Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20502
Title: EXPLOITING COLD SENSITIVITY IN ESCHERICHIA COLI TO IDENTIFY NOVEL ANTIBACTERIAL MOLECULES
Other Titles: BACTERIAL COLD STRESS AND ANTIBIOTIC DISCOVERY
Authors: Stokes, Jonathan Michael
Advisor: Brown, Eric David
Department: Biochemistry and Biomedical Sciences
Keywords: cold stress;ribosome biogenesis;outer membrane;lipopolysaccharide
Publication Date: 2016
Abstract: The widespread emergence of antibiotic resistance determinants for nearly all drug classes threatens human health on a global scale. It is therefore essential to discover antibiotics with novel functions that are less likely to be influenced by pre-existing resistance mechanisms. An emerging approach to identify inhibitors of investigator-defined cellular processes involves screening compounds for antimicrobial activity under non-standard growth conditions. Indeed, by growing cells under conditions of stress, inhibitors of specific cellular targets can be enriched, thereby allowing for the identification of molecules with predictable activities in the complex environment of the cell. Here, I exploit cold stress in Escherichia coli to identify molecules targeting ribosome biogenesis and outer membrane biosynthesis. First, through a screen of 30,000 small molecules for growth inhibition exclusively at 15°C, I was able to identify the first small molecule inhibitor of bacterial ribosome biogenesis, lamotrigine. Second, by leveraging the idiosyncratic cold sensitivity of E. coli to vancomycin, I developed a novel screening technology designed to enrich for non-lethal inhibitors of Gram- negative outer membrane biosynthesis. From this platform, I identified pentamidine as an efficient outer membrane perturbant that was able to potentiate Gram-positive antibiotics against Gram-negative pathogens, similar to the polymyxins. Remarkably, however, this compound was able to overcome mcr-1 mediated polymyxin resistance. Together, this thesis highlights the utility of exploiting the bacterial cold stress response in antibiotic discovery.
URI: http://hdl.handle.net/11375/20502
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
StokesJM_PhD_Thesis_Compiled.pdf
Access is allowed from: 2017-08-09
Stokes PhD thesis66.19 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue