Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20350
Title: AN EXPERIMENTAL STUDY OF INCOMPRESSIBLE TURBULENT FLOW IN PIPES CONTAINING SPHERE TRAINS
Authors: Tawo, Edom
Advisor: Round, G. F.
Department: Mechanical Engineering
Keywords: incompressible flow;turbulent flow;pipe;sphere train
Publication Date: Nov-1969
Abstract: <p> The pressure gradients for sphere trains in 1 in. and 2 in. pipes have been measured with water flowing past the stationary spheres at Reynolds numbers (based on pipe diameter) from to 4 - 105 , and sphere/pipe diameter ratios ranging from 0.486 - 0.84. Two dimensionless pressure ratios have been derived so that the experimental results obtained can be generalised to any pipe diameter with the above constraints on Reynolds number and diameter ratio. Drag coefficients have also been calculated from pressure drop measurements for the 0.84 diam. ratio spheres in· 1 in. pipe. These have been compared with McNoun's drag coefficient. </p> <p> The application of the results to predict pressure gradients for sphere trains in any pipe diameter has been illustrated. </p>
URI: http://hdl.handle.net/11375/20350
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tawo_E_N_1969Nov_Masters.pdf
Open Access
7.18 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue