Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20352
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorStewart, J.-
dc.contributor.authorTang, Lee-Man-
dc.date.accessioned2016-09-14T16:58:58Z-
dc.date.available2016-09-14T16:58:58Z-
dc.date.issued1974-09-
dc.identifier.urihttp://hdl.handle.net/11375/20352-
dc.description.abstract<p> In this thesis we study the representation theorems for evenly positive definite functions on Euclidean spaces. A generalization of the concept of evenness on R^n to a concept of symmetry on any locally compact abelian group is given. In addition, a result analogous to the Weil-Povzner-Raikov Theorem is obtained for the representation of symmetrically positive definite functions on locally compact abelian groups.</p>en_US
dc.language.isoen_USen_US
dc.subjectsymmetrically, positive, definite, functions, theoremsen_US
dc.titleSymmetrically Positive Definite Functionsen_US
dc.typeThesisen_US
dc.contributor.departmentMathematicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tang_Lee-Man_1974Sept_Masters..pdf
Open Access
1.96 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue