fraction of C

E = 0.88± 11% (2σ)(Blanchetet al. 2008; 740).

Summary of ADAPh calculational method

The general features of the scheme employed by Blanchet to calculate in-core gamma energy depo-
sition are as follows:

• the empirical data used for comparison to calculations were collected in a low power reactor

• the entire core geometry was constructed within a Monte Carlo model

• two Monte Carlo simulation steps were used to determine gamma exposure at the in-core loca-
tion of interest: i) one criticality calculation to determine the prompt gamma exposure using
coupled neutrons-gammas, ii) one defined source gamma transport calculation to determine
the delayed gamma exposure
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Figure 3.12: Comparison between the the ionization chamber signal (top) and calculated doses (which
were normalized to the fission chamber signal) (Blanchet 2006; 204).

• the dose from decay of legacy fission products (fission products created prior to TLD irradia-
tion) were subtracted from the measured dose and not considered at all in the calculation of
dose; only the dose resulting from the decay of fission products created during the dosimeter
irradiation were considered by calculations

• integrated delayed gamma source terms were calculated for each fuel element with a point-
depletion code; the entire absorbed delayed gamma exposure was then calculated with a
defined-source TRIPOLI4 gamma-transport calculation

• the calculated gamma exposure from all sources, was converted into absorbed energy using a
calculated cavity correction factor

3.5.2 Amharrak’s work following ADAPh

Since the ADAPh program showed an underprediction of the gamma heating calculations (with
respect to the MINERVE in-core TLD measurements) by ≈ 25% ± 15%(2σ) various efforts were
made to reduce this systemic bias by both Blanchet and Amharrak. Blanchet attributed the C/E
bias mostly to deficiencies in the nuclear data and employed a Bayesian method of adjusting nuclear
data to search for improvements (Blanchet et al. 2008). Amharrak focused on the ADAPh TLD
experimental process and looked to reduce the TLD experimental uncertainties (Amharrak et al.
2012; 2).

Amharrak conducted TLD and OSLD measurements on the same MINERVE core configuration
(R1-UO2) as the ADAPh program; however, many changes were made to the TLD measurement
and calibration procedures to reduce experimental variance. Amharrak’s work was conducted in
anticipation of the AMMON experimental program, which was to follow as the next comprehensive
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JHR test program at Cadarache (Amharrak et al. 2012; 12). As a result, the AMMON experiment
fully implemented the TLD measurement and calibration techniques developed by Amharrak et al.

Comparisons between experimental and calculated dose

Amharrak utilized the same methods of calculation as Blanchet for both the prompt and delayed
gamma doses (Amharrak et al. 2012; 2) and calculated the delayed gamma component to be 32% of
the total absorbed gamma dose (Amharrak et al. 2011; 5) (Amharrak et al. 2012; 8).

The efforts expended to increase the experimental repeatability resulted in an improvement be-
tween calculated and experimental values: C

E = 1.05 ± 5.3%(2σ) for the TLDs and C
E = 0.96 ±

7.0%(2σ) for the OSLDs (Amharrak et al. 2011; 8); the bias was thought to be a result of the
TLD and OSLD neutron corrections and ”...all the uncertainties related to calculations of cavity
corrections (Amharrak et al. 2011; 9).”

3.5.3 The PERLE program

The PERLE (Programme dEtude de Réflecteur Lourd dans EOLE Heavy Reflector in EOLE Study
Program) was an experimental program designed to validate the analytical tools of Areva’s EPR. The
neutronic characteristics of the EPR’s heavy steel reflector were investigated (Cacuci 2010; 2074).
Simultaneously, the gamma heating within the modelled reflector was measured with TLDs and the
results were compared to calculated gamma heating values.

In the course of analysis of the PERLE program, Ravaux developed a method of calculation which
was an evolution from the ADAPh methods. Specifically, the use of an in-core cavity correction factor
was abandoned for the use of a single full-core TRIPOLI4 calculation which directly calculated the
energy deposited within the TLDs (Ravaux 2013). This method was subsequently used by the
AMMON program, and is fully described in the following section.

The results Ravaux obtained were C−E
E = 1 ± 12%(2σ) within the steel reflector. Larger un-

certianties of C−E
E = −2± 24%(2σ) resulted near water channels of the steel reflector where it was

surprisingly observed that heating increased by 15% (Amharrak et al. 2014; 62).

3.5.4 The AMMON program

Although the ADAPh and PERLE experimental programs aided in the development of neutronic
and gamma heating analytical methods, these experimental programs didn’t conduct measurements
in the presence of unique JHR characteristics, such as a high moderator to fuel volume ratio or
27% 235U fuel. The AMMON experimental program was designed specifically to provide JHR-
relevant experimental data by employing JHR fuel assemblies. AMMON was therefore expected
to serve as a valuable emperical reference for the JHR design (Klein et al. 2009; 2). Additionally,
AMMON experimental values will aid in the verification and validation of the calculational scheme
of HORUS3D (Blanchet et al. 2005; 10).

Experimental measurements commenced in 2011 in the EOLE facility (at CEA Cadarache) and
ran until the end of 2012. Analysis of the experimental results and comparisons with calculated data
will validate the calculational tools and build confidence in the validity of the claims of the JHR
safety report.

The AMMON experimental program was composed of a number of different EOLE core configu-
rations. While no two configurations were the same, the general arrangement for all configurations
was as follows: a driver zone made of hundreds of UO2 PWR fuel pins (3.7% 235U enrichment)
surrounding a solid aluminum hexagonal test section, which contained seven holes to accomodate
JHR fuel assemblies, or other components.

The driver and experimental zones each had dedicated, temperature regulated, light-water coolant
circuits. This allowed for the addition of boron to the experimental zone, if required, and gave the
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ability to determine the reactivity dependency on coolant water temperature for each zone (Blanchet
et al. 2005; 4).

The lattice pitch of the UO2 pins was designed to produce the same neutron spectrum as the
experimental zone (Blanchet et al. 2005; 3).

The AMMON reference configuration

The reference configuration (AMMON-Ref) was the first AMMON configuration assembled in the
EOLE reactor. It consisted of a solid aluminum hexagonal block with holes to receive seven JHR fuel
assemblies and six 3.1 cm diameter aluminium spacers. These structures formed the experimental
zone. Surrounding the experimental zone was the driver zone made of 623 UO2 fuel pins, 80 cm
long. These pins were clad in Zircaloy-4 with a stainless steel overcladding. 20 safety shutdown rods
were positioned above the core during operation, and their empty guide tubes were also in the driver
zone. A cross-section of the configuration’s vertical mid-plane is shown in Figure 3.13.

Figure 3.13: Cross-section of AMMON Reference configuration - plot made with the TRIPOLI
model. The control rod is shown on the left, within the driver zone.

The AMMON program used the experimental and calibration methods published by Amharrak.
During the dosimeter irradiation in AMMON-Ref, two fillers and two JHR assemblies were all loaded
with 5 stacked aluminum pillboxes each. Each pillbox contained a PTL717, TLD400 and OSLD. The
pillboxes were stacked such that they centered about the reactor’s vertical midplane. Figure 3.14
shows the central aluminum rod which was removed from two assemblies in the AMMON-Ref con-
figuration to accomodate five stacked dosimeter pillboxes.

The EOLE reactor was held at a full power of 10 W for 10 minutes, following a relatively quick
approach to power. The reactor was then made subcritical, the dosimeters were removed and their
responses recorded. To account for the dose received during the approach to 10 W, another set of
dosimeters were identically placed and irradiated through only the approach to power - the resulting
dosimeter signals were subtracted from the signal of the fully irradiated dosimeters.

A set of TLD’s were also placed in the core a few hours prior to the full power irradiation to
measure the background dose from the decay of legacy fission products; these measurements predicted
the gamma heating from these sources to be equal to 3% of the dose measured during the full power
irradiation (Vaglio-Gaudard et al. 2014; 577).
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Figure 3.14: The solid aluminum central rod of the JHR (Vaglio-Gaudard et al. 2014).

AMMON analysis

CEA staff has published the results of a few important AMMON-Ref analyses: one on neutronic
parameters and another on nuclear heating.

The first publication details how the TRIPOLI4.7 code and JEFF3.1.1 European library were
used to construct a neutronic model of AMMON-Ref to calculate k and the core’s power distribution
(Vaglio-Gaudard et al. 2012). The resulting comparisons between the calculated and measured
reactivity showed a difference between the two of C-E=376 ± 290(1σ)pcm and calculation of the
power distribution of the JHR assemblies was within 1.1% of reality.

The second publication details the analytical methods the CEA employed to calculate gamma
heating in the AMMON-Ref core and a comparison to experimental values (Vaglio-Gaudard et al.
2014). The calculational methods employed were influenced greatly by the analytical experiences
of the other CEA experimental programs, ADAPh and PERL. TRIPOLI4.8.1 and JEFF3.1.1 were
used to construct a model of the entire AMMON-Ref core. Every component of both the driver and
experimental zone was faithfully described in TRIPOLI, including the very thin layers (1 mm) of the
OSLD material. Each fuel plate and fuel pin, was modelled in axial segments to allow for the scoring
of volumetric fission rates. In total, tens of thousands of volumes were described in the TRIPOLI
model.

Using this TRIPOLI4.8.1 core model, two runs of TRIPOLI were required to calculate the prompt
and delayed gamma energy deposition. For each simualtion, the CEA utilized their substantial
computational resources to process billions of histories in each case to reduce statistical uncertainties
to acceptable magnitudes. Each step is described in detail below.

Calculating prompt gamma dose

To calculate the prompt gamma dose resulting from fission and neutron capture a TRIPOLI4.8.1 sim-
ulation in CRITICALITY mode tracked four particles (neutrons, photons, electrons and positrons)
in a coupled manner while scoring the energy deposition within the TLD and OSLD volumes with
DEPOSITED ENERGY scores for each particle. Additionally, the fission rate in each axial segment
of each fuel pin and plate was scored for later use in the delayed gamma dose calculation. During this
simulation neutrons were the primary sampled particles - the other particles appear in the TRIPOLI
model in such simulations as the result of neutron interactions with materials.

Tracking four types of particles, in such a complicated geometry, over so many cycles is a huge
computational task. To reduce this burden, electron and positron transport was restricted in all
volumes to particles with energies above 2 MeV, except those which immediately surrounded the
TLD/OSLD dosimeters. The closer volumes were thought to be more relevant to energy deposition
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within the TLD/OSLDs, compared to more distant volumes, because the expected distance of travel
of electrons and positrons is usually small. In the close volumes, e− and e+ were tracked over a full
energy range of 25 keV and 20 MeV. The 2 MeV restrictive limit was thought to be a reasonable
simplification because low-energy charged particles typically travel very small distances.

Neutrons between 1×10−11 and 20 MeV and photons between 1 kev and 20 MeV were transported
in the entire geometry.

The size of the volumes surrounding the dosimeters (where the full spectrum of charged particle
transport was permitted) was carefully defined. Making these volumes too small would underestimate
the energy deposited within the dosimeters, and making them too large would increase the processing
burden. A volume of 1.5 cm on all sides of the TLD/OSLDs was permitted for the full spectrum
transportation; as a check on the validity of using 1.5 cm, the Katz and Penfold formula predicts 2
MeV electrons would have a maximum range of 0.4 cm in aluminum (Vaglio-Gaudard et al. 2014;
578).

All scores were normalized to the EOLE reactor power, using the experimental fluxes measured
with Au and Ni foils which were irradiated during the AMMON-Ref experiment.

Accounting for Al activation

As is discussed in the next section, a number of simplifying assumptions were made before deter-
mining the delayed gamma sources. One of these assumptions, is the discounting of gammas from
neutron activation products - with the exception of Al. 27Al (the only naturally occurring isotope
of the reactor’s structural Al material) is present in large quantities within the AMMON-Ref core
and furthermore the half life of 28Al is 2.241 minutes, which makes it non-negligible compared to
the experimental duration.

To account for 28Al decay, the 27Al JEFF3.1.1 evaluation file was modified to promptly emit the
1.78 MeV photon upon neutron radiative capture (Vaglio-Gaudard et al. 2014; 581). This change
allowed the gammas produced neutron capture of 27Al to be incorporated into the prompt gamma
TRIPOLI4 calculation.

Calculating delayed gamma dose

PEPIN-2 and the JEFF2.2 library were used to describe the delayed gamma spectrum which re-
sults from the decay of fission products. This photon spectrum was then used to define a delayed
photon source in each of the fuel plates and pins during a TRIPOLI4.8.1 simulation in SHIELD-
ING mode. This TRIPOLI4 calculation tracked three particles (photons, electrons and positrons)
in a coupled manner while scoring the energy deposition within the TLD and OSLD volumes with
DEPOSITED ENERGY scores for each particle.

For simplicity, the authors assumed all fissions were 235U; this was thought to be a reasonable
approximation because TRIPOLI predicted only 0.7% of the fissions to be from 238U. Additionally,
the following simplifying assumptions were thought to be reasonable since the EOLE power was so
low that neutron flux reached only ≈109 n/cm2/s (Vaglio-Gaudard et al. 2014; 580):

1. the fission product inventory prior to commencement of the TLD/OSLD irradiation was nil

2. the plutonium inventory was considered non-existant at all times

3. neutron activation was considered negligible (with the exception of 28Al which is discussed in
the previous section)

4. the burnup of fission products was neglected.

The third assumption refers to the longer lived activation products, which may decay by emitting a
gamma - the much more important prompt gamma emissions resulting from neutron capture were
taken into account in the first TRIPOLI4 simulation of the prompt gamma sources.
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PEPIN-2 describes the photon emissions in 94 energy groups and has the ability to calculate
the fission product gamma emission spectrum at any given time following a single 235U fission. The
dosimeters remained within the core for 15 minutes, 10 of these were full power core operation and
the remaining 5 was the time required for experimentalists to remove the dosimeters from the core
following shutdown. PEPIN-2 was used to calculate an average delayed gamma spectrum over these
15 minutes.

The PEPIN-2 output defined the gamma source function Sγ(g, t) resulting from the fission of a
single 235U atom, equal to the average number of gammas emitted from each energy group g at each
time step t, where t = 0s is the time of fission, for all g and t; the source terms are unitless.

One fission was assumed to occur per second over a 10 minute duration (the time the reactor
was at full-power during TLD irradiation) and the resulting Sγ(g, t) functions were summed for each
of the 94 energy groups at each t in the interval 0≤t≤15 minutes (the total in-core duration of the
TLDs). The superimposed sources were scaled by the fission rate to obtain the total gamma source
for each g and t. A spectra was defined as an isotropic fixed photon source in each of the axial fuel
plate and pin segments, normalized to the relative fission rates scored in each of these segments in
the first TRIPOLI calculation.

Within the fuel pins and plates, the delayed gamma source was defined uniformly radially for
simplicity, which contrasts to reality which likely shows a greater fission rate at outer radii compared
to the inner fuel volumes. This was thought to be an acceptable approximation.

As discussed in the introduction of this section, a TRIPOLI4.8.1 simulation was run in SHIELD-
ING mode with three coupled particles, using the same energy boundaries and e−, e+ restricted
volumes as used in the prompt gamma TRIPOLI simulation; the energy deposition scores were nor-
malized to the EOLE reactor power using the same Au and Ni foils as were used in the prompt
gamma simulation.

Results of calculations

No numerical variance reduction techniques were used in the TRIPOLI simulations, but the AMMON-
Ref core symmetry was leveraged to reduce the Monte Carlo uncertainties. Within the TRIPOLI
model, pillboxes were placed within the peripheral JHR fuel assemblies which are identical, by sym-
metry, to the one which actually contained the dosimeters during the experiment; this effectively
increased the number of scoring particle histories which passed through the small volumes of interest,
and thus reduced the statistical uncertainties; for the same purpose and by the same justification,
dosimeters were added to all six fillers within the TRIPOLI model.

The stack of 5 pillboxes had a small overall height in comparison to the active core height of
60 cm, and the neutron flux is essentially constant over the pillbox stack. Therefore the dose of
each dosimeter type was assumed to be equal to the average value of the 5 dosimeters, for both the
experiment and calculation.

Figure 3.15 shows the prompt photon production in several core materials. The peak at 511 keV
is the result of e− and e+ annihilation and the others result from neutron inelastic scattering or
capture in specific core materials (Vaglio-Gaudard et al. 2014; 4). Figure 3.16 shows the prompt and
delayed gamma spectra within the central JHR assembly are predicted by the TRIPOLI calculations
to be quite similar. In this calculation, 25% of the total photon absorbed dose is thought to be
from delayed gammas (Vaglio-Gaudard et al. 2014; 580); it must be remembered that this does not
include the dose from fission products which were in the reactor prior to the TLD irradiation, which
was measured to be 3% of the total dose (see section 3.6.1).

The calculated prompt energy deposition predicted 60% of the prompt gamma dose was from
fission photons, about 33% from radiative neutron capture and 7% from inelastic neutron scatter.
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Figure 3.15: Prompt photon production in several core materials (Vaglio-Gaudard et al. 2014).

Figure 3.16: Delayed photon flux generated by 235U fission at the center of the central JHR assembly
in comparison to the prompt spectrum at the same location (Vaglio-Gaudard et al. 2014).
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Comparisons between experimental and calculated dose

In comparision to the experimental doses, the calculated doses were smaller; the average (C-E)/E
value of all dosimeter placements within the AMMON-Ref core was −8±4.5%. The authors speculate
the deviation results from underestimation of the JEFF3.1.1 prompt photon emission and/or 27Al
neutron interaction cross sections - the calculations have shown to be very sensitive to 27Al reaction
data.

The authors of the analysis suspected the underestimation of gamma heating to be the result of
”...underestimation of the global energy released by delayed photons,” and ”...the missing photon
spectra,” of the prompt photon emission data in JEFF3.1.1 (Vaglio-Gaudard et al. 2014; 582).

Summary

The methods used to calculate the AMMON-Ref gamma energy deposition generally follows that
employed by Ravaux and Bernard in the interpretation of the PERLE experiment (Ravaux 2013).
The prominent feature of this method is the calculation of both the prompt and delayed gamma doses
by dedicated Monte Carlo simulations of the entire core (one Monte Carlo calculation for prompt and
another for delayed) while energy deposition scores are tabulated on each of the dosimeter volumes.

This method contrasts to that employed by Blanchet and Amharrak (the ADAPh method), which
requires a ”two-step” process where a full-core Monte Carlo simulation only determines the gamma
spectrum at the dosimeters’ in-core location. This spectrum is then used to define a fixed source for a
second, Monte Carlo simulation of only the dosimeters and the immediate surroundings to calculate
the absorbed dose (Blanchet 2006, Amharrak et al. 2012).

Although the AMMON-Ref method requires far more computational resources, it faithfully mod-
elled the entire experimental geometry which accounts for the heterogeneous geometry surrounding
the dosimeters and eliminates the need to calculate an in-core ”cavity correction factor” (which is
required in the ADAPh method when calculating energy deposition in dosimeters).

To summarize, the salient features of the AMMON-Ref calculations are:

• the entire core geometry is constructed within a Monte Carlo code

• one Monte Carlo simulation determines k and transports n, p, e−, e+ in a coupled manner to
calculate the prompt gamma energy deposition

• one Monte Carlo simulation using a defined delayed gamma source in each fuel volume trans-
ports p, e−, e+ in a coupled manner to calculate the delayed gamma deposition

• the dose from decay of legacy fission products was subtracted from the measured dose and not
considered at all in the calculation of dose; the dose from the pre-test fission product inventory
was measured in a dedicated TLD/OSLD experiment and subtracted from the dosimeter signal
accumulated over the full-power test

• a point depletion code is used to determine an average delayed gamma spectrum prepresentative
of the time of dosimeter irradiation

• transport of e− and e+ restricted to volumes of most importance to save on processing

• 235U was assumed to be the only fissioning actinide

• gammas from neutron activation are considered negligible for all isotopes except 27Al

• decay energy from α and β radiation assumed to have been deposited locally

• the burnup of fission products considered negligible.
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3.5.5 Delayed gamma heating fraction in the CEA’s low-power experi-
ments

It is interesting to note the differing estimates of the fraction of total gamma heating attributable
to the delayed gammas. The following table gives a summary:

Program/P.I. Reactor
Fuel Percentage
ADAPh MINERVE
235U 24.4%
ADAPh EOLE
MOX 29%
Amharrak MINERVE
235U 32%
AMMON EOLE
235U 25%

Table 3.1: Estimates of percentages of gamma heating caused by delayed gammas.

All these values were calculated using methods summarized in previous sections. The variance
of these values in Table 3.1 are a result of the differences in the following parameters:

• the in-core residency time of the dosimeter

• the time the reactors were at full power

• the dominant fissioning isotope

• the reactor construction and composition.

3.5.6 Differences between low and high power reactor analysis

The methods used to calculate gamma heating in the ADAPh, PERLE and AMMON programs may
not be applicable to material-testing or power-generating reactors for the following reasons:

• full power in each experiment was very low, resulting in low neutron fluxes; these low fluxes
induce relatively small amounts of activation and fission product neutron absorption

• the experiments operated at full power for short periods, preventing fission product inventories
from building or reaching equilibrium; Blanchet estimated the delayed gamma contribution
would have been 32.2% in EOLE and 29% in MINERVE at equilibrium (Blanchet 2006; 195)

• all calculations of delayed gamma dosimetry are integrated, with no method to easily calculate
the delayed gamma flux or dose.

3.6 Calculations of gamma heating in high-power reactors

This section reviews the methods others have used to calculate the gamma heating within the core
of high-power reactors.
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3.6.1 Gamma heating calculations of SRJH

The division SRJH (Service Réacteur Jules Horowitz) is the administrative branch of the CEA
responsible for the operation of the JHR. SRJH also conducts physics analysis and is responsible for
the design of in-core experimental devices. These tasks frequently require the calculation of gamma
heating within various in-core components; the results of such calculations are often used with heat
transfer codes to predict the temperatures of the components under investigation.

The methods used by SRJH to calculate gamma energy deposition are based upon the methods
used in the analysis of the PERLE and AMMON programs and the results of the Blanchet and
Amharrak investigations. As in PERLE and AMMON, a complete 3D core and reflector TRIPOLI4
model is used with coupled neutrons and gammas to calculate the prompt gamma energy deposition
in objects of interest.

Known biases, uncertainties and delayed gammas are included by scaling the prompt dose term
according to the findings of CEA experimental programs. As discussed previously, between the
TLDs and OLSDs, the worst comparision of calculation to experiment by Amharrak was C

E =
0.96±7.0%(2σ). The ADAPh evaluation estimated the delayed gamma component to be 30% of the
total gamma heating in one estimate and SRJH has assumed this to be an appropriate estimate of
the delayed gamma dose in RJH, at all locations, within the equilibrium core. The prompt gamma
dose Dp is scaled to estimate the total gamma heating as (CEA 2016):

Dp =
Dp

0.7
∗ 1.04± 7.0%(2σ). (3.12)

Once the the AMMON analysis is completed, this formula will likely be updated with the resulting
bias and uncertainty.

This is clearly a simplistic method, although it may be conservative and be valuable for safety
analysis.

3.6.2 The CIRANO program

Lüthi developed a calculational algorithm for determining gamma heating in fast reactors and imple-
mented the scheme in the ERANOS (European Reactor Analysis Optimized System) code package
(Lüthi et al. 2001). This method was intended for use in the analysis of gamma heating in plutonium
burning reactors (possibly a redesigned Superphoenix core), and to replace the VASCO-1 method
which lacked certain basic data and which had a deficient calculational algorithm. Lüthi compared
his new calculational method against experimental data obtained from the CIRANO critical assem-
bly, which was designed to examine plutonium burning physics.

The developed methodology has multiple steps. First, the SN transport code BISTRO (from the
ERANOS code package) is used to calculated Φi,g, the 33 group neutron flux, over each spatial mesh
i and neutron energy group g. Then the neutron flux is used to calculate the gamma source term
Si,gγ , where gγ is the gamma energy group index. The gamma flux Φi,gγ can then be calculated in
each spatial mesh with BISTRO, while treating each Si,gγ as a fixed external source. The gamma
heating is then calculated in each mesh.

The gamma source term is determined once Φi,g is known with the following equations:

Si,gγ =
∑
g

∑
e

∑
X

Φi,g ·Ni,e · σi,e,X,g ·Qγ,e,X,g · χe,X(g → gγ) (3.13)

where Ni,e is the atomic density of isotope e, σi,e,X,g is the effective (self-shielded) microscopic cross
section for isotope e, reaction type X and neutron energy group g. Qγ,e,X,g is the average total
energy emitted by an interaction of type X of a neutron in group g with isotope e. χe,X(g → gγ) is
the gamma emission spectrum for the corresponding reaction which, by definition, needs to satisfy:
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∑
gγ

χe,X(g → gγ) · Ēgγ = 1. (3.14)

The gamma heating is simply calculated:

Hγ,i =
∑
gγ

∑
e

Φi,gγ ·Ni,e ·Kγ,e,gγ (3.15)

where Kγ,e,gγ is what Lüthi calls the gamma KERMA (units of eV · barn) for isotope e.
The neutron heating is similarily calculated:

Hn,i =
∑
g

∑
e

∑
XΦi,g ·Ni,e · σi,e,X,g · kn,e,X,g (3.16)

where kn,e,X,g is what Lüthi calls reduced neutron KERMA in neutron reaction type X. Reduced
neutron KERMA has units of eV and is simply related to Kγ by the following relation (Lüthi 1998):

Kγ,i,e,gγ =
∑
X

σi,e,X,gγ · kn,e,X,gγ . (3.17)

The above equations demonstrate the dependency of Lüthi’s method upon a variety of nuclear
data. Lüthi completed a significant amount of work to compile the required nuclear data from ENDF
sources: ENDF/B, JEFF and JENDL libraries. The data was compiled and processed with NJOY
into an appropriate format for calculations.

As a simplifying assumption, this calculational method assumes the fission product’s decay rate
to be equal to rate of production. This eliminated the burden of making the fission product inventory
time-dependent, in exchange for what Lüthi estimated was a minor error (Lüthi 1998).

This calculational method was compared against the CIRANO experiment at CEA’s MASURCA
facility which was dedicated to investigating plutonium burning cores (Lüthi 1998). TLDs were used
to measure the absolute gamma heating rates in both the PuO2/UO2 fueled cores and steel/sodium
reflector regions. The calculation values underpredicted the experimental values by 10% in the core
region and 12% in the reflector region. Lüthi attributed the discrepency to low energies of the fission
gammas and low capture cross sections, in the nuclear data (Lüthi et al. 2001).

3.6.3 Gamma heating calculations in OSIRIS

OSIRIS is a 70 MW light water, open-pool MTR at CEA Saclay which uses 20% enriched plate-type
silicide fuel, arranged on a 7x8 grid (CEA 2013). The core contains 6 control elements, 7 beryllium
reflectors and 5 experimental elements.

Two publications have outlined two different methods for calculating gamma heating in OSIRIS.
In 2001 Lee outlined a method which used a full-core TRIPOLI4 model to calculate the gamma
heating in an irradiation facility adjacent to the core, and compared the results against calorimetric
measurements (Lee et al. 2001). Another 2012 article by Malouch uses the same methods (Malouch
2012). The later work uses a geometrically complete TRIPOLI4 model, with the newest version of
the software employing energy deposition scores.

Lee et al. 2001

Lee was motivated by the poor results of a previously-used method. The former method used the
diffusion code DAIXY to calculate neutron flux and the gamma-ray production source from neutron
capture; the point-kernal code MERCURE-5 then calculated the gamma transport and the gamma
heating in a geometry of interest. This method produced acceptable results unless large irradiation
targets were placed in the irradiation facility - large targets tend to distort the neutron flux in
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a manner diffusion codes can’t predict. Additonally, the point-kernal method is not condusive to
modelling complex irradiation facility geometries. The new gamma heating methodology was used
as an analysis tool to evaluate the possible need for additional cooling of the irradiation facility.

Lee’s method used a full TRIPOLI4 model of the reactor core and adjacent irradiation facility;
only reactor components thought to be irrelevant were omitted. The diffusion code DAIXY calculated
a ”power map” of the historical core, which was then employed by the TRIPOLI-4 model; presumably,
TRIPOLI4 was not operated in CRITICITY mode but instead the power map was used in TRIPOLI-
4 (Lee et al. 2001; 149). Greater geometrical core details of regions close to the experimental facility
were considered by DAIXY. TRIPOLI-4 was then run in coupled neutron-gamma mode to calculate
the neutron and gamma fluxes in the calorimeter cells. The KERMA factors of graphite were used
to determine deposited energy from the calculated fluxes; these factors were developed with the
Argonne National Lab code MACK-IV and ENDF/B libraries.

200 MeV and 2.432 neutrons per fission were used to scale the TRIPOLI4 scores to 65 MWth;
power was assumed to be constant.

Some simplifying assumptions made include: a) assuming fresh fuel compositions; and b) ne-
glecting Ni and Hf absorber materials in some fuel components.

DARWIN was used to generate a gamma spectra and intensity resulting from fission product
decay, assuming 90,000 MWd/t burnup; presumably, this also assumed constant power.

The calculated energy deposition scores were compared to differential calorimeter data; the calcu-
lated values tended to be 25% lower than the corresponding measured data. While it is not possible
to determine the cause of the systematic difference by reading the published paper, at least some of
it may be a result of the method not including the delayed gammas which result from activation of
core material. Lee et al. observed the delayed fission gammas were softer than the prompt fission
and capture gammas, and as a result were easier to shield.

Today Lee’s method may be considered outdated since a diffusion code is no longer required to de-
termine a ”power map” and TRIPOLI4 and MCNP6 both now have energy-deposition scores/tallies,
eliminating the need for MACK-IV to calculate the KERMA factors.

Malouch 2012

With the goal of determining the heating of in-core experimental devices a two-step full core
TRIPOLI4.7 model was developed, shown schematically in Figure 3.17; a TRIPOLI4 criticality
calculation with coupled neutrons-gammas accounted for prompt-gammas resulting from neutron
reactions, and another defined-gamma-source calculation to transport the delayed fission gammas.

The TRIPOLI4 model was geometrically complete, without simplifications. The fuel material
descriptions were developed with burn-up calculations using the APOLLO-2 lattice code, and a
OSIRIS-specific diffusion code with ENDF-3.1.1. The resulting fuel composition corresponds to a
single moment in the reactor fuel cycle. PEPIN-2 then provided delayed gamma spectra and intensity
for this moment in time. Gamma cross sections from EPDL-97 were used within TRIPOLI4 for
photon transport and energy deposition.

The calculated energy deposition scores were compared to differential calorimeter data; the cal-
culated values ranged between 15 and 25% lower than the measured data, depending on the vertical
core position. Malouch considered this comparison acceptable for proof of concept.

Notice that although PEPIN-2 was used to specifically determine the delayed fission gamma
sources, the reference doesn’t give specific details of how these sources were calculated; presumably,
like the prompt gammas, the delayed fission gamma sources were described for one moment in reactor
time. There is also no indication of if or how delayed activation gammas may have been included in
the scheme.

Malouch provided Table 3.2 showing the fraction of total nuclear heating resulting from prompt
gammas and neutrons, as calculated by the critical simulation, and the delayed gammas, as calculated
with the fixed-source simulation.
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Figure 3.17: Nuclear heating scheme developed for the OSIRIS reactor (Malouch 2012; 5).

Table 3.2: Relative heating from all sources as calculated in different materials (Malouch 2012; 10).

3.7 Summary

Of all the calculational methods reviewed, none are able to describe gamma heating as a function
of time in a high-power reactor; low-power reactor analyses have only calculated integrated delayed
gamma doses, and high-power reactor analyses have only attempted to caclulate gamma heating at
a single moment. Therefore, to help engineers predict the time-dependent behavior of the in-core
energy deposition, this thesis aims to measure and describe the time-dependent in-core component
of nuclear heating caused by delayed gammas and incorporate this description into a new time-
dependent nuclear-heating model.



Chapter 4

New models of time-dependent
in-core gamma heating

A literature review has shown mature Monte Carlo codes are capable of calculating in-core prompt-
gamma heating. However, the in-core delayed gamma heating cannot easily be calculated with
TRIPOLI4 or MCNP6 because fission products and activated isotopes are not tracked. Efforts to
couple burnup codes to Monte Carlo codes have been documented but remain difficult to implement
and the schemes are often reactor-specific. MCNP6 does have the capability to track active isotopes,
but is not yet implemented in a way which allows the modeling of a full reactor core. Even when
Monte Carlo codes become capable of modeling these processes in an entire core, the computational
processing will be great and modeling the entire reactor’s geometry will still require great effort.
New ideas are now required to describe the total time-dependent in-core photon heating in a simpler
manner.

This chapter proposes two new methods to describe time and position-dependent in-core prompt
and delayed gamma heating. The first is a generalized equation called the nuclear heating equation,
describing the time-dependent nuclear heating in a volume of interest, within an arbitrary geometry.
Such an equation is valuable to symbolically represent the relevant physical processes and abstract
them from any specific geometry, reaction or material; similar to the way the neutron transport
equation represents and formalizes neutron transport. The second is an extension of the neutron
point-kinetics equations to include the gamma population in a coupling of the neutron and gamma
populations.

Although the proposed nuclear heating equation is thought to be a valuable method to employ in
simple geometries, the coupled neutron-gamma point-kinetics equations should be an easier method
to apply to complex critical geometries such as reactor cores.

4.1 The nuclear heating equation

4.1.1 Considerations

As reviewed in previous chapters, the physical quantities and processes relevant to in-core nuclear
heating are:

1. the intensity of all incident radiation

2. the rate of nuclear reactions induced by all radiation

3. the intensity of all prompt radiation resulting from nuclear reactions

57
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4. the intensity of all delayed radiation resulting from nuclear reactions

5. the transport of all radiation through the geometry of interest

6. the conversion of radiation into other species during transport

7. the power deposited, by all radiation types, in the volume of interest.

Monte Carlo radiation transport codes, such as MCNP6 and TRIPOLI4, are capable of modelling
all the above mechanisms when combined with the capabilities of other codes.

MCNP6 is capable of modelling all the above processes alone in a single run, except the intensity
of all delayed radiation. Although MCNP6’s ACT card does have the capability to describe a time-
integrated description of heating resulting from delayed radiation, an integration is fundamentally
incapable of describing time-dependent gamma heating. The ACT card also does not work with the
KCODE mode, which is the prefered mode for almost all studies of critical assemblies.

Given the great capacity of MCNP6 and TRIPOLI4, the nuclear heating equation derived in this
chapter specifically considers these codes and employs variables which they are capable of calculating.

The nuclear heating equation has been derived useing the variable notation of Duderstadt when
possible (Duderstadt and Hamilton 1976).

4.1.2 Generalized geometry

As a physical basis for the equation, consider a collection of arbitrary geometries as shown in Fig-
ure 4.1, collectively refered to as V , divided into differential volumes d3r. The geometry V can be a
multiplying medium, or not, and can be either irradiated by an external source of neutrons and/or
gammas, or contain a neutron and/or gamma source, or both.

The nuclear heating equation is meant to describe the nuclear heating, HG(~rG, t) (in units of
MeV/s), within a target volume G at position ~rG and time, t; the target volume is shown as a
cylinder in Figure 4.1.

4.1.3 Nuclear heating

The total nuclear heating at position ~rG is simply equal to a sum of heating caused by all external
(ES) and internal (IS) radiation sources. This simple formulation is complicated by the fact that
internal radiation sources, which result from internal nuclear reactions, are comprised of prompt (P)
and delayed(D) particles:

H(~rG, t) = HES(~rG, t) +HIS(~rG, t) (4.1)

H(~rG, t) = HES(~rG, t) +HP(~rG, t) +HD(~rG, t) (4.2)

Monte Carlo codes (MCNP6 and TRIPOLI4) can calculate the position-dependent scalar neutron
flux φ(~r,E, t) for most geometries and sources; therefore φ(~r,E, t) is treated as the independent
variable in the derivation of the nuclear heating equation. This allows all radiation source terms
to be written as a function of φ(~r,E, t), which is convenient in reactor physics since essentially all
energy and radiation come from neutron-induced nuclear reactions.

φ(~r,E, t) is usually calculated by Monte Carlo codes while assuming long-term physical changes
such as burn-up are insignificant, and these codes emit delayed neutrons at the same time as prompt
neutrons (X-5 Monte Carlo Team 2008; 2-52). Therefore, calculated values of φ(~r,E, t) consider
both prompt and delayed neutrons and these values are time dependent in direct proportion to the
reactor power P (t) in the case of a critical geometry, or the external neutron source S(t) in the case
of a sub-critical geometry.
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Figure 4.1: Arbitrary geometry V , described by discrete volumes d3r, with an arbitrary volume of
interest G.

4.1.4 The mean transported energy

Consider a quantity called (in this report) the mean transported energy.
The heating of volume G as a result of radiation of energy E′ being emitted by the differential

volume d3r, depends on the ability of each emission to travel along the path |~rG − ~r| shown in
Figure 4.1. Radiation transport is a stochastic process, so even in the case of a source emitting
directly towards G, each emission from d3r will follow a different path and only some emissions will
arrive at volume G. The mean transported energy is defined as the average energy deposited in G
by an emission of energy E′ after being emitted by d3r.

Since the mean transported energy is dependent upon the physical properties (such as the geom-
etry and materials along the path |~rG − ~r|) and the properties of the emitted particle (such as the
particle species and particle energy E′), the mean transported energy is noted as E(|~rG − ~r| , E′);
it is also dependent upon the directional biasing of the emitted particles, but this is not explicitly
noted since all emissions considered in this thesis are isotropic.

The variable E(|~rG − ~r| , E′) is not written with explicit notation specifying the species of the
associated particle, even though it is species-dependent.

4.1.5 External sources

In reactor physics, external sources usually emit neutrons and are often made of Be and an alpha-
emitter. Refer to the entire source volume as W (not shown in Figure 4.1) and assume its per-unit-
volume source SW (~r,E′, t) to be a known quantity, in units of 1/cm3s; the source of volume d3r is
then S(~r,E′, t) = SW (~r,E′, t)d3r.

The power1 emitted (in units of MeV/s) by the source is simply the energy of the emitted particle,

1The term ”intensity” is often used to describe the power of a radiation source but ”intensity” is usually expressed
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E′, multiplied by the total source strength:

PES(~r,E′, t) = E′S(~r,E′, t) = E′SW (~r,E′, t)d3r. (4.3)

4.1.6 Heating by external sources

The expression of PES(~r,E′, t) can be converted into an expression of the heating of volume G by
the external source, by replacing the energy of the emitted particle, E′, with the mean transported
energy:

HES(~rG, ~r, E
′, t) = E(|~rG − ~r| , E′)SW (~r,E′, t)d3r. (4.4)

Assuming the source has a continuous energy spectrum, the total energy deposited within G at
time t is then:

HES(~rG, ~r, t) =

∫
E′
E(|~rG − ~r| , E′)SW (~r,E′, t)dE′d3r. (4.5)

and integrating over all d3r volumes in W finishes the expression:

HES(~rG, t) =

∫
W

∫
E′
E(|~rG − ~r| , E′)SW (~r,E′, t)dE′d3r. (4.6)

4.1.7 Probability and yield

This section summarizes the concepts of probability and yield within the context of radiation pro-
duction by nuclear reactions. The notation used in this section is employed in the nuclear heating
equation.

For any given reaction rate F the particle source can be written as S(E′) = φΣpy with the
following units:

S(E′) = φ Σ p y

particles
cm3s = neutron

cm2s
1

cm
emission
reaction

particles
emission (implicit units)

1
cm3s = 1

cm2s
1

cm unitless unitless (explicit units)

where:
S(E′) = the source of prompt particles of energy E′

p = probability of an emission per reaction
y = average yield of prompt particles of energy E′ per emission
F = φΣ = reaction rate; units 1/cm3s
Y = py = average yield of prompt particles of energy E′ per nuclear reaction.

For most nuclei, when considering particles specifically of energy E′, only a single particle is released
following certain nuclear reactions meaning y = 1 and Y = p. Since many nuclear data libraries
present p, p is used in the nuclear heating equation in place of Y .

in units of energy per unit time per unit area (Turner 2008); the term ”power” is used here because the quantity being
considered is in units of energy per unit time.
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4.1.8 Prompt sources

Particle sources from within V are easily represented symbolically if we recognize that in reactor
physics, all internal-source particles and the energy they carry result from nuclear reactions induced
by neutrons, either directly or indirectly. So any expression describing particle sources must be based
upon neutron-induced reaction rates.

For a single particle of energy E′ promptly emitted following nuclear reaction r, the source of
prompt radiations resulting from isotope i within the differential volume d3r is:

SirP(~r,E′, t) = pirPΣir(~r)φ(~r, t)d3r (4.7)

where:
SirP(~r,E′, t) = rate of prompt radiations of energy E′ emitted by reaction r at time t; in units
of 1/s
Σir(~r) = average macroscopic r cross section over the volume of interest; 1/cm
φ(~r, t) = average scalar neutron flux over the volume of interest at time t; 1/cm2s.

The term pirP is the probability of emitting a prompt particle of energy E′ from isotope i per reaction
r, and is unitless.

The prompt power released by reaction r by target isotope i can be determined if the energy of
the promptly emitted particle, E′irP (in units of MeV), is known:

P irP(~r,E′, t) = E′irPS
i
r(~r,E

′, t) (4.8)

P irP(~r,E′, t) = E′irPp
i
rPΣir(~r)φ(~r, t)d3r (4.9)

It is known that each isotope i may emit multiple particles per reaction r, each with a specific
energy and probability of emission, so the product E′irPp

i
rP should be replaced with a discrete sum∑

e(
eE′irP)(epirP) over each e prompt particle which may be released; this sum is also equal to the

average energy yield (in units of MeV) per reaction r:

P irP(~r, t) =
∑
e

(eE′irP)(epirP)Σir(~r)φ(~r, t)d3r = Σir(~r)φ(~r, t)
∑
e

(eE′irP)(epirP)d3r (4.10)

where:
eE′irP = energy of prompt particle e; MeV
epirP = probability of emitting a particle of energy eE′ from isotope i, per reaction; unitless.

4.1.9 Heating by prompt sources

The heating of volume G by the prompt particles emitted by isotope i induced by reaction r from
the differential volume d3r is obtained by replacing the energy of the emitted particle, eE′irP with
the mean transported energy:

Hi
rP(~rG, ~r, t) = Σir(~r)φ(~r, t)

∑
e

(eE(|~rG − ~r| , E′))(epirP)d3r. (4.11)

The same reaction in all other isotopes also contribute:

HrP(~rG, ~r, t) = φ(~r, t)
∑
i

Σir(~r)
∑
e

(eE(|~rG − ~r| , E′))(epirP)d3r, (4.12)

as do prompt radiation resulting from all other nuclear reactions:

HP(~rG, ~r, t) = φ(~r, t)
∑
r

∑
i

Σir(~r)
∑
e

(eE(|~rG − ~r| , E′))(epirP)d3r. (4.13)
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Finally, all reactions and all isotopes, from all d3r volumes in V sum to provide an expression of
HP(~rG, t):

HP(~rG, t) =

∫
V

φ(~r, t)
∑
r

∑
i

Σir(~r)
∑
e

(eE(|~rG − ~r| , E′))(epirP)d3r. (4.14)

4.1.10 Delayed particle sources

Following nuclear reaction r in the volume d3r by isotope i and the emission of one or more prompt
particles, isotope i may be converted into the isotope or fragment j; this nuclear reaction is often
noted as i(n, g)j, where g is the particle emitted following the reaction induced by the neutron n.
Isotope j may be radioactive and emit a delayed particle during decay which may contribute to
nuclear heating of G.

To describe the resulting delayed source it is important to know N j(~r, t), the atomic concentration
of j, since the source is proportional to the product λjN j(~r, t), where λj is j’s decay constant. The
Bateman equations will have to be employed to express N j(~r, t) as a rate of change:

dN j(~r, t)

dt
=
∑
r

∑
i

pirjσ
i
r(~r)φ(~r, t)N i(~r, t) +

∑
i

pijλ
iN i(~r, t)−∑

r

σjr(~r)φ(~r, t)N j(~r, t)− λjN j(~r, t) (4.15)

where:
j = index of all radioactive isotopes
i = index of all stable and radioactive isotopes, except the specific j under consideration
pirj = probability of producing isotope j by nuclear reaction r in isotope i; unitless∑
r

∑
i p
i
rjσ

i
r(~r)φ(~r, t)N i(~r, t)d3r = production rate of j by all reactions in all isotopes in

volume d3r; in units of 1/s
pij = probability of isotope i decaying into isotope j∑
i p
i
jλ
iN i(~r, t)d3r = production rate of j by decay of all other isotopes in volume d3r∑

r σ
j
r(~r)φ(~r, t)N j(~r, t)d3r = destruction rate of j by all reactions

λjN j(~r, t) = destruction rate of j by decay.

In the development of the nuclear heating equation a very general expression is desired, which
would allow φ(~r, t) to vary arbitrarily with time. Thus φ(~r, t) can’t be expressed as a fixed function
of t, such as φ(~r, t) = t2, but as a set of data. Analytical methods cannot then be used to resolve the
differential equation (4.15) into a universal expression for N j(~r, t), the nuclear heating equation will
have to be coupled with the differential equation and will be solvable only with numerical techniques.

Assuming equation (4.15) has been solved for N j(~r, t), the delayed source of particles of energy
E′ from isotope j within the differential volume d3r can be defined as:

SjrD(~rG, ~r, E
′, t) = pjλjN j(~r, t)d3r (4.16)

where pj is the probability of a particle emission per decay.

The emitted power (in units of MeV/s) is obtained, as with the prompt source, with the discrete
sum

∑
e(
eE′jrD)(epjrD) over each e delayed particle which may be released per decay:

P jrD(~rG, ~r, t) =
∑
e

(eE′jrD)(epjrD)λjN j(~r, t)d3r. (4.17)



4.1. THE NUCLEAR HEATING EQUATION 63

4.1.11 Heating by delayed sources

Using the mean transported energy again, the heating of volume G by delayed particles emitted by
isotope j induced by reaction r from the differential volume d3r is:

Hj
rD(~rG, ~r, t) =

∑
e

(eE(|~rG − ~r| , E′))(epjrD)λjN j(~r, t)d3r. (4.18)

When including the other radioactive isotopes in d3r the equation becomes:

HrD(~rG, ~r, t) =
∑
j

λjN j(~r, t)
∑
e

(eE(|~rG − ~r| , E′))(epjrD)d3r (4.19)

Integrating over all differential volumes d3r in V gives an expression for total delayed nuclear heating:

HrD(~rG, t) =

∫
V

∑
j

λjN j(~r, t)
∑
e

(eE(|~rG − ~r| , E′))(epjrD)d3r. (4.20)

4.1.12 The nuclear heating equation

The whole equation is then completed by placing equations (4.6), (4.14) and (4.20) in equation (4.2):

H(~rG, t) =

∫
W

∫
E′
E(|~rG − ~r| , E′)SW (~r,E′, t)dE′d3r +

∫
V

φ(~r, t)
∑
r

∑
i

Σir(~r)
∑
e

(eE(|~rG − ~r| , E′))(epirP)d3r

+

∫
V

∑
j

λjN j(~r, t)
∑
e

(eE(|~rG − ~r| , E′))(epjrD)d3r (4.21)

dN j(~r, t)

dt
=
∑
r

∑
i

pirjσ
i
r(~r)φ(~r, t)N i(~r, t) +

∑
i

pijλ
iN i(~r, t)−

∑
r

σjr(~r)φ(~r, t)N j(~r, t)− λjN j(~r, t)

...

one instance of the ODE for each j

For convenience, the variables are defined again here:
t = time
j = index of all radioactive isotopes
i = index of all stable and radioactive isotopes, except the specific j under consideration
e = index of (prompt or delayed) particle released following reaction r
E′ = energy of the particle emitted following a reaction
~r = position vector of the differential volume d3r
~rG = position vector of target volume G
φ = scalar flux of incident particles
N(~r, t) = atomic concentration at position ~r at time t
λ = decay constant
Σir(~r) = average macroscopic r cross section over volume d3r
E(|~rG − ~r| , E′) = mean transported energy
epirP = probability of emitting prompt (P) particle e of energy E′ from isotope i per reaction r
pirj = probability of producing isotope j by nuclear reaction r in isotope i; unitless

pij = probability of isotope i decaying into isotope j.

Notice equation (4.21) has no sub or super-script variable to index the incident particle species
considered. In this thesis, equation (4.21) will be applied in the context of incident neutrons, with
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φ representing scalar neutron flux and Σ representing the neutron macroscopic cross section, but
another instance of equation (4.21) could consider protons, or neutrinos or muons. The user simply
must decide which incident particles are relevant.

4.1.13 Using the heating equation

Although equation (4.21) may appear intractable, it is only a symbolic representation of multi-
ple quantities which are easily understood. Furthermore, it has been derived specifically with the
capabilities of Monte Carlo codes such as MCNP6 and TRIPOLI4 in mind.

Calculating the mean transported energy

The mean transported energy E(|~rG − ~r| , E′) is a quantity which can be calculated by Monte
Carlo codes. Each E(|~rG − ~r| , E′) term is equal to the MCNP6 (or TRIPOLI4) energy deposi-
tion tally/score over the volume G obtained from a model of V with a source of E′ particles emitted
by d3r. In MCNP6 the tally can be multiplied by the mass of G to convert the MCNP6 tally units
of MeV/g to units of MeV. Explicitly, E(|~rG − ~r| , E′) has units of energy; implicitly, all energy
deposition tallies/scores calculated by MCNP6/TRIPOLI4 have units of energy per source particle.

These Monte Carlo energy deposition tallies/scores are defined as the mean energy deposition of
a sample group of particles (X-5 Monte Carlo Team 2008; 2-109). This quantity is universally used
to obtain a predicted heating of volume G, by multiplying by the tally/score by the rate of emitted
source particles in the physical system. The same quantity is used in this thesis to represent the
average energy deposited by a single particle; since this quantity is used in an unusual way in a new
equation it is described with a new label, mean transported energy, within this thesis.

Note that E(|~rG − ~r| , E′), as calculated by MCNP6 and TRIPOLI4, differs depending upon the
number of particle species being transported in the Monte Carlo model; for example, the calculated
energy deposition by photons is greater when electrons and positrons are not transported. The user
must decide which species must be transported, depending on the application.

Figure 4.2: The volume V describing a stylized reactor core made of plate fuel, with each fuel plate
divided into discrete volumes.
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Energy binning

Calculating many eE(|~rG − ~r| , E′) terms for each ~r and E′ could easily become a large task for a
complex geometry with many source gammas. To simplify the process it is proposed the source
gammas be binned into the 25 energy bin structure presented in Appendix D.2. This will limit the
number of E(|~rG − ~r| , E′g) terms for each ~r to 25 and should accurately represent the gamma sources.

While using the energy binning method, instead of calculating eE(|~rG − ~r| , E′) terms for each e
emission kE(|~rG − ~r| , E′) is calculated for each energy bin; the bins are indexed by k. Calculating
kE(|~rG − ~r| , E′) with a Monte Carlo code requires defining a gamma source within ~r which samples
energy E′ uniformly between the energy boundaries of bin k.

In a solution of the nuclear heating equation employing the energy binning method, the proba-
bility of obtaining a gamma from energy bin k is:

kp =
∑
e

(ep) (4.22)

where the summation considers only those emissions with eE′ between the energy bin boundaries of
bin k.

No optimization of the bin boundary locations has been conducted apart from the considerations
discussed in Appendix D.1. Any optimization would be dependent upon geometry.

The nuclear heating equation applied to a reactor core

The nuclear heating equation could be used to describe the heating in a single volume G when V is
an entire reactor core, as is stylistically presented in Figure 4.2. Each fuel plate could be sectioned
axially (and/or radially) into volumes d3r where φ(t) is assumed spatially constant; this proposal
would require the calculation of n · p · k · g E(|~rG − ~r| , E′) terms, where n is the number of d3r
volumes, p the number of fuel plates, k the number of gamma energy groups and g the number of ~rG
locations under investigation. More volumes would be required if the coolant, structural members
or control devices are deemed significant sources of gammas. This is a burden left to sophisticated
programmers.

4.2 The coupled neutron and photon point kinetics (PPK)
model

Although the proposed nuclear heating equation is thought to be a thorough representation of time-
dependent nuclear heating, an easier method to employ in complex critical geometries is sought.

Considering the success of the neutronic point kinetics equations and the current difficulty asso-
ciated with calculating the delayed gamma flux, this section proposes extending the neutron point
kinetics equations to include photons.

To begin the derivation of the two-particle point kinetics model, the rate production of all gamma
sources are written symbolically. These rates are then summed to produce a time-dependent descrip-
tion of the total gamma population in the core.

4.2.1 Review of the point reactor kinetics model

The point reactor kinetics model is derived from the one-speed diffusion equation and is employed of-
ten to describe the time behaviour of neutrons in a reactor. The diffusion equation for a homogeneous
discrete volume d3r is (Duderstadt and Hamilton 1976; 156):

1

υ

∂φ(~r, t)

∂t
−D∇2φ(~r, t) + Σaφ(~r, t) = νΣfφ(~r, t). (4.23)



66 CHAPTER 4. NEW MODELS OF TIME-DEPENDENT IN-CORE GAMMA HEATING

The definition of φ(~r, t) must be clear. φ(~r,E, t) is the scalar flux of neutrons at energy E, it is
defined as neutron density N(E) in the discrete volume d3r at position ~r, multiplied by the neutron
velocity υ(E) (Duderstadt and Hamilton 1976; 106). The scalar flux φ(~r, t) in the one-speed diffusion
equation is equal to the sum of the scalar flux of all neutrons at all energies in the discrete volume
d3r at position ~r at time t (Duderstadt and Hamilton 1976; 109):

φ(~r, t) =

∞∫
0

φ(~r,E, t)dE. (4.24)

The constants in equation (4.23), neutron velocity, υ, neutron diffusion coefficient, D, macroscopic
absorption cross section, Σa and macroscopic fission cross section, Σf , are flux-weighted averages
over each discrete volume d3r, which are then volume-weighted over the entire reactor volume V
(Duderstadt and Hamilton 1976; 290):

O =
1∫

V

d3r

∫
V

∞∫
0

O(~r,E)φ(~r,E, t)dE

∞∫
0

φ(~r,E, t)dE

d3r (4.25)

where O(~r,E) is an energy and position dependent variable such as υ(~r,E), D(~r,E), Σa(~r,E),
Σf(~r,E). Equation (4.23) assumes these variables are constant with time.

Equation (4.23) is often applied to a slab, infinite in two dimensions, to produce simplistic but
informative solutions. However, to solve the equation through separation of variables the scalar flux
must be a product of two independent functions, one spatial and one temporal (Duderstadt and
Hamilton 1976; 199):

φ(x, t) = ψ(x)T (t) (4.26)

The separated differential equation of the spatial function ψ(x) is a homogeneous second order
linear equation with constant coefficients (Zill and Cullen 2000; 119); the slab’s boundary conditions
force ψ(x) to zero at specific values of x and result in an infinite number of solutions for ψ(x)
(Zill and Cullen 2000; 103). The separated differential equation of the temporal function T (t) is
a homogeneous linear first order equation; T (t) is thus an exponential function, which also has
an infinite number of solutions, with one corresponding to each solution of ψ(x) (Duderstadt and
Hamilton 1976; 200). Because equation (4.23) is homogeneous, the general solution of φ(x, t) can be
expressed as a superposition of all solutions (Zill and Cullen 2000; 105):

φ(x, t) =

∞∑
j(odd)

ψj(x)Tj(t) (4.27)

For t > 0 in a critical slab with k = 1 all terms above j = 1 decay away leaving only one solution,
φ(x, t) = ψ1(x)T1(t). When k = 1 the neutron flux is independent of time and φ(x, t) = ψ1(x); thus
the flux shape of a critical reactor is described by a single solution ψ1(x), called the fundamental
mode or the shape factor.

A full description of the neutron flux with time must include the delayed neutrons. The source
term of equation (4.23) is updated with delayed terms and coupled to a set of six differential equations
describing the rate of change of atomic concentration of the nth precursor group, Cn (Duderstadt
and Hamilton 1976; 238):
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1

υ

∂φ(~r, t)

∂t
−D∇2φ(~r, t) + Σaφ(~r, t) = (1− β)νΣfφ(~r, t) +

6∑
n=1

λnCn(~r, t) (4.28)

∂Cn(~r, t)

∂t
= −λnCn(~r, t) + βnνΣfφ(~r, t) n = 1, 2...6.

Notice the right hand side of this equation, the neutron sources, isn’t an energy-dependent description
but is a description of the energy-integrated (i.e. total) neutron source.

The Cn terms are concentrations of fictitious isotopes which are defined to decay simply with
the emission of a single delayed neutron. The half lives λn and fission yields βn of each isotope
are obtained with the regression method of Keepin (Keepin et al. 1957); these constants represent
”grouped” isotopes which produce an equivalent number of delayed neutrons as the hundreds of real
fission products which emit delayed neutrons.

Since the higher order modes decay very quickly given D, Σa and physical size of most reactors,
the higher order spatial modes, j > 1, can be ignored; this makes equation (4.27) much simpler
(Duderstadt and Hamilton 1976; 235). The scalar flux and concentrations Cn are then each defined
as the product of two independent functions. They are written here using the common notation for
the temporal function n(t) (Duderstadt and Hamilton 1976; 238):

φ(~r, t) = υn(t)ψ1(~r) (4.29)

Cn(~r, t) = Cn(t)ψ1(~r). (4.30)

The neutron point kinetic equations can then be derived from equation (4.28) using separation
of variables (Duderstadt and Hamilton 1976; 239):

dn(t)

dt
=

[
ρ(t)− β

Λ

]
n(t) +

6∑
n=1

λnCn(t) (4.31)

dCn(t)

dt
=
βn
Λ
n(t)− λnCn(t) n = 1, 2...6

where the reactivity ρ(t) is defined as:

ρ(t) =
k(t)− 1

k(t)
, (4.32)

Λ = l/k is the mean generation time between birth of neutron and subsequent absorption inducing
fission and l is the mean neutron lifetime.

Since ψ1(~r) is normalized as (Duderstadt and Hamilton 1976; 236):∫
V

ψ1(~r)d3r = 1, (4.33)

it has units of:

[ψ1(~r)] =
1

cm3
. (4.34)

The quantity n(t) is unitless and represents the total number of neutrons in the reactor at time
t (Duderstadt and Hamilton 1976; 236). The function n(t) can be thought of as an amplitude factor
and ψ1(~r) as the neutron population’s shape factor. Similarly the neutron precursor concentration
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Cn(t) is unitless and represents the total number of fictitious precursor atoms in the reactor at time
t.

Within the context of the point kinetics equations the variable n(t) is rarely used to represent
an absolute value since it can be arbitrarily normalized (Duderstadt and Hamilton 1976; 236). For
example, the fission power (or any other quantity proportional to a reaction rate) at ~r is calculated
as:

P (~r, t) = E Σ(~r) φ(~r, t)

P (~r, t) = E Σ(~r) υ n(t) ψ(~r)

W
cm3 = J 1

cm
cm
s

1
cm3

where E is the energy released per fission. When calculating the fission power released over the
entire core:

P (t) = E Σ
∫
V
φ(~r, t)d3r

P (t) = E Σ
∫
V
υn(t)ψ(~r)d3r

P (t) = E Σ υ n(t)
∫
V
ψ(~r)d3r

P (t) = E Σ υ n(t) 1

W = J 1
cm

cm
s

Because P (~r, t), P (t) and all other reaction-rate-dependent quantities vary directly with n(t), n(t)
can be expressed relative to any convenient reference value nref as n(t)/nref while conserving the
required units. Furthermore, n(t)/nref can be cited as ”reactor power” since power relative to some
reference power Pref varies directly with n(t)/nref.

For clarity, in this thesis the absolute neutron population is always expressed as n(t), and the
relative population as n(t)/nref.

In summary, equations (4.31) track the relative population of neutrons and neutron precursors
within the entire reactor, without regard for where they exist within the core.

4.2.2 Derivation of the two-particle point kinetics model

Initial assumptions of the two-particle point kinetics model

Using the neutron point kinetics equations as an example, the derivation of the two-particle point
kinetics equations can begin by making the following fundamental assumptions:

1. g(t) is the total population of gamma rays in the reactor. g(t) includes gammas of
all energies, in all volumes, produced by all reactions and all decays, from all isotopes in the
entire core. This definition is analogous to the definition of n(t) in equation (4.31).

2. Delayed gammas can be modeled as resulting from fictitious precursor isotopes,
which always decay with the emission of a single gamma. These isotopes are indexed
by g, and their concentrations are noted as Cg(t). This assumption is analogous to Keepin’s
modeling of the delayed neutron precursor isotopes.
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3. The spatial distribution of the gamma flux is time-independent and expressed as
κ(~r). This variable is similar to the neutron spatial flux ψ1(~r) as expressed in equation (4.29).

If, as neutrons in equation (4.29), the reactor’s time-dependent total gamma population g(t) and
the gamma precursor isotope concentrations Cg(t) are assumed independent of the gamma spatial
distribution κ(~r):

Φ(~r, t) = υγg(t)κ(~r) (4.35)

Cg(~r, t) = Cg(t)κ(~r). (4.36)

Derivation of the two-particle point kinetics model can now proceed by considering all gamma
sources in an effort to develop expressions for g(t) and Cg(t) .

Prompt gammas from fission

To write an expression for the rate of prompt fission (FP) gammas generated in the entire reactor,
SFP, assume the prompt gamma spectra is described by an energy grid with K energy bins (indexed
by k) as discussed in section 4.1.13. If M is the total number of fissionable isotopes (indexed by m),
kpmFP is the average number of gamma rays produced in energy bin k when isotope m is fissioned by
a neutron. Similar to equation (4.22), kpmFP is calculated as:

kpmFP =
∑
e

(epmFP), (4.37)

where epmFP is the probability of emitting a single gamma e of energy E′. The summation considers
only those emissions with eE′ between the energy bin boundaries of bin k. If the kpmFP terms are
known to be dependent upon the incident neutron energy E, these values will have to be averaged
over the core. The total prompt fission yield of gammas is then:

pmFP =

K∑
k

(kpmFP). (4.38)

The fission rate of isotope m in differential volume dr3 is:

FmF (~r) = [ΣmF (~r)] [φ(~r)] =


∞∫
0

ΣmF (~r,E)φ(~r,E)dE

∞∫
0

φ(~r,E)dE


 ∞∫

0

φ(~r,E)dE



=

∞∫
0

ΣmF (~r,E)φ(~r,E)dE

where:

[FmF (~r)] =
1

cm3s
. (4.39)

Knowing equation (4.38), the prompt fission gamma source from isotope m in differential volume
dr3 is then:

SmFP(~r) = pmFPF
m
F (~r) = pmFP

∞∫
0

ΣmF (~r,E)φ(~r,E)dE [SmFP(~r)] =
1

cm3s
(4.40)
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and the total source from m in all differential volumes dr3 in the entire core volume V is:

SmFP =

∫
V

SmFP(~r)dr3 = pmFP

∫
V

∞∫
0

ΣmF (~r,E)φ(~r,E)dEdr3 [SmFP] =
1

s
(4.41)

Repeating the same summation for each of the M fissionable isotopes gives an expression for the
total prompt fission source SFP:

SFP =

M∑
m=1

pmFP

∫
V

∞∫
0

ΣmF (~r,E)φ(~r,E)dEdr3. (4.42)

Alternatively, the total fission prompt gammas resulting from isotope m can be calculated by
multiplying the core averaged macroscopic cross section ΣmF by the total core scalar flux φ = υn(t)
where υ is the core averaged neutron velocity and n(t) is the total number of neutrons in the reactor
at time t:

n(t) =

∫
V

n(~r, t)dr3 [n(~r, t)] =
1

cm3
[n(t)] = unitless scalar, (4.43)

SmFP = pmFPΣmF υn(t). (4.44)

The total source term SFP is then written as:

SFP =

M∑
m=1

pmFPΣmF υn(t). (4.45)

Notice this derivation of an expression for SFP assumed the material properties and flux are inde-
pendent of time.

Delayed gammas from fisson

The absolute fission yield of the fictitious precursor isotope g created by a fission of isotope m, is
denoted here as gpmFD where delayed fission is indicated by FD. Adopting the method of Keepin, the
equation describing the number of delayed gammas being produced at time t following fission of a
single atom of isotope m is written as the summation of G exponential decay terms, corresponding
to the G fictitious isotopes (Keepin et al. 1957; 6):

pmFD(t) =

G∑
g=1

gpmFD · e−(gλmFD)(t) (4.46)

where precursor isotope g decays at a rate described by gλmFD. Notice gpmFD and pmFD(t) are assumed
not to depend on the incident neutron energy. Nor do these variables describe the energy of the
gammas emitted; pmFD(t) describes the total number of gamma rays at all energies from m.

The time-dependent concentration of precursor isotope g, resulting from fission of isotope m, in
differential volume dr3, at time t, is defined as gCmFD(~r, t); integrating this variable over the entire
core volume V gives the total in-core concentration gCmFD(t) at time t:

gCmFD(t) =

∫
V

gCmFD(~r, t)dr3 [gCmFD(~r, t)] =
1

cm3
[gCmFD(t)] = unitless scalar. (4.47)
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The rate of change in this concentration at time t, in differential volume dr3, is a balance between
production from fission and loss by decay:

dgCmFD(~r, t)

dt
= gpmFDΣmF (~r)υ(~r)n(~r, t)− gλmFD

gCmFD(~r, t) (4.48)

...

M ·G instances of this equation

Assuming each of the M fissioning isotopes can have its delayed gammas described by G precursor
groups, there are M ·G instances of this equation. The same equations can be applied to the entire
core volume by using the core-averaged macroscopic cross section Σmf , core-averaged neutron velocity
υ and n(t), the total number of neutrons in the reactor at time t:

dgCmFD(t)

dt
= gpmFDΣmF υn(t)− gλmFD

gCmFD(t) (4.49)

...

M ·G instances of this equation.

Notice equation (4.49) assumes the isotope g does not absorb neutrons, and thus the only loss of
concentration is by decay.

Solving for gCmFD(~r, t) allows one to calculate the total delayed fission gamma source at time t,
in differential volume dr3:

SFD(~r, t) =
∑M
m=1

∑G
g=1

gλmFD
gCmFD(~r, t), (4.49)

where the decay yield of each isotope is 1, by definition. The total delayed fission gamma source in
the entire reactor volume V is then:

SFD(t) =

∫
V

M∑
m=1

G∑
g=1

gλmFD
gCmFD(~r, t)dr3

=

M∑
m=1

G∑
g=1

gλmFD

∫
V

gCmFD(~r, t)dr3

SFD(t) =

M∑
m=1

G∑
g=1

gλmFD
gCmFD(t). (4.50)

Prompt gammas from neutron capture

Not all isotopes within the reactor will capture neutrons in significant quantities. For the L isotopes
which do, assume plCP is the absolute number of prompt capture (CP) gamma rays emitted by isotope
l. The source of these gammas over the entire core volume V is similar to the prompt fission gamma
source equation (4.45):

SCP =

L∑
l=1

plCPΣlCυn(t). (4.51)
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Delayed gammas from neutron capture

The L neutron capture isotopes are likely to emit decay gammas. In the case of a single gamma
emission, the decay rate will be described by a decay constant λlCD and plCD capture delayed gam-
mas are emitted. For isotopes with complicated decay schemes, the dominant decay constant and
cumulative gamma yield are used here as an approximation.

The rate of change in the activated isotope’s concentration at time t, in differential volume dr3,
ClCD(~r, t), is a balance between production from fission and loss by decay:

dClCD(~r, t)

dt
= plCDΣlC(~r)υn(~r, t)− λlCDC

l
CD(~r, t) (4.52)

...

L instances of this equation.

Using the core-averaged macroscopic cross section Σlcap, core-averaged neutron velocity υ and n(t),

the total number of neutrons in the reactor at time t, equations expressing ClCD(~r, t) over the entire
reactor volume V are:

dClCD(t)

dt
= plCDΣlCυn(t)− λlCDC

l
CD(t)

...

L instances of this equation. (4.53)

The total delayed capture gamma source in the entire reactor volume V is:

SCD(t) =

∫
V

L∑
l=1

λlCDC
l
CD(~r, t)dr3

=

L∑
l=1

λlCD

∫
V

ClCD(~r, t)dr3

SCD(t) =

L∑
l=1

λlCDC
l
CD(t). (4.54)

It is assumed the activated isotopes do not capture another neutron after their formation.

Gamma leakage and absorption

So far only gamma sources which contribute positively to g(t) have been considered. The rate
gammas are lost either through leakage from the core geometry or by absorption is expressed here by
assuming the loss rate is simply proportional to g(t), where the factor of proportionality is defined
as Lc with units of 1/s:

loss rate = Lcg(t). (4.55)
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The coupled neutron-gamma point kinetics equations

The neutronic point-kinetics equations (4.31) can be extended to include coupled differential equa-
tions describing g(t) by including equations (4.45), (4.49), (4.50), (4.51), (4.54) and (4.55):

dn(t)

dt
=

[
ρ(t)− β

Λ

]
n(t) +

6∑
n=1

λnCn(t) (4.56)

dCn(t)

dt
=

βn
Λ
n(t)− λnCn(t) n = 1, 2...6.

dg(t)

dt
=

M∑
m=1

pmFPΣmF υn(t) +

M∑
m=1

G∑
g=1

gλmFD
gCmFD(t) +

L∑
l=1

plCPΣlCυn(t)

+

L∑
l=1

λlCDC
l
CD(t)− Lcg(t)

dgCmFD(t)

dt
= gpmFDΣmF υn(t)− gλmFD

gCmFD(t)

...

M · G instances of this equation

dClCD(t)

dt
= plCDΣlCυn(t)− λlCDC

l
CD(t)

...

L instances of this equation

where:
n(t) = total number of neutrons in the core at time t; unitless
g(t) = total number of gamma rays in the core at time t; unitless
L = number of neutron capture isotopes, indexed by l
M = number of fissionable isotopes, indexed by m
υ = core-averaged neutron speed; cm/s
ΣmF = core-averaged macroscopic fission cross section of isotope m; 1/cm
ΣlC = core-averaged macroscopic capture cross section of isotope l; 1/cm
pmFP = prompt gamma yield from fission of isotope m; unitless
plCP = absolute number of prompt capture gammas emitted by isotope l per reaction; unitless
gpmFD = absolute number of delayed gammas emitted by a fission of isotope m; unitless
plCD = absolute number of delayed gammas emitted by activated isotope l per reaction; unitless
gCmFD(t) = number of fictitious precursor atoms of isotope g, created by fission of m, in entire
core; unitless
ClCD(t) = number of activated atoms of isotope l in entire core; unitless
gλmFD = decay constant of fictitious precursor isotope g, created by fission of m; 1/s
λlCD = decay constant of activated isotope l; 1/s
Lc = loss rate coefficient.

Obtaining decay constants and yields - at the source

As shown in previous sections, the method of Keepin can be used to describe the delayed gamma
emissions in a grouped manner. Probably the easiest way to obtain this delayed gamma emission
source data is from the depletion module of Scale 6.1, ORIGEN-S (ORNL 2011b).
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As predicted by ORIGEN-S, the total number of gammas emitted per second from a 0.3 mg 235U
sample following a very short irradiation is plotted in Figure 4.3. Using Keepin’s grouping method,
the following equation can be fit to the data to obtain the yields Ai and decay constants λi of the Q
precursor groups.

A comprehensive investigation of this method is left for others to complete.

f(t) =

Q∑
q=0

Ai · e−λi·t (4.57)

Figure 4.3: (L) ORIGEN-S decay gamma source data and the resulting fit equation of the form
(4.57), on a lin-lin plot, (R) and on a log-log plot.

Obtaining decay constants and yields - at the point of absorption

Rather than describing the delayed yields and decay constants of grouped gammas for each isotope,
as described in the previous section, it might be possible to experimentally measure the relative
gamma population g(t)/gref with a calorimeter. Such a measurement would describe, at once, the
net delayed gamma dynamics from all fissionable and neutron-capture isotopes in a specific reactor.

By equation (4.35) the g(t) measured at one location would apply to all other ~r.
Instead of considering each fissionable isotope and each neutron-capturing isotope seperately, as

in equation (4.56), a calorimeter can be used to develop a much simpler version of the two-particle
point kinetics model.

The position and time-dependent photon heating of an in-core object G can be calculated if the
local gamma flux, Φ(~rG, t), and the effective mass energy-absorption coefficient, µeffective(G,Eavg)/ρ,
are known:

H(~rG, G, t) =
µeffective(G,Eavg)

ρ
Eavg(~rG)Φ(~rG, t) (4.58)

H(~rG, G, t) =
µeffective(G,Eavg)

ρ
Eavg(~rG)υγg(t)κ(~r) (4.59)

where Eavg(~rG) is the average photon energy at ~rG, µeffective(G,Eavg)/ρ has units of 1/cm·cm3/g and
equation (4.35) was used to define Φ(~rG, t). An ”effective” µ is required because section E.4.1 showed
the actual quantity of deposited energy is dependent upon the geometry of G since self-shielding of
the target G can be significant; including G as an independent variable in µeffective(G,Eavg) means ”µ
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is dependent upon both the geometry and Z of G.” Ignore the problem of obtaining Eavg(~rG, t) and
µeffective(G,Eavg)/ρ since the above equation is not meant to be practical and is simply illustrative.

If a data series ofH(~rG, G, t) were experimentally obtained with an in-core calorimeter, a reference
heating value Href(~rG, G) associated with a reference gamma population gref could be used to obtain
a relative time-dependent description of g(t):

H(~rG, G, t)

Href(~rG, G)
=

µeffective(G,Eavg)
ρ

µeffective(G,Eavg)
ρ

Eavg(~rG)

Eavg(~rG)

υγ
υγ

g(t)

gref

κ(~r)

κ(~r)
=
g(t)

gref
. (4.60)

Thus by equation (4.60), an in-core dynamic measurement using a calorimeter provides an expres-
sion of both H(~rG, G, t) and g(t). If the measurement is designed appropriately, Keepin’s grouping
and regression analysis can be used with the empirical data to describe the dynamic behavior of the
delayed gammas, resulting in grouped gamma yields and decay constants.

Once these group constants have been determined they can be used with a version of the cou-
pled point-kinetics equations to determine g(t) for any n(t), and by equation (4.60) also determine
H(~rG, G, t). These constants allow the point-kinetics equations to be rewritten ”top-down” instead
of writing the equations by summing the gamma production rates from all isotopes and reactions in
a ”bottom-up” manner as in equations (4.56); this eliminates the need to obtain the variables gpmFD,
plCD, gλmFD, ΣmF , ΣlC and λlCD for each M , L and G:

1

nref

dn(t)

dt
=

[
ρ(t)− β

Λ

]
n(t)

nref
+

6∑
n=1

λnCn(t) (4.61)

dCn(t)

dt
=
βn
Λ

n(t)

nref
− λnCn(t) n = 1, 2...6.

1

gref

dg(t)

dt
= pPυΣ

n(t)

nref
− Lc

g(t)

gref
+

G∑
g=1

λgCg(t)

dCg(t)

dt
= pgυΣ

n(t)

nref
− λgCg(t)

...

G instances of this equation.

where:
n(t)
nref

= relative number of neutrons in the core at time t; unitless
nref = reference number of neutrons in the core; unitless
g(t)
gref

= relative number of gammas in the core at time t; unitless
pP = core-averaged prompt gamma yield per neutron reaction, for all relevant reactions
and isotopes
pg = probability of creating one delayed gamma precursor Cg(t)
gref = reference number of gammas in the core; unitless
λg = decay constant of the delayed group gamma group g; 1/s
Cg(t) = gamma precursor population in entire core; unitless
υ = core-averaged neutron speed; cm/s
Σ = core-averaged macroscopic cross section, for all relevant gamma-producing reactions
and isotopes; 1/cm
G = the number of precursor groups which are required to accurately describe the total
delayed fission and capture gammas
Lc = loss rate coefficient.
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Solving equation (4.61) for g(t)/gref would then allow H(~rG, G, t) to be known for all n(t) at any
~rG, provided Href(~rG, G) was measured or calculated for some object G.

The product pPυΣn(t)/nref represents the prompt gamma production rate, normalized to nref.
The product pgυΣn(t)/nref represents the delayed gamma precursor production rate, of group g,
normalized to nref.

The absolute value of g(t) can‘t be obtained because Eavg(~rG) and µeffective(G,Eavg)/ρ in equa-
tion (4.59) are unknown.

There is a potential problem with using a calorimeter to infer information about g(t)/gref: the
measured heating H(~rG, G, t) is material dependent. Some calorimeter material (object G) may
have a very small µ(Z,E)/ρ at some gamma energies E. Despite this possibility, the method still
has validity since such hard-to-absorb gammas may also not be consequential in other common
materials and therefore be inconsequential. This underestimation could be amplified by constructing
a calorimeter of a material known to be a poor gamma absorber, this is unlikely to happen though
since the very purpose of a calorimeter is to absorb radiation.

It is also possible a calorimeter made of material Z1 and another of Z2 would predict different
magnitudes of g(t), as caused by the relative values of µ(Z,E)/ρ over a range of E. This possibility
will need to be considered further.



Chapter 5

Methodology of analysis

The previous chapter proposed the grouping method of Keepin be applied to a calorimeter’s signal
to obtain a grouped description of the delayed gamma population. It should be possible to obtain
such a signal from the SCK-CEN GT in MNR.

This chapter describes the methods employed in this thesis to process the SCK-CEN GT signal
to obtain the grouped delayed gamma group yields and decay constants of equation (4.61). The
subsequent chapter contains the results of this analysis and makes frequent references to specific
sections in this chapter.

5.1 The McMaster Nuclear Reactor

The McMaster Nuclear Reactor (MNR) is an open-pool, materials testing reactor (MTR-type) on the
McMaster University campus and operates on an intermittent 16 hr/day, 5-6 days per week schedule,
where reactor power usually varies between 2.0 and 3.0 MW. The reactor serves as an educational and
research platform for the university but also conducts a variety of commercial applications, notably
the production of the medical isotope 125I, neutron radiography and neutron activation analysis.

As most research reactors, MNR is used for in-core sample irradiation, so there is a desire to
characterize the gamma flux to predict the nuclear heating of both in-core samples and in-core 125I
production equipment. As discussed previously, isotope production techniques would benefit from
this knowledge.

Gamma heating is relevant from a safety perspective when considering increasing MNR operating
power to increase isotope production rates. Increasing reactor power to 5 MW would require thorough
examinations of nuclear heating rates. The temperature of the 125I rigs have been measured in the
past and are known to react strongly to increases in reactor power (Avelar 2013).

5.1.1 MNR Specifications

MNR was designed by AMF Atomics (Canada) Ltd. and first went critical in 1959 after being
granted its first operating license by the Atomic Energy Control Board (AECB). Since then it
has been granted successive operating licences by the old AECB, and its successor the now-named
Canadian Nuclear Safety Commission (CNSC).

MNR operated at 1 MW until 1964 when it increased to 2 MW. During the extended shutdown
of Chalk River’s NRU in the early 1970s, MNR was used for 99Mo production and operated at 5
MW (McMaster Nuclear Reactor 2002; Sec.01). Currently MNR operates at 3 MW Monday through
Friday, sixteen hours a day, with two eight-hour shifts of operation (McMaster Nuclear Reactor 2002;
Sec.01).

77
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Figure 5.1: (L) Profile cutaway view of fuel assembly showing cylindrical bottom end fitting; (C)
top view of standard fuel assembly; (R) top view of control fuel assembly with guide tube for control
rod.

Figure 5.2: (L) Six control fuel assemblies amongst standard assemblies in a core arrangement; (R)
top of core view.

The reactor has a pool-type configuration, meaning the core is submerged in a pool of de-
mineralized light water. The core is built by assembling with the MTR fuel on the grid plate.
The MTR fuel elements are shown stylistically in Figure 5.1. The fuel elements stand vertically
when assembled in the core on the 9x6 grid plate — see Figure 5.2. The core is assembled by placing
the bottom end fittings of the fuel assemblies into one of the 54 holes in the rectangular grid plate.
The grid plate holes accept either fuel elements or other core components such as the graphite re-
flector blocks; the unused holes are plugged to prevent flowing pool water (during forced-convection
cooling) from bypassing the coolant channels.

As with many other MTR-type reactors, MNR was designed to operate with 93% 235U (highly
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enriched uranium - HEU). It has since been converted to 20% LEU fuel.
The fuel elements currently used in MNR contain eighteen plates (Figure 5.1 (C)), the inner

sixteen plates contain uranium fuel; the outer two plates are made of only aluminum and are referred
to as dummy plates. The control fuel elements (Figure 5.1 (R)) have the same outer dimensions as
a standard element but also have an allowance for the penetration of a neutron absorbing control
rod. All nine of the plates in a control element contain fuel.

Each fuel plate is fabricated by sandwiching the uranium-aluminum fuel meat between two thin
aluminum cladding plates. The fuel meat is 0.51 mm thick and composed of the uranium/silicon
molecule U3Si2 bound in an aluminum matrix (McMaster Nuclear Reactor 2002; Table 5-3). The
aluminum cladding is 0.38 mm thick, and the total fuel plate width is 1.27 mm. The coolant channel
between the plates is nominally 3 mm wide. Each fuel plate is slightly curved to control the direction
of thermal expansion. Each LEU standard fuel assembly contains 225 g of 235U.

MNR is controlled by six metallic neutron absorber rods which protrude into the control elements
from above the core. The vertical positions of all six control rods are set by electric linear actuators.
Five rods are the manually controlled shim/safety rods (SSR). These are made of Cd-In-Ag and are
used for coarse power adjustment and for rapid gravity-drop safety insertions. The sixth rod is a
stainless steel regulating rod, whose position is actively adjusted by the control system.

During refueling, a small number of fresh fuel elements are exchanged for end-of-life elements. As
fuel elements reach their end-of-life they are removed and the remaining assemblies are shuffled to
obtain optimum burnup and to satisfy operational requirements. The core arrangement and number
of components may change during a fuel change. The manipulation of the fuel assemblies and other
core components is done manually with a long tool which allows the operator to reach the core from
a bridge spanning the reactor pool, directly above the core.

Under high power conditions (>100 kW) the pool water is forced through coolant channels
between the fuel plates. The coolant enters through the top of each fuel element and exits through
the bottom of the cylindrical bottom end fitting (BEF) (shown on the left in Figure 5.1). Under low
power operating conditions, regulations allow the core to be cooled by natural convection. Under
natural convection flow, the buoyancy induced flow draws pool water up through the coolant channels
inside and exits the top of each fuel element.

5.1.2 The MNR power measurement and control

This section provides a short summary of MNR’s control system. These systems must be understood
to interpret the SCK-CEN GT’s signal since activities in the control room have an effect on the signal.

At normal operating powers, measurement of MNR thermal power is always determined by
measuring the coolant’s temperature rise across the core:

PTH = ṁcP (Tout − Tin), (5.1)

where the initial coolant temperature Tin is the temperature of the pool water just above the core,
and the core outlet temperature Tout is measured below the pool and downstream of the core. The
core power, determined with this method, is formally measured and recorded in the control room at
regular intervals. When approaching the nominal reactor power each day, this is the method used
to determine when nominal power has been reached.

Throughout an operating day where the desired neutron flux is constant, the regulating rod
automatically adjusts in height to maintain k close to unity. However, because the reactor only
operates 16 hours per day, Xe transients proceed throughout each day and require the addition or
subtraction of large amounts of reactivity. Therefore, throughout an operating day the regulating
rod must move significantly to compensate for the changes in Xe concentration. Licensing guidelines
dictate the regulating rod is allowed to operate only between the positions of 20 and 80% withdrawn
from the core, so as the rod moves to compensate for Xe changes these boundaries are reached and
the reactor operators must manually shim with the shim/safety rod bank to allow the regulating rod
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to return to acceptable bounds. This shimming occurs multiple times per day and the shim/safety
rod positions are formally measured and recorded in the control room at regular intervals.

On operating days where the desired neutron flux is constant, the thermal power increases as a
result of the inventory buildup and decay of active isotopes. As the thermal power increases from
the nominal power, reactor operators adjust the reactor’s power demand, which momentarily moves
the regulating rod enough to decrease k significantly enough to reduce the prompt fission power.
This process moves the reactor’s thermal power back to its nominal value.

The neutron population in the core is recorded by ion chambers adjacent to the core. There are
multiple chambers and multiple associated control and safety channels. The channel of interest to
the experimentalist is the Lin N channel which presents a signal proportional to the neutron flux;
an automated ink pen and a long roll of chart paper record the Lin N signal in the control room.

5.1.3 Monitored MNR operating parameters

After all SCK-CEN GT experiments the control room records of nominal power, shim/safety rod
positions and Lin N chart are reviewed.

Unfortunately, no calibration analysis has been conducted on the Lin N channel to allow for a
conversion between any given deviation on the Lin N signal and a corresponding change in reactor
power, but it’s paper chart is still a useful record of shimming and power demand changes.

5.2 The experimental use of the SCK-CEN GT

The SCK-CEN GT-20 has been mounted on an instrument rig designed and fabricated specifically
to accomodate the GT; an engineering drawing of this rig is shown in Figure I.1. This rig allows the
GT to be placed within any of the graphite assemblies, the Be assembly, or the central irradiation
facility.

5.2.1 Data logging

A LabVIEW program written by Frank Labonte (a MNR staff member) logs the GT signal after it
travels through the signal chain of: 1) instrument lead, 2) coaxial cable connected to the instrument
lead above the core, 3) National Instruments 9211 thermocouple input module on the DAQ computer
placed adjacent to the reactor pool. The LabVIEW program presents the GT signal on a customized
GUI.

All data was aquired on a frequency of 1 Hz.

5.2.2 Design of the experimental campaign

The SCK-CEN GT is employed in this work to measure the total nuclear heating in MNR over time.
Further processing of the GT signal will result in a description of the nuclear heating component
caused by delayed gammas.

Repeated measurements at various core locations will show the delayed-gamma heating does,
or does not, have the same dynamics in all regions of the core. These measurements will test the
validity of equation (4.35).

5.2.3 Simplifying assumptions of analysis

Throughout the experimental procedure, the following assumptions are made which reduce the bur-
den of analysis to manageable levels:
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1. Large changes in coolant water temperature near the GT do not progress quickly.
This is a safe assumption since the source of all water passing through the core and over the
GT is the large-volume reactor pool. The instrument rig has also been designed to allow water
to freely circulate around the GT, likely eliminating the possibility of nuclear heating causing
a localized volume of hot water.

2. Small, quick changes in coolant water temperature near the GT do not affect
the GT signal trend. It is possible the local coolant temperature changes quickly, with
a small magnitude of change. The GT’s differential thermocouple can compensate for slow
changes in temperature, but even small coolant temperature changes which progress over a
time comparable to, or shorter than, the GT’s thermal response of τ0 = 18.4± 0.2 s will affect
the GT signal. However, since this study is concerned with measuring the changes in nuclear
heating which take hours, small rapid changes in coolant temperature will simply contribute
to the GT signal noise.

3. Changes in fuel composition have no effect on the photon transport within the
core. See section E.5 for a comparison between the prompt gammas in cores with and without
significant fission products. Although this analysis was conducted on another reactor core, the
same fundamental physics apply.

4. The small power perturbations caused by small control rod changes, power demand
changes or position changes of irradiated in-core objects have a neglibible effect on
the long-duration trend sought in the GT signal. Throughout an operating day, MNR’s
shim/safety rods are moved significantly (manually) to compensate for the reactivity changes
caused by changes in concentration of strongly-absorbing fission products. The regulating rod’s
position changes often to compensate for small changes in reactivity (automatically) and to
increase or decrease reactor power (manually). The analysis in this thesis acknowledges these
changes induce small changes in reactor power, the nuclear heating of the GT, and thus the GT
signal, but assumes that small changes in reactor power do not obscure the longer underlying
trend within the GT signal caused by the delayed-gamma heating. Any large change in these
variables will obscure the trend and thus collecting GT data while relatively few reactor changes
are occurring is best.

5. The large shim/safety rod position changes made throughout a normal operating
day have a neglibible effect on the long-duration delayed-gamma heating trend
sought in the GT signal. Throughout an operating day, the large movements of these
rods are made in bank with many incremental steps to compensate for the reactivity changes
caused by changes in concentration of strongly-absorbing fission products. The previous point
addressed the small temporary power changes induced at the moment of each incremental
movement is made, but it is also possible the global gamma flux distribution changes throughout
the day as the rod position changes greatly, as the reactor power remains constant. These large
rod position changes are known to affect the core’s global neutron flux distribution (Day 2002;
17). The in-core gamma flux is known to be more uniformly distributed through the core than
the neutron flux and JHR analysis showed limited changes to prompt gamma heating with
changes in control rod position - see section E.4.6. This assumption is made knowing it may
not be true, but will be reviewed in later analysis for further consideration.

6. The large regulating rod position changes made throughout a normal operating
day have a neglibible effect on the long-duration delayed-gamma heating trend
sought in the GT signal. The single regulating rod cannot affect the neutron or gamma
flux distribution to the same magnitude as the shim/safety rods; if the shim/safety rods are
negligible, so is the regulating rod.
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5.3 SCK-CEN GT signal processing steps

This section summarizes the steps which have been executed to obtain useful data from the SCK-
CEN GT signal. This sequential summary brings together all the steps discussed in this chapter and
a few others:

1. Collect the raw GT signal during a measurement. This signal is ∆T = TH − TC as measured
by the differential thermocouple as detailed in section 5.5.

2. Subtract the GT’s off-zero bias from the raw signal.

3. Correct the GT signal to account for TC . This correction is required because the DAQ isn’t
programmed to correctly interpret a differential thermocouple signal; the correction is detailed
in section F.2.4.

4. Plot and inspect the data; select sections for further analysis. Not all collected data is inter-
esting or of acceptable quality.

5. Break the selected sections out for further analysis.

6. Smooth the selected data. Smoothing reduces the variability of the data to improve the curve
fitting results and to make visual inspection of the curve fit easier. The smoothing methods
used are detailed in section G.2.

7. Calculate a preliminary estimate of the data error. This estimate is the propagated result of: 1)
the RMS error of each data section relative to the smoothed value S(ti) at each time ti, and 2)
the standard deviation of the off-zero bias. This error estimate systematically under-estimates
the data noise because the smoothed time series itself contains noise; this error estimate is used
only in the following step to evaluate the quality of fit.

8. Curve fit to the smoothed data to obtain the assumed true value of ∆T at each time t. Gnuplot
is used to fit a function with the methods discussed in section H. The fit equations are of the
form of (5.41) and (5.42), with coefficients in units of ◦C instead of W/g.

9. Calculate the standard deviation σ of the ∆T data. This value is the propagated result of
the following uncertainties: 1) the RMS error, as discussed in section G.3, relative to the true
value of ∆T as defined by the fit curve, and 2) the standard deviation of the off-zero bias.

10. Calculate the total nuclear heating Qtotal(t)/ρ with the true value of ∆T . The nuclear heating
is calculated using equation (5.26); this equation also compensates for the GT’s thermal lag.
The error σ is propagated through equation (5.26), as is the uncertainty of A′ and C ′.

11. Calculate the GT self-heating using the methods detailed in section 5.6. The self-heating errors
are equal to the propagated Monte Carlo neutron reaction rates and reactor power uncertainty.

12. Subtract the prompt and delayed GT self-heating from Qtotal(t)/ρ. The prompt and delayed
self-heating errors are propagated to calculate the error of Qtotal(t)/ρ.

13. Subtract the neutron heating from Qtotal(t)/ρ. The energy deposited by neutrons is calculated
using the methods detailed in section 5.4.1. The relatively small neutron heating error is not
propagated.

14. Curve fit to the Qfield(t)/ρ time series. Gnuplot is used to fit a function, with the methods
discussed in section H. The fit equations are of the form of (5.41) and (5.42).

15. Calculate the uncertainty of the fit parameters. Gnuplot cannot calculate these uncertainties,
so equation (H.4) is used instead.
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5.4 MCNP6 modeling

MCNP6 has been employed as a tool multiple times in the analysis of the GT. It has been used to:

• calculate the neutron and prompt gamma flux in the SCK-CEN GT in multiple MNR core
locations

• calculate the neutron and prompt gamma energy deposition in the SCK-CEN GT in multiple
core locations

• calculate the neutron reaction rates in the GT materials

• examine the transport of gamma rays within the GT.

All calculations with MCNP6 employed version 6.1.0; this iteration was released in May 2013
and is the first merger of the previously independent codes MCNP5 and MCNPX (Pelowitz 2013;
1-1).

This section summarizes how MCNP6 was used.

5.4.1 MCNP6 model of the MNR Reference Core (RC)

The number of standard fuel assemblies within the MNR core is not constant; they can be added
or removed during refueling, as required by reactor operations. To avoid the need to conduct safety
analysis on each core arrangement, a configuration called the Reference Core (RC) has been developed
which conservatively envelopes actual MNR core configurations (Day 2001; 15). This conservatism
has allowed the RC to serve as a representative core for analysis within the MNR Safety Analysis
Report (SAR) which supports the reactor’s current operating license

Figure 5.3 presents the RC configuration and the percentage of burnup assumed in each fuel
assembly. The RC uses the same number of control assemblies and control rods as every MNR core
arrangement. The location, or even presence, of the central irradiation facility (CIF) changes in real
MNR core configurations.

Since the RC has already been accepted as an MNR analytical model, it has also been adopted
within this thesis for analysis.

Prior to this present study, MNR staff made a full-core MCNP5 model of the of this RC configura-
tion. The MCNP5 model of the RC is a near-faithful 3D representation of all structural, fuel, control,
beamlines, moderator and coolant geometries. One geometrical simplification was implemented in
this model: the representation of the curved fuel plates with non-curved plates. This approximation
was estimated to have little physical significance and the rest of the model is a correct representation
of the core geometry.

The MNCP5 RC model has been run in MCNP6 for calculations within this thesis and updated
as detailed in following sections. A plot from MCNP6 showing a horizontal slice of the full core
model is shown in Figure 5.4.

It is assumed that calculations with the MCNP6 RC model are a close approximation of actual
core configurations.

RC data libraries

The RC model was originally developed with MCNP5 and thus used material descriptions from the
following libraries (Team 2008; App.G):

• ENDF/B-VI.8 (library named ”actia” in MCNP5)

• ENDF/B-VI.6:X (library named ”endf66a” in MCNP5)
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• ENDF/B-VI.1 (library named ”endf60” in MCNP5)

• ENDF/B-V.0 (library named ”kidman” in MCNP5).

These have been updated to the latest continuous-energy neutron cross-section libraries, and in
all cases this is the ENDF71x MCNP6 library which is based on the ENDF/B-VII.1 data library
(Pelowitz 2013; App.G). The following are exceptions:

• C is described elementally as it is in ENDF71x

• 18O atoms are added to 17O atoms because 18O isn’t included in ENDF71x

• the moderator/coolant in the RC model uses only 16O (not 17O or 18O)

The ENDF71x evaluation at 293.6 K has been selected in all isotopes, which is the closest available
evaluation temperature to the actual material temperature in MNR.

Thermal neutron scattering libraries have been assigned to some low-Z core materials which are
present in large quantitites: H in the moderator water, graphite, Be. The continuous secondary
energy data library endf70sab was selected and is also based on ENDF/B-VII.0 data.

Most elements were already described isotopically in the original MCNP5 RC model. Those
which weren’t (Mg, Si, Ar, Ca, Ti, V, In) have been updated to full isotopic descriptions in the
MCNP6 RC model.

Physics specifications of the model

The MCNP6 RC model has been run with KCODE as a criticality calculation, as opposed to a
defined-source calcuation. All KCODE calculations have been in MODE N P, resulting in neutrons
and photons being transported in a fully coupled manner. As discussed previously, in KCODE
calculations MCNP6 includes prompt gammas only.

In all cases the energy cutoff of photons has been specified to be 1 keV; not tracking these
inconsequential gammas reduces the processing burden. The 1 keV value is used to match the work
reviewed in Chapter 3 and the analysis in section E.3.

By default MCNP6 uses a neutron energy cutoff of 0 MeV and a photon energy cutoff of 1.0×10−6

MeV unless the CUT card is specified (Pelowitz 2013; Table 2-2); the inconsistent MCNP6 manual
claims on another page the default photon cutoff is 1 keV (Pelowitz 2013; 3-85). To be sure, the
CUT card for photons was used to specify the 1 keV demarcation. The default 0 MeV neutron cutoff
was used in all cases.

Since electrons and positrons are so important to the production of photons and the deposition
and transport of photon energy their absence in a MODE N P calculation must be addressed.

Electrons and positrons are not transported in MODE N P. However, when MCNP6 is run in
MODE N P Bremsstrahlung photons are generated with the thick-target approximation (Pelowitz
2013; 1-12); this approximation generates electrons but assumes they are locally stopped and the
generated Bremsstrahlung photons are assumed to continue in the direction of the parent electron
(Team 2008; 2-57).

Modelling the SCK-CEN GT in MNR

The full SCK-CEN GT geometry and instrument rig has been added to the MCNP6 MNR RC model.
The model is a complete geometrical representation of the GT, with full material description. Each
part of the GT was described as per the drawing supplied by SCK-CEN (SCK-CEN 2009; Tab
1). The only geometrical simplification made was the combining of the two thermocouple wires
into a a homogeneous, representative material; these wires are only 0.2 mm in diameter and the
material of these two wires were mixed with the surrounding alumina insulation (diameter of 0.34
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mm). Material descriptions for all GT materials were based upon the assays supplied by SCK-CEN
(SCK-CEN 2009).

Figure 5.5 (L) shows the GT and instrument rig in the MCNP6 RC model. This GT and rig
geometry can be placed anywhere within the MCNP6 RC model.

Quantitities calculated with the MCNP6 RC model

The MCNP6 RC model containing the full SCK-CEN GT and instrument rig geometry has been
used to calculate the following quantities:

1. neutron energy deposition in the GT inner body, at various GT locations; using F6 tallies
discussed in section 3.4.2

2. prompt photon energy deposition in the GT inner body, at various GT locations; using F6
tallies.

The MCNP6 RC model without the full SCK-CEN GT and instrument rig geometry has been
used to calculate the neutron reaction rate in all GT materials; this process is discussed fully in
section 5.6.3. The same simulation was used to calculate the neutron and prompt gamma flux in
potential GT core locations with F4 volume-averaged tallies.

The tallies from all calculations were scaled with, C, the reactor power scaling factor discussed
in section B.

5.4.2 MCNP6 model of the SCK-CEN GT

MCNP6 has also been used for a detailed study on the transport of gamma radiation within the
SCK-CEN GT. The geometry of this model consists of just the SCK-CEN GT; Figure 5.5 (R) shows
this geometry. A detailed description of how this model was used is included in section 5.6.2.

5.5 Calibration of the SCK-CEN GT

Following fabrication, SCK-CEN calibrates each GT with a dip test. This process results in a multi-
plicative calibration factor which allows the user to convert the GT signal, which is a measurement
of temperature difference between two junctions (in units of ◦C) into a nuclear heating value Q (in
units of W/g). This calibration factor is valid for steady-state nuclear heating conditions.

This section summarizes the derivation of the steady-state calibration factor and derives a new
calibration equation which is applicable to transient heating conditions.

5.5.1 The steady-state GT heat transfer model

The steady-state temperature profile of the GT inner body can be modeled as a solid cylinder
(see Figure 5.6), with volumetric heat generation and axial and radial heat conduction. The axial
conduction is assumed to be towards the inner-body base as the inner-body tip is assumed to be
perfectly insulated. Radial heat conduction is assumed to move through the gas gap, from the inner
body, through all three mechanisms of heat transfer: conduction, convection and radiation. The
resulting differential equation is (Van Nieuwenhove, R. 1996; App.B,Eq.1):

d2T

dx2
−A · T = −B (5.2)

where the axial position, x, measured along the inner body is defined on the range 0 ≤ x ≤ L from
the base to tip,
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A = 2·ke
a·kb , [A]=1/m2

B = 2·ke
a·kb · Tb + Q

kb
, [B]=K/m2

C = cv·ρ
kb

, [C]=s/m2

a=the radius of the inner body, [a] =cm
Tb =the temperature of the inner-body base ≈ pool water temperature
ρ =the density of the inner body, [ρ] =g/cm3

Q =the volumetric heating, [Q] = W/cm3

kb =thermal conductivity of the inner body, [kb] = W/(cm ·K)
cv =specific heat of inner body, [cv] = J/(g ·K).

The variable ke is the effective conduction coefficient [ke] = W/(cm2 · K) of the gas gap, which
accounts for all three mechanisms of heat transfer.

The boundary conditions dT/dx = 0 (at x = L) and T = Tb (at x = 0) are used to solve for the
solution of equation (5.2) (Van Nieuwenhove, R. 1996; App.B,Eq.7):

T (x) =
Q

A · kb
·

(
1− cosh(

√
A · (L− x))

cosh(
√
A · L)

)
+ Tb. (5.3)

At x = L (the approximate location of the hot junction):

T (L) =
Q

A · kb
·
(

1− 1

cosh(
√
A · L)

)
+ Tb (5.4)

so the difference in hot and cold junction temperatures, ∆T = T (L) − Tb, can be related to the
volumetric heating Q with (Van Nieuwenhove, R. 1996; App.A,Eq.27):

Q

∆T
=

A · kb(
1− 1

cosh(
√
A·L)

) . (5.5)

Equation (5.5) has units of, [
Q

∆T

]
=

W

cm3 ·K
, (5.6)

and can be expressed in the more convenient units of W/g using the definition of C:

C =
cv · ρ
kb

(5.7)

kb =
cv · ρ
C

(5.8)

Q

∆T
=

A · kb
1− 1

cosh(
√
A·L)

(5.9)

Q

∆T · ρ
=

A · cv
C ·
{

1− 1
cosh(

√
A·L)

} , (5.10)

and can be simplified further using the following equations (SCK-CEN 2009; Tab 7):

A′ = A · L2 (5.11)

C ′ = C · L2 (5.12)
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Q

∆T · ρ
=

A′ · cv
C ′ ·

{
1− 1

cosh(
√
A′)

} . (5.13)

Equation (5.13) is the steady-state calibration factor; the GT user can multiply this factor by
the temperature difference between the hot and cold junctions, as predicted by the differential
thermocouple, and obtain the model’s predicted heating value in units of W/g.

However ke and thus A′ are unknown and the heat-transfer model itself is only an approximation
of reality. For example, the temperature at the base of the GT inner body is actually higher than Tb
(the pool water temperature) since nuclear heating is also present in the body. To account for the
unknown ke and compensate for approximations in the model, the constants A′ and C ′ are adjusted
to make the calibration factor correspond to experimental data using techniques described in the
following section.

5.5.2 Experimental dip test and steady-state calibration factor

SCK-CEN uses a two-step dip of the GT (hot-to-cold) to determine the unknown constants A′ and
C ′ in the steady-state calibration factor (equation (5.13)) and the GT’s dominant thermal time
constant.

The GT is placed in boiling water or oven to bring the entire GT (inner and outer body) to
approximately 100 ◦C. The GT is then quickly removed from the boiling water and placed into an ice
bath. The thermocouple’s output is recorded while the inner and outer bodies cool to approximately
0 ◦C.

The GT inner body temperature T (x, t) can be modelled similar to equation (5.2), without
volumetric heat generation as (Van Nieuwenhove, R. 1996; App.A,Eq.1):

d2T

dx2
−A · T = −B + C · dT

dt
. (5.14)

where all variables are the same as equation (5.2) except B = 2·ke
a·kb · Tb because Q = 0.

Assuming a uniform initial temperature of T (x, t) = Ti for all x and t < 0, and dT/dx = 0 at
x = L for all t and T (0, t) = 0 for t > 0, the temperature of the inner-body tip (x = L) is (Van
Nieuwenhove, R. 1996; App.A,Eq.10):

T (L, t) =

∞∑
n=0

4 · Ti
π
· 1

2n+ 1
· (−1)n · EXP

−1 ·

[
(2n+1)π

2L

]2
+A

C
· t

 , (5.15)

and substituting in the equations for A′ and C ′ gives (SCK-CEN 2009; Tab 7):

T (L, t) =

∞∑
n=0

4 · Ti
π
· 1

2n+ 1
· (−1)n · EXP

−1 ·

[
(2n+1)π

2

]2
+A′

C ′
· t

 . (5.16)

This equation is fit to the experimental GT dip-test experimental data. Using only the first four
terms (n = 3) of the infite sum is thought to be an acceptable approximation (SCK-CEN 2009; Tab
7). SCK-CEN uses A′ and C ′ as the curve fitting parameters; A′ is unknown because ke is unknown,
and C ′ is treated as an unknown because the effective values of cv, ρ and kb are unknown since the
GT inner body is not a uniform cylinder but a 304L cylinder with a thermocouple in its center.

Following a dip test, the SCK-CEN found the 4-term-version of equation (5.16) fit the GT cooling
data of GT-20 best when A′ = 1.24 ± 0.03, C ′ = 68.0 ± 0.5 s when Ti = 99.2 ± 0.08 ◦C (SCK-CEN
2009); Figure 5.7 plots equation (5.16) using the fit parameters A′ and C ′.
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Note that the domain of the plotted function in Figure 5.7 is 1 ≤ t ≤ 200 because the function
does not equal the correct Ti = 99.2 ◦C at t = 0.

The resulting steady-state calibration factor of GT-20 is calculated using equation (5.13) and the
experimentally-determined values of A′ and C ′ (SCK-CEN 2009; Tab 7):

∆T · ρ
Q

= 44.7± 4.5
◦C

W/g
. (5.17)

5.5.3 The GT’s thermal response

The time constant of the GT response is an important parameter in describing the response of the
GT. Fitting a four term version of equation (5.16) to the dip test data results in four time constants.
The first of the four dominates the description of the temperature decay, especially at later stages
of cooling (Van Nieuwenhove, R. 1996; App.A,Pg.7). It is so dominant, the time constant of the GT
can be described by the first exponential term only. This time constant, which corresponds to n=0,
is expressed as:

τ0 =
C ′

(π2 )2 +A′
. (5.18)

Using the values of A′ and C ′ determined by SCK-CEN and equation (5.18), the dominant time
constant of GT-20 is τ0 = 18.4± 0.2 s (SCK-CEN 2009; Tab 7).

The dominant time constant τ0 can also be determined by plotting the GT dip-test temperature
decay on a semi-log plot, the time constant is determined by the slope (Liu 1994; 4). The semi-log
plot of Figure 5.7 shows the dominant time constant is visible on the domain t > 10 s where the
plot appears linear. The slope of this linear curve has been confirmed by both hand calculations and
curve fitting (a single exponential term) to agree with τ0 = 18.4± 0.2 s.

As a check, another dip test of GT-20 was conducted at McMaster from boiling water to an ice
water. The raw GT signal is plotted in Figure 5.8.

An exponential function of the form T (t) = ae−b·t was fit with gnuplot to the data between
15 ≤ t ≤ 50 s where the semi-log plot is linear (Williams and Kelley 2015). The resulting time
constant is τ0 = 20 s which confirms the order of magnitude of τ0 calculated by SCK-CEN; the
τ0 = 18.4± 0.2 s value calculated by SCK-CEN is assumed to be the correct value.

5.5.4 The transient calibration equation

The previous sections demonstrated how the thermal time constant in water, and the steady-state
calibration factor of GT-20 was determined. This section focuses on the development of an equa-
tion applicable to non-steady-state conditions; this equation is an expression of the time-dependent
heating, Q(t).

In conditions where the internal thermal resistance of a body is small relative to the resistance
of heat moving into the environment, the lumped-heat-capacitance method is used to describe the
time-dependent temperature response, T (t), of an object as it changes from an initial temperature
of T0 to a new temperature of T∞ according to the form (Kreith and Bohn 2001; 118):

T (t)− T∞
T0 − T∞

= e−
1
τ t. (5.19)

Using this model, the minimum time required for the GT-20 to reach 99.9% of a specific T∞ is
ln(0.001) ∗ (−18.4s) = 127 s; similarly, the same amount of time is required to reach a new steady-
state, associated with a new Q. Thus, 127 s is considered the time required for the GT to fully
respond to a specific quantity of heating.
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However, knowing τ and the steady-state calibration factor is of little use for a GT signal which
is continuously changing. For example, imagine a simple step change of the heating function Q(t)
from Q1 to Q2 at time tstep. Assume a steady initial GT signal corresponding to Q1; one would
be required to wait between tstep and tstep + 127 s to employ the steady-state calibration factor
to determine Q2 from the then-steady GT signal. Furthermore, if Q(t) itself were continuously
changing so would the GT signal, and by definition the GT would never reach conditions where the
steady-state calibration factor were valid. Additionally, the in-core nuclear heating Q(t) is known to
be continuously variable.

To develop an expression for Q(t), refer to equation (5.2) and (5.14). Notice the only difference
between the two is the presence of the time-derivative term T (t, x), and the definition of the constant
B. The constant’s definition changes between equations because Q (itself assumed a constant) is
assumed to be Q = 0 in equation (5.14). When combined, these equations contain all the information
required to describe the time-dependent nuclear heating Q(t):

d2T (x, t)

dx2
− A · T (x, t) = −B + C · dT (x, t)

dt
d2T (x, t)

dx2
+

(
2ke
akb

)
T (x, t) =

(
−2ke
akb

Tb −
Q(t)

kb

)
+

(
cvρ

kb

)
dT (x, t)

dt
, (5.20)

which is rearranged to solve for Q(t):

Q(t)

kb
= −2ke

akb
Tb +

2ke
akb

T (x, t) +
cvρ

kb

dT (x, t)

dt
− d2T (x, t)

dx2
(5.21)

Q(t) = −2ke
a
Tb +

2ke
a
T (x, t) + cvρ

dT (x, t)

dt
− kb

d2T (x, t)

dx2
(5.22)

Q(t) =
2ke
a

(T (x, t)− Tb) + cvρ
dT (x, t)

dt
− kb

d2T (x, t)

dx2
. (5.23)

This equation can be expressed in terms of the emperical parameters A′ and C ′:

A′

C ′
=

A

C
=

2ke
akb

kb
cvρ

=
2ke
acvρ

(5.24)

ke =
A′

C ′
acvρ

2
, (5.25)

and can express Q(t) in the convenient units of W/g by dividing by ρ:

Q(t)

ρ
=
A′

C ′
cv (T (x, t)− Tb) + cv

dT (x, t)

dt
− kb

ρ

d2T (x, t)

dx2
,

which is evaluated at the hot junction axial position xTH and expressed with two modifying constants
D and E:

Q(t)

ρ
=

(
A′

C ′
cv (T (xTH , t)− Tb) + cv

dT (xTH , t)

dt
− kb

ρ

d2T (xTH , t)

dx2
D

)
/E. (5.26)

Throughout this thesis this equation is refered to as the transient calibration equation.
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5.5.5 Solving the transient calibration equation

Equation (5.26) is solved for Q(t) ρ, at each experimental GT signal datum.
The first derivative in equation (5.26) can be calculated with the finite difference approximation

(Cheney and Kincaid 1999; 173):

dT (xTH , t)

dt
=

1

2∆t
[T (xTH , t+ ∆t)− T (xTH , t−∆t)], (5.27)

where ∆t is the time step of the experimental GT data. This rate of change refers to the hot junction
temperature T (xTH , t), and is equal to the rate of change of the GT signal ∆T = T (xTH , t) − Tb
when Tb is constant.

The second derivative in equation (5.26) at xTH is calculated with the finite difference approxi-
mation (Cheney and Kincaid 1999; 180):

d2T (xTH , t)

dx2
=

1

h2
[T (xTH + h, t)− 2T (xTH , t) + T (xTH − h, t)], (5.28)

where h is the distance between axial nodes on the GT inner body where T (x, t) is defined. Notice
d2T (xTH , t)/dx

2 is always 0 at x = L. Thus, when solving equation (5.26) the hot junction possition
cannot be assumed to be x = L, its position at xTH must be determined with a best estimate.

Calculating d2T (xTH , t)/dx
2 with the above equation requires knowing the axial temperature

distribution at each time t. The steady-state axial temperature profile of the GT’s inner body for
three Q values is plotted in Figure 5.9, as calculated by equation (5.3). Notice the first and second
derivative with respect to x changes for each Q at any given x.

At each experimental GT signal datum t an estimate of nuclear heating Qestimate was made using
the rearranged steady-state equation (5.3):

Qestimate =
(T (xTH , t)− Tb)A · kb(
1− cosh(

√
A·(L−xTH ))

cosh(
√
A·L)

) , (5.29)

this estimate is then used in equation (5.3) to describe the approximated axial temperature profile
at time t:

T (x) =
Qestimate

A · kb
·

(
1− cosh(

√
A · (L− x))

cosh(
√
A · L)

)
+ Tb. (5.30)

Within this thesis 100 nodes (h = 0.015 cm) are used to describe the axial profile and Tb is used as
a boundary condition.

The use of equation (5.29) introduces a systematic error into equation (5.26). It was found that
including a modifying constant of D = 1.25 corrects d2T (xTH , t)/dx

2 and increases the dynamic
response of equation (5.26); E = 1.1645 is required to correct for the error introduced by D.

5.5.6 Evaluating the transient calibration equation

The transient calibration equation (5.26) can be confirmed against equation (5.17) in steady-state
conditions since both should predict the same nuclear heating Q for any given ∆T = TH − TC .
Assuming the following physical constants:

L = 1.5 cm
A′ = 1.24± 0.03
C ′ = 68.0± 0.5 s
cv = 0.5 J/(g ·K)
ρ = 8.0 g/cm3

xTH = 1.38± 0.01 cm,
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where unspecified uncertainties are assumed to be zero. The value of xTH was measured from an
engineering drawing of the SCK-CEN GT and the associated uncertainty is the smallest division of
the instrument.

Since the specific values of A′ and C ′ were established experimentally and they are also defined
as functions of material properties, A′ and C ′ are defining effective material properties. Using the
definition of C ′, throughout this thesis kb is defined as:

kb =
cvρL

2

C ′
= 0.132 W/(cm ·K). (5.31)

Assuming ∆T = TH −TC = 10.0 ◦C equation (5.26) is solved for Q/ρ using the methods outlined
in section 5.5.5, resulting in Q/ρ = 0.22 W/g, identical to the prediction of equation (5.17).

Equation (5.26) can also be confirmed against equation (5.20) in transient conditions. Equa-
tion (5.20) is solved using the PDEPE PDE solver in MATLAB for a variety of Q(t) functions
(The MathWorks 2004). Figure 5.10 (L) shows the constant heating function Q(t) and resulting ∆T
response predicted by equation (5.20) when initial conditions are Q(t) = 0 W/cm3 and ∆T = 0;
Figure 5.10 (R) shows the temperature response of the entire inner body length (relative to the
constant base temperature).

Figure 5.11 (L) and (R) show the same repsonses to a variable Q(t).
The merit of equation (5.26) is obvious when viewing the Q(t)/ρ predicted in comparison with

that predicted by equation (5.17), as in Figure 5.12 for constant (L) and variable heating (R).
Figure 5.13 shows the effects of the constants D and E in equation (5.26); without these corrective

constants the dynamic response of equation (5.26) is worse, as a result of the d2T (xTH , t)/dx
2 term

being underpredicted by the steady-state approximation technique discusses in the previous section.

5.6 Self-heating of the SCK-CEN GT

The purpose of using the GT as a dosimeter is to determine the nuclear heating caused by the
background in-core radiation field. Energy released by the GT material itself, such as by nuclear
reactions with non-zero Q values, can contribute to heating of the GT. This self-heating must be
estimated to be subtracted from the GT signal to obtain an estimate of the heating induced by
the background in-core radiation field. This study of GT self-heating seeks to determine the energy
absorbed by the GT inner body, after it has been released by the GT material itself as a result of
nuclear reactions in the GT material.

Glascock’s Tables for Neutron Activation Analysis implies (n,γ), (n,α), (n,2n) and (n,p) reactions
are common during the neutron irradiation of most materials (Glascock 1996). Fission (n,f) reactions
and photo-nuclear reactions are known to be insignificant at in-core neutron and photon energies.
Therefore only (n,γ), (n,α), (n,2n) and (n,p) reactions were considered in this self-heating study.

5.6.1 Application of the nuclear heating equation

Determining the GT self-heating is a simple application for the nuclear heating equation, where the
entire GT geometry is considered instead of the arbitraty geometry V shown in Figure 4.1. The
volume of interest, G, in this application is the GT inner body as shown in Figure 5.14.

When seeking to calculate the GT self-heating, the nuclear heating equation (4.21) can be sim-
plified for the following reasons:

• the heating by external sources are not to be considered, only the heating by radiation emitted
after nuclear reactions within the GT material

• GT dimensions are small so φ(~r, t) is assumed to be uniform over ~r within V ; φ(~r, t) is also
assumed to be constant with time, thus φ(~r, t) = φ
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• initial inventory of all activation products are assumed null, N j(~r, 0) = 0

• since φ is not position-dependent the d3r volumes can be divided according to the GT material
volumes; there are 3 material volumes indexed by mat, the 304L, 316L and alumina/TC
volumes

• for gamma emissions, 75 kE(|~rG − ~r| , E′) terms are required for the 3 material volumes (in-
dexed by mat) and 25 energy groups (indexed by k)

• reaction rate index r considers only the (n,γ), (n,α), (n,2n) and (n,p) reactions; noted as C,
ALPHA, 2n, and p.

Since φ is assumed constant and N j(~r, 0) = 0, the ODE in equation (4.21) can be eliminated and
replaced with an expression for N j(~r, t) from section 2.5.1; the delayed source and heating resulting
from isotope j can be rewritten as:

N j(~r, t) =
N i(~r)σir(~r)φ(~r)

λj

[
1− e−λ

jt
]

(5.32)

SjrD(~r,E′, t) = pjλjN j(~r, t)d3r (5.33)

SjrD(~r,E′, t) = pjN i(~r)σir(~r)φ
[
1− e−λ

jt
]

d3r (5.34)

Hj
rD(~r, t) = Σir(~r)φ(~r)

[
1− e−λ

jt
]∑

e

(eE(|~rG − ~r| , E′))(epjrD)d3r. (5.35)

Implementing the above simplifications results in a much simpler nuclear heating equation. The
simplified equation is written here, considering only the gamma emissions which result from (n,γ)
reactions:

H(~rG, t) = φ

3∑
mat

Vmat
∑
i

ΣiC(~r)
∑
k

(kE(|~rG − ~r| , E′))(kpiCP)+

φ

3∑
mat

Vmat
∑
ji

ΣiC(~r)
[
1− e−λ

jt
]∑

k

(kE(|~rG − ~r| , E′))(kpjCD), (5.36)

where CP indicates prompt capture and CD delayed capture; the index ij indicates both i and j
change together, since j is the isotope created by (n,γ) reaction in i. Similar equations can be derived
for the other reactions and emission species.

5.6.2 Mean transported energy

Figure 5.15 shows the 3 GT material volumes considered in self-heating calculations: the 304L,
316L and alumina/TC volumes. These volumes are considered seperately as sources of self-heating
radiation.

The very small inner diameter of the 316L TC sheath wire, the TC and alumina materials have
been combined into a single material description using the correct total number of atomic populations.

The mean transported energy terms are required for each material volume. For gammas, 25
mean transported energy terms are required for each material volume, corresponding to the 25 group
photon energy bin structure presented in section D.2. Thus 75 dedicated MCNP6 photon-transport
calculations have been completed, one for each transported energy term.

The MCNP6 model of the GT body was surrounded by a 10 cm-radius sphere filled with water
(ρ=0.9984 g/cm3) to model gamma reflection. A thorough model of reflection would include the
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entire MNR core but reflection is also dependent upon the GT’s in-core location; the water sphere
is thought to be a fair universal approximation.

For each kE(|~rG − ~r| , E′) term, a defined gamma source term sampled the point of origin uni-
formly within the material region, and uniformly within the energy bin. In each calculation, MCNP6
was run in mode p with F6 energy deposition tallies averaged over the GT’s inner-body volumes
(labeled as G in Figure 5.15).

Neutron interactions with the Ar gas have been assumed insignificant. The GT lead wire beyond
the body was not included in the geometry.

Since φ was assumed not to be position-dependent, the flux within each of the 3 material volumes
were not calculated separately.

Charged particles are assumed to be deposited within their volume of origin, so E(|~rG − ~r| , E′)
terms are assumed to be zero for d3r volumes outside G and equal to E′ within G. Thus only charged
particles emitted by volume G were considered.

5.6.3 Calculation of reaction rates with MCNP6 FM card

The reaction rates φΣir(~r) of (n,γ), (n,p), (n,α) and (n,2n) for each isotope i contained within the
GT have been obtained using the MCNP6 MNR Reference Core model.

The reaction rates were calculated using the MCNP6 FM tally multiplier card which multiplies
the neutron flux tally by the microscopic cross section of the specified reaction rate. The ENDF/B
reaction labels used in the FM card are MT=102 for (n,γ), MT=103 for (n,p), MT=107 for (n,α)
and MT=16 for (n,2n). The FM product is calculated over the specified volume in the following
form (Pelowitz 2013; 3-204):

FMproduct =

∫
E

ϕ(E)R(E)dE, (5.37)

where ϕ(E) is energy dependent neutron fluence averaged over the specified volume, in units of
n/cm2, and R(E) the energy-dependent operator (in this case equal to each reactions’s microscopic
cross-section) in units of barns, thus FMproduct is unitless if R(E) are expressed in units of cm2.

As all other MCNP6 tallies, FMproduct is implicitly ”per starting particle” and must be scaled
to the reactor power with a factor C which has units 1/s and which represents the number of fission
neutrons created per second (X-5 Monte Carlo Team 2008; 2-81); scaling the Reference Core tallies
and calculating C is discussed in section B. Since R(E) represents only the microscopic cross-section,
the atomic concentration Ni must also be included in the expression of reaction rate:

Σir(~r)φ = NiC

(
1× 10−24cm2

1 barn

)∫
E

ϕ(E)R(E)dE. (5.38)

Reaction rate units are 1/cm3s.
The MCNP6 ENDF71x library was selected for all GT isotopes except for 18O which is not

contained in the ENDF71x library; this is an acceptable approximation since this isn’t an abundant
isotope.

The GT geometry and materials were not present within the MCNP6 Reference Core model dur-
ing the calculation of the neutron flux and associated FM tallies. These quantities were volumetrically-
averaged over cylindrical environments at appropriate GT locations. The diameters of the volumes
were equal to the water material at the locations being considered, 3.3274 cm, and equal in height
to the GT, 5.7 cm. It was assumed the volume-averaged neutron flux is equal to that which would
exist inside the GT. The advantage of this method is not being required to describe the full GT ge-
ometry; the disadvantage is the reaction rates are ”infinitely diluted” and the neutron spectra does
not include the very small changes which occur within an irradiated GT geometry; section E.4.4
discusses the dependency of neutron spectra on geometry depth.
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5.6.4 Neutron capture - prompt radiation data

Within the self-heating calculations it was assumed neutron capture by isotope i, described as A
ZX,

creates the isotope j, described as A+1
Z X.

The radiation energies released by isotope i upon neutron capture and the associated fractional
probability are available from the CapGam library of thermal neutron capture gamma rays (National
Nuclear Data Center 2015). CapGam shows many prompt gammas may be realeased, for example
349 gammas are listed for 59Co by CapGam.

The majority of the prompt-gamma data for isotopes contained within the GT material have
been retrieved from CapGam. The 3 most probable gammas for each isotope contained within the
GT are given in Table 5.1 along with Imax which is CapGam’s variable indicating the probability of
the most probable gamma; the probability of all other gammas are expressed relative to Imax.

Prompt-gamma data for some isotopes are incomplete in CapGam; this missing data was retrieved
from the IAEA Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis
and is highlighted in Table 5.1 (IAEA 2015). The IAEA reference does not present the emission
probability of specific prompt gammas as CapGam, instead it presents the ”partial elemental capture
cross section” which is defined as (IAEA 2007; Pg.5):

σZγ (Eγ) = θ · P (Eγ) · σO (5.39)

where:
P (Eγ) is the probability of producing a gamma ray of energy Eγ (IAEA 2007; Pg.6)
σO = the 2200 m/s neutron capture cross section; unitless
θ = the isotopic abundance; unitless.

The above equation can then be reorganized to obtain:

P (Eγ) =
σZγ (Eγ)

θ · σO
, (5.40)

using σO and θ as provided by the IAEA database (IAEA 2015); this method has been confirmed
by calculating P (Eγ) for a number of isotopes for which this probability is already provided by
CapGam.

Notice that the individual emissions are not exclusive, sometimes multiple gammas are emitted;
in most cases this leads to the total sum of each fractional probability being greater than unity,
which is unnerving when used to dealing with exclusive events whose probabilities sum to unity.

Note the following regarding data retrieved from the IAEA reference:

1. 90Zr, 10B, 100Cd: probabilities per particle are much greater than 100% - which implies multiple
photons of the same energy are released per neutron absorption. These isotopes have not been
included in any calculations.

2. 94Zr: the three most probable gammas as listed in CapGam do not match the energies given
in IAEA data, nor are they presented with associated probabilities, thus the IAEA gamma
energies and associated probabilities are used.

Since only elemental carbon is included in the ENDF library, 12C and 13C data are combined
with a weighting factor equal to their natural isotopic abundance.

In total, 6578 prompt gammas have been included.
Uncertainties associated with gamma data have not been considered. By using CapGam and the

IAEA PGAA it is assumed neutron capture reactions are dominated by thermal captures — which
was confirmed by the MCNP6 FM calculations.
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Figure 5.3: The MNR RC configuration (Day 2001).
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Figure 5.4: A slice of the MCNP6 RC model showing the core’s plan view.
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Figure 5.5: (L) vertical slice of the MCNP6 RC model, showing the modelled SCK-CEN GT and
instrument rig, (R) a slice of the SCK-CEN GT alone.

Figure 5.6: Cutaway showing GT inner body.
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Figure 5.7: The plot made by the first four terms of equation (5.16) with fitting parameters A′ and
C ′ as defined by SCK-CEN of GT20, in lin-lin and semi-log format.

Figure 5.8: (L) and (C) Raw data from dip test on GT-20; (R) The region 15 ≤ t ≤ 50 s which is
linear on a semi-log plot and an exponential function of the form T (t) = a · e−b·t fit to the data.
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Figure 5.9: GT inner body temperature profiles corresponding to various quantities of nuclear heat-
ing.

Figure 5.10: (L) Constant heating function and resulting ∆T temperature response; (R) associated
temperature response of the entire GT inner body.
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Figure 5.11: (L) Variable heating function and resulting ∆T temperature response; (R) associated
temperature response of the entire GT inner body.

Figure 5.12: Comparison between methods used to obtain Q(t)/ρ with constant (L) and variable
heating (R).
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Figure 5.13: Nulcear heating predicted by the calibration factor with and without the constants D
and E.
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Figure 5.14: The GT body, V , described by discrete volumes d3r, heats the volume of interest, the
GT’s inner body, G.

Figure 5.15: The three GT material regions (shaded, not to scale), used to calculate the mean
transported energy terms.
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Table 5.1: Table showing only the three most probable gammas resulting from thermal neutron capture for the isotopes contained within the
GT.
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5.6.5 Neutron capture - delayed radiation data

Decay data have been retrieved from NuDat 2.6 for many of the radioactive isotopes created by
neutron capture. NuDat 2.6 is an online software which stores nuclear structure and decay data
(National Nuclear Data Center 2015); it contains the energy and probability of each decay particle.
Conveniently, NuDat 2.6 provides EjCD, equal to the product of each radiation energy and associated
fractional probability per disintegration, in units of MeV/Bq s; these units are equivalent to the
more-intuitive MeV/decay.

The data from NuDat 2.6 have been tabulated in Table 5.2 for the isotopes A+1
Z X which are

radioactive. The decay data of daughter nuclei for which data was missing for the prompt nuclei are
not considered.

For each isotope considered, the data retrieved is that of decay from ground state, except 117Cd
which doesnt decay from ground level. Some isotopes decay from the ground state by more than one
mode and the NuDat 2.6 EjCD quantities include the probabilities of this process.

Not all decay particles have been considered for each isotope; those for which EjCD is multiple
orders of magnitude smaller than the most-energy-intense particles have not been considered. Decay
chains have not been investigated beyond the first decay of the isotope created by neutron capture,
A+1
Z X.

NuDat 2.6 uses the mean β energy instead of end-point energy to calculate EjCD; one could use
end-point energy instead in a very conservative estimation of β heating.

Since 18O is not included in the ENDF library, neither the prompt gammas resulting from 18O
neutron capture, nor the decay of the resulting 19O are considered.
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Table 5.2: The energy per decay of each type of radiation emitted from most isotopes contained within the GT.
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5.7 Regression analysis of the corrected signal

Once the SCK-CEN GT signal has been corrected for thermal delay and self-heating, useful infor-
mation can be obtained from the resulting signal. The corrected/processed GT signal represents an
experimental measurement of the term H(~rG, t) found in equations (4.59) and (4.60), where G is the
GT inner body.

Figure 5.16(L) shows a stylized signal of the kind typically measured by the GT over a normal
MNR operating day with constant neutron flux φ. This thesis assumes the change in H(~rG, t) with
time is the result of increased gamma emissions by in-core fission-product and activated isotopes.

Figure 5.16: (L) form of function described by equation (5.41), (R) and by equation (5.42).

The signal of Figure 5.16(L) can be modelled by a function of the form:

H(~rG, G, t) = a+

G∑
g=1

bg
[
(1− e−λgt)

]
, (5.41)

where a is the magnitude of the constant nuclear heating associated with the prompt gammas, bg
are the magnitudes of the G delayed heating groups with half lives of λg.

Following reactor shutdown the typically-observed GT signal of Figure 5.16(R) is best described
by this function:

H(~rG, G, t) =

G∑
g=1

bge
−λgt. (5.42)

Fitting equations (5.41) and (5.42) to the GT signal using a, bg and λg as the fitting parameters
results in a description of the aggregated delayed gamma groups from fission and neutron capture in
the entire core, as detected at position ~rG. This fitting process requires a non-linear fitting algorithm
since the λg terms are exponential. See section H for a discussion of the fitting methodology used
within this thesis.

The GT signal has been collected in MNR in various locations and neutron fluxes. To make these
results comparable, the coefficients in equation (5.41) must be normalized to an arbitrarily-defined
reference of heating. Although the reference can be arbitrary, it is best to define this reference in
a way which simplifies analysis, and to make sure the reference itself doesn’t require a dedicated
calculation or measurement.

Within this thesis the reference value of heating, Href(~rG, G), is defined as the nuclear heating,
in W/g, of the GT by the prompt gammas only of volume G at position ~rG. This value is equal to
the coefficient a in equation (5.41), and is obtained experimentally. This definition of Href(~rG, G)
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is thought have merit because the prompt gamma flux and heating is directly proportional to the
reactor power for all ~rG. Since this definition is position dependent, the quantities of comparision
between GT measurements will be the fractions bg/a = bg/Href(~rG, G).

Explicitly, this normalization is:

H(~rG, G, t) = a+

G∑
g=1

bg
[
(1− e−λgt)

]
(5.43)

H(~rG, G, t)

Href(~rG, G)
=

a

Href(~rG, G)
+

b1
Href(~rG, G)

(1− e−λ1t) +
b2

Href(~rG, G)
(1− e−λ2t) . . . (5.44)

The same treatment applies to (5.42) even though there is no prompt gamma heating post-shutdown.
The Href(~rG, G) measured post-startup at the same location ~rG is normalized as:

H(~rG, G, t) =

G∑
g=1

bge
−λgt

H(~rG, G, t)

Href(~rG, G)
=

b1
Href(~rG, G)

e−λ1t +
b2

Href(~rG, G)
e−λ2t . . . (5.45)
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Chapter 6

Measurements with the SCK-CEN
GT in MNR and analysis

This chapter presents the results of the experimental use of the SCK-CEN GT and the associated
analysis using the methods outlined in the previous chapter.

6.1 Experimental results

This section presents some of the SCK-CEN GT-20 experimental results; the data in this section
has been processed with only the first 4 or 5 steps discussed in section 5.3.

These data sets have been collected with the GT in one of two grid locations: the graphite
location 8F and the Be location 2A. These locations have been selected because the vertical center
of 2A is likely to have the greatest neutron and gamma flux of any GT core location (other than
the central irradiation facility at 5C), and because the use of 8F interferes the least with MNR daily
operations.

For easy comparision between 8F and 2A, the GT was placed at vertical location G in both
locations. This vertical location is close to the vertical center of the core.

6.1.1 Measurements in location 8F

MNR grid location 8F contains a graphite assembly. Pool water runs through the center of this
assembly; the GT and instrument rig was placed within this water hole.

Figure 6.1 shows data collected over 5 calendar days, Monday October 19 to Friday October 23,
inclusive; the data accumulated over the Monday and Friday do not show the entire operating day.
The GT was placed into the core at 9:05 pm Monday and removed at 1:23 pm Friday.

The GT is clearly responsive to reactor startup and shutdown; Figure 6.1 shows 4 of the daily
shutdown events and associated low overnight heating.

Figures 6.2 through 6.5 show in more detail the data of Tuesday, Wednesday, Thursday and
Friday, respectively. At start-up on each day MNR was brought to a nominal reactor power of 2.5
MW. Figures 6.2, 6.3 and 6.4 show the reduction in reactor power to 2.0 MW during the last 2
operating hours of the day.

The post start-up data sets of Tuesday October 20 and Friday October 23 have been used for
further processing. These data sets are detailed in Figures 6.2 and 6.5 and clearly show the smooth
increase in nuclear heating, post-startup, which is attributed to the delayed gamma heating. The
Lin N data recorder confirm only small control room changes were made to the neutron flux on these
days. The post start-up data from the other days (Figures 6.3 and 6.4) are not useful because many

109
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or large control room changes in the shim/safety rod position and power demand have obscured the
delayed gamma heating.

Processing of the data sets of Tuesday October 20 and Friday October 23 with steps 5 through
8 discussed in section 5.3 results in the fit curves shown in Figures 6.6 and 6.7; the noisy recorded
data is shown in these figures for comparison.

Figure 6.1: GT data collected between Monday Oct. 19 to Friday Oct. 23 in 8F/G.
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Figure 6.2: GT data from 8F/G showing the Tuesday Oct. 20 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 9:05 pm Monday Oct. 19.

Figure 6.3: GT data from 8F/G showing the Wednesday Oct. 21 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 9:05 pm Monday Oct. 19.
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Figure 6.4: GT data from 8F/G showing the Thursday Oct. 22 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 9:05 pm Monday Oct. 19.

Figure 6.5: GT data from 8F/G showing the Friday Oct. 23 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 9:05 pm Monday Oct. 19.
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Figure 6.6: GT data from Tuesday Oct. 20 and the fit curve.

Figure 6.7: GT data from Friday Oct. 23 and the fit curve.
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6.1.2 Measurements in location 2A

MNR grid location 2A contains a Be reflector assembly. Pool water runs through the center of this
assembly; the GT and instrument rig was placed within this water hole.

Figure 6.8 shows data collected over 17 calendar days, Saturday October 24 to Monday November
9, inclusive; the data accumulated over the first Saturday and last Monday do not show the entire
operating day. The GT was placed into the core at 10:53 pm Saturday October 24 and removed
at 9:27 am Monday November 9. On start-up on each day MNR was brought to a nominal reactor
power of 2.5 MW. On some days, the reactor’s power was reduced to 2.0 MW during the last 2
operating hours of the day.

Figures 6.9 and 6.10 detail the data sets of Tuesday November 3 and Thursday November 5,
respectively. These data sets have been used for further processing. Figures 6.11 and 6.12 show the
curves fit to these data sets.

Figure 6.8: GT data collected between Saturday Oct. 24 to Monday Nov. 9 in 2A/G.
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Figure 6.9: GT data from 2A/G showing the Tuesday Nov. 3 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 10:53 pm Saturday Oct. 24.

Figure 6.10: GT data from 2A/G showing the Tuesday Nov. 5 reactor operation. Time on bottom
axis is relative to the start of data aquisition on 10:53 pm Saturday Oct. 24.



116 CHAPTER 6. MEASUREMENTS WITH THE SCK-CEN GT IN MNR AND ANALYSIS

Figure 6.11: GT data from Tuesday Nov. 3 and the fit curve.

Figure 6.12: GT data from Thursday Nov. 5 and the fit curve.
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6.2 Quantities calculated with the MCNP6 RC model

6.2.1 Neutron and prompt photon flux

Using the MCNP6 RC model, the neutron flux and prompt photon flux have been calculated at 6
potential GT in-core environments: 2 CIF (5C) locations (vertical centre and top), 2 graphite (8F)
positions (vertical center and top) and 2 Be (2A) positions (vertical center and top). The center of
5C is likely to have neutron and photon fluxes higher than anywhere else in the RC core; the top of
8F is likely to have one of the lowest fluxes.

Figures 6.13 and 6.14 show the calculated neutron and photon spectra. These figures also present
the energy-integrated neutron and photon flux at 3.0 MW, which were scaled using C in section B.
The only uncertainties considered in Figures 6.13 and 6.14 are Monte Carlo errors.

As expected in a thermal reactor, there is a preponderance of thermal neutrons at all locations.
The photon spectra show 8F contains a softer prompt photon spectra than the other locations.

Table 6.1: Neutron and photon scalar fluxes relative to the vertical center of 5C. Errors of all values
are better than 1.7%.

Using the energy-integrated neutron and photon flux values from Figures 6.13 and 6.14, Table 6.1
presents the same quantities relative to the vertical center of 5C, which is the evaluated location
with the greatest flux. This table shows the prompt photon flux varies less through the core than
the neutron flux.

6.2.2 Neutron reaction rates

Figure 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22 present the reaction tallies calculated using
the MCNP6 FM tally multiplier card with the MCNP6 MNR Reference Core model - as outlined in
section 5.6.3.

The reaction tallies were calculated at the following GT locations within the Reference Core:
5C core midplane, 5C top, 2A core midplane, 2A top, 8F core midplane and 8F top. Only the 2A
core midplane, and 8F core midplane results are presented since they have been used in the GT
self-heating calculations. The uncertainties in Figures 6.15 and 6.19 are Monte Carlo errors.

These tallies are not scaled to any specific reactor power, or atomic concentration and are
FMproduct quantitites; these tallies must be multiplied by the associated atomic concentration and
the power scaling factor C from section B to obtain absolute reaction rates. Thus, an isotope with a
large FMproduct tally may play a minor role in GT self-heating if its associated atomic concentration
is small.

Notice these figures show MT-102 (n,γ) reactions are dominant. The MT=103 (n,p), MT=107
(n,α) and MT=16 (n,2n) reactions are all relatively insignificant, therefore only (n,γ) reactions have
been considered in self-heating studies of the SCK-CEN GT.
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Figure 6.13: Neutron flux in the tallied volumes using the 50-group energy grid.

Figure 6.14: Photon flux in the tallied volumes using the 25-group energy grid.
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The MT=102 reaction rates are dominanted by reactions in the thermal range for all isotopes
- these results are not detailed in this thesis, but were observed in the energy bins of the MCNP6
output. This domination by thermal captures qualifies the use of the thermal neutron libraries
CapGam and IAEA PGAA in the GT self-heating study.

Some isotopes do not have specified tallies because the MNCP6 libraries are missing the associated
microscopic cross sections. All cross sections are defined for the MT-102 (n,γ) reactions which form
the basis of the GT self-heating calculations.
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Figure 6.15: MT-102 reaction tallies at from the MCNP6 RC MNR model using the FM card; 2A
core midplane.

Figure 6.16: MT-103 reaction tallies at from the MCNP6 RC MNR model using the FM card; 2A
core midplane.
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Figure 6.17: MT-107 reaction tallies at from the MCNP6 RC MNR model using the FM card; 2A
core midplane.

Figure 6.18: MT-16 reaction tallies at from the MCNP6 RC MNR model using the FM card; 2A
core midplane.
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Figure 6.19: MT-102 reaction tallies at from the MCNP6 RC MNR model using the FM card; 8F
core midplane.

Figure 6.20: MT-103 reaction tallies at from the MCNP6 RC MNR model using the FM card; 8F
core midplane.
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Figure 6.21: MT-107 reaction tallies at from the MCNP6 RC MNR model using the FM card; 8F
core midplane.

Figure 6.22: MT-16 reaction tallies at from the MCNP6 RC MNR model using the FM card; 8F
core midplane.
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6.2.3 Neutron and prompt-gamma heating of the SCK-CEN GT

The MCNP6 MNR Reference Core model, with the full SCK-CEN GT and instrument rig geometries,
was used to calculate the neutron and prompt-gamma heating of the SCK-CEN GT inner body.
Table 6.2 summarizes the results at various core locations at 2.5 MW using the constants listed in
Appendix B. The uncertainties given in the table result from the Monte Carlo errors on the F6
energy deposition tallies and the uncertainty on the reactor power.

Notice the neutron heating, as expected, is significantly lower than the gamma heating.

Since MCNP6 doesn’t have the capability to track the delayed gamma sources, the delayed gamma
heating was not calculated.

Location Power (MW) Neutron heating (W/g) Prompt photon heating (W/g)
8F/G 2.5 MW 8.18× 10−04 ± 11.0%(1σ) 9.74× 10−02 ± 7.8%(1σ)
2A/G 2.5 MW 2.15× 10−03 ± 8.8%(1σ) 1.91× 10−01 ± 7.6%(1σ)

Table 6.2: Heating of the SCK-CEN inner-body, as calculated with the MCNP6 Reference Core
model.

Location Power (MW) Neutron scalar flux (1/s cm2) Prompt gamma scalar flux (1/s cm2)
8F/G 2.5 MW 1.57× 1013 ± 7.4%(1σ) 2.55× 1013 ± 7.7%(1σ)
2A/G 2.5 MW 3.47× 1013 ± 7.2%(1σ) 4.13× 1013 ± 7.4%(1σ)

Table 6.3: Scalar flux in the SCK-CEN inner-body, as calculated with the MCNP6 Reference Core
model.

6.3 MCNP6 analysis of gamma transport within the SCK-
CEN GT

As discussed in section 5.6, 75 kE(|~rG − ~r| , E′) terms are required to calculate the GT self heating.
These terms were calculated with 75 dedicated MCNP6 photon-transport calculations of the full
SCK-CEN GT body resulted; the resulting 75 mean transported energy terms are in Table 6.4.

Unsurprisingly, gammas originating in the 304L volumes (shown in Figure 5.15) deposit less
energy, on average, in the GT’s inner body than those originating in the 316L and alumina/TC
volumes. This is the result of much more 304L material existing outside the GT inner body than
316L and alumina/TC volumes. Gammas originating in 304L material simply have a smaller chance
of being deposited within the inner body than gammas originating in 316L or alumina/TC material.

Large numbers of histories were used to force the relative uncertainties to very small values. Since
these uncertainties are so small compared to other uncertainties in the self-heating calculation, they
were not propagated.

6.4 Self-heating of the SCK-CEN GT

A Python 2.7.10 code solving equation (5.36) has been written to calculate the prompt and delayed
GT self-heating resulting from MT-102 (n,γ) reactions (Ref 2015). The program harvests prompt
gamma data from CapGam and IAEA PGAA data stored in data files dedicated to individual
isotopes; all these isotope files were created for this calculation.
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The prompt MT-102 (n,γ) spectra of three of the most relevant isotopes within the SCK-CEN
GT are shown in Figure 6.23; the spectrum of 16O is also included because it has few prompt gammas
and is useful as a check against tabulated data. No nuclear data uncertainties were considered in
the calculation of the GT self-heating.

Figure 6.23: Prompt gamma spectra from (n,γ) reactions in some GT materials. All horizontal axes
are in unites of MeV

Figure 6.24 shows there is a large amount of prompt gamma power emitted by (n,γ) reactions
in the 304L material at 2.5 MW. The power of gamma radiation actually absorbed by the GT’s
inner body is shown in Figure 6.25; notice the energy absorption rate is a small fraction of the rate
of energy emitted. The powers of absorbed prompt gammas, emitted by 316L and alumina/TC
materials, are shown in Figure 6.26 and 6.27. The total prompt absorbed power, emitted by all
isotopes in all materials, from (n,γ) reactions is shown in Figure 6.28; this is the sum of Figures 6.25,
6.26 and 6.27.

Figure 6.28 shows the sum of absorbed power, from all isotopes, in all GT material, at 2.5 MW,
is 0.0285 ± 3.7%(1σ) W/g; the inner body mass of the SCK-CEN GT is 0.396 g so this heating
corresponds to 0.0113± 3.7%(1σ) W. The uncertainties of all prompt emitted and absorbed powers
have been obtained by propagating the Monte Carlo reaction rate uncertainties and the reactor
power uncertainty.

The self-heating from delayed gammas and delayed charged particles have been calculated using
delayed particle data harvested the NuDat 2.6 database. Figures 6.29 through 6.31 present the
delayed heating by gammas by all isotopes in each GT material. Figure 6.32 presents the total
delayed gamma heating by each isotope, from all materials.

Figures 6.33 through 6.35 present the delayed heating by charged particles by all isotopes, divided
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Table 6.4: Mean transported energy terms for gamma radiation originating in the 3 material regions
of the GT.

Figure 6.24: Prompt power of gammas released by MT-102 (n,γ) reactions in each isotope of the
304L material.
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Figure 6.25: Prompt self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the 304L material.

Figure 6.26: Prompt self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the 316L material.
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Figure 6.27: Prompt self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the alumina/TC materials.

Figure 6.28: Total prompt self-heating of the SCK-CEN GT by gammas released by MT-102 (n,γ)
reactions in each isotope of all materials.
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by GT materials. These charged particles may be e+ or e− emitted through decay or the Auger
effect.

Figure 6.36 presents the delayed heating by all particles from all isotopes in all GT materials. At
2.5 MW in the vertical center of core location 2A, after 24 hours the delayed self-heating component
is 0.00546± 5.0%(1σ) W/g - significantly smaller than the 0.0285± 3.7%(1σ) W/g prompt heating.

The SCK-CEN also conducted a self-heating study of the GT. Little is known about this work,
except that it considered only the delayed betas and three most probable gammas from only a few
important isotopes (Vermeeren 2014); the SCK-CEN results concur with the much more extensive
calculations conducted in this thesis.

The self-heating data has been used to correct the nuclear heating measured by the SCK-CEN
GT. For example, the total prompt self-heating value from Figure 6.28 and the total delayed self-
heating data from Figure 6.36, were subtracted from the measured total nuclear heating of the GT
at core location 2A at 2.5 MW. Similar corrections at other locations and reactor powers have been
completed.
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Figure 6.29: Delayed self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the 304L material.

Figure 6.30: Delayed self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the 316L material.
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Figure 6.31: Delayed self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
the alumina/TC materials.

Figure 6.32: Delayed self-heating by gammas released by MT-102 (n,γ) reactions in each isotope of
all materials.
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Figure 6.33: Delayed self-heating by charged particles released by MT-102 (n,γ) reactions in each
isotope of 304L material.

Figure 6.34: Delayed self-heating by charged particles released by MT-102 (n,γ) reactions in each
isotope of 316L material.
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Figure 6.35: Delayed self-heating by charged particles released by MT-102 (n,γ) reactions in each
isotope of alumina/TC materials.

Figure 6.36: Delayed self-heating by gammas and charged particles released by MT-102 (n,γ) reac-
tions in all isotopes in all SCK-CEN GT materials.
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6.5 The SCK-CEN GT-20 bias

The SCK-CEN GT-20 has a constant ”off-zero” bias; the cause of this deviation is not known and
is assumed not to indicate a problem with the instrument. This error has been subtracted from the
GT signal, as is common with such a bias (NIST 2015a).

This offset has been measured to average ∆T = 0.63 ± 6.1% ◦C. This error was measured
many-weeks after the GT-20 had been irradiated, which avoids any self-heating contribution from
short-lived activated isotopes within the GT.

Another GT, SCK-CEN GT-22 which has never been irradiated, has a similar off-zero magnitude
of ∆T = 0.71± 2.4% ◦C.

6.6 Results of analysis of the SCK-CEN GT-20 signal

The uncertainties of A′, C ′ and ∆T have been propagated into the uncertainty of Q(t)/ρ, σQ. The
self-heating uncertainty is small in comparison, and therefore has not been considered in σQ.

6.6.1 Coefficients obtained by regression analysis of GT data

Figure 6.38 presents the nuclear heating Qfield(t)/ρ calculated from the SCK-CEN GT signal, using
the steps outlined in section 5.3. The four time series shown are those which have been selected for
futher processing, as discussed in section 6.1.

Table 6.6 presents the constants of the time series shown in Figure 6.38.
All this data was collected from core 59Jiv, shown in Figure 6.37.
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Figure 6.37: Map of core 59Jiv.

Case Date Nominal Power (MW) Core Location
1 Tues Oct 20, 2015 2.5 59Jiv 8F/G
2 Fri Oct 23, 2015 2.5 59Jiv 8F/G
3 Tues Nov 3, 2015 2.5 59Jv 2A/G
4 Thurs Nov 5, 2015 2.5 59Jv 2A/G

Table 6.5: Details of the data sets used for regression analysis.

Case Prompt Heating Delayed Heating Delayed/Prompt Decay Constant
1 0.1112± 1.2% W/g 0.01715± 0.8% W/g 0.1542± 1.4% 0.000464± 0.04% 1/s
2 0.1124± 1.1% W/g 0.01507± 0.6% W/g 0.1341± 1.3% 0.000452± 1.8% 1/s
3 0.1936± 1.0% W/g 0.05042± 0.1% W/g 0.2604± 1.0% 0.000214± 3.3% 1/s
4 0.2070± 1.1% W/g 0.04543± 0.3% W/g 0.2195± 1.1% 0.000237± 2.4% 1/s

Table 6.6: Results of regression analysis.
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Figure 6.38: Calculated Qfield(t)/ρ data sets used for curve fitting to determine the delayed-gamma
heating constants.
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6.7 Discussion of the results

When deriving the coupled neutron-gamma point kinetic equations (4.61), equations (4.35), (4.36)
and (4.59) were assumed to be true; those equations are written again here for convenience:

Φ(~r, t) = υγg(t)κ(~r)

Cg(~r, t) = Cg(t)κ(~r)

H(~rG, G, t) =
µeffective(G,Eavg)

ρ
Eavg(~rG)υγg(t)κ(~r).

The above equations give value to the reactor’s total gamma population g(t) expressed by equa-
tions (4.56) and equations (4.61): g(t) scales the local gamma spatial distribution κ(~r) in all loca-
tions of the core simultaneously. If equations (4.35) and (4.36) were true the local flux Φ(~r, t), and
by equation (4.59) the local nuclear heating H(~rG, G, t) plotted in Figure 6.38 would increase by
the same fraction and with the same time constant at all ~r. But this is not what Figure 6.38 and
Table 6.6 demonstrate.

The constants of Table 6.6 suggest the magnitude and decay constant of the nuclear heating
attributed to the delayed gammas are position dependent. The fraction of heating attributed to
delayed gammas is smaller at location 8F compared to that measured at location 2A; the delayed-
gamma heating at location 8F also has a larger decay constant (a shorter time constant).

This evidence suggests one (or more) factor of H(~rG, G, t) in equation (4.59) is a function of both
t and ~r. With no method to systematically study each factor, educated guesses must be made to
determine which factor is suspect.

Since g(t) was derived from first principles for equations (4.56) without large assumptions, the
concept of g(t) is probably correct. The factor most likely to blame is the gamma spatial distribution
κ(~r) which was assumed to be time-independent in section 4.2.2 with no prior evidence this was true.

If κ is a function of both time and position equations (4.35) and (4.36) must be rewritten as:

Φ(~r, t) = υγg(t)κ(~r, t) (6.1)

Cg(~r, t) = Cg(t)κ(~r, t). (6.2)

The following sections discuss two physical mechanisms which may explain why κ(~r, t) is depen-
dent on both t and ~r.

6.7.1 Mechanism 1: differences between prompt and delayed gamma
spectra

To begin a discussion of κ it is best to refer back to the familiar and established neutron point kinetic
equations (4.31). During the derivation of these equations the neutron transport and absorption
processes have been considered with the inclusion of the property dictating neutron absorption, Σa,
in equation (4.28). Equation (4.28) then yields expressions of both n(t) and ψ1(~r), after assuming
equation (4.29) is true.

The assumption of equation (4.29) is very important because it states the spatial and temporal
neutron flux components are separable: ψ(~r) is dependent on the variable ~r only and n(t) is dependent
on t only. This model of the neutron flux states that no matter when neutrons appear within the
reactor geometry, either as prompt-fission neutrons or delayed neutrons, their spatial distribution
will be described (relatively, rather than absolutely) according to the function ψ(~r).

Physically, the function ψ(~r) gives an indication of the ability of the neutrons to be transported
from their source to ~r. The distance neutrons can travel through a geometry depend upon the
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material and the neutron energy. For any given critical assembly then, ψ(~r) will change with time if
the neutron energy (at the source) changes with time.

Delayed neutrons have a softer spectrum than prompt-fission neutrons so one could define in any
reactor: 1) ψP(~r), to describe the spatial distribution of prompt neutrons, and 2) ψD(~r), to describe
the spatial distribution of delayed neutrons. However, the fraction of all neutrons which are delayed
is usually less than 1% (Duderstadt and Hamilton 1976; 63). Therefore, when using the neutron
point kinetic equations the entire neutron spatial distribution is approximated by a single function
ψ(~r) which would be very close to ψP(~r).

Measurements show the function κ is dependent on time, this may be because delayed gammas
have a softer spectrum than prompt photons, but also because delayed gammas appear in significant
quantities compared to prompt gammas.

There is no known measurement of the population yield of delayed gammas relative to prompt
gammas, but Table 2.1 shows that when integrated over time, delayed gammas can be expected to
carry approximately the same amount of fission energy as prompt fission gammas. Also, Table 3.1
showed the calculated heating resulting from delayed gammas in volumes in various critical assemblies
was generally over 25%.

Figures 6.39 and 6.40 show the delayed photons have a softer spectrum than prompt photons
and the delayed gamma spectrum becomes even softer with time following fission.

In a critical assembly, prompt fission gammas emitted from fuel material are absorbed as they
move through the geometry; their distribution could be described by a function κP(~r). The function
κP(~r) would be constant as reactor power changed and therefore constant in time. A function
describing the delayed gamma distribution could be described by κD(~r, t) which would change in time
as the delayed gamma emission spectra changes. Therefore the total gamma distribution function
κ(~r, t) would also be time dependent.

These differences in prompt and delayed gamma spectra may be strong enough to explain the
results of Table 6.6.

In addition to the difference in spectra, the GT positions in 2A and 8F have different environ-
ments, the first is surrounded by Be and the second by C. Figure 6.41 shows the mass attenuation
coefficients of these elements. These quantities are compared relatively in Figure 6.42 and show the
C environment would certainly absorb more gammas below 0.1 MeV than Be.
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Figure 6.39: Prompt gamma spectrum emitted within 10−7 s after fission of 235U (Keepin 1965; 66).
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Figure 6.40: Delayed gamma spectra observed as a function of time after fission of 235U (Keepin
1965; 132).
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Figure 6.41: The mass attenuation coefficients (solid line) and mass energy-absorption coefficients
(dotted line) for Be and C (Hubbell and Seltzer 2014).

Figure 6.42: Plot showing the magnitude of the mass energy-absorption coefficient of C relative to
that of Be.
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6.7.2 Mechanism 2: dependency on control rod position changes

As detailed in section 5.2.3, it was assumed the large shim/safety rod position changes made in MNR
throughout a normal operating day have a neglibible effect on the long-duration delayed-gamma
heating trend sought in the GT signal. This assumption was made without a lot of supporting
evidence so the validity of this assumption must now be reexamined as shim/safety rod movement
may be a possible cause of the differing dynamics presented in Table 6.6.

Figure 6.43 shows the shim/safety rod positions as recorded by reactor operators on the days
analyzed in Table 6.6. Time zero on this plot is the time the reactor reached full power, and
corresponds to time zero on Figure 6.38. On all days examined, the plot shows shim/safety rods
begin at nearly-withdrawn positions and are gradually inserted throughout the operating day.

If the shim/safety rod position strongly affects the data series Qfield(t)/ρ, the two 8F plots should
have similar curves in Figure 6.43, as they do in Figure 6.38; the 2A plots would also. Figure 6.43
shows no such evidence. Qualitatively, the shim/safety rod position appears to be uncorrelated to
the behavior of Qfield(t)/ρ and the assumption in section 5.2.3 appears to be valid.

Thus, the shim/safety rod movement is unlikely to be the cause of κ(~r, t) being dependent on t
and ~r.

6.7.3 The coupled neutron and nuclear heating point kinetics (NHPK)
model

The derivation of the coupled neutron-gamma point kinetic equations (4.61) depended on equa-
tions (4.35), (4.36) and (4.59) which all assumed κ(~r) to be independent of t; all these equations
must now be rewritten.

Equations (4.35) and (4.36) have already been rewritten as equations (6.1) and (6.2).

Equation (4.59) expressed H(~rG, G, t) which can now be expressed instead with a sum of prompt
and delayed gamma components:

H(~rG, G, t) = HP(~rG, G, t) +HD(~rG, G, t) (6.3)

H(~rG, G, t) =
µeffective(G,Eavg

P )

ρ
Eavg

P (~rG)ΦP(~rG, t)

+
µeffective(G,Eavg

D )

ρ
Eavg

D (~rG, t)ΦD(~rG, t), (6.4)

where:
ΦP(~rG, t) = prompt gamma scalar flux; 1/(cm2s)
ΦD(~rG, t) = delayed gamma scalar flux
Eavg

P (~rG) = average prompt photon energy; MeV
Eavg

D (~rG, t) = average delayed photon energy
µeffective(G,Eavg

P )/ρ = effective mass energy-absorption coefficient of the prompt gammas; 1/cm ·
cm3/g

µeffective(G,Eavg
D )/ρ = effective mass energy-absorption coefficient of the delayed gammas.

Notice Eavg
D (~rG, t) and thus µeffective(G,Eavg

D ) are written as dependent on time and Eavg
P (~rG) is not.

The rewriting of equations (4.61) is more difficult because equation (4.60) has been invalidated by
the discovery that κ(~r, t) is time-dependent; equation (4.60) was the tool to be used in the conversion
of g(t)/gref into heating. There is now no need for equations (4.61) to define g(t)/gref since there is no
manner to determine nuclear heating from g(t)/gref. Additionally, equations (4.61) need coefficients
obtained with a GT and equation (4.60), which has been invalidated. So, equations (4.61) are of no
use any longer.
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Figure 6.43: Control rod positions on the days the GT data sets were collected.

Figure 6.44: Control rod positions on the days the GT data sets were collected, relative to initial
positions.
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The coupled neutron-gamma equations (4.56) are still considered a valid expression of g(t) since
they have been derived from first principles and do not use coefficients which require a GT to define.
But as discussed already, an equation solving for g(t)/gref will only be of value once κ(~r, t) can also
be defined.

The theory of coupled point kinetics models still has value though and can be written to use
the experimental data of Table 6.6. Instead of coupling g(t)/gref to n(t)/nref, the nuclear heating
H(~rG, G, t) can be coupled to n(t)/nref. The equations would then predict nuclear heating in a
specific volume G at positiion ~rG, provided a measurement of the dynamic gamma heating at this
location has previously been made with the volume G. These nuclear heating point kinetic (NHPK)
equations can be written as:

1

nref

dn(t)

dt
=

[
ρ(t)− β

Λ

]
n(t)

nref
+

6∑
n=1

λnCn(t) (6.5)

dCn(t)

dt
=

βn
Λ

n(t)

nref
− λnCn(t) n = 1, 2...6.

dH(~rG, G, t)

dt
= a(~rG, G)υΣ

n(t)

nref
− LhH(~rG, G, t) +

∑
h=1

λh(~rG, G)Ch(t)

dCh(t)

dt
= bh(~rG, G)υΣ

n(t)

nref
− λh(~rG, G)Ch(t)

...

H instances of this equation.

where:
n(t)
nref

= relative number of neutrons in the core at time t; unitless
nref = reference number of neutrons in the core; unitless
a(~rG, G) = prompt heating coefficient; W/g
bh(~rG, G) = delayed heating coefficient of delayed heating group h; W/g
λh(~rG, G) = decay constant of delayed heating group h; 1/s
Ch(t) = heating variable of group h; 1/cm3

υ = core-averaged neutron speed; cm/s
Σ = core-averaged macroscopic cross section, for all relevant reactions and isotopes; 1/cm
H = the number of exponential groups required to describe the total heating
Lh = loss rate coefficient; 1/s .

In equations (4.61) Keepin’s grouping and regression analysis was used to describe the dynamic
behavior of g(t)/gref. The same analysis can be used with the GT data to define the constants
a(~rG, G), bh(~rG, G) and λh(~rG, G) in equations (6.5). These equations were written assuming the
GT used to obtain these constants is able to determine absolute nuclear heating, thus allowing
equations (6.5) to solve for the absolute nuclear heating H(~rG, G, t). If the GT is only capable of
measuring relative heating these coefficients and the heating would also be expressed in relative
terms.

Notice the constants a(~rG, G), bh(~rG, G) and λh(~rG, G), and H(~rG, G, t) do not apply to the
entire core but are specific to G, Z (the material of G) and ~rG.

Figure 6.46 shows equations (6.5) can duplicate the heating measured with the GT on Tuesday
November 3 when n(t)/nref is constant; the function fit to the November 3 data is re-plotted in
Figure 6.45 for convenience. This solution was obtained by solving the coupled dH(~rG, G, t)/dt
and dCh(t)/dt equations from (6.5) in MATLAB with the ODE45 solver with a(~rG, G) = 0.1936
W/g, bh(~rG, G) = 0.05042 W/g and λh(~rG, G) = 0.000214 1/s, which are the Tuesday November 3
constants in Table 6.6 (The MathWorks 2004).
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The use-value of the NHPK equations is illustrated by Figures 6.47 and 6.48: once the equations’
coefficients have been determined experimentally, the nuclear heating can be predicted (Figure 6.48)
for any given n(t)/nref (Figure 6.47).

In all solutions, n(t)/nref = 1.0 when the reactor’s thermal power (without delayed gammas) is
equal to the nominal reactor power of the associated constants from Table 6.5.

All solutions of equations (6.5) have been obtained with preliminary estimates of the variable Lh
and the product υΣ. The nature of these variables has been examined by solving for both in special
conditions.

When t is very large and n(t)/nref is constant dH(~rG, G, t)/dt = Ch(t)/dt = 0. Assuming a
fictional reactor with no delayed gammas is under examination, then bh(~rG, G) = 0 and λh(~rG, G) = 0
for all h. Also assume n(t)/nref is a constant 1.0, then H(~rG, G, t) = a(~rG, G) and the heating rate
equation of (6.5) is:

dH(~rG, G, t)

dt
= a(~rG, G)υΣ

n(t)

nref
− LhH(~rG, G, t) +

∑
h=1

λh(~rG, G)Ch(t)

0 = a(~rG, G)υΣ− Lha(~rG, G)

Lh = υΣ.

In a reactor with one delayed gamma-heating group and constant n(t)/nref = 1.0, at large t the
heating variable rate equation of (6.5) is:

dCh(t)

dt
= bh(~rG, G)υΣ

n(t)

nref
− λh(~rG, G)Ch(t)

0 = b1(~rG, G)υΣ− λ1(~rG, G)C1(t)

C1(t) =
b1(~rG, G)υΣ

λ1
.

Knowing H(~rG, G, t) = a(~rG, G) + b1(~rG, G) at large t the corresponding heating rate equation of
(6.5) is then used to solve for Lh:

dH(~rG, G, t)

dt
= a(~rG, G)υΣ

n(t)

nref
− LhH(~rG, G, t) +

∑
h=1

λh(~rG, G)Ch(t)

0 = a(~rG, G)υΣ− Lh(a(~rG, G) + b1(~rG, G)) + b1(~rG, G)υΣ (6.6)

0 = (a(~rG, G) + b1(~rG, G))υΣ− Lh(a(~rG, G) + b1(~rG, G)) (6.7)

Lh = υΣ. (6.8)

Thus in both cases of H = 0 and H = 1, Lh = υΣ; this definition of Lh results in the correct units.
To determine the value of the product υΣ the MATLAB solution of equations (6.5) was run in

two cases, where the value of the product in one case was 100 times that of the other. Both cases
used the same dynamic n(t)/nref of Figure 6.49. The perturbation reveals υΣ affects only the rate
H(~rG, G, t) approaches and departs steady state conditions. Figures 6.50 and 6.51 present the results
of these two cases. This parametric study isn’t capable of defining the true value of υΣ but any
value υΣ ≥ 1.0 1/s matches the experimentally-obtained exponential functions of Table 6.6; thus
υΣ = 1.0 1/s was used when solving equations (6.5) to obtain the data presented in Figure 6.48.

6.7.4 Summary

The total prompt and delayed gamma heating has been measured in two locations of the MNR core.
The results in Figure 6.38 and Table 6.6 show the gamma distribution function κ is dependent on t
and ~r.
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Figure 6.45: Exponential function plotted using the Tuesday November 3 constants in Table 6.6.

Figure 6.46: Heating calculated by equations (6.5) using a constant neutron flux, duplicating the
experimental data of Figure 6.45.
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Figure 6.47: A time-dependent data series of normalized n(t).

Figure 6.48: The nuclear heating predicted by the NHPK equations, corresponding to the changing
neutron population of Figure 6.47.
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Figure 6.49: A time-dependent data series of normalized n(t).

Given the dependency of κ on both t and ~r, the previous assumption of dependency on ~r means
equation (4.59) needs to be modified and there is no value in calculating g(t) with the coupled
neutron-photon point kinetics (PPK) equations (4.56) unless κ(~r, t) can be calculated or measured.

The coupled neutron and nuclear heating point kinetics (NHPK) equations (6.5) can be used
to couple the nuclear heating H(~rG, G, t) to the core’s relative neutron population n(t)/nref, where
H(~rG, G, t) is the nuclear heating in a specific volume G at position ~rG. In the case of the SCK-CEN
GT, H(~rG, G, t) has been shown to be dominated by photon heating but the heating of another
G volume or material may be dominated by neutrons as shown by the work in section E.4.1. The
coefficients a(~rG, G), bh(~rG, G) and λh(~rG, G) contained in these equations therefore must be obtained
with a dynamic measurement of the heating of G in location ~rG.

After the coefficients of the NHPK equations have been determined experimentally, H(~rG, G, t)
can be predicted as a function of the core’s relative neutron population n(t)/nref using an ODE
solver.
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Figure 6.50: The nuclear heating predicted by the NHPK equations, corresponding to the changing
neutron population of Figure 6.49; using υΣ = 1.0.

Figure 6.51: The nuclear heating predicted by the NHPK equations, corresponding to the changing
neutron population of Figure 6.49; using υΣ = 0.001.
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Chapter 7

Summary, conclusions and
recommendations for future work

7.1 Summary of motivation and analysis

A literature review has revealed no existing descriptions of the in-core time dependent delayed-
gamma heating of a MTR, or any other reactor. Many experimental programs have measured an
integrated gamma dose, but no references could be found which describes the dynamics of the time-
dependent heating. Experimental devices have incidentally recorded this time-dependent heating,
but no quantitative descriptions or generalized models have been developed with these observations.
Additionally, while some mature Monte Carlo codes have been shown capable of calculating in-core
prompt-gamma heating, these codes lack the ability to describe the total (prompt and delayed)
in-core time-dependent gamma heating.

Therefore, one objective of this study was to measure the total time-dependent nuclear heating
within a materials testing reactor (MTR) core to isolate and describe the heating component caused
by delayed gammas. To achieve these goals an SCK-CEN GT was commissioned in the McMaster
Nuclear Reactor (MNR) and was used to measure the delayed-gamma component of nuclear heating
in two core locations. Analysis of the GT’s signal resulted in a dynamic description of the delayed-
gamma heating of the GT.

This study also aimed to develop a new time-dependent nuclear heating model capable of predict-
ing nuclear heating as a function of neutron flux, and which can reproduce the heating measured in
MNR. Two new models which describe the time and position-dependent in-core prompt and delayed
gamma heating were derived: the nuclear heating equation and the coupled neutron and nuclear
heating point kinetics (NHPK) model.

The nuclear heating equation is a generalized equation describing the time-dependent nuclear
heating in a volume of interest, within an arbitrary geometry. Such an equation is valuable to
symbolically represent the relevant physical processes and abstract them from any specific geometry,
reaction or material. This equation uses tallies/scores from Monte Carlo calculations as coefficients
and uses the in-core neutron flux as an independent variable. The nuclear heating equation has been
implemented in a study of the SCK-CEN GT self-heating.

The NHPK model is an extension of the neutron point-kinetics equations by coupling the core’s
neutron population to nuclear heating in a volume of interest. The NHPK model uses the constants
obtained by the GT measurements in MNR as inputs; the reactivity or in-core neutron flux is an
independent variable within the NHPK equations. This model will allow others to predict the nuclear
heating of the GT as the reactor power changes.

The NHPK model has been implemented with an ODE solver to confirm it duplicates the exper-
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imental data collected by the SCK-CEN GT and to demonstrate the equations’ predicted nuclear
heating as a function of a dynamic neutron flux input.

7.2 Summary of novelties

This thesis contains the following original work:

1. Derivation of the nuclear heating equation (4.21). This equation symbolically represents
all sources of radiation and the associated energy deposition of each source, to express the total
nuclear heating a volume of interest. This equation has been used to calculate self-heating in
the SCK-CEN GT.

2. Derivation of the coupled neutron and nuclear heating point kinetics (NHPK)
equations (6.5). Solving this equation predicts the nuclear heating in a volume of interest as
a function of in-core neutron population or reactivity.

3. Using Keepin’s grouping method to describe the aggregated in-core delayed nu-
clear heating and gamma yields. The SCK-CEN GT experimental data has been described
with exponential functions. The delayed gamma yields have also been described with expo-
nential functions, similar to the way Keepin has used exponential functions to describe delayed
neutron yields; this method of describing gamma yields has been used in the derivation of
equations (4.56).

4. Derivation of the calibration equation (5.26). This equation allows the SCK-CEN GT
signal to be converted into a W/g value, in static or transient conditions.

5. Developed a Python program to calculate self-heating in the SCK-CEN GT by
(n,γ) reactions using equation (4.21). This program uses prompt emission data from the
CapGam (National Nuclear Data Center 2015) and IAEA Database of Prompt Gamma Rays
from Slow Neutron Capture for Elemental Analysis (IAEA 2015); delayed emission data is from
NuDat 2.6 (National Nuclear Data Center 2015).

6. Commissioned an SCK-CEN GT in the McMaster Nuclear Reactor for the specific
purpose of measuring the total time-dependent gamma heating within a MTR core.

7. Analysis of the SCK-CEN GT signal showing the photon spatial distribution κ(~r, t)
is time and position-dependent.

7.3 Recommendations for future work

The following tasks are recommended to extend the analysis contained within this thesis:

1. Plan GT irradiation experiments where the entire reactor operation is dedicated
to obtaining a clean GT signal. Within this thesis, the use of the GT in MNR was during
normal MNR operation. While this makes the GT use relatively simple, the trends within the
collected data describing the delayed gamma heating are usually obscured by small changes in
MNR conditions; efforts should be made to minimize any changes in reactor power during GT
irradiation.

2. Complete further analysis on the assumptions made in the derivation of the NHPK
equations. Using the MCNP6 Reference Core model, the sensitivity of prompt gamma heating
of the GT to changes in control rod position could be determined with the comparison of two
cases, one with perturbed control rod positions. The sensitivity of nuclear heating in the GT
to fission product inventory and burn-up could be completed with the same method.
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3. Incorporate an ODE solver into the Python code calculating the GT self-heating
to allow for changes in neutron flux. No analysis of the post-shutdown delayed gamma
heating has been conducted in this thesis. The SCK-CEN GT clearly records this nuclear
heating, however to calculate the GT self-heating following significant changes in neutron flux
require the consideration of these changes in the self-heating calculations. The Python program
developed in this thesis calculates self-heating while assuming a constant neutron flux.

4. Change the GT lead wire to one with more shielding to see if the GT signal noise
can be reduced. As all instruments, the SCK-CEN GT’s signal contains some noise. The
GT itself cannot be modified since it is sealed from the manufacturer. But perhaps changing
the lead wire with another having a better shielding would reduce the signal noise. This is the
only component in the GT signal chain which is easily replaceable.

5. Investigate the possibility of making the NHPK equations applicable to all core
locations. The NHPK equations describe nuclear heating at a single location. Using the
known delayed gamma spectra, perhaps Monte Carlo investigations could relate nuclear heating
at one location to other in-core locations.

6. Compare the predictions of the NHPK equations to dynamic GT meansurements.
The SCK-CEN GT could be placed in MNR during a significant change in neutron flux. The
predictions of the NHPK equations (using coefficients associated with this location) could then
be compared to the measurements.

7.4 Conclusions

The nuclear heating equation can be used to describe the time-dependent nuclear heating in a volume
of interest G, within any geometry. This equation uses tallies/scores from Monte Carlo calculations
as inputs and uses the in-core neutron flux as an independent variable.

The coupled neutron and nuclear heating point kinetics (NHPK) equations (6.5) can be used to
predict the nuclear heating H(~rG, G, t) in a specific volume G at a specific position ~rG as a function
of the core’s relative neutron population, provided a dynamic measurement of nuclear heating in
G at ~rG has already been made; the coefficients a(~rG, G), bh(~rG, G) and λh(~rG, G) contained in
equations (6.5) are obtained with this measurement.

The fraction of nuclear heating caused by delayed gammas has been found to be position de-
pendent, as was the time constant of this heating. This dependency is suspected to result from
the delayed fission gammas having a softer spectra than prompt fission gammas, and progressively
softening as decay progresses. The fraction of delayed gamma heating was observed to be larger in
the Be in-core environment than in a C environment; these environments absorb the softer delayed
gammas differently.
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Appendix A

The Monte Carlo method and
associated uncertainties

The statistical sampling technique called the Monte Carlo method, evolved into its modern form after
seminal methods were developed by Manhatten Project mathematicians and physicists. Although
the principles of statistical sampling techniques have been around for hundreds of years, it was the
development of the first electronic computing machine ENIAC, in 1945, which made the method
practical; before ENIAC was developed, the large number of relatively simple calculations required
by the Monte Carlo method formed an obstacle to implementation.

Every event in a particle’s life is a stochastic process: birth, direction of travel, absorption,
scattering, secondary particle generation and fission. The Monte Carlo method simulates the lives of
many individual particles moving within a subject geometry; the recorded events of one life is called
a history and are simulated by sampling from the probability distribution of each lifetime event with
random numbers.

After simulating many histories, the average particle behaviour is then statistically inferred;
knowledge of some average quantity, such as the number of particles moving through a volume or
energy deposited within a volume, is useful because it represents the expected behaviour of the real
system. This average is called the tally in MCNP6 and the score in TRIPOLI4.

A.1 Monte Carlo uncertainties

To obtain an expression of uncertainty on the resulting tally, each history is considered a single
sample xi from a random variable X (X-5 Monte Carlo Team 2008; 2-109). The tally or score, is the
mean of the samples, x̄; this sample mean is considered an efficient unbiased estimator of the true
population mean µ (Johnson et al. 2000; 223).

From theory, it is known that when n samples (histories) are taken from a population having a
mean µ and variance σ2, the sample mean is itself a random variable X̄ whose distribution has the
mean µ and a variance related to n by (Johnson et al. 2000; 205):

S2
X̄ =

σ2

n
.

As with most populations though, the variance σ2 is unknown, but it is considered acceptable for
large n to approximate the population variance with the sample variance S2 (Johnson et al. 2000;
212). The standard deviation of the tally is then (X-5 Monte Carlo Team 2008; 2-110):

SX̄ =
S√
n
.
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It must be noted that SX̄ expresses precision, and there is no parameter which expresses accuracy.
To eliminate systematic errors, the user must make sure the geometry is appropriately modelled and
the particle histories are sampled in a manner which reflects the real particle population (X-5 Monte
Carlo Team 2008; 2-111).

By the central limit theorem, Z is a random variable whose distribution function approaches that
of the standard normal distributions as n→∞ with a mean equal to µ (Johnson et al. 2000; 208):

Z =
X̄ − µ
S/
√
n
,

which allows one to construct confidence intervals about µ using the standard normal probability
distribution (X-5 Monte Carlo Team 2008; 2-111).

A.2 Propagation of errors

The errors in this thesis are propagated using the ubiquitous formula (Taylor 1982; 73):

σf =

√(
∂f(A,B, ...)

∂A

)2

(σA)
2

+

(
∂f(A,B, ...)

∂B

)2

(σB)
2

+ ...,

which assumes all variables are normally distributed and mutually independent. The uncertainties
σi are absolute, not relative errors.



Appendix B

Scaling of MCNP6 MNR reference
core tallies

The reactor power scaling factor, C, is multiplied by all MCNP6 tallies to obtain a meaningful result
because each tally is implicitly known to be ”per starting particle” (X-5 Monte Carlo Team 2008;
2-81); in the case of a criticality MNCP6 simulation, the starting particles are the fission neutrons.
C has units of 1/s and represents the number of fission neutrons created per second. It is calculated
as:

C = (number of fissions per second)(number of fission neutrons released per fission)

C =

(
PTH

QF1.6022× 10−13 J
MeV

)
(ν),

where:
PTH = thermal reactor power; in units of W=J/s
QF = recoverable energy per fission, core averaged; in explicit units of MeV, implicitly MeV/fission
ν = number of fission neutrons released by fission, core averaged; explicitly unitless, implicitly

1/fission.
”Core averaged” means averaged over all fissionable isotopes (where applicable) and all neutron
energies in all volumes of the core.

As an example, the following values have been assumed: PTH = 3×106 W, Qrecoverable
fission =200 MeV

and ν=2.418. Thus C = 2.26× 1017 fission neutrons/s. An error of 7.0% has been assumed on the
primary coolant flow guage in MNR which the operators use to determine reactor power, thus this
uncertainty is carried to PTH and C.
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Appendix C

Scaling of JHR TRIPOLI4 scores

When normalizing the TRIPOI4 scores the energy per fission must be estimated. This value is
assumed to be 193.7 MeV when the fresh core is considered, and 200 MeV when the equilibrium
core is considered; the difference being that many fissionable isotopes, not just 235U are present in
the equilibrium core.

The following demonstrates some random examples of how TRIPOLI scores have been scaled
to reactor power within this report (all decimal places provided by TRIPOLI4 have been spared
truncation):
a) the number of fissions per second in a 70 MW start-up core:

Rtotal
F =

70MW · 1.0× 106 W
MW · 1

J/s
W

1.6022× 10−13 J
MeV · 193.7 MeV

fission

= 2.25× 1018 fission

s

b) the normalized total core fission reaction rate scored by TRIPOLI4 over all fuel volumes in the
start-up core is:

Stotal
F = 4.250078× 10−1 ± 0.0132%

fission

s

c) the fission reaction rate scored by TRIPOLI for one of the three innermost fuel plates of assembly
EC101 is:

Sfp
F = 5.291205× 10−4 ± 0.2255%

fission

s

so the predicted fission rate in the scored fuel plate is simply the appropriate fraction of the total
fission rate:

Rfp
F =

Sfp
F

Stotal
F

·Rtotal
F

Rfp
F =

5.291205× 10−4 ± 0.2255%fission
s

4.250078× 10−1 ± 0.0132%fission
s

· 2.25× 1018 fission

s

Rfp
F = 2.80× 1015 fission

s

d) the volume-averaged absolute neutron flux between 1 and 2 MeV in the target carbon cylinder at
the center of assembly EC101 is:

Scyl
flux = 6.722908× 10−5 ± 0.8372%

neutron · cm

s · u

159



160 APPENDIX C. SCALING OF JHR TRIPOLI4 SCORES

so the predicted neutron flux between 1 and 2 MeV in the target carbon cylinder is:

φ =
6.722908× 10−5 neutron·cm

s·u
1.963cm3

·
2.25× 1018 fission

s

4.25× 10−1 fission
s

= 1.82× 1014 neutron

cm2 · s · u

To calculate the flux without units of ”per unit lethargy”, the above formula is used by starting with
the appropriate TRIPOLI4 score.
e) the electron surface current, of all energies, over a surface with an area of 15.7cm2 is:

Celec = 2.075846× 10−5 ± 1.657956%
electron

s

so the predicted electron flux through the surface is:

φ =
2.075846× 10−5 ± 1.657956% electron

s

15.7cm2
·

2.25× 1018 fission
s

4.250078× 10−1 fission
s

φ = 7.00× 1012 ± 1.65
electrons

cm2 · s
f) the volume-averaged prompt photon energy deposition, by photons of all energies is:

Scyl
ED = 7.22× 10−6 MeV

s

so the actual energy deposited in the cylinder (with a volume of 1.963 cm3 and density of 2.26 g/cm3)
by these photons is then calculated as:

Qcyl =
7.22× 10−6 MeV

s · 1.6022× 10−13 J
MeV

1.963cm3 · 2.26 g
cm3

·
2.25× 1018 fission

s

4.250078× 10−1 fission
s

Qcyl = 1.38
W

g



Appendix D

Spectral considerations

D.1 Normalization of spectra

When a score or tally is divided into a grid of energy bins, usually the bins will be of varying widths.
Since the tally of each bin increases or decreases with the width of the energy bin, the ability to
compare bin tallies to each other is lost unless the tallies are made independent of energy bin width
by dividing the tallies by some value representative of the bin width; spectral plots always require
this treatment. The bin width itself could be used as a divisor and the units of flux, for example,
within the bin would then be:

[Sflux] =
neutron·cm

s

eV
=

neutron · cm

s · eV
.

However, some bins may have a width of 1.0×10−9 eV and others of 1.0×106 eV, which would create
great variance between the magnitude of the width-independent tallies and ultimately, indiscernible
plots.

Alternatively the energy bin width could be described by units of lethargy (Bell and Glasstone
1970; 207):

u = ln

[
Eupper

Elower

]
where the two energy terms are the upper and lower energy bin boundaries. The units of flux within
such an energy bin divided by lethargy are:

[Sflux] =
neutron · cm

s · u
.

The resulting width-independent tally plot well on a linear scale once they have been normalized.
Absolute tallies of each energy bin are by definition not independent of energy bins and thus

units of lethargy are not involved in their calculation.

D.2 Energy bins

Throughout this thesis energy bin structures are used. The following table presents the boundaries
of the 3 structures which have been used for with MCNP6 for MNR analysis. These boundaries have
been selected for their convenient numbers and their even span between maximum and minimum
energies, except the lowest and highest neutron and photon boundary. The lowest photon boundary,
1.0 keV, is the limit for transported photons used throughout this thesis. The highest photon energy,
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15 MeV, and highest neutron, 20 MeV, were selected knowing few particles exist above this energy
in the core.

MCNP6 presents energy-divided tallies with the upper boundary of the associated energy bin;
for example a tally result within the energy bin between 1 and 2 MeV is presented with a label of ”2
MeV” in the output file; within this thesis, descriptions of MCNP6 tallies have adopted this naming
convention in summaries of results such as plots and tables.

TRIPOLI4 tally results do the opposite and list the lower energy bin boundary, so TRIPOLI4
scores within this thesis use the lower boundary label. TRIPOLI4 neutron scores used a 51 group
structure which is detailed in section E.3.
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Bin Boundaries (MeV)
Lower Upper Lower Upper Lower Upper

0 1.00E-09 0 5.00E-07 0.001 0.002
1.00E-09 5.00E-09 5.00E-07 1.00E-05 0.002 0.005
5.00E-09 1.00E-08 1.00E-05 1.00E-04 0.005 0.01
1.00E-08 2.00E-08 1.00E-04 1.00E-03 0.01 0.02
2.00E-08 3.00E-08 1.00E-03 1.00E-02 0.02 0.05
3.00E-08 4.00E-08 1.00E-02 1.00E-01 0.05 0.1
4.00E-08 5.00E-08 1.00E-01 1.00E+00 0.1 0.2
5.00E-08 6.00E-08 1.00E+00 20 0.2 0.3
6.00E-08 7.00E-08 0.3 0.4
7.00E-08 8.00E-08 0.4 0.5
8.00E-08 9.00E-08 0.5 0.6
9.00E-08 1.00E-07 0.6 0.7
1.00E-07 2.00E-07 0.7 0.8
2.00E-07 3.00E-07 0.8 0.9
3.00E-07 4.00E-07 0.9 1
4.00E-07 5.00E-07 1 2
5.00E-07 6.00E-07 2 3
6.00E-07 7.00E-07 3 4
7.00E-07 8.00E-07 4 5
8.00E-07 9.00E-07 5 6
9.00E-07 0.000001 6 7
0.000001 0.000002 7 8
0.000002 0.000005 8 9
0.000005 0.00001 9 10
0.00001 0.00002 10 15
0.00002 0.00005
0.00005 0.0001
0.0001 0.0002
0.0002 0.0005
0.0005 0.001
0.001 0.002
0.002 0.005
0.005 0.01
0.01 0.02
0.02 0.05
0.05 0.1
0.1 0.2
0.2 0.5
0.5 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 15
15 20

Table D.1: (L) 50 group neutron bin structure; (C) 8 group neutron bin structure; (R) 25 group
photon bin structure.



164 APPENDIX D. SPECTRAL CONSIDERATIONS



Appendix E

Gamma heating dependencies

This chapter searches for variables upon which in-core gamma heating may depend. Finding depen-
dent variables is useful to understand the parameters which affect gamma heating; this exploration
also indicates where efforts should be expended to further advance the understanding, or develop a
simplified model of in-core gamma heating.

This chapter also calculates the absolute nuclear heating within a high-neutron-flux MTR, the
Jules Horowitz Reactor (JHR). These calculations are important to demonstrate the magnitude of
gamma and neutron heating which can be expected within a reactor core.

E.1 The Jules Horowitz Reactor

The French Jules Horowitz Reactor is a high-flux research reactor which is planned to commence
operation in 2017.

The JHR is designed to host complex in-core experimental devices to answer questions regarding
a) the material aging of Generation II and III reactor materials; b) fuel performance and safety margin
improvements in Generation II and III reactors; c) the fuel and material designs of Generation IV
reactors, and; d) to produce radioisotopes for the European market (Iracane 2005; 438).

E.2 JHR specifications

With a nominal power of 100 MW and small dimensions (∅ = 740 mm and active fuel height of
600 mm), the JHR core will produce peak neutron fluxes of 5× 1015 n

cm2s (Iracane 2005; 438); these

parameters will also result in a very large specific power (460 kW
litre ) and induce large temperature

gradients and intense photon fluxes (Blanchet et al. 2008; 731).

The JHR core is constructed with an aluminum block containing 37 cylindrical holes; each hole is
approximately 10 cm in diameter (as shown in Figure E.1) and each will host either a fuel assembly
or an in-core experimental devices. The core is to be surrounded by a beryllium reflector which will
reduce neutron leakage and provide thermalized flux locations within the reflector; like the core, the
reflector is designed to host experimental devices and irradiation sites - the reflector is shown in
Figure E.2.
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Figure E.1: The JHR core showing 37 cylindrical locations for either fuel assemblies or experimental
devices (Blanchet 2006).

Figure E.2: The JHR reflector (Blanchet 2006).
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E.3 Methods of analysis

E.3.1 Methods of calculation

All radiation transport calculations in this chapter were made with the Monte Carlo radiation trans-
port code TRIPOLI4.9 (Diop et al. 2006).

The TRIPOLI4.9 model of the JHR core and reflector geometry used in this thesis was developped
by the CEA/DEN/CAD/DER/SRJH Physics Analysis Group. The author of this thesis configured
this existing JHR model as described throughout this thesis, to obtain the corresponding results.
All calculations were run on CEA clusters.

The cross-sections used with TRIPOLI4 for this thesis are based upon the JEFF-3.1.1 nuclear
data library and uses photo-atomic cross-sections from EPDL-97. The CEAV 5.1.2 library (an
implementation of JEFF-3.1.1 and EPDL-97) was used with calculations conducted on the CEA
Cadarache Mezel cluster. A few calculations used the CEAV 5.1.1 library before being upgraded
to CEAV 5.1.2 on the CEA Bruyeres-le-Châtel Curie cluster; there is thought to be no significant
differences between CEAV 5.1.1 and CEAV 5.1.2. All cross section data was processed at 21 C.

All TRIPOLI4 calculations have been conducted in CRITICITY mode, whereby the code calcu-
lates the multiplication factor k, plus all user-defined SCORES. TRIPOLI4 can be operated by track-
ing only neutrons, or coupled neutrons-photons, or coupled neutrons-photons-electrons-positrons.

All energy deposition quantities, for all particles, have been calculated using DEPOSITED ENERGY
scores, averaged over a volume of interest. All volume flux quantities have been calculated with FLUX
scores averaged over a volume. All surface flux quantities have been calculated with COURANT
scores averaged over a surface.

E.3.2 Labelling of JHR core components

Throughout this chapter, fuel assemblies (EC), inter-assembly mandrels (IA), pilot rods (AP), com-
pensation rods (AC) and safety rods (ASA) will be discussed. Each of these core components is
labelled with a number, designating its position; the map of labelled core components is shown in
Figure E.3.

E.3.3 Start-up core configuration (zero burn-up)

The start-up core (with zero burn-up) is the first core the JHR will operate on. The TRIPOLI4
model of the start-up core and reflector has been modified to the following configuration for this
report:

• 36 JHR fuel assemblies

• 1 false in-core device, made of aluminum, in the fuel assembly EC103 location

• 19.75% 235U-enriched fuel - all assemblies with zero burn-up

• 8 Hf bars at locations IA12, IA13, IA14, IA15, IA16, IA21, IA23 and IA25

• 4 ASA bars at locations 001, 201, 205 and 209, in position +30 cm

• 4 AP bars at locations 206, 212, 304 and 315, in position 0 cm

• 8 AC bars at locations 102, 202, 208, 210, 305, 309, 310 and 318, in position -31 cm

• 11 AC bars at locations 104, 106, 204, 302, 306, 308, 311, 312, 314, 316 and 317, in position
30 cm

• all perhipheral (SI) locations are aluminium
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It is assumed the start-up core is to be operated at 70 MW. The modelled JHR start-up core
and reflector configuration is shown in Figure E.4.

E.3.4 Start-up core configuration (equilibrium burn-up)

After 9 fuel cycles the start-up core will reach equilibrium burn-up. This equilibrium core differs
from the zero-burnup start-up core configuration only in its rod positions and substantial fission
product inventory. The following is a configuration of the equilibrium burn-up core (CEA 2016):

• 36 JHR fuel assemblies

• 1 false in-core device, made of aluminum, in the fuel assembly EC103 location

• 19.75% 235U-enriched fuel

• EC208, EC303, EC304, EC305, EC306, EC 308, EC309, E310, EC315 - with zero burn-up

• the other assemblies with burnup values as presented in Figure E.5

• all IA locations are aluminum

• 4 ASA bars at locations 001, 201, 205 and 209, in position +30 cm

• 4 AP bars at locatioins 206, 212, 304 and 315, in position 0 cm

• 8 AC bars at locations 102, 202, 208, 210, 305, 309, 310 and 318, in position -31 cm

• 11 AC bars at locations 104, 106, 204, 302, 306, 308, 311, 312, 314, 316 and 317, in position
30 cm

• all perhipheral (SI) locations are aluminium

Note that the 8 Hf rods in the zero-burn-up core, at the IA locations are not present in the
equilibrium core.

It is assumed the start-up core is to be operated at 70 MW.

E.3.5 Summary of TRIPOLI4 parameters

The following is a list of important parameters of all TRIPOLI4 calculations contained within this
report (unless noted otherwise in specific cases):

• TRIPOLI4 version number 4.9.0

• TRIPOLI4 models contain complete geometrical details and material descriptions of the core
and reflector

• CEAV 5.1.2 nuclear data library used for nearly all calculations (the rest were completed with
CEAV 5.1.1)

• all calculations have been made in CRITICITY (criticality) mode, which track neutrons as the
primary particle; if photons, electrons and positrons are tracked, they appear as a result of
neutron/material interactions; thus it is said that these particles are tracked in a ”coupled”
manner

• photons below the energy of 1 keV are not tracked

• electrons and positrons below 2.5 keV are not tracked
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Figure E.3: JHR core showing the component labels (TA 2011). The 34 fuel-element configuration
shown has not been analyzed in this thesis.

Figure E.4: A horizontal section at the vertical mid-plane of the TRIPOLI4 model of the JHR
start-up core.
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Figure E.5: Startup core configuration (equilibrium burn-up) showing the burn-up (top number, in
units of MW days per tonne) of each fuel assembly.

Placing a low-energy cut-off on photon and electron/positron transport is an effort to save com-
puting time. The low-energy thresholds of 1 kev and 2.5 keV are justified by the fact that the
respective particles have an extremely small distance of travel at these energies and carry relatively
small amounts of energy. These specific cut-off values are used in other CEA studies (Vaglio-Gaudard
et al. 2014).

E.3.6 Calculation of delayed gamma heating

The energy deposition values calculated by TRIPOLI4 are the prompt sources only. SRJH has
adopted the practice of scaling the prompt gamma dose by 1/0.7 to account for the delayed gammas.
This value is based upon CEA studies of delayed gamma sources and is applied uniformly spatially
(CEA 2016). Given the time-dependent nature of the delayed gammas, this is a simplistic way to
calculate the delayed gamma heating (although it may be conservative). This method has been
adopted within this report.

E.3.7 TRIPOLI4 biases

CEA studies have compared the biases of TRIPOLI4 to experimental nuclear heating data taken
from critical assemblies. SRJH uses the results of Amharrak et al. who described TRIPOLI4 to be
systematically low by a factor of 1.04, and to have an uncertainty of 3.5% (1 σ) (CEA 2016). These
values have been adopted within this report to calculate total gamma heating.
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E.3.8 Uncertainties

TRIPOLI presents scores and sigma values with many decimal places. Presenting all decimal places
can’t be justified, and selecting an appropriate number of decimal places in each instance would be
logistically difficult. Thus a convention has been adopted whereby scores (and numbers which are
a function of scores) are presented with two decimal places and uncertainties with a single decimal
place. Unfortunately, this convention is responsible for absurd situations where two decimal places
are presented on scores which have uncertainties orders-of-magnitude larger than the last decimal
place.

E.4 Start-up core (no burn-up) calculations

E.4.1 Nuclear heating in common materials

TRIPOLI4 was used to calculate nuclear heating with two-particle (coupled neutrons-photons) cal-
culations. Vertical sample cylinders of 5 mm ∅ (and 100 mm length) were placed within the JHR
model at various locations. The neutron and photon energy deposition was calculated in each sample
cylinder for a number of common materials.

Previous experimental CEA studies have used 5 mm ∅ material samples (CEA 2016); a length
of 100 mm was selected because this is many times the diameter and is also short enough to receive
a nearly-uniform irradiation when centered at the vertical mid-plane of the core where the vertical
neutron flux distribution is nearly flat.

The samples were placed within the long aluminum cylinder (the mandrel) at the centre of fuel
assembly EC101 and EC307, and within the aluminum cell at the EC103 location. Figure E.6 shows
the stylized geometries.

Additionally, the photon energy deposition was recalculated after the density of the sample
cylinders was changed to one-tenth and one-hundredth typical density. Neutron energy deposition
was not calculated in the cases of the reduced density because the processing time required to obtain
acceptable statistics in high Z material is excessive. The purpose of calculating the photon energy
deposition in low-density material is to increase the S/M ratio without changing the sample cylinder
dimensions. Table E.1 presents the S/M ratios for the sample cylinders in which the energy deposition
was calculated.

Results

Figure E.7 shows the calculated energy deposition of both neutrons and gammas in EC101. All curves
shown are either neutron-only or gamma-only energies - no curve is comprised of both neutron and
gamma energy deposition.

The gamma energy deposition of Figure E.7 is plotted with three curves: a) one curve corre-
sponding to a cylinder with material of a typical density, b) one curve for material of one-tenth of
typical density, and c) one curve for material of one-hundredth of typical density.

Figure E.7 demonstrates energy deposition per gram increases with the ratio S/M in high Z
material.

An increase in heating of Ni, Nb, Gd and Hf is observed (relative to neighboring elements of the
same density); this is also demonstrated in samples of one-tenth and one-hundredth typical density.
This indicates the increased heating of these elements is independent of the S/M ratio, and therefore
independent of geometry and density; it seems the materials demonstrating increased gamma heating
either have higher photon absorption cross-sections, or are large sources of photons.

The bottom curve in Figure E.7 shows the neutron energy deposition. Ni, Nb, Gd and Hf also have
elevated values of deposited neutron energy as a result of their relatively large neutron absorption
cross-sections. Figure E.8 plots the same neutron data in both linear and logarithmic scales; the
logarithmic plot facilitates reading data close to zero.
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Figure E.6: (L) geometry placed at center of fuel assemblies EC101 and EC307, (R) geometry placed
at the EC103 location. The material samples are centered about the core’s vertical center.

Table E.1: S/M ratios for the sample cylinders of Figure E.6.



E.4. START-UP CORE (NO BURN-UP) CALCULATIONS 173

Figure E.7: Nuclear heating calculated for neutrons and gammas in the mandrel of fuel assembly
EC101.

Figure E.8: Neutron heating of sample within the mandrel of EC101 in both linear and logarithmic
scales.
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Figure E.9: Nuclear heating calculated for neutrons and gammas in non-fuelled location EC103.

Figure E.10: Nuclear heating calculated for neutrons and gammas in the mandrel of fuel assembly
EC307.
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Figure E.11: Gamma heating calculated in the mandrel of fuel assembly EC101, EC103 and EC307.

Table E.2: Calculated absolute gamma and neutron energy deposition within the sample cylinder
placed within the mandrel of fuel assembly EC307 mandrel, at 70 MW.
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Table E.3: Calculated absolute gamma and neutron energy deposition within the sample cylinder
placed within the mandrel of fuel assembly EC101 mandrel, at 70 MW.



E.4. START-UP CORE (NO BURN-UP) CALCULATIONS 177

Table E.4: Calculated absolute gamma and neutron energy deposition within the sample cylinder
placed within the aluminum cell at EC103 position, at 70 MW.
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Based on Figure E.7 and E.8 it is speculated that the significantly increased gamma heating of Ni,
Nb, Gd and Hf is the result of neutron energy deposition; many neutron-capture gammas, originating
from within the sample cylinder, are absorbed within the same cylinder resulting in larger gamma
heating rates than would be experienced if the neutron absorption cross-sections were smaller. If
correct, this is an interesting finding which should induce those concerned with gamma heating to
consider the neutron absorption cross-sections of their samples irradiated within a mixed neutron
and gamma field.

Figure E.9 and Figure E.10 demonstrate the same Z dependency of gamma heating in cylindrical
samples placed within the aluminium cell of EC103 and the fuel assembly EC307, respectively.
Figure E.11 compares the gamma heating of all the typical-density curves from EC101, EC103 and
EC307; gamma heating is clearly greater at central core locations.

Table E.3 through E.2 present the absolute gamma heating values of each energy deposition
calculation in this section. The ”calculated prompt energy deposition” values in these tables were
used to produce Figure E.7 through E.10. The ”total gamma plus nuclear data biases and additional
3.5% on sigma” include prompt and delayed gammas, plus the TRIPOLI4 biases; the prompt gamma
heating is divided by 0.7 to account for the delayed gamma dose, 4% is added to the subsequent
number to account for systematic biases resulting from nuclear data, and 3.5% is added quadratically
to the standard deviation to account for model uncertainties.

Notice the large amount of energy deposited in water (with a density corresponding to 293 K)
by neutrons in EC101 (Table E.3).

E.4.2 Changes in spectra in the presence of C

It is well known that neutron and photon spectra change as they interact with material, thus the
spectrum of an incident radiation field will change within a sample target.

The JHR neutron and gamma spectra, averaged over the sample cylinder volume in EC101 was
calculated when the cylinder was filled with C and compared to the same cylinder when empty. C
was selected because of its history as a reference material.

Results

The results are shown in Figure E.12 and Figure E.13. The differences in photon and neutron spectra
appear to be small. These small changes are likely a result of C being a relatively weak neutron and
photon absorber, and the sample cylinder being relatively small in diameter. Presumably a larger
diameter C cylinder would induce significant neutron moderation and soften the volume-averaged
neutron spectrum.

These results induce further questions: a) how would the spectra change if the sample material
were a stronger absorber? b) how would the spectra change if the sample were larger? c) how would
the spectra change if the sample were both large and made of a strong absorber? d) what would be
the magnitude of change in energy deposition with sample depth? These questions are addressed in
subsequent sections.

E.4.3 Gamma absorption spectra

To determine which part of the photon spectra deposits the most energy, the geometry shown in
Figure E.14 was placed in EC101. The environment surrounding the sample cylinder was made of
the structural aluminum typically found in JHR (not pure Al).

Both the inner cylinder and outer layer of the sample cylinder were made of pure Al in one case,
and Hf in another case. For both Al and Hf cylinders the photon energy deposition was scored on
the inner and outer sample volumes. Most importantly, the photon energy deposition was scored
spectrally and many histories were run, which resulted in an indication of the energy deposition
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Figure E.12: Comparison between neutron spectra when cylinders (within the mandrel of fuel as-
sembly EC101) are empty and filled with C. The geometry used is shown in Figure E.6.

Figure E.13: Comparison between photon spectra when cylinders (within the mandrel of fuel assem-
bly EC101) are empty and filled with C. The geometry used is shown in Figure E.6.
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spectra with low uncertainties. This is valuable to show which energy bin is responsible for the
deposition of the most amount of energy.

Results

Figure E.15 shows the photon energy deposition spectra, averaged over the central ∅ = 2.5 mm,
L=97.5 mm Al and Hf cylinders placed in EC101. These curves imply that photons above 1 MeV
deposit a significant amount of energy.

The typical spectrum in this core location (averaged over an empty and C cylinder of similar size)
is shown in Figure E.13. It appears that the high energy photons deposit less energy only because
there are less of them (the energy deposition curve at high energies reduces at roughly the same
slope as the spectral curve of Figure E.13.

Low energy photons appear to deposit relatively-more energy in Hf than in Al.

E.4.4 Dependency of heating on sample depth

To examine how the JHR spectra and energy deposition change within various depths of a sample,
sample geometries shown in Figure E.16 were placed within locations EC101, EC105 and the alu-
minum cell EC103. All three of these locations are within the 1st inner ring of JHR fuel assembly
locations, thus they should have similar spectra (although EC103 is a non-fuelled location, unlike
the other two).

The sample cylinders of ∅ = 5 mm, L=100 mm within EC101 and EC105 were made of 10
concentric layers, each 0.25 mm thick. The sample cylinder in EC101 was made of C, and the
cylinder in EC105 of Bi; thus the two cylinders will serve as a comparison between identically sized
cylinders, made of different material.

To examine the effect of a geometry change, the sample cylinder placed in EC103 was made 10
time larger: ∅ = 50 mm, L=100 mm. Each of the 10 concentric layers in EC103 were 2.5 mm thick.
The cylinder was made of Bi, like the ∅ = 5 mm cylinder in EC105.

Four particles (neutrons, photons, electrons and positrons) were tracked in a coupled manner.
Charged particle transport was allowed only in the sample cylinder and the surrounding 13.5 mm
thick aluminium environment in each of EC101, EC105 and EC103.

The particle energy deposition was measured within each sample layer. The photon and neutron
spectra was calculated within each layer. The electron flux was calculated over the outer surface of
each cylinder layer.

Results

Figure E.17 shows the nuclear heating of the C cylinder within assembly EC101.
C shows significant neutron heating, because of the low Z of C, unlike Bi which has no significant

neutron heating.
In four-particle transport, the photon energy is deposited mostly in the form of electron kinetic

energy (the energy deposited by positrons and photons are insignificant) thus only electron energy
deposition is presented. Figure E.18 shows the energy deposited by electrons is generally constant
in each C layer of the ∅ = 5 mm cylinder; Figure E.19 shows the neutron energy deposition also
changes very little with depth.

In contrast, Figure E.21 shows the Bi layers of the ∅ = 5 mm cylinder in EC105 absorb more
electron energy in the outer layers than the inner layers, and much greater in the larger ∅ = 50 mm
Bi cylinder of Figure E.23.

The reduced electron energy deposition in the inner layers of the sample cylinders is probably the
result of a reduction in intensity of the photon spectrum with depth. Figure E.29 and Figure E.30
confirm significant photon flux depression within the inner layers of both Bi cylinders; Figure E.28
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Figure E.14: The geometry used to calculate the effect of environmental material changes on nuclear
heating, and gamma absorption spectra in the sample cylinder. The material sample is centered
about the core’s vertical center.

Figure E.15: Energy deposition calculated spectrally at core location EC101.
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Figure E.16: The multi-layered material samples: (L) geometry used at center of fuel assemblies
EC101 and EC105, (R) geometry used in non-fuelled assembly location EC103. The material samples
are centered about the core’s vertical center.

Figure E.17: Nuclear heating within the layers of the C sample cylinder placed within the mandrel
of fuel assembly EC101.
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Figure E.18: Electron energy deposition within the layers of the C sample cylinder placed within the
mandrel of fuel assembly EC101.

Figure E.19: Neutron energy deposition within the layers of the C sample cylinder placed within the
mandrel of fuel assembly EC101.
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Figure E.20: Electron flux through the outer surface of each C layer of the cylinder placed within
the mandrel of fuel assembly EC101.

Figure E.21: Electron energy deposition within the layers of the Bi sample cylinder placed within
the mandrel of fuel assembly EC105.
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Figure E.22: Electron flux through the outer surface of each Bi layer of the cylinder placed within
the mandrel of fuel assembly EC105.

Figure E.23: Electron energy deposition within the layers of the Bi sample cylinder placed within
the aluminum cell of position EC103.



186 APPENDIX E. GAMMA HEATING DEPENDENCIES

Figure E.24: Electron flux through the outer surface of each Bi layer of the cylinder cylinder placed
within the aluminum cell of position EC103.

Figure E.25: Neutron spectra within the layers of the C cylinder within the mandrel of fuel assembly
EC101.
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Figure E.26: Neutron spectra within the layers of the Bi cylinder within the mandrel of fuel assembly
EC105.

Figure E.27: Neutron spectra within the layers of the Bi cylinder within the aluminum cell of position
EC103.
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Figure E.28: Photon spectra within the layers of the C cylinder within the mandrel of fuel assembly
EC101.

Figure E.29: Photon spectra within the layers of the Bi cylinder within the mandrel of fuel assembly
EC105.
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Figure E.30: Photon spectra within the layers of the Bi cylinder within the aluminum cell of position
EC103.

Figure E.31: The mass attenuation coefficients (solid line) and mass energy-absorption coefficients
(dotted line) for Al and Bi (Hubbell and Seltzer 2014).
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shows the C cylinder, which had little change in electron energy deposition with depth, also has little
change in photon flux intensity with depth.

The neutron flux in all depths of all cylinders appears to change very little, as shown in Fig-
ure E.25, E.26 and E.27. Presumably if a strong neutron absorber was used as material for the
sample cylinder, the neutron flux would reduce strongly with depth.

The electron flux crossing the outer surface of each cylindrical layer changes very little between
outer surfaces of the C layers within assembly EC101 (see Figure E.20). This isn’t surprising since
photons are responsible for the generation of free electrons and Figure E.28 showed the photon flux
changed little between layers of EC101.

In the small diameter Bi cylinder of EC105 the electron flux between layers seems to decrease
a small amount as depth increases. The effect is easily visible in the large diameter Bi cylinder of
EC103.

Fewer electrons cross the outer surface of the first Bi layer (as shown in Figure E.22 and Fig-
ure E.24) relative to the second-outermost surface. It is suspected that the electron flux crossing
the second-outermost surface is greater because photons (coming from outside the sample cylinder)
interact readily in the outermost Bi layer, producing a large number of free electrons which cross
the second-outermost surface; in comparison, the electrons crossing the outermost surface are likely
created by photon interaction in the surrounding Al volume, which produces fewer free electrons
than does Bi. This explanation is supported by the examination of the mass energy-absorption
coefficients.

Figure E.31 shows the mass energy-absorption coefficient for Al and Bi. When multiplied by the
photon energy flux and density, this coefficient gives an energy quantity which is assumed absorbed
by the material in question. This energy is nearly equal to the photon KERMA, so as a rough
approximation this energy can be considered proportional to the number of free electrons created by
photon/material interaction.

The integrated coefficient appears to be greater in Bi than Al over the range plotted in Fig-
ure E.31, but more importantly Bi also has a density approximately 3.6 times that of Al, thus is
likely to create many more free electrons than Al, given the same photon irradiation.

The results of these TRIPOLI4 calculations demonstrate why the volume-averaged photon energy
deposition (measured in W/g) increases as S/M increases - because the photon energy tends to be
absorbed in the outer layers of the sample. One can imagine a cylinder with an extremely large
diameter (and much larger length), as the diameter becomes arbitrarily large (creating a very small
S/M ratio), photons coming from an external source would be absorbed nearly completely in the
outer layers of the cylinder, depositing essentially no energy at the center of the cylinder. In this
imaginary case the large volume, and thus large mass, would force the W/g to reduce to nearly zero.

These results also demonstrate the difficultly of dealing with the ratio W/g: in the case of an
extremely large cylinder, or a smaller cylinder made of extremely absorbing material, the volume-
averaged W/g may be small, despite the fact the total amount of energy deposited may be large in
the outer surfaces.

Although the energy deposition has only been explored for cylindrical geometries, one can draw
some conclusions for other geometries:

• thick geometries irradiated by a photon field will have depressed photon fluxes in their centers
and experience significant gamma heating at shallow depths, despite the fact the W/g averaged
over the entire volume may be small

• the above would also apply to medium-sized geometries made of high Z material

• thin geometries will have nearly-uniform fluxes at depth, and large heating measured in W/g

• the above would also apply to medium-sized geometries made of low Z material
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E.4.5 Dependency of heating on surrounding material

Since nuclear heating (by neutrons and photons) is dependent upon the particle flux and spectrum,
which both change as they move from the source through materials, one wonders how energy depo-
sition would change within a sample with changes of the surrounding material. Additionally, one
wonders if some sample materials are more sensitive to environmental changes than others.

To investigate, the geometry of Figure E.14 was placed within assembly EC101. The sample
cylinder consisted of an inner core of ∅ = 2.5 mm, L=97.5 mm and a surrounding outer layer
∅ = 5 mm, L=100 mm. The material of both sample-cylinder volumes were simultaneously changed
to various materials. The energy deposition was calculated in both the inner and outer sample
volumes.

To determine the effects of environmental changes the mandrel surrounding the sample cylinder,
which had a ∅ = 32 mm, was sectioned into a length of 127 mm. This 127 mm segment (called the
environment) surrounded the sample cylinder with 13.5 mm of material, and was changed to various
common reactor materials: Al (structural aluminum found throughout the core, not pure Al), NaK,
316L stainless steel, C, Zr and H2O.

The energy deposition within both volumes of the sample cylinder was calculated using DE-
POSITED ENERGY scores while the TRIPOLI4 calculations tracked four particles (neutrons, pho-
tons, electrons and positrons) in a coupled manner in CRITICITY mode. Charged particle transport
was allowed only in the sample cylinder and the 13.5 mm thick environment.

Additionally, the energy deposition was recalculated while tracking only two particles (neutrons
and photons) in the same geometry.

Two-particle Monte Carlo simulations are usually conducted at SRJH to calculate neutron and
photon energy deposition because they require less processing than four-particle simulations. It is
assumed within SRJH that calculating photon energy deposition with a two-particle simulation with
a DEPOSITED ENERGY score is an accurate estimation of photon energy deposition. In reality,
the electrons and positrons which are created when photons interact with materials may transport
the photon energy away from the volume of interest.

Scoring energy deposition in both the two and four particle simulations, using identical geometry
in both cases, allows one to measure the accuracy of the two-particle photon DEPOSITED ENERGY
score because the four-particle case should be a more accurate description of where the energy of
fission is ultimately deposited.

Results

The results of the four-particle calculations are shown in Figure E.32 and E.33. These figures show
the energy deposited by electrons only, which carry most of the energy originally carried by photons.
Neutron energy deposition is not included these figures.

The plotted data is the electron energy deposition in W/g, divided by the electron heating of the
same volume when it is surrounded by C in W/g. Figure E.32 is of the inner volume of the sample
cylinder, Figure E.33 of the outer volume.

These figures clearly show that changing the environmental material induces a significant change
of energy deposited by electrons within the volumes of the sample cylinder.

Furthermore, it appears that the outer layer of the sample cylinder is affected more by environ-
mental changes than the inner core when the sample is made of a material with a higher Z.

The Zr environment seems to shield the sample cylinder the most, presumably because Zr has the
highest Z (compared to all other environmental materials tested) and thus is most likely to absorb
photon energy.

It appears an environment of NaK allows for the most gamma heating - although the single
datum point of an H2O environment (using an Al target cylinder) suggests H2O allows greater
energy deposition than a NaK environment. Presumably H2O and NaK are poor photon shields
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Figure E.32: Electron heating of inner core of sample cylinder (shown in Figure E.14) as the envi-
ronment changes, relative to electron energy deposition in the same volume when surrounded by a
C environment.

Figure E.33: Electron heating of outer layer of sample cylinder (shown in Figure E.14) as the
environment changes, relative to electron energy deposition in the same volume when surrounded by
a C environment.
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Table E.5: Comparison between photon KERMA and energy deposited by electrons, photons and
positrons (prompt gammas only).
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Table E.6: Positron and photon energy deposition compared to the energy deposited by electrons
(prompt gammas only).
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Figure E.34: Electronic inequality of high-density, high-Z material of region B, when region A is
made of low-density, low-Z material.

because they have lower mass energy-absorption coefficients and/or densities than Zr and 316L
stainless steel.

Table E.5 presents a comparison between a coupled two-particle TRIPOLI4 calculation of pho-
ton energy deposition, which calculated photon KERMA, and a coupled four-particle TRIPOLI4
calculation, which calculated the energy deposited by positrons, electrons and photons separately.
This table does not include delayed gammas or delayed gamma energy in any way; only the prompt
photons as calculated in TRIPOLI4 have been included.

Table E.5 shows the fraction ”Electron energy deposition [calculated during four-particle trans-
port] divided by photon KERMA [calculated during the two-particle transport].” This fraction is
always above 0.5, indicating that electrons deposit the majority of the energy transferred from pho-
tons to charged particles. The remainder of the photon KERMA is ultimately deposited by positrons
and photons, as shown by the fraction ”Total electron, positron, photon energy deposition [calcu-
lated during four-particle transport] divided by photon KERMA [calculated during two-particle
transport].”

Table E.6 compares the energy deposited by photons and positrons to the energy deposited by
electrons, from four-particle TRIPOLI4 calculations. This table demonstrates electrons carry much
more of the photon energy than positrons.

Within Table E.5, the inner-cylinder fractions are generally closer to unity than the outer-layer
fractions. The ”Electron energy deposition divided by photon KERMA” outer-layer fraction drops
significantly below unity for high-Z sample materials.

The ”Total electron, positron, photon energy deposition divided by photon KERMA” fraction is
generally equal to unity in all cases for the inner cylinder, but still less than unity for the outer layer.

These small outer-layer fractions are probably caused by the outer layer being directly adjacent
to the surrounding environment; Figure E.34 illustrates this effect.

Figure E.34 shows why sample material B may have a small ”Electron energy deposition divided
by photon KERMA” fraction. Assuming free electrons don’t travel far in any material before de-
positing their energy, a few electrons (originating very close to the material boundary) pass over the
A-B material interface into B and deposit their energy in region B - resulting in an actual energy
deposition in A which is lower than the photon KERMA of region A.

If material A is low-density, low-Z material and material B is high-density, high-Z material,
photon/material interactions in B will create many more free electrons than in A. Thus many more
electrons may cross the B-C boundary and deposit their energy in C - resulting in an actual energy
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deposition in B which is much lower than is indicated by photon KERMA in B.
Thus, the reason why the Table E.5 fractions are smaller in large Z targets than low-Z targets, for

any given environment, is because photons are more likely to transfer energy to charged particles in
high-Z material, and many of these electrons manage to escape, while the surrounding low-Z material
does not contribute many electrons.

When the environment and outer layer are both made of Al the outer-layer ”Electron energy
deposition divided by photon KERMA” fraction is equal to unity, indicating there is a balance
between the number of electrons entering the outer-layer and the number leaving. This is the state
of electronic equilibrium which is considered in cavity theory.

The fraction ”Total electron, positron, photon energy deposition divided by photon KERMA” in
Table E.5 gives an important lesson: this fraction is usually close to or less than unity. Thus if one
wanted to know the photon heating in a volume and assumed it was equal to the photon KERMA of a
two-particle TRIPOLI4 calculation, it would be an acceptable (or conservative) approximation to the
actual ”photon energy deposition” which is correctly calculated by summing the energy deposition
of photons, electrons and positrons after a more expensive four-particle calculation.

E.4.6 Dependency of heating on control rod position

Since control rod movements strongly distort the local neutron flux, it was speculated that perhaps
changes in control rod position may also affect gamma heating. Control rods in JHR are to be
inserted within fuel assemblies. Assemblies which host control rods cannot also host irradiation
samples. Thus in these calculations, the vertical height of a control rod in EC102 is changed, while
the gamma heating is calculated in the centre of another fuel assembly EC101.

Figure E.35: The geometry used to calculate the effect of control rod position changes on nuclear
heating. The material samples are centered about the core’s vertical center.

To examine the nuclear heating with changes in control rod position, the geometry shown in
Figure E.35 was placed within the mandrel at the centre of fuel assembly EC101. The sample
geometry consists of 11 stacked sample cylinders, each with an inner cylindrical core of ∅ = 2.5 mm
and outer layer with an outer diameter of 5 mm, all made of C. The central (vertically) cylinder was
located where the neutron flux changes little with vertical displacement, has a length of 100 mm;
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Figure E.36: Gamma heating profiles of the inner cores of the carbon samples located within assembly
101.

Figure E.37: Gamma heating profiles of the outer layers of the carbon samples located within
assembly 101.
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Figure E.38: Relative gamma heating profiles of the inner cores of the carbon samples located within
assembly 101.

Figure E.39: Relative gamma heating profiles of the outer layers of the carbon samples located within
assembly 101.
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the rest are located where the neutron flux changes a lot vertically, thus they have a shorter height
of 50 mm.

The energy deposition was calculated using DEPOSITED ENERGY scores on each volume while
the TRIPOLI4 calculations tracked two particles (neutrons, photons) in a coupled manner in CRIT-
ICITY mode. The photon energy deposition was measured within each sample volume as the control
rod within fuel assembly EC102 moved from a position of -31 cm to 30 cm.

Results

Figure E.36 and E.37 show the vertical gamma heating profiles of the inner and outer sample layers
are unchanged for each control rod position; the dark vertical lines have been added for visual
reference. These unchanged profiles imply that changes in the EC102 control rod position make no
significant difference on the nuclear heating in central locations of assembly EC101.

A relative inspection of the same data is presented in Figure E.38 and E.39. The data is presented
as gamma heating at various rod positions, divided by the gamma heating in the same volume when
the original rod position was at -31 cm. Error bar of 1 sigma are plotted on each point. None of the
data points differ from a ratio of 1.0 by more than 2 sigma.

E.5 Equilibrium core calculations

All previous calculations in this report have been conducted with a TRIPOLI4 model of JHR with no
fission product inventory. In this section the equilibrium core with fission products (as described in
section E.3.4) was used to calculate neutron and photon spectra for comparison to the zero-burn-up
core. This comparison should demonstrate if the presence of a significant fission product inventory
and absence of absorber rods make a significant difference in the spectra.

TRIPOLI4 tracked neutrons and photons in a coupled manner for these calculations. TRIPOLI4
cannot track the decay of fission products or activation products, so although the fission product
inventory has been extensively described in the TRIPOLI4 model, no delayed gammas have been
considered at all in this section.

The geometry shown in Figure E.14 was placed within EC101 and EC307. The environment
surrounding the sample cylinder was made of the structural aluminum typically found in JHR (not
pure Al). Both the inner cylinder and outer layer of the sample cylinder were made of pure C.

E.5.1 Results

Figure E.40 shows the normalized neutron spectra averaged over the central ∅ = 2.5 mm, L=97.5
mm C cylinder placed in EC101 of the equilibrium core. For comparison, Figure E.40 also shows the
neutron spectra calculated in the ∅ = 5 mm, L=100 mm C cylinder placed in EC101 of the fresh
core (zero burnup) as previously shown in Figure E.12. Notice the cylinders over which the spectra
have been averaged differ in size; this is thought to be acceptable given the insignificant change in
neutron flux demonstrated between C layers in Figure E.25. The normalized neutron flux appears
to change little at EC101 between the zero burn-up and equilibrium core.

The calculated neutron spectra averaged over the central ∅ = 2.5 mm, L=97.5 mm C cylinder
placed in EC307 of the equilibrium core is also plotted in Figure E.40.

Figure E.41 shows the normalized (prompt-only) photon spectra averaged over the central ∅ = 2.5
mm, L=97.5 mm C cylinder placed in EC101 of the equilibrium core. For comparison, Figure E.41
also shows the neutron spectra calculated in the ∅ = 5 mm, L=100 mm C cylinder placed in EC101
of the fresh core (zero burn-up) as previously shown in Figure E.13. Notice the cylinders over which
the spectra have been averaged differ in size; this is thought to be acceptable given the insignificant
change in photon flux demonstrated between C layers in Figure E.28. The normalized photon flux
appears to change little at EC101 between the zero burn-up and equilibrium core.



200 APPENDIX E. GAMMA HEATING DEPENDENCIES

Figure E.40: Comparison between normalized neutron spectra of zero burn-up and equilibrium core
at EC101.

Figure E.41: Comparison between normalized photon spectra of zero burn-up and equilibrium core
at EC101.
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The calculated prompt photon spectra averaged over the central ∅ = 2.5 mm, L=97.5 mm C
cylinder placed in EC307 of the equilibrium core is also plotted in Figure E.41.

E.6 Conclusions

E.6.1 General observations

These calculations predict that prompt gamma heating, in units of W/g, increases as the dimensions
of a sample decrease. This results from self-shielding, and has been observed experimentally by
others (Reilly and Peters 1971).

These studies have demonstrated gamma heating is dependent upon geometry of the sample,
material of the sample, environment of the sample and spatial location of the sample. It would be
useful if one could develop a single factor to predict in-core gamma heating of an in-core material
sample, knowing only the reactor power; however, this report shows such a factor would be dependent
upon all the variables listed above, and therefore require many parametric studies to develop.

E.6.2 Gamma heating in strong neutron absorbers

It appears strong neutron absorbers are likely to have significantly higher gamma heating in a mixed
neutron/gamma radiation field, compared to non-neutron absorbers of a similar Z. This is suspected
to result from the additional absorption of neutrons which release neutron-capture gamma radiation,
which causes greater gamma heating. Figures E.7, E.9 and E.10 illustrate the heightened gamma
heating of Ni, Nb, Gd and Hf.

E.6.3 Comparison of two and four-particle TRIPOLI4 calculations

Table E.5 shows one can calculate the photon KERMA in a volume with a two-particle TRIPOLI4
calculation, and it would likely be a conservative approximation to the actual photon energy deposi-
tion. This conclusion was obtained by comparing the results to four-particle TRIPOLI4 calculations.

E.6.4 Further analysis

Any opportunity for improvement in modelling of in-core gamma heating must begin where current
methods either fail, don’t agree with fundamental physics, or are simplistic. Within this chapter,
no calculations revealed results which are obviously erroneous or non-physical. However, a very
simplistic model was employed to calculate the delayed-gamma heating and could be improved
further.
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Appendix F

Thermocouples in the SCK-CEN
GT

F.1 Thermocouples

Thermocouples are ubiquitous in industrial settings for measuring temperatures. Their operation
depends upon the Seebeck effect, or the Seebeck electromotive force (EMF). This is the EMF which
results over any length of metal wire, when one end is heated relative to the other end. For any
metal, the ratio of the net change of Seebeck EMF, dE, which results from a very small change of
temperature, dT , to that temperature increment is called the Seebeck coefficient (ASTM Committee
E20 on Temperature Measurement 1993; 7):

σ(T ) =
dE

dT
.

The Seebeck coefficient is temperature dependent and may be either positive or negative in
magnitude. Over a small temperature difference, it might be assumed that the Seebeck coefficient
is constant; in this case, the EMF generated over a wire with ends at different temperatures would
simply be (ASTM Committee E20 on Temperature Measurement 1993; 10):

E ' σ · (T2 − T1).

In the general case, where the Seebeck coefficient is temperature dependent, the total EMF
generated is determined with an infinite sum of EMFs generated over an infinite number of infinitely
small temperature changes (i.e. an integration). For a wire with one end at T1 and the other at a
higher temperature T2 (ASTM Committee E20 on Temperature Measurement 1993; 9):

E =

∫ T2

T1

σ(T ) dT. (F.1)

Simple thermocouples are made by joining one end of two metal wires at a heated junction with
temperature T2. Each wire responds by generating its own absolute EMF. The net EMF is the sum
of the EMFs created by each wire, and is measured by a voltmeter across the opposite wire ends -
Figure F.1 shows such a thermocouple. Each branch, or thermoelement, of the thermocouple must
be made of a different material or the net measured voltage would always be zero.

An electrical schematic can be drawn for thermocouple analysis; each metal conductor exposed to
a temperature gradient is represented as a resistor, R, and a voltage source, E; isothermal conductors
would generate no EMF and would be represented simply as a resistance. The polarity of the two
sources shown in Figure F.1 have been drawn to oppose each other, which may or may not be the
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case in any given thermocouple - the polarity depends upon the sign of σ(T ) of each wire. Also note
the resistance values of the thermoelements do not matter, since a potential is being measured, not
an electrical current.

Figure F.1: A simple single-junction thermocouple.

Manufacturers characterise thermocouples by measuring the net EMF corresponding to a junction
temperature, for many different temperatures (using the ITS-90 standard). A polynomial equation
is developed by fitting to the resulting experimental plot. This equation allows thermocouple users
to determine the junction temperature from a measured net EMF signal, and is usually of the form
(ASTM Committee E20 on Temperature Measurement 1993; 165):

T = c0 + c1E + c2E
2 + c3E

3...+ cnE
n, (F.2)

where the coefficients ci are supplied by the manufacturer, T is the temperature in ◦C and E is
the measured net thermocouple EMF in mV. The EMF-temperature relationship described by the
polynomial is based upon a simple thermocouple arrangement, as shown in Figure F.1, where the
reference junction T1 = 0 ◦C.

In an industrial setting though, thermocouples do not have their thermoelements held at 0 ◦C.
Furthermore the typical reference junction temperature is not constant but varies with the plant
environment, thus the polynomial cannot be employed directly to determine the monitored tempera-
ture. Most electronic thermocouple readers have cold junction compensators (CJC) tuned specifically
for the thermocouple type and correct for the EMF deviation which results from having T1 6= 0 ◦C
(ASTM Committee E20 on Temperature Measurement 1993; 136). The compensator is placed in
electrical series with the thermocouple and results in a measured net EMF as if the reference junction
temperature were held at 0 ◦C, making the polynomial applicable.

F.2 The SCK-CEN GT differential thermocouple

The the SCK-CEN GT contains a K-type differential thermocouple manufactured by Thermocoax
(SCK-CEN 2009; Tab 4). Differential thermocouples have two junctions, referred to as hot, TH , and
cold, TC . The hot junction is embedded within the tip of the GT inner body, while the cold junction
is within the metal-sheathed signal lead a few centimeters away from the instrument. Figure F.2
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shows the spatial layout of the differential thermocouple as it is incorporated into the GT1.

TC is meant to provide a reference temperature - the pool water temperature. Since the GT’s
small lead wire is constantly in contact with the reactor pool water, has a very small mass per unit
length and a high conductivity, the cold junction contained inside is unlikely to be heated above the
pool temperature by radiation; all anlysis within this thesis assumes the cold junction temperature
is equal to the reactor pool water temperature. The signal from a differential thermocouple indicates
the difference TH − TC .

The thermocouple spans three regions of temperature: the reactor building, the reactor pool,
TC , and the tip of the inner body, TH . While the GT is being irradiated in-core, the pool is
warmer than the building and the inner body is warmer than the pool. Given this temperature
distribution, an absolute voltage E for each conductor spanning a temperature gradient is shown in
the electrical schematic of Figure F.2. Electrical resistances are of no consequence to thermocouples
since thermocouples carry no current during normal operation.

The thermoelements of K-type thermocouples are nickel-chromium alloy, and nickel-aluminum
alloy (ASTM Committee E20 on Temperature Measurement 1993). The positive thermoelement,
KP, is an alloy that contains 89 to 90% nickel, 9 to 9.5% chromium plus smaller amounts of other
constituents such as silicon, iron, carbon, manganese, cobalt and niobium. The negative thermoele-
ment, KN, is typically composed of about 95 to 96% nickel, 1 to 1.5% silicon, 1 to 2.3% aluminum
plus manganese, cobalt, iron copper and lead (ASTM E230/E230M-12 2013).

The total EMF V generated by the circuit in Figure F.2 is obtained with a sum of equation (F.1)
terms, corresponding to the EMF generated in each wire:

V = E1 − E2 − E3

V =

(∫ TR

0

σA(T ) dT +

∫ TH

TR

σA(T ) dT

)
−

(∫ TH

TC

σB(T ) dT

)
−

(∫ TC

TR

σA(T ) dT +

∫ TR

0

σA(T ) dT

)

V =

∫ TH

TR

σA(T ) dT −
∫ TH

TC

σB(T ) dT −
∫ TC

TR

σA(T ) dT (F.3)

where TR is the temperature of the reactor building air. The terms integrated between 0 and TR on
the second line of the above equation are the additional EMFs which would be generated if the ends
of the material A wires were 0 ◦C; notice in a differential thermocouple these terms are unimportant
when measuring V because they cancel.

F.2.1 Calculating the EMF generated by an ideal differential thermocou-
ple

Equation (F.3) is not practical for the calculating V in Figure F.2 since σA(T ) and σB(T ) are
continuously variable with T . A practical polynomial can be derived to express V since the differential
thermocouple of Figure F.2 is actually equivalent to the circuit in Figure F.3, which is expressed as:

1The polarity of the voltage sources drawn in the figure is not known, each has been drawn with the negative
pole towards the hotter conductor end. The polarity depends upon the sign of the temperature-dependent Seebeck
coefficient.



206 APPENDIX F. THERMOCOUPLES IN THE SCK-CEN GT

Figure F.2: The differential thermocouple used to measure the temperature difference between TH
and TC of the SCK-CEN gamma thermometer.

Figure F.3: A differential thermocouple made with two typical thermocouples wired in series, with
reversed polarity, which is effectively identical to the circuit shown in Figure F.2.
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V = V1 − V2

V = (E1 − E2)− (E4 − E3)

V = E1 − E2 + E3 − E4

V =

(∫ TR

0

σA(T ) dT +

∫ TH

TR

σA(T ) dT

)
−

(∫ TR

0

σB(T ) dT +

∫ TH

TR

σB(T ) dT

)
+(∫ TR

0

σB(T ) dT +

∫ TC

TR

σB(T ) dT

)
−

(∫ TR

0

σA(T ) dT +

∫ TC

TR

σA(T ) dT

)

V =

∫ TH

TR

σA(T ) dT −
∫ TH

TR

σB(T ) dT +

∫ TC

TR

σB(T ) dT −
∫ TC

TR

σA(T ) dT

V =

∫ TH

TR

σA(T ) dT −
∫ TH

TC

σB(T ) dT −
∫ TC

TR

σA(T ) dT,

which is the equation (F.3).
V1 and V2 from Figure F.3 can be each determined for known TH and TC temperatures with

a temperature-to-voltage polynomial for K-type thermocouples; the coefficients for temperature-to-
voltage polynomials are found in (ASTM E230/E230M-12 2013; Table 7). Since Figure F.3 is two
identical thermocouples wired in series with reversed polarity, V = V1−V2 = V (TH)−V (TC) where
V (TH) and V (TC) indicate the voltage calculated with the temperature-to-voltage polynomials.
From the derivation above we know this EMF is also equivalent to V of Figure F.2, thus providing
a practical polynomial for the SCK-CEN GT thermocouple.

F.2.2 CJC settings

The NI-9211 contains a CJC which is controlled by the associated virtual instrument within the
LabVIEW program (Instruments 2015). No matter the CJC setting, it is assumed the CJC adds the
following EMF to the measured V to compensate the circuit shown in Figure F.1:

EMFcorrection =

∫ T1

0

σA(T ) dT −
∫ T1

0

σB(T ) dT. (F.4)

With the ”built-in” LabVIEW virtual thermocouple setting, T1 is allowed to vary to always equal
the ambient room temperature as measured by a thermistor within the NI-9211.

The EMF generated by the circuit of Figure F.2 was shown equal to V = V1 − V2 = V (TH) −
V (TC) where V (TH) and V (TC) indicate the voltage calculated with the temperature-to-voltage
polynomials. The derivation of equation (F.3) assumed TR = 0 ◦C. In reality TR ≈ 22 ◦C (room
temperature) and the derivation of equation (F.3) showed no cold junction compensation is desired
to measure TH − TC . Therefore, to make EMFcorrection = 0V the ”constant value” setting on the
LabVIEW virtual thermocouple was used while defining T1 = 0 ◦C; this is the prefered CJC setting
for GT operation.

F.2.3 Conversion of GT data collected with ”built-in” CJC setting

Some measurements were taken with the NI-9211 thermocouple input module set on ”built-in.” To
utilize these data they need to be converted as if they were aquired in ”constant value” mode:

1. convert the temperature read by LabVIEW to voltage V using the temperature-to-voltage
polynomial of a normal K-type thermocouple
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2. assume the reactor building temperature is always TR = 22 ◦C (as confirmed by numerous
measurements); this is a reasonable assumption since the building is climate controlled

3. calculate EMFcorrection for a normal K-type thermocouple with equation (F.4), which is simply
equal to V (22 ◦C) for a K-type thermocouple

4. reverse the correction the CJC made to the voltage in ”built-in” mode with Vcorrected = V −
EMFcorrection

This algorithm was confirmed by converting ”built-in” data, and then comparing to ”constant
value” data collected while measuring the same physical quantity. All GT data collected in ”built-in”
mode was converted using this algorithm.

F.2.4 Systematic error

Unfortunately, the NI-9211 thermocouple input module is controlled by the LabVIEW DAQ pro-
gram which uses a voltage-to-temperature polynomial for normal K-type thermocouples as shown
in Figure F.1 (the coefficients of this polynomial are found in (ASTM E230/E230M-12 2013; Table
46)). Since a differential thermocouple was employed, not a normal thermocouple, a systematic error
is introduced into the resulting measurements.

This error can be calculated. Figure F.4 shows the error (∆Tapprox − ∆T )/∆T in percent for
expected ranges of TH and TC , where ∆T = TH − TC and ∆Tapprox is the value calculated by
LabVIEW using equation (F.2). Note the error is always positive when TH > TC .

Figure F.4: Calculation of the systematic error introduced by use a regular K-type thermocouple
polynomial to describe the voltage from the differential thermocouple contained within the SCK-CEN
GT.

The signal ∆Tapprox can be converted to ∆T with the following algorithm:
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1. convert the temperature read by LabVIEW to voltage V using the temperature-to-voltage
polynomial of a normal K-type thermocouple

2. assume the TC is equal to the measured pool temperature; in reality TC is probably slightly
warmer since it is subjected to nuclear heating in the proximity of the GT’s cold junction, as
opposed to where the pool temperature is measured, approximately 2 m above the core

3. V (TC) is then calculated using TC

4. V (TH) is obtained V (TH) = V + V (TC)

5. TH is obtained with the voltage-to-temperature polynomial of a normal K-type thermocouple

6. the true ∆T is then calculated with TH − TC .

All GT data has been converted in this manner.
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Appendix G

GT signal processing

Analysis of the recorded GT signal is meant to decompose the signal into two components: trends
and noise. This section reviews the methods used to distinguish between the two components.

The voltage signal from the GT’s thermocouple is classified as a non-periodic power signal in
communications theory (Haykin 1989; 4). Although thermocouples provide a continuous signal, the
thermocouple’s output is recorded as a sequence of samples, creating a discrete time signal. All GT
signals were recorded with a sample period Ts=1 s corresponding to a sampling rate of fs = 1/Ts=
1 Hz (Haykin 1989; 67).

G.1 Discrete fourier transform

By the Fourier theorem, periodic signals can be constructed with a sum of an infinite number of sine
waves. A periodic function in the time domain, g(t), can be expressed as a function in the frequency
domain, G(f); both g(t) and G(f) contain the same information, but G(f) expresses this information
with the frequencies of the constituent functions, which collectively are called the spectrum of G(f);
G(f) reveals the frequencies of the constituent functions even when they are obscured within g(t).

Fourier transforms are often employed in signal processing to obtain G(f) from g(t) for the
purpose of searching for periodic signals hidden within g(t); since the GT signal satisfies Dirichlet’s
conditions, which indicates it to be Fourier transformable, this method has been applied to the GT
signal (Haykin 1989; 22).

Discrete-time signals are receptive to treatment with a discrete Fourier transform (DFT). In
most cases the fast Fourier transform (FFT) is employed, which is an algorithm allowing n number
of sample points to be processed with practical speed, when n is large (MathWorks 2015c). A
MatLab program has been written to process the GT signal with a FFT. Using a GT data set
spanning 11.7 hrs, n=42,223, recorded on Friday July 26, 2013. This time span was selected for
its apparent smoothness, aside from the usual noise, and very small shim/safety rod perturbations
resulting from normal operations to maintain reactor power.

The n data points were loaded into a MatLab vector with elements xj , indexed by 0 ≤ j ≤ n−1.
The DFT creates an associated vector with elements yp made of complex numbers, indexed by
0 ≤ p ≤ n − 1. Each complex number yp is calculated with an equation which is a trapezoidal-rule
approximation to the Fourier transform integral (Haykin 1989; 71). The DFT equation employed in
MatLab is (MathWorks 2015b):

yp+1 =

n−1∑
j=0

ωjpxj+1

where w is:
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ω = e−2πi/n,

i is the imaginary unit.

Figure G.1: Time domain signal of y = 2 sin(2π0.2t) + 0.5(2π0.3t) + random noise and the corre-
sponding amplitude spectrum.

Figure G.2: The raw GT signal and the corresponding amplitude spectrum.

Each complex value yp measures the amount of the frequency f = p∗(fs/n) present in the sample
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data (MathWorks 2015b). For example, the point yp when p = (42223 + 1)/2 = 21112 is a measure
of the frequency ≈ fs/2. By the sampling theorm, the 1 Hz sampling frequency is not capable of
detecting component frequencies in xj greater than 0.5 Hz so the DFT values yp>21112 need not be
examined (Haykin 1989; 70); for real xj values, the series yp is symmetric about y21112, called the
Nyquist point.

To visualize the DFT, the amplitude spectrum |yp| of the signal xj is plotted against the frequency
f (Haykin 1989; 24). Figure G.1 shows an example case using MatLab’s FFT function, where the
original signal y = 2 sin(2.0π0.2t) + 0.5(2π0.3t) + random noise is plotted on the top two frames over
different time spans to show the structure of the raw signal. The amplitude spectrum is shown in the
bottom frame; the vertical axis values are equal to 2 ∗ |yp| /n (MathWorks 2015a). The amplitudes
of the basis functions are clearly visible, although their amplitudes are not equal to exactly 2.0 and
0.5 because of the noise added to the system. The value y0, corresponds to f = 0, and is omitted
because it is equal to the sum of the values xj .

Figure G.2 presents the GT signal’s amplitude spectrum which does not show evidence of a
periodic function hidden within the raw GT signal. The relatively flat region 0.05 ≤ f ≤ 0.5
is considered white noise, likely resulting from random electron motion within the GT’s electrical
circuit (Smith 1998; 172); this noise is often called thermal noise (Haykin 1989; 604). The low
frequency peaks over the range f < 0.05 results from the 1/f noise found in most measured signals
(Smith 1998; 172).

G.2 Smoothing the raw GT signal

Valuable information within the GT signal data may be obscured by noise, so the GT signal must
be processed to reveal the underlying features for enhanced presentation. The GT signal itself is a
univariate time-series, a data set recording a single variable with time, univariate because all the
data were collected at a constant frequency of 1 Hz.

Time series are often made of three superimposed components, i) a trend, ii) a ”seasonal” com-
ponent, and iii) a random effect (Kendall 1973; 16). The physical first principles of in-core gamma
heating don‘t imply a seasonal or periodic component is likely to be observed in the presence of con-
stant neutron flux; the same principles foreshadow the GT signal should contain a trend, therefore
all processing of the GT signal must carefully reduce the random component to reveal the trend of
interest (P.J. Brockwell 2002; 23).

Smoothing methods are often used to make trends more conspicuous and often involve the least
squares fitting of a polynomial, or employing a simple moving average. Simple moving averages are
easily calculated but weigh past observations with the same weight as the current observation, which
can obscure the onset of a trend. Another method, exponential smoothing, weighs past observations
with exponentially decreasing weights to give more significance to the most recent observations which
highlights trends better than uniform weights (NIST 2015b).

A few smoothing techniques were tested on a noisy GT data set representative of typical raw
GT data. This noise was superimposed on a GT response to a step change in heating corresponding
to a 15 ◦C drop, as modelled by equation (5.19) with τ = 18.4 s; this is thought to be a close
representation of the most drastic change the GT signal can make. Figure G.3 shows the raw signal
and single exponential smoothing (NIST 2015c):

St = αyt−1 = (1− α)St−1 0 < α ≤ 1 t ≥ 3,

where t is the time index, yt the original GT data, St the smoothed value and α the smoothing
constant. Figure G.3 (L) shows the 12 s time delay introduced by the smoothing, which is shown
in detail in Figure G.3 (R). The smoothing and the delay reduce with increased α values; little
optimization of α has been investigated.
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Figure G.3: (L) signal smoothing of a step change in GT nuclear heating; (R) a detail of the step
change ”cliff edge.”

Figure G.4: (L) signal smoothing of a step change in GT nuclear heating; (R) a detail of the step
change ”cliff edge.”
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Figure G.5: (L) signal smoothing of a step change in GT nuclear heating; (R) a detail of the step
change ”cliff edge.”

Figure G.6: (L) signal smoothing of a step change in GT nuclear heating; (R) a detail of the step
change ”cliff edge.”
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Figure G.7: (L) signal smoothing of a step change in GT nuclear heating; (R) a detail of the step
change ”cliff edge.”

Figure G.8: (L) signal smoothing of data from a typical MNR day; (R) a detail of the MNR start-up.
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Double exponential smoothing employs two equations with two smoothing constants, α and γ
(NIST 2015d):

St = αyt + (1− α)(St−1 + bt−1) 0 < α ≤ 1

bt = γ(St − St−1) + (1− γ)bt−1 0 < γ ≤ 1,

where the initial values for t = 1 are:

S1 = y1

b1 =
1

3
((y2 − y1) + (y3 − y2) + (y4 − y3))

With damping of α = 0.1 and γ = 0.1 double exponential smoothing isn’t as good as single, and
over-shoots step changes, but has far less lag, as shown in Figure G.4.

A 7 point smoothing polynomial (using the element being smoothed and 3 elements on each side)
was found to smooth as well as the double exponential, with none of the lag, see Figure G.5. Better
yet at smoothing, is a 21 point smoothing polynomial in Figure G.6 (Kendall 1973; 31):

St =
1

3059
[−171yt−10 − 76yt−9 + 9yt−8 + 84yt−7 + 149yt−6 + 204yt−5 + 249yt−4 + 284yt−3+

309yt−2 + 324yt−1 + 329yt + 324yt+1 + 309yt+2 + 284yt+3 + 249yt+4+

204yt+5 + 149yt+6 + 84yt+7 + 9yt+8 − 76yt+9 − 171yt+10]

Simple moving averages replace the experimental data yt with an averaged value St (P.J. Brock-
well 2002; 25):

St = (2q + 1)−1

q∑
j=−q

yt−j q + 1 ≤ t ≤ n− q.

With small q averaging was found to provide very good response to trends (without lag or overshoot)
but little smoothing. Increasing q increased the smoothing effect but rounded the ”cliff edge” of a
sharp change in signal.

To obtain the most amount of smoothing without introducing significant delay or over-shoot,
experimenting showed using the 21 point smoothing polynomial on the raw data, and then a simple
moving average, worked best. Given τ = 18.4 s, a simple 18 s span (q=9) moving average was
employed. The simple average’s ”cliff edge” rounding is thought to be acceptable since the long-
term trends are of the most interest to this study; Figure G.7 presents the smoothing resulting over
the GT step change, and Figure G.8 the smoothing of a typical MNR day and start-up. This scheme
is employed with all GT data in this thesis.

G.3 GT signal noise and error

Every transducer produces noise of some kind. The signal-to-noise ratio yt/s is used to quantify the
noise.

Like most experimental data the true variance σ2 of the GT data is unknown and must be
approximated with the sample variance s2. To calculate the sample variance the true value of the
signal must be estimated. However, the usual method of approximating the true value of the signal
with the sample mean cannot be used since the data is a time-series with a trend; the experimental
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data are not multiple samples of a single variable y, but a collection of single samples of the dependent
variable y(ti) at multiple time steps, ti, each with a different true value.

In such a situation a function is fit to the experimental data to estimate the true value at ti
(Taylor 1982; 157). Once a function f(ti) with m fit paremters has been fit (see the methods in
section H) to approximate the true value of the signal of N points, the true variance is approximated
with (Taylor 1982; 120):

σ2 ∼= s2 =
1

N −m
∑
i

[yi − f(ti)]
2
.

Within this thesis, all cases satisfied N >> m so the above equation is simply equal to the
root-mean-square (RMS) error.



Appendix H

Curve fitting methodology

Curve fitting in this thesis was accomplished with the software package gnuplot which uses the
nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm to fit a user-defined function to a
data set (Williams and Kelley 2015; 62). This section discusses the details of the fitting process.

H.1 Curve fitting with gnuplot

The gnuplot package was selected because it gives the user the ability to dictate the function to be
fit to the data; other software packages require the user to select from a fixed set of formulae.

The following practical steps were used to obtain quality solutions:

Non-smooth data was smoothed before fitting. See the smoothing methods detailed in sec-
tion G.2.

As few exponential terms as possible were used. All fitting processes started with an equa-
tion of a single exponential term; more were added when it was clear at least one more expo-
nential term was required.

First estimates of fit parameters were obtained by inspection of a data plot. Reasonable
estimates of all fitting parameters are required before the program will converge to an accept-
able solution without fatal errors, or without becoming stuck in local minimums; estimates of
magnitudes and decay constants were obtained by visual inspections.

Used a very small convergence criterion. Fitting optimization ceased when the difference be-
tween sum of squared residuals of successive iterations was smaller than fit limit = 1.0×10−7;
this definition is two orders of magnitude smaller than the default (Williams and Kelley 2015;
73).

Always checked the fit with an additional exponential term. Once an equation appeared to
fit visually and with good statistics, one more exponential term was added to check that the
resulting statistics didn’t improve.

All residuals were plotted. Plotting this data is a very good visual quality check; it also aids
in determining where most of the ”sum of squares of residuals” variable is accumulated for
possible improvement in the fit.

Final fits were closely examined for fit. The final fits were checked visually and statistically.

The data files given to gnuplot were always formatted with 3 columns: time, data and absolute
data error.

219
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H.2 Statistical evaluation of fit

Gnuplot uses a reduced χ2 evaluation of the fit function (Williams and Kelley 2015; 73). Testing
with χ2 involves a comparison between the value of the fit fuction f(xi) and the corresponding datum
point yi, for all i. The basic formula of reduced χ2 is (Taylor 1982; 229):

χ̃2 =
1

d
χ2 =

1

d

n∑
i=1

(
yi − f(xi)

σi

)2

(H.1)

where n is the number of data points and d is the degrees of freedom, equal to the number of data
points less the number of parameters being fitted (Williams and Kelley 2015; 66).

The collected datum yi is one sample of a population normally distributed on the position xi,
with a distribution described by σi. χ

2 is simply a sum of terms comparing the devation between
yi and f(xi) and the standard deviation σi. The difference yi − f(xi) will be large for a poor fit
at position xi, and small for a good fit; for a relative evaluation of this difference, the difference is
compared to σi. For a ”good fit” χ2 should be close to d, thus χ̃2 should be close to 1.0 (Taylor
1982; 229)

Following fitting, gnuplot produces a report of the evaluation of the fit, which presents: the sum of
squares of the residuals, RMS of the residuals, the χ̃2 value (named the ”variance of the residuals”),
uncertainties associated with the fit parameters, and a correlation matrix of the fit parameters filled
with correlation coefficients.

Within this thesis the χ̃2 of all fits were orders of magnitude lower than 1.0. The RMS of the
residuals were usually on the order of the standard deviation of the data being fit.

The correlation matrix gives an indication of the indepdendence of the fit parameters to each
other. When an additional exponential term in the fit equation proves to be unnecessary, its associ-
ated fit parameters have often been found to be perfectly correlated (as indicated by a correlation
value of 1.0 or -1.0) with other parameters within the equation, providing further proof the additional
fit parameters are superfluous. Therefore, the correlation matrix was watched in all cases for 1.0 or
-1.0 values. All fit parameters were found to be correlated to some degree.

The relative uncertainties associated with the fit parameters were found to be very small when
both the RMS of the residuals and the χ̃2 were small.

H.3 Determining the uncertainties of the fitting parameters

Following the fitting of a function, gnuplot presents the uncertainties of the fit parameters but no
references could be found which describes how they are calculated. To test gnuplot and the curve
fitting methods, test data sets were made over the domain [0,50000] seconds with the following signal:

f(t) = a1 + a2(1− eλ2t) + a3(1− eλ3t) + a4(1− eλ4t), (H.2)

where all constants were defined to make f(t) comparable in magnitude and shape to a GT signal
observed during MNR daily operation.

Two test data sets were created with equation (H.2), both made of the smooth data as dictated
by equation (H.2), but in one case the associated data uncertainty σi supplied to gnuplot is double
the other. Fitting with gnuplot to both cases revealed: 1) both cases resulted in convergence to
the correct fit parameters, 2) the χ̃2 was smaller in the case with larger uncertainty, as predicted
by equation (H.1), and 3) the uncertainties associated with the fit parameters were unchanged
between cases, thus gnuplot calculates fit parameter uncertainties with the data itself rather than
the uncertainty σi provided in the data file. This experimentation shows the σi value is used in
gnuplot only in the evaluation of χ̃2 to evaluate the fit, not in the calculation of the fit parameter
uncertainties.
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Another two test data sets were created with equation (H.2), both with random noise super-
imposed on the smooth f(t) signal; the random noise of one data set (and the associated σi) was
quadruple the other. The fit parameter uncertainties associated with the noisy data set were sig-
nificantly larger. Thus, the smoothing processes discussed in section G.2 reduces the fit parameter
uncertainties. This is problematic because fitting to smoothed data results in fit parameter un-
certainties smaller than would result with the unsmoothed data, even if σi is representative of the
unsmoothed data.

Gnuplot’s predictions of fit parameter uncertainties have also been found to be unreasonably
large with noisy signals.

Thus, for multiple reasons gnuplot’s fit parameter uncertainties cannot be used and another
method of calculating these uncertainties is required.

One tested method examines the variation of χ2 with changes in a single fitting parameter
(P.R. Bevington 1992; 147). If all fitting parameters except one, aj , are assumed constant, χ2 is
then a function of aj alone and a parabola can be fit to a plot of χ2(aj) using three values of aj : aj1,
aj2 and aj3 and their three corresponding values of χ2, χ2

1 = χ2(aj1), χ2
2 = χ2(aj2) and χ2

3 = χ2(aj3);
each χ2 value is separated by ∆aj . An optimum parameter value of aj can be calculated with:

a′j = aj3 −∆aj

[
χ2

3 − χ2
2

χ2
1 − 2χ2

2 + χ2
3

+
1

2

]
. (H.3)

The above equation provides estimates of a′j which concur with those of gnuplot. The values of a′j
obtained with the gnuplot fit have had their uncertainties calculated with (P.R. Bevington 1992;
146):

σj =

√√√√2

(
∂2χ2

∂a2
j

)−1

, (H.4)

where the second derivative term has been estimated with the finite difference approximation centered
on a′j (Cheney and Kincaid 1999; 180):

∂2χ2

∂a2
j

=
1

(∆aj)2
[χ2(a′j + ∆aj)− 2χ2(a′j) + χ2(a′j −∆aj)].

A definition of ∆aj = 0.05(a′j) has been used; all the above equations have shown not to vary
with a doubling of the size of ∆aj . However tests showed predictions of σj are unreasonably small
given the size of σi. Therefore this ”variation of χ2” method has not been used.

Instead the uncertainties presented in Table 6.6 have been obtained by a two-step fitting method:
first to yi to obtain estimates of a, b and λ, then to yi − σi to see the resulting difference in a, b and
λ. This difference is the uncertainty presented in Table 6.6.

H.3.1 Tests of method

Two cases were created with the test data set by equation (H.2): one with the smooth f(t) signal,
another with superimposed random noise. The random noise had a standard deviation of 0.1 ◦C,
which is a magnitude roughly equivalent to the GT signal noise.

Curve fitting with the smooth test signal, using the known fit parameters ai and λi as first
guesses, showed gnuplot agreed with the first guesses. With the noisy test signal, using the known
fit parameters ai and λi as first guesses, gnuplot suggested fit parameters which differed from the
”true” initial guesses by only hundreths of a percent.
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H.3.2 The problem of multiple sets of fit parameters

Fitting to the noisy test data set revealed the existance of sets of constants ai and λi which differ
from the ”true” set but which provided as good a statistical fit. This is a problem: curve fitting to
two noisy data sets with identical and unknown underlying trends may result in two different sets,
leading to an observer concluding the underlying trends differ, or identical noisy data sets in the
possession of two researchers may not be able to reproduce each other’s fit parameters.

To avoid these problems these parameters must be determined methodically; the following sec-
tions discuss two methods.

Group stripping of data

Exponential functions with a single term, of the form:

F (t) = b1e−λ1t,

appear linear when their natural log is plotted, where their slope is equal to the negative decay
constant:

m =
y2 − y1

x2 − x1
=

Y2 − Y1

X2 −X1

m =
ln(b1 ∗ e−λ1t2)− ln(b1 ∗ e−λ1t1)

t2 − t1

m =
ln(b1) + ln(e−λ1t2)− ln(b1)− ln(e−λ1t1)

t2 − t1

m =
−λ1t2 + λ1t1

t2 − t1
=
−λ1(t2 − t1)

t2 − t1
= −λ1.

where Xi = ti and Yi = ln(F (ti)) = ln(b1 ∗ e−λ1ti).
Plotting exponential functions with multiple terms of the following form:

F (t) = b1e−λ1t + b2e−λ2t + ...,

on a X, Y plane appear non-linear unless one of the terms dominates, which usually happens when t
is large. Knowing this behavior, Y of the GT heating data (post-shutdown) can be plotted to obtain
first estimates of the group parameters λi and bi.

At large t one exponential term will dominate as the others reduce in magnitude; with a single
dominant term the function will appear linear with a slope equal to the negative of the dominant
group’s decay constant λi and a Y intercept equal to the natural log of the dominant group’s
coefficient ln(bi) according to the following formula which is similar in form to y = mx+ b:

ln(F (t)) = ln(b1e−λ1t) = −λ1t+ ln(b1).

The exponential term (associated with one delayed gamma precursor group) can be subtracted or
”stripped” from the GT data, and the process repeated with the resulting data to produce another
estimate of another group’s parameters (Valente 1963; 249).

The group parameters λi and bi which result from this ”stripping” process can be used as first
estimates of the fit parameters, and make obtaining first estimates methodological; such a preliminary
graphical analysis was also used by Keepin for the same purpose (Keepin et al. 1957; 7).

The xrange variable in gnuplot allows the user to curve fit to the data within specified sections
of data. This feature was used to fit to sections of a data series with unique local features before
fitting to the entire data set.
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Fitting to smooth data

Experimenting with smooth data sets created with functions of known coefficients has demonstrated
gnuplot’s Marquardt-Levenberg algorithm converges to the correct coefficients, independent of the
coefficients’ initial guesses. Since this method is simpler than the stripping method, all coefficients
presented in this thesis have been obtained by fitting to smooth data sets.
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Appendix I

Instrument rig design
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Figure I.1: Production drawing of the intrument rig.
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