FLOW PAST SPHERE TRAINS

AN EXPERIMENTAL STIUDY
OF INCOMPRESSIBTE TURBULENT FLOW IN PIPES CONTAINING SPHERE GRATNS

BY

```
E. N. TAWO, B.SC.(Eng.) Wales
```

A Thesis
Submirted to the Faculty of Graduate studies in Partial Fulfilment of the Requitements

For the Degree Master of Engineering

McMaster University

(November) 1969

MASTER OF ENGINEERING (1969)
(Mechanical Engineering)

McMASTER UNIVERSITY
Hamilton, Ontario.

TITLE: AN EXPERIMENTAL STUDY OF INCOMPRESSIBLE TURBULENT FLOW IN PIPES CONTAINING SPHERE TRAINS.

AUTHOR: Edom Neji TAWO, B.Sc.(Eng.)

SUPERVISOR: Dr. G.F. ROUND

NUMBER OF PAGES: $\mathrm{ix}+88$

SCOPE AND CONTENXS: The pressure gradients for sphexe trains in 1 in. and 2 in. pipes have been measured with water flowing past the stationary spheres at Reynolds numbers (based on pipe diameter) from $10^{4}-10^{5}$, and sphere/pipe diameter ratios ranging from $0.486-0.84$. Two dimensionless pressure ratios have been dexived so that the experimental results obtained can be generalised to any pipe d\&ameter with the above constraints on Reynolds number and diameter ratio. Drag coefficients have also been calculated from pressure drop measurements for the 0.84 diam. rario spheres in 1 in. pipe. These have been compared with McNoun's dirag coefficient.

The application of the results to predict pressure gradients for sphere trains in any pipe diameter has been illustrated.
The Author gratefully acknowledges the guidance and encouragement given by Dr. G.F. Round.
Thanks also to Miss Lo. Fagan for the assistance especially in typing this thesis.
The Research for this thesis was supported in part by both the Defence Research Board of Canada. Grant No. 9550-42 and the National Research Council of Canada under Grant No. A5183.

TABLE OF CONTENTS

Chapter Page
List of Figures vi
List of Tables vii
Nomenclature viii
ABSTRACT 1

1. INTRODUCTION 3
2. THEORY 5
2.1 Pressure Gradient in a free pipe 5
2.2 Pressure Gradient with spheres present 6
2.3 End Effects 12
2.4 The concept of Pressure ratios, PRI and PR2 14
2.5 Considerations of Drag of the sphere train 20
3. APPARATUS AND EXPERIMENTAL PROCEDURE 26
3.1 General requirements 26
3.2 Description of apparatus 26
3.3 Expeximental procedure 28
4. RESULTS AND CALCULATIONS 37
4.1 'N-sphere' systems - PRI vs. Re, $\frac{d}{D}$ 39
4.2 Measurements including end effects 41
4.3 Drag coefficients 43
4.4 Error Analysis 44
4.5 Application of the results 46
4.6 Optimum Diameter Ratio for sphere trains 49
TABLE OF CONXENTS (cont'd)
Chapter Page
5. DISCUSSION 75
6. CONCLUSIONS 79
REFERENCES 81
APPENDICES 86
A. 1 Calculation of the Reynolds No. 87
A. 2 Derivation of $\mathrm{H}_{\mathrm{o}} \mathrm{P}$./mass flow rate 88

LIST OF PIGURES

Fig. NO Page

1. Arrangement of spheres 9
2. Diagrams defining $\varepsilon_{1} \cdot \varepsilon_{2}, V^{\prime \prime}$ etc. 16
3. Diagzams defining $\Delta P_{L}, \Delta P_{m_{0}} P_{O_{0}} P_{2}$ etco 22
4. Schematic diagrams of the apparatus 30
5. General view of the equipment (photograph) 31
6. Details of the test sections 32
7. Sphere-locating tools (photograph) 33
8. Surge Chamber, pressure transducers. \& Pump assemblies (photographs) 34
9. Typical recorder traces 38
10.. Plot of PRI YS. R_{e} 55
10. Plot of PRI vs. Diam. Ratio 56
11. Pressure gradient. $\left(\frac{d p}{d z}\right)_{\text {corr. . }}$ Re Re 57
12. End effects plots 61
13. PR2 VS. Re 65
14. PR2 vs. no. of spheres 69
15. Pressure gradient $08 z \mathrm{CL}$ vs. $\left(\frac{d p}{d z}\right)_{L I Q}$. 70
16. 0rag coefficient, C_{D}^{*} vs. R_{e} 74
Table No. Page
1 Data for 0.486 dia. ratio, 2 in. dia. test section. 50
2 Data for 0.60 dia. ratio, 1 in. dia. test section. 51
3 Data for 0.737 dia. ratio, 2 in. dia. test section. 52
4 Data Eor 0.84 dia. ratio, 1 in. dia. test section. 53
5 Data Eor 'N-sphere' systems, dia. ratio $=0.486-0.84$. 54

PRI. PR2	Pressure ratios based on free pipe press ure gradient and annulus pressure gradient respectively
ξ	Friction factor
ρ	Density
9	Acceleration due to gravity $=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
V_{0}	Mean flow velocity in the free pipe
D, d	Pipe diametex and sphere diameter respectively in inches
$\mathrm{Re}_{\mathrm{e}}, \mathrm{R}_{\mathrm{e}_{\mathrm{N}}}$	Reynolds number based on pipe diameter
$\frac{d p}{d z}$	Pressure gradient in the asial direction of Elow
v	Kinematic viscosicy in Et/seco
$\left(\frac{d p}{d z}\right)_{\text {IIQ }}$	Pressure gradient with no spheres present in the pipe
ΔP_{s}	Pressure drop with spheres logeted in the pipe
L	Distance between points from which pressure drop is measured
$\mathrm{P}_{\text {E1 }}, \mathrm{P}_{E 2}$	Pressuxe dxops due to the end effects
${ }^{8} \mathrm{~N}$-sphere systen'	Theorecically it refers to an infinitely long sphere train. In practice it is the arrangement whereby pressure drops are measured within the dength of the annulus
$\left(\frac{d p}{d z}\right)_{\text {corr. }} . D P Z C$	Pressure gradient based on the length of the sphere tsain

IGPM	Imperial gallons per minute
DPZCL	Pressure gradient based on L with spheres
	located in the pipe; in inches water per inch.
n	No. of spheres making up the train
C_{D}^{*}	Drag coefficient in the bounded medium
$\left(\frac{d p}{d z}\right)_{n}$	DPZN $\begin{aligned} & \text { N-sphere pressure gradient in } \\ & \text { ins./in. }\end{aligned}$

ABSTRACT

A series of experiments was made to measure the pressure drop across stationary sphere trains located in 1 in. and 2 in. smooth pipes through which water was ilowing. The size of spheref used ranged from $\frac{1}{2}$ in. to $1 \frac{8}{2}$ in. in diametex: sphere-pipe diameter ratios were $0.486,0.60,0.737$ and 0.84 , while the effective Reynolds number based on pipe diameter ranged from 10^{4} to 10^{5}. The length of sphere train for each diameter ratio, was adjusted by parying the number of spheres from 1 through to 12.

Two dimensionless pressure ratios, PRI and PR2, were derived to relate the pressure gradient with spheres located in the pipe to the pressure gradient with spheres absent. These enable the experimental results to be of general application to any pipe diameter, with Reynolds numbers in the above range and sphere-pipe diameter ratios ranging from 0.486 - 0.84. PRI pertains theoretically to the pressure gradient for an infinitely long sphere train. It was approximated in practice by reasuring the pressure gradient within the lengtlo of the sphere trains, i.e. by locaring pressure taps such that they were unaffected by end effects, and was found to be a function of diameter ratio-varying linearly on a log-scale when plotted against the Reynolds number.

PR2 is a function of the number of spheres making up a train, the diameter ratio, and the Reynolds number. It was observed that PR2 decreased with increase in the number of spheres. It also tended to decrease with increase in diameter ratio for a given number of spheres at a given Reynolds number. Pressure gradieats based on the length of sphere train were plotted together with the end effect parameters. Drag coefficients were calculated from pressure drop measurements for the 0.84 diameter ratio, and compared with McNoun's theoretical equation. The discrepancy was less than 108 for Reynolds numbers greater than 8×10^{4}. Less good agreement was observed at lower Reynolds numbers and diameter ratios. Finally it is shown how the PR1 and PR2 relations may be used to predict the flow conditions in any smooth pipe with spheres located in them, for the Reynolds number range 10^{4} 10^{5} and sphere-pipe diameter ratios $0.486-0.84$,

1. INTRODUCTITON

A substantial amount of literature exists on the viscous flow past spheres, particularly at low Reynolds numbers (1-12), but to date no research work has been reported on the flow past trains of spheres at Reynolds numbers > 1.00. Most of the previous work has concentrated on multi-particle assemblies relating to sedimentation, fluidization and other socalled 'creeping motion' phenomena. The transportation of capsules in pipelines has however roused interest on the turbulent flow past spheres in pipes. The Research Council of Alberta has been largely responsible for work that has been done in this area so far, and the papers published by the researchers at the Research Council have dealt extensively with the flow of cylindrical capsules and single spheres. In a series of papers having the general title "The Pipeline Flow of Capsules" (16-26), the emphasis has been on the determination of the capsule velocity or velocity ratio (capsule/free stream) as a function of average velocity, diameter ratio, and capsule/liquid density ratio. Some of the concepts in

* The word 'capsule' in this context has come to mean a large, regularly shaped body - hollow or solid, cylindrical or spherical in shape - whose minor diameter is comparable to the diameter of the pipe in which it is travelling.
the present study like 'pressure ratio' (see Chapter 2), have been influenced by the terminology contained in these papers.

In designing a pipeline to transport solid materials or capsules, one would in the first instance be interested in predicting the pressure gradient and subsequently the power consumption. The following study relates to this in that it essentially consists of determining experimentally the pressure gradients associated with stationary fully eccentric spheres in a turbulent flow field, as the number of spheres making up the train increases and the sphere/pipe diameter ratio varies. A correlation has been developed so that the data collected could be related to behaviour for pipe diameters other than those used in the present study. Some considerations of drag coefficients have also been made.

2. THEORY

2.1. Pressure Gradient in a Free Pipe

The DARCY-WEISBACH equation may be written in the form,

$$
\begin{equation*}
\frac{d p}{d z}=\frac{f}{D} \cdot \rho \frac{V_{0}}{2 g} \tag{2.1.1}
\end{equation*}
$$

The above equation applies to any steady incompressible flow whether laminar or turbulent.

The BLASIUS equation for friction factor in turbulent flow is given as

$$
\begin{equation*}
\mathbf{f}=\frac{0,316}{R_{e} / \frac{1}{4}} \tag{2.1.2}
\end{equation*}
$$

This equation approximates the friction factor - Reynolds number plot (Moody diagram) over the region in which we are interested. We may therefore expect a slight variation on the Reynolds number exponent in experimental work.

> Substituting (2.1.2) in (2.1.1)

$$
\left(\frac{d p}{d z}\right)_{L I Q}=\frac{0.316}{R_{e} \frac{1 / 2}{1 / 4}} \cdot \frac{V O^{2}}{2 g D}
$$

But vo $=\frac{R_{e} v}{D}$

$$
\left(\frac{d p}{d z}\right)_{I I Q}=\frac{0.316 \rho R e^{2} v^{2}}{R_{e} e^{\frac{1}{4}} 2 g D^{3}}
$$

Now, if v is in $f t^{2} / s e c$.

$$
\left(\frac{d p}{d z}\right)_{I I Q}=\frac{0.316 \times 144^{2}}{2 \times 386} \times \frac{R_{e N}^{1.75} v^{2}}{D^{3}}=\frac{0.316 \rho R_{e}^{1.75} v^{2}}{2 g D^{3}}
$$

If we substitute

$$
\begin{align*}
R_{e} & =10^{-4} \times R_{e} \\
\text { and } v^{\prime} & =10^{5} \times v \\
\left(\frac{d p}{d z}\right)_{\text {II }} & =K_{1}\left(\frac{v^{\prime 2} R_{e}^{\prime}}{D^{3}}\right) \tag{2.1.3}
\end{align*}
$$

where $\mathrm{K}_{1}=\left(\frac{0.316 . \rho}{2 \mathrm{~g}}\right)$

The exponent of n_{e} in equation (2.1.3) in practice is not constant at 1.75 but varies between 1.7 and 2.0 (27)

2.2 Pressure Gradient with Spheres Present

For stationary spheres located in a pipe with fluid flowing past them, we would expect the pressure drop measured to be a function of
(a) The sphere diameter and number, d and n
(b) The viscosity and density of the flowing fluid μ and ρ
(c). The velocity of the fluid, vo
(d) The spacing between the spheres
(e) The pipe diameter, D, and the relative displacements of the spheres from the centre line of the pipe; in other words, the eccentricity
(f) The location of the pressure taps

Where condition (d) is kept constant, a dimensional analysis indicates that $\Delta P_{s}=f\left(n_{0} \frac{d}{D}, R_{e}, L\right)$

To define equation (2.2.1) we shall look more closely at the possible sphere arrangements. (cf. Fig. 1)

Case A-single sphere

We shall define the term 'end effect zone' as the zone upstream and downstream of a sphere train within which there is significant deviation from the relationship given by equation (2.1.3). Theoretically, the downstream zone could exist for a very Large number of pipe diameters. In the case of one sphere, the end effect zone is of length ℓ_{2} as shown in Fig. 1.

The pressure drop between BC,

$$
\begin{aligned}
& \Delta P_{B-C}=\left(P_{11}-P_{21}\right)-\left(\frac{d p}{d z}\right)_{L I Q}\left(l_{1}+l_{3}\right) \quad\{2.2 . d\} \\
& \left(\frac{d p}{d z}\right)_{S I}=\frac{\Delta P_{B-C}}{\ell 2}=\left(\frac{P_{11}-P_{21}}{\ell_{2}}\right)-\left(\frac{d p}{d 2}\right)_{L I Q}\left(\frac{l_{1}+\ell_{3}}{l_{2}}\right)(2.2 . A 1)
\end{aligned}
$$

Also

$$
\ell_{1}+\ell_{2}+\ell_{3}=L
$$

Case B - two spheres

Pressure drop across BC,

$$
\begin{gather*}
\Delta P_{B-C}=\left(P_{12}-P_{22}\right)-\left(\frac{d p}{d z}\right)_{I I Q}\left({ }_{12}+\ell 32\right) \\
\left(\frac{d p}{d z}\right)_{s 2}=\frac{\Delta P_{B-C}}{\ell 22}=\left(\frac{P_{12}-P_{22}}{\ell 22}\right)-\left(\frac{d p}{d z}\right)_{I I Q}\left(\frac{\ell_{12}+\ell_{32}}{\ell 22}\right) \tag{2.2.B1}
\end{gather*}
$$

Case C - three or more spheres

Here is a situation in which the pressure taps may conceivably lie within the end effect zones. The pressure drop measured cannot be predicted semi-empirically as we have done in (A) and (B).

However, we would expect a sudden arop in the value of $P_{1,}$ and $P_{E l}$ and $P_{E 2}$ should be about the same for $3,4,5$, 20 or more spheres.

Case D - n - spheres
In this case, as far as end effects on the pressure taps is concerned $n \rightarrow \infty$ i.e. the end effects are remote from $P_{1 n}$ and $P_{2 n}$. The pressure gradient for an 'n-sphere' system is

$$
\begin{equation*}
\left(\frac{d p}{d z}\right)_{n}=\left(\frac{P_{1 n}-P_{2 n}}{L_{2}}\right) \tag{2.2.D}
\end{equation*}
$$

Having considered case $A, B_{0} C$ and $D, i t$ is clear that we have two general arrangements in which the pressore gradient can be handled semi-empixically: The arrangement in which pressure taps lie beyond the end effect zones; and the 'n-sphere system". The latter pressure gradient is represented by equation (2.2.D); but in order to generalize the former for any number of spheres, we make the Following assumption:- Get end effect pressure drops for any number of spheres in the train of given diameter be constant for given Vo and given by $P_{e l}$ and $P_{\varepsilon 2}$.

Then the pressure drop for case B can be expressed as

$$
\Delta P_{B-C^{2}}=\left(\frac{P_{1 n}-P_{2 n}}{I}\right) \times d+\left(P_{\varepsilon 1}+P_{\varepsilon 2}\right)+\left(\frac{d p}{d z}\right)_{I I Q}\left(l_{12}+\ell_{32}\right)
$$

Similarly if P_{13} and P_{23} are placed beyond the end effect zones:

$$
\left.\Delta P_{B-C_{3}}=\left(\frac{P_{1 n}+P_{2 n}}{L}\right) \times 2 \mathrm{~d}+\left(\mathrm{P}_{\varepsilon 1}+\mathrm{P}_{\varepsilon 2}\right)+\left(\frac{\mathrm{dp}}{\mathrm{~d} 2}\right) \operatorname{IIQ}^{\left(2 \ell_{23}+\ell\right.}\right)
$$

Also $\quad \Delta P_{B-C_{4}}=\left(\frac{P_{1 n}+P_{2 n}}{I}\right) \times 3 d+\left(P_{\varepsilon 1}+P_{\varepsilon 2}\right)+\left(\frac{d p}{d z}\right) L I Q\left(\ell_{1 \Omega^{+1}} \ell_{34}\right)$

In general, the pressure drop measured when pressure taps are placed beyond end-effect zones of a given sphere train is

$$
\begin{equation*}
\Delta P_{n}=\left(\frac{P_{1 n}-P_{2 n}}{I}\right) \cdot(n-1) d+\left(P_{\varepsilon 1}+P_{\varepsilon 2}\right)+\left(\frac{d \rho}{d z}\right)_{I I Q}\left(l_{1 n}+\ell_{3 n}\right) \tag{2.2.2}
\end{equation*}
$$

Case A. i.e. $n=1$ is a special case of equation (2.2.2); for then

$$
\left[\Delta P_{1}-\left(\frac{d p}{d z}\right)_{I I Q} 8\left(l_{I I}+\ell_{31}\right)\right]=\left(P_{\varepsilon 1}+p_{\varepsilon 2}\right)
$$

If we could determine the unknowns $\ell_{1 n},{ }^{\ell} 3 n,{ }^{P} \varepsilon 2$,
we would he able to predict the pressure drop across any sphere train in which the pressure taps are placed heyond the end-effect zones, knowing the 'N-sphere' pressure gradient. To do so, another assumption will be made which is necessary to verify experimentally: that $\left(\varepsilon_{1}+\varepsilon_{2}\right)$ is constant for any number of spheres of given diameter making up the sphere train at a given velocity. In general,

$$
\begin{equation*}
\left(2_{1 n}+\ell_{3 n}\right)+\left(\varepsilon_{1}+\varepsilon_{2}\right)+(n-1) d=L \tag{2.2.4}
\end{equation*}
$$

Some werk has been done on the wake behind a sphere at low Reynolds numbers (TANEDA (6)). At a sphere Reynolds number of 100 , Taneda found ($\varepsilon_{2 / \mathrm{d}}$) approximately proportional to the logarithm of the Reynolds number. But whether or not these results apply to pipe flow (with boundary effect), and whether they can be extrapolated to the high Reynolds numbers $\left(10^{4}-10^{5}\right)$ in the present study is
still to be verified experimentally. A possible experimental technique would be to move the pressure taps in small steps away from both ends of the sphere train and note the distances ℓ_{1} and ℓ_{3}, at which there is significant change in pressure gradient.

2.3 End Effects

Equation (2.2.2) can be re-writeen in the form

$$
\Delta P_{n}-\left(\frac{d p}{d z}\right)_{L I Q} *\left(l_{1 n}+l_{3 n}\right)=\left(\frac{P_{1 n}-P_{2 n}}{L}\right)(n-1)_{d}+\left(P_{\varepsilon I}+P_{\varepsilon 2}\right)
$$

since $A P_{n} \gg\left(\frac{d p}{d z}\right)_{L I Q}(L-n d)$, we can replace $\left(\ell_{1 n}+\ell_{3 n}\right)$ by (Ind).
Then $\Delta P_{n}-\left(\frac{d p}{d z}\right)_{L I Q}(L-n d)=\left(\frac{P_{1 n}-P_{2 n}}{L}\right)(n-1)_{d}+\left(P_{\varepsilon I}+P_{\varepsilon 2}\right)$

The term, $\left(\frac{d p}{d z}\right)_{\text {LIQ }}(L-n \cdot d)$, becomes increasingly insignificant relative to the total pressure drop as the length of train increases.

Dividing both sides of (2.3.1) by n. a , we obtain $^{\text {a }}$

$$
\begin{equation*}
\left(\frac{\Delta P_{n}}{n \cdot d}\right)-\left(\frac{d p}{d z}\right)_{L I Q} \times\left(\frac{L-n d}{n d}\right)=\left(\frac{p_{1 n}-p_{2 n}}{L}\right)\left(1-\frac{1}{n}\right)+\left(\frac{P_{\varepsilon 1}+P_{\varepsilon 2}}{n d}\right) \equiv\left(\frac{d p}{d z}\right)_{c o r r} \tag{2.3.2}
\end{equation*}
$$

What equation (2.3.2) expresses is the pressure gradient due to the sphere train's presence, i.e. apart from pipe wall friction over the length (I-nd). The pressure gradient obtained thus is independent of how far the pressure taps are away from the ends of the train, provided of course, that they lie outside the end effect zones.

$$
\left(P_{\varepsilon 1}+P_{\varepsilon 2}\right) \text { can be further reduced analytically by }
$$ considering the Bernoulli effects at the nose and tail of the sphere train: Referring to Fig. 2b, we can approximate $P_{\varepsilon 1}$ as due only to the Bernoulli effect; i.e.

$$
\begin{equation*}
P_{\varepsilon 1}=\rho\left(\frac{v_{1}^{2}-v_{0}^{2}}{2 g}\right) \tag{2.3.4}
\end{equation*}
$$

For the tail end effect, however, there are other head losses which must be taken into account in the Bernoulli equation: so that

$$
\begin{equation*}
\frac{p_{\varepsilon 2}}{p}=h_{L}+\left(\frac{v_{0}^{2}-v_{1}^{2}}{2 g}\right) \tag{2.3.5}
\end{equation*}
$$

Adding equations (2.3.4) and (2.3.5), we still find that there is a head loss term which can only be determined experimentally.

We shall therefore adopt the approach of rearranging equation (2.3.2) to the form

$$
\begin{equation*}
\left(\frac{P_{\varepsilon 1}+P_{\varepsilon_{2}}}{n d}\right)=\left(\frac{\Delta P_{n}}{n \cdot d}\right)-\left(\frac{d p}{d z}\right)_{L \dot{I} Q}\left(\frac{L-n \cdot d}{n \cdot d}\right)-\left(\frac{p_{1 n^{-P}} 2 n}{I}\right)\left(1-\frac{1}{n}\right) \tag{2,3.6}
\end{equation*}
$$

so that the end effects can be evaluated from experimental data.

2.4 The Concept of Pressure Ratios, PR1 and PR2

Just as the free pipe pressure gradient is a function of R_{e}, V, and D, (see equation (2.1.3)) so we would expect the ' N -sphere' pressure gradient to be a function of the variables R_{e}, v, and an equivalent diameter d_{e}. The equivalent diameter is a function of sphere diameter d and pipe diameter D. The reasoning behind the first statement above, is that we can think of the flow in the 'N-sphere' system as that through a pipe of undular cross-section, with the sphere surfaces as part of the pipe inner wall. If our aim is to obtain general results which apply to all pipe diameters, and are not dependent on temperature (as v is) then we will have to introduce other nondimensional parameters

Let PRESSURE RATIO, PRI $=\frac{\text { 'N-SPHERE' PRESSURE GRADIENT }}{\text { FREE PIPE PRESSURE GRADIENT }}$

$$
\begin{equation*}
\text { i.e. } \operatorname{PRI}=\frac{\left(\mathrm{P}_{1 n}-\mathrm{P}_{2 \mathrm{n}}\right) / \Sigma}{(\mathrm{DP} / D \mathrm{D})_{L I Q}} \tag{2.4.1}
\end{equation*}
$$

where the numerator and denominator correspond to the same Reynolds number. To show that PRI is truly independent of D, v and R_{e}, but a function of diameter ratio, $\frac{d}{D}$, only; we shall ultimately resort to experiment. Meanwhile, on the basis of the equivalent diameter concept we shall carry out a simple analysis to derive an expression for $\left(P_{1 n}-P_{2 n}\right) / L$ in the same way that the free pipe pressure gradient (see equation 2.1.3) was obtained. Such an analysis of turbulent flow in an eccentric, three-dimensional annulus does not appear to have been made. In any case, the following derivation gives us some insight into the nature of the 'n-sphere' pressure gradient and the pressure ratio, PRI:Consider the flaid element IJKL (in three dimensions) shown in Fig. 2a.
Mean cross-sectional area, $A=\frac{\text { Vol. of Element }}{\text { Length }}$

$$
\begin{aligned}
& =\frac{1}{d}\left[\frac{\pi D^{2}}{4} \cdot d-\frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}\right] \\
A & =\pi\left[\frac{D}{4}^{2}-\frac{d^{2}}{6}\right]
\end{aligned}
$$

Surface area, $s=\pi D . d+4 \pi\left(\frac{d}{2}\right)^{2}$

$$
=\pi d(D+d)
$$

Assume that there are no other effects on the fluid element than those due to normal pressure drop and wall shear stress. Resolving forces in the direction of flow,

FOGURE 2a

FlGuRE 2 b

$$
A(-\Delta P)=\tau_{\omega} \cdot S
$$

where ${ }^{T} \omega$ is shear stress, and steady flow prevails. By definition, $Q \tau_{\omega}=f^{\prime \prime} \cdot \frac{\rho V^{\prime \prime} 2}{2 q}$ where double prime refers to values in the annulus.

$$
\Delta E=\frac{f^{\prime \prime}}{4} \cdot 0 \frac{V^{\prime \prime}}{2 g} \cdot \frac{S}{A}
$$

Comparing this equation with the Darcy-weisbach equation, the equivalent diameter, $d_{e}=\frac{4 A}{S}$. d since d is the length of the fluid element.

$$
\begin{align*}
\therefore d_{e} & =\frac{\pi\left[D^{2}-\frac{2}{d^{2}}\right]}{d(D+d)} \cdot d \\
d_{e} & =\left(D^{2}-\frac{2}{3} d^{2}\right) /(D+d) \tag{2.4.2}
\end{align*}
$$

Now, $V^{\prime \prime}=\frac{R_{e} \cdot v}{d_{e}}$ and by continuity,

$$
V * \pi\left(\frac{D^{2}}{4}-\frac{C^{2}}{6}\right)=\operatorname{Vo} x \frac{\pi D^{2}}{4}=\pi \cdot \frac{R_{e} \cdot D \cdot v}{4}
$$

$$
\text { since } R_{e}=\frac{V_{Q} D}{\nu}
$$

$$
\begin{equation*}
\therefore V^{\prime \prime}=R_{e} \cdot \frac{D v}{\left(D^{2}-\frac{2}{3} d^{2}\right)\left(D^{2}-\frac{2}{3} d^{2}\right)}=\frac{D^{2}}{\text { Vo }} \tag{2.4.3}
\end{equation*}
$$

and since $V^{\prime \prime}=\frac{R_{e}^{\prime \prime} \cdot v}{d_{e}}$ by substituting for $V^{\prime \prime}$ and d_{e} in equation (2.4.3).

$$
\begin{equation*}
R_{e}^{\prime \prime}=\left(\frac{D}{D+d}\right) \cdot R_{e} \tag{2.4.4}
\end{equation*}
$$

We have obtained above the relation.

$$
\Delta P=\frac{f^{\prime \prime}}{Q} \cdot \rho \frac{V^{\prime \prime} 2}{2 g}: \frac{S}{A} \text { where } S=\pi D(d+D) \text { and } A=\pi\left(\frac{D^{2}}{d}-\frac{d^{2}}{6}\right) .
$$

'N-sphere' pressure gradient,

$$
\begin{equation*}
\left(\frac{P_{1 n}{ }^{P} 2 n}{L}\right)=\frac{\Delta P}{d}=\frac{I^{\prime \prime}}{4} \cdot \rho \frac{V^{\prime \prime}}{2 g} \cdot \frac{D}{d}\left(\frac{d+E}{D^{2}}-\frac{d^{2}}{6}\right) \tag{2.4.5}
\end{equation*}
$$

If $4 \times 10^{3}<R_{e}^{\prime \prime}<10^{5}$, as we expect it will be for R_{e} between 10^{4} and 10^{5} (See equation 2.4.4) then BLASIUS equation for friction factor can be used to replace f":

$$
\begin{equation*}
f^{\prime \prime}=\frac{0.316}{R_{e}^{1 \frac{1}{4}}}=\frac{0.316}{\left(\frac{D}{D+d} \cdot R_{e}\right)^{\frac{3}{4}}} \tag{2,4,6}
\end{equation*}
$$

Substituting (2.4.6) and (2.4.3) in (2.4.5) we obtain

$$
\begin{aligned}
\left(\frac{P_{1 r}-P_{2 n}}{L}\right) & =\left(\frac{0.31 \varepsilon \times 144^{2} v^{2}}{2 g}\right) \cdot \frac{(D+d)^{1.25}}{\left(D^{2}-\frac{2}{3} d^{2}\right)^{3}} \cdot\left(D \times R_{e}\right)^{1.75} \\
& =k_{2}^{\prime} v^{2} \frac{\left(1+\frac{d}{D}\right)^{1.25} \times D^{3}}{\left[1-\frac{2}{3}\left(\frac{d}{D}\right)^{2}\right]^{3} \times D^{8}} \cdot R^{1.75} \\
& =k_{1}^{0} \frac{\left(1+\frac{d}{D}\right)^{1.25}}{\left[1-\frac{2}{3}\left(\frac{d}{D}\right)^{2}\right]^{3}} \cdot \frac{v R^{1.75}}{D^{3}}
\end{aligned}
$$

As in equation (2.1.3), if we substitute

$$
\begin{gather*}
R_{e}^{\prime}=10^{-4} \times R_{e} \\
\text { and } v^{\prime}=10^{5} \times v \\
\left(\frac{P_{1 n}-P_{2 n}}{L}\right)=k_{l}\left\{\frac{\left(1+\frac{d}{D}\right)^{2.25}}{\left[1-\frac{2}{3}\left(\frac{A}{D}\right)^{2}\right]^{3}}\right\}\left(\frac{v^{1} R_{R^{1}} \cdot 75}{D^{3}}\right) \tag{2.4.7}
\end{gather*}
$$

where $k_{1}=8.487 \times 10^{3}$
Divide equation (2.4.7) by (2.1.3) we find that

$$
\begin{equation*}
P R I=\left(1+\frac{d}{D}\right)^{1} \cdot 25 /\left\{1-\left(\frac{2}{3}\right)\left(\frac{d}{D}\right)^{2}\right\}^{3} \tag{2.4.8}
\end{equation*}
$$

That is, PRI is a function of diag. ratio only.
Equation (2.4.8) satisfies the boundary condition that when diameter ratio, $\frac{d}{D}$ equals zero $P R I$ equals 1 ; meaning that we then have a free pipe pressure gradient.

A second pressure ratio (PR2) is defined for the set-up whereby the pressure taps lie beyond the end-effect zones:-

$$
\begin{equation*}
P_{R 2}=((D P / D Z) \operatorname{corr} .) /\left(\left(P_{1 n}-P_{2 n}\right) / L\right) \tag{2.4.9}
\end{equation*}
$$

The numerator is given in equation (2.3.2) as

$$
\begin{aligned}
\left(\frac{d p}{d z}\right)_{\text {corr }} & =\left(\frac{P_{1 n}-P_{2 n}}{I}\right) \cdot\left(1-\frac{1}{n}\right)+\left(\frac{P_{\varepsilon 1}+P_{\varepsilon 2}}{n d}\right) \\
\text { So } P R 2 & =1-\frac{1}{n}+\left(\frac{P_{\varepsilon 1}+P_{\varepsilon 2}}{P_{1 n}+P_{2 n}}\right) \cdot \frac{L}{n d}
\end{aligned}
$$

$$
\begin{equation*}
P R 2=1+\frac{1}{n}\left\{\left(\frac{\left(P_{E 1}+P_{E 2}\right) / d}{\left(P_{1 n}-P_{2 n}\right) / L}\right)-1\right\} \tag{2.4.10}
\end{equation*}
$$

Equation (2.4.10) cannot be reduced analytically any further since $P_{\varepsilon 1}+P_{\varepsilon 2}$ can be obtained only empirically.

2.5 Considerations of Drag of the Sphere Train

The total drag on the fluid as it flows past the sphere train comprises the skin friction on the surface of the spheres, pipe wall friction, and drag due to distortion of the flow.

In order to evaluate the drag coefficient of the sphere or sphere train in a pipe, we need to separate total pipe wall friction drag from the drag measurable through pressure drops. This is not a simple matter, as the following discussion wil show. The pressure drop $\Delta P_{s}=\left(P_{1}-P_{2}\right)$ over a length, L, of tube may be thought of as being composed of three components: (cf. Fig. 3a)
(i) The pressure drop ΔP_{L} due to the liquid flowing in the tube without the sphere present. This is easily calculated from the DarcyWeisbach formula.
(ii) The pressure drop ΔP_{m} associated with dis. tortion of the flow and energy dissipation in the wake.
(iii) A pressure drop ΔP_{I}^{1} which is caused by a change in the shear stress distribution on the pipe wall in the vicinity of the sphere due to the change of flow velocity. A liquid flowing in sube without a sphere experiences uriform wall stress from cross-section to cross-section.

Figure 3 i ilustrates the point that to obtain ΔP_{m}, and hence the drag coefficient, ΔP_{L} and $\Delta P_{L}{ }^{1}$ will have to be subtracted from $\left(P_{1}-P_{2}\right)$. Since there is no feasible way of evaluating $\Delta P_{L}{ }^{1}$, the only practical way to obtain drag coefficients will be to measure the drag force directIy using force transducer; or suspend the spheres in incliner tubes as Round and Kruyer (28) have done. Nevertheless, on the basis of the following analysis, an estimate of the drag coefficient for single spheres in the pipes can he made:-

The drag force, by definition is given as

$$
\begin{equation*}
F_{D}=C_{D}^{*} \cdot\left(\frac{\pi d^{2}}{4}\right) \cdot \frac{\rho V o^{2}}{2 g} \tag{2,5.1}
\end{equation*}
$$

The asterisk on C_{D} is used to distinguish it from the drag coefficient of sphere in an unbounded medium.

The converging flow upstream from the sphere's
equator is essentially irrotational; so we can apply the Bernoulli equation (See Fig. 3b).

FIGURE 3

FIGURE 3b
DEFINITION DIAGRAMS

$$
\begin{equation*}
p_{0}+\rho \frac{V_{0}^{2}}{2}=p_{1}+\frac{\rho V_{1}^{2}}{2} \tag{2.5.1a}
\end{equation*}
$$

by continuity,

$$
\begin{align*}
& v_{0} \cdot \frac{\pi D^{2}}{4}=v_{1} \cdot \frac{\pi}{4}\left(D^{2}-d^{2}\right) \\
& \text { i.e. } v_{0} \cdot D^{2}=v_{1}\left(D^{2}-d^{2}\right) \tag{2.5.2}
\end{align*}
$$

If the pressure over the downstream face of the sphere is assumed to be equal to p, as in the analysis of an abrupt pipe expansion, the momentum equation can be applied between points 1 and 2 (Fig. 3b).

$$
\begin{equation*}
\left(p_{2}-p_{1}\right) \pi D^{2} / 4=\rho Q\left(v_{1}-v_{0}\right) \tag{2.5.3}
\end{equation*}
$$

The momentum equation can again be applied for points 0 and 2, whereby a relationship between the total pressure drop and the drag force is obtained:

$$
\begin{equation*}
\left(p_{0}-p_{2}\right) \pi D^{2} / 4=F_{D} \tag{2.5.4}
\end{equation*}
$$

Relating (2.5.1) and (2.5.4),

$$
\begin{equation*}
c_{D}=\frac{D^{2}}{d^{2}}\left(\frac{p_{0}^{-p_{2}}}{v_{0}^{2} / 2 g}\right) \tag{2.5.5}
\end{equation*}
$$

Substitute (2.5.2) in (2.5.1a) and (2.5.3):

$$
\begin{gathered}
\left(p_{0}-p_{1}\right) / \rho=\frac{1}{2}_{1}^{2}\left[1-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)^{2}\right] \\
\left(p_{2}-p_{1}\right) / \rho=\left(\frac{D^{2}-d^{2}}{D^{2}}\right) \cdot v_{1}^{2}\left[1-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
\therefore\left(P_{0-P 2}\right) & =v_{1}^{2}\left\{\frac{1}{2}\left[1-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)^{2}\right]-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)+\left[\frac{D^{2}-d^{2}}{D^{2}}\right]^{2}\right\} \\
& =\left(\frac{D^{2}}{D^{2}-d^{2}}\right)^{2} v_{0}^{2}\left\{\frac{3}{2}\left[1+\left(\frac{D^{2}-d^{2}}{D^{2}}\right)^{2}\right]-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)\right\} \\
& =\left(\frac{D^{2}}{D^{2}-d^{2}}\right)^{2} \frac{V 0^{2}}{2 g}\left[1-\left(\frac{D^{2}-d^{2}}{D^{2}}\right)\right]^{2}=\left(\frac{D^{2}}{D^{2}-d^{2}}\right)^{2} \cdot \frac{V 0^{2}}{2 g} \cdot\left(\frac{d}{D}\right)^{4}
\end{aligned}
$$

Now substitute this and (2.5.1) in equation (2.5.4):

$$
\begin{align*}
& C_{D}^{*} \cdot \frac{\pi d^{2}}{a} \cdot \rho \frac{V_{0}^{2}}{2 q}=\frac{V_{0}^{2}}{2 g} \cdot\left(\frac{d}{D}\right)^{4}\left(\frac{D^{2}}{D^{2}-d^{2}}\right)^{2} \cdot \frac{\pi D^{2}}{4} \\
& \therefore \quad C_{D}^{*}=\left[\frac{\frac{a}{D}}{L-\left(\frac{a}{D}\right)^{2}}\right]^{2} \tag{2.5.6}\\
& \left(P_{0}-P_{2}\right)=\frac{\rho V_{0}^{2}}{2 g} \cdot\left[\frac{\left(\frac{d}{D}\right)^{2}}{1-\left(\frac{d}{D}\right)^{2}}\right]^{2} \tag{2.5.7}
\end{align*}
$$

It is evident that the assumptions made in the derivation of (2.5.5) and (2.5.6) are justifiable only if $\frac{d}{D}$ is near unity. Observations by McNoun and Newline (15)
show that equations (2.5.5) and (2.5.6) agree well with experiment for diameter ratios greater than 0.8 .

Correlations by Round and Kruyer (28) will also be
useful in checking pressure drops within the approximate diameter ratio range as will equation (2.5.7).

3. APPARATUS AND EXPERIMENTAL PROCEDURE

3.1. General Requirements

The hydraulic system illustrated in Fig. was designed to meet the following requixements:-
(i) The water flow velocity could be varied between 0 and $12 \mathrm{ft} . / \mathrm{sec}$. The effective Reynolds number range based on pipe diameter $10^{4}-10^{5}$, so that flow was fully turbulent.
(ii) The number of spheres mounted, their spacing, and sphere-to-pipe diameter ratio could be varied.
(iij) pressure drops across the spheres could be measured continuously.
(iv) There would be a high enough water pressure (up to 45 ft . of water) at the test sections not to stall the flow when sphere-to-pipe diameter ratios of up to 0.95 were used.
(v) Pressure fluctuations in the system should be minimised.
3.2 Description of Apparatus (cf. Figs. 4-9)

The tank (reservoir) measured $36^{\prime \prime} \times 36^{\circ \prime} \times 30^{\prime \prime}$ and
a ${ }^{\text {m }}$ diameter drain line. The cencrifugal pump provided was rated at $3 \mathrm{H} . P$; delivering up to 100 IGPM at 50 ft water head. It wes driven by an electric motor running at 3600 rpm.

A 2" discharge line from the pump led to the Surge Chamber assembly as shown in Fig. 8a. The Surge Chamber had an effective volume of 904 cu. in. and was connected to a nitrogen bottle through a l-in. globe valve.

Two rotameters, one covexing the range 0-10 IGPM and the other $10-100$ IGPM, indicated the flow rate. A butterfiy valve was located between the surge chamber and flowmeters so that the flow conld be regulated. gwo gate valves and two globe valves for fine flow control wexe connected as shown in Fig. 5.

Details of the 2-in. test-sections are shown in Fig.
6. The 1-in. test-section were identical in design escept that the spacing between the sphere-location holes was " and 46^{n} respectively; and there was an extra pressure tap provided in each test-section so that the pressure transducers could be located 3 ins. apart. A boneycomb flow-straightener was located 4 ft. from each test section. Valves downeteam of the cest sections enabled back pressure to be applied. (see Fig. (o)

Two prong devices were designed and built for locating the spheres. (see Fig. 7.)

The pressure transducers are shown in Fig. 8b. The
sensing element in each transducer is a stainless steel diaphram. Applied pressure varies the capacitance between the diaphram and a fixed electrode. This capacitance variation is converted into a d.c. voltage output proportional to the pressure difference between the two sides of the diaphram through the oscillator-converter arrangement described in appendix 3. The sensitivity of the pressure transducers is dependent on diaphram thickness, so four diaphrams, with thicknesses becween 0.005 in. and 0.030 in., were made and fitted in the sransducer units labelled $\mathrm{Pr}_{\mathrm{r}}{ }^{3}, \mathrm{PT}_{\mathrm{r}}{ }^{4}, \mathrm{PT}_{\mathrm{r}} \mathrm{I}_{1}$ and $\mathrm{FT}_{r} 2$; in that order of sensitivity. The pressure ranges covered by these are $0-30$ ins. water, $0-10 \mathrm{ft}$. water, $10-30 \mathrm{ft}$. water, and $20-50 \mathrm{ft}$. water respectively. See Calibration curves (Appendix 1).

There were difficulties in getting the equipment desiqned and the instruments calibrated and working properly, but these were eventually solved.

3.3. Experimental Procedure

The converter units were switched on to warm up, at least 1 hr . before the start of each experiment. This minimised drift.

The reservoir was filled with water to $\frac{1}{2}$ capacity and the pump stuffing box nuts (2 off) were adjusted so that there was slight drip of water as the driving-shaft was ro-
cated slowly by hand. This indicated shat the pump was well primed.

Spheres were located in the appropriate test-section using the prong devices mentioned above; and Ehe cest-section was fitted into place by bolting the Johnson dresser couplings provided.

The appropriate transaucers were adjusted so that the output voltages were zero, and the valves in the system were checked to ensure that the right ones were open and the others closed. Care was taken that the Elow rate which was obtained did not exceed the range of the smaller flowneter when that rotameter was used.

Care was also taken that the output of the pressure transcucers did not exceed 6 volts d.c.

The readings of voltage wexe taken from the recordex. and millimeter readings of the rotameters were also noted as flow rate was vaxied. Weter temperature was measured using a mercury thermometer. Since the variation of woter semperature throughout any experiment was less than 3 , water temperatures were taken only at the beginning and at the end of each expeximent.

Using calibration charis, values of the flow xate. pressure drop, and Reyrolds numbers were calculated from the readings listed bove.

PLAN

FIGURE NO. 4
SCHEMATIC DIAGRAMS OF THE APPARATUS

DETGURE MO. DETS OF THE TEST SECTIONS
FIS. 7

FIG. 8a - SURGE CHAMBER ASSEMBLY

FIG. 8b - PRESSURE TRANSDUCERS ASSEMZtY

4. RESULTS AND CALCULATIONS

The experiments were conducted using the following series of spheres:-

1" diameter spheres in 2 " pipe (diam. ratio $=0.486$);
$夕^{\prime \prime}$ spheres in $1 "$ pipe (diam. ratio $=0.60$);
$2 \frac{1}{2} "$ spheres in $2 "$ pipe (diam. ratio $=0.737$); and
$\%$ spheres in $1 "$ pipe (diam. ratio $=0.84$).

The internal diameter of each pipe (test section) was measured and found to be: $1.030 \pm 0.010 \mathrm{in}$. and $2.000 \pm .010$ in. respectively.

For each diameter ratio, tests were performed, as described in section 3.3 with 1 sphere, 2 spheres, 4 spheres, 8 spheres, and 12 (or 20) spheres located in the pipe. calculations of the basic parameters - pressure drop and Reynolds number - were made from readings of the flow rate, transducer voltage output and temperature as follows:

$$
\text { Pressure Drop }=V O_{1} C_{1}-V o_{2} C_{2}
$$

where VO_{1} was the upstream transducer voltage output, C_{1} was the calibration constant for the upstream pressure transaucer, and suffix 2 refers to the downstream pressure transducer. The values of C_{1} and C_{2} depended on which of the four transducers - $\mathrm{PT}_{\mathrm{r}}{ }^{1}, \mathrm{PT}_{\mathrm{r}}{ }^{2}, \mathrm{PT}_{\mathrm{r}} 3, \mathrm{PT}_{\mathrm{r}}{ }^{4}$ - were used; and were obtainable from the calibration charts. See Fig. 9

Fig. 9 TYPICAL RECORDEI TRECES

Reyrolds numbex (based on pipe diam.) $=0.04083\left(\frac{Q}{V+D}\right)$ (4.1) whexe 0 is the flow rate in Imperial gal./min. D is the pipe internal diameter in in and v_{t} is the kinematic viscosity of water (in ft. $\left.{ }_{0}^{2} / \mathrm{sec}.\right\rangle$ at the temperature measured. The values of kinematic viscosity were obtained from tables. (See appendix 1 for the derivation of equation (4.1).)

Having obtained the pressure drops and corresponding Reynolds numhers, the parameters developed in Chapter 2 were evaluated. The correlation of these parameters is presented below and will be fuxther discussed in the next chapter.

4.1 'N-sphere' system: PRI as a function of Reynolds Number and Diameter Ratio.

Data collected with the ${ }^{1} n$-sphere' system (cf. Fig. 1, Case D)were used to compute the parameter PRl defined by ecruations (2.4.1) and (2.1.3). (The computer program output. is given in appendix Q.) The data are given in tahle No. 5.

Contraxy to the simple analysis of section 2.4, PRI was not completely independent of Reynolds number, as shown in fig. 10. The maximum variation of PRI with Reynolds number occured with the sphere/pipe diameter ratio of 0.84 . The minimum variation was found with the 0.60 and 0.737 diameter ratios.

The values of PRI given by equation (2.4.8) were
compared with those computed from data. Discrepancies of about 100% or: more were observed between the two sets of PR1. I'his suggests that the simple analysis of section 2.4, based on the equivalent diameter concept, is inadequate for the complex flow phenomena within the corrugated annuli.

Correlating the values of PRI at a Reynolds number of 10,000 , an empirical formula for $P R 1$ as a function of diameter ratio was obtajned:

$$
\begin{equation*}
\mathrm{PRI}=259.133 \cdot\left(\frac{d}{\mathrm{D}}\right) 4.543 \tag{4.2}
\end{equation*}
$$

Considering equation (4.2) and the variation of the pressure ratio, PRI, with Reynolas number, a more general formula was derived:

$$
\begin{equation*}
\mathrm{PRI}=\left[259.133 \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{4.543}\right] \mathrm{P}_{\mathrm{e}}^{\mathrm{c}} \tag{4.3}
\end{equation*}
$$

where $c=0.232$, for $\frac{d}{d}=0.486 \quad R_{e}^{\prime}=10^{-4} \cdot R_{e}$

$$
\begin{aligned}
& c=0.074, \text { for } \frac{d}{D}=0.6 \\
& c=0.082, \text { for } \frac{d}{D}=0.737
\end{aligned}
$$

and $\quad c=0.33$, for $\frac{d}{\bar{D}}=0.84$
That is, c varied between 0 and 0.33 for the range of diameter ratios and Reynoids numbers considered. It will be seen from the plot of $P R I$ VS. Re that the mean value of $P R 1$ for each diameter ratio corresponds to a Reynolds number between 3×10^{4} and 4×10^{4}. Fig. 11 therefore applies more accurately Reynolds numbers within that range.
4.2 Measurements including end effects (cf. Fig. 1 case $A, B \& C$)
(i) Pressure Gradient based on length of the sphere train, n.d. was calculated from the data given in cables 1-4. It is a function of Reynolds number, diameter ratio, and number of spheres; and has been plotted for each of the four diameter ratios as shown in Fig. 12.

All the plots are linear on a log-log scale. The gradients vary between 1.5 and 2.0 , with the exception of the smallest diameter ratio where lesser gradients were observed. From the plots, the following general observations were made:
(a) pprc (i.e. ($\frac{d p}{d z}$ corr.) increaseswith increase of Reynolds number
(b) For a given pipe diameter and number of spheres, DP2C increases with increase in diameter racio
(c) For diameter ratios of 0.6 and 0.737 , DPZC decreased steadily with increase in sumber of spheres. An oscillating decrease in DPZC was however observed with the 0.486 and 0.84 diameter ratios as the number of spheres increased.
(ii) End effect (on pressure gradient) as a function of Reynolds Number, Diameter Ratio, and number of spheres.

From equation (2.3.6) the end-effect component of pressure gradient was computed and the results plotted as shown in Fig.13. Like the DPZC versus R_{e} plots the end
effect graphs were linear on a log-log scale with the exception of the 0.486 diam. ratio plot, where some nonlinearities were observed. The following general observations are made:-
(a). The end-effect component of pressure gradient tends to decrease as the number of spheres in the train increases. It decreases from 100 : of DPZC (cotal pressure gradient) for 1 sphere, to between 20% and 60% DPZC for 12 spheres. depending on the diameter ratio. The respective lower limits of end effect computed were 58.7 \% for $\left(\frac{d}{D}\right)=0.486 ; 0.9$ \& for $\left(\frac{d}{D}\right)=0.60 ; 23 \%$ for $\left(\frac{d}{D}\right)=0.737$; and 48.2 for $\left(\frac{d}{D}\right)=0.84$.
(b) The end effects generally increased with increase of Reynolds number and sphere-to-pipe diamo ratio for any given pipe diameter.
(iii) $\frac{\text { PR2 as a function of } \mathrm{R}_{\mathrm{N}}}{}$ No. of spheres, and Diameter

The pressure ratio PR2, is defined in equation
(2.4.9). Figs. 14 and 15 illustrate the variation of PR2 with Reynolds number and number of spheres in the train. PR2 tends to decrease with increase in diameter ratio for a given number of spheres amd a given Reynolds number.
(iv) Pressure gradient based on length, L, berween pressure taps.

Equation (2.3.2) can be written in the form

$$
\left.\left[\left(\frac{P_{1}-P_{2}}{L}\right)-\left(\frac{d p}{d z}\right)_{n}^{(n-1)} \frac{d}{L}\right]^{(\equiv D P q C L}\right)
$$

$$
=\left(\frac{d p}{d z}\right)_{I I Q}\left[\frac{I-(n-1) d}{L}+f\left(\frac{d}{D}, R_{N}, n\right)\right]
$$

where $f\left(\frac{d}{\bar{D}},{ }^{R} e_{N}, n\right)$ is directly dependent on the end effects.
To check the validity of equation $(2.3 .2)$, and hence the results presented above, DPZCL was computed and plotted against $\left(\frac{d p}{d r}\right)$ LIQ. using all the data. For the results to be valid, the graphs of DPZCr versus ($\frac{d p}{d z}$) LIQ must pass through the origin and with gradients reflecting the end effects. As shown in Fig. 16 the graphs of DPZCL versus $\left(\frac{d p}{d z}\right)_{\text {LIO }}$ pass through the origin.

4.3 Drag Coefficient

From equation (2.5.5) and (2.5.6) the drag coefficients were evaluated for the diameter ratio of 0.84 using pressure drop measurements. Values of drag coefficient calculated from pressure drop data were higher than those corxesponding to the theoretical formula,

$$
C_{D}=\left[\left(\begin{array}{l}
\frac{d}{D}
\end{array}\right) / 1-\left(\frac{d}{D}\right)^{2}\right]^{2}
$$

The best agreement between the latter values and the former was at pipe-Reynolds-numbers greater than 8.5×10^{4}. The corresponding discrepancy was less than 10 \%. See Fig. 17.

A. Error Analysis

The following analysis is based on estimates of error due to such factors as instrument expor, calibration error, reading exrox, exrors in measurement of the length and diameter of test-sections, and manufacturer ${ }^{\text {a }}$ s quotation.

Pressure drop measurement: Max. error estimated $= \pm 7$ g Flow rate measurement : " " " \quad " 6 \%

Length, $L_{\text {o }}$ between transducers : " " 0000.5%

Mean diameter. D, of test section

Kinematic viscosity fwith temperature measurement :

Sphere diameter measurement : " " $\quad 0 \quad= \pm 1.0 \%$
(i.) Feynolds number - calculated from equation (4.1).
\therefore Max. error in $R_{e_{N}}=\frac{q}{2}$ error in $0+$ orror in $v+\frac{\theta}{6}$ error in $D=(6+2+1) \%= \pm 9 \%$
(ii) Pressure gradient $\left(\frac{d p}{d z}\right)_{n}=\left(\frac{P_{1 n}-P 2 n}{L}\right)$
\therefore Max. error in DPZN $=$ error in pressure drop + error in i measurement.
$= \pm(7+0.5) \%$
$= \pm 7.5$ 合
(ii.i) Free pipe pressure gradient, $\left(\frac{d p}{d z}\right)_{\text {IIQ }}$ calculated from equation (2.2.3).

$$
\begin{aligned}
\because \quad \text { Max. error in } D P Z L= & 2 \times \text { error in kinem. viscosity } \\
& +1.75 \times \text { error in } R_{e_{N}} \\
& +3 \times \text { error in } D \\
=4(4+16+3) \%= & 23 \%
\end{aligned}
$$

(iv) Pressure gradient (DPZC) based on the length of the sphere train - defined in equation (2.3.2).

Frror in DPZC $=$ Error in pressure drop measurement + error in sphere diameter
$= \pm(7+1) \%= \pm 8 \%$
(v) Pressure Ratio, $P R 1=\frac{\left(\frac{d p}{d z}\right)_{n}}{\left(\frac{d p}{d z}\right)_{I I Q}}$

$$
\begin{aligned}
\therefore \text { Max. error in PR1 } & =\text { Max. error in }\left(\frac{d p}{d z}\right)_{n} \\
& + \text { Max. error in }\left(\frac{d p}{d z}\right)_{L I Q} \\
= \pm(7.5+23) & =31 \%
\end{aligned}
$$

(vi) Pressure ratio, $P R 2=\frac{D P Z C}{D P Z N}$
\therefore Max. error in PR2 $=$ Max. error in DPZC + Max. error in DPZN
$= \pm(8+7.5) \%$
$= \pm 16 \%$
(vii) Drag coefficient, $C_{D}=\frac{D^{2}}{d^{2}} \cdot\left[\frac{\text { Pressure Drop }}{V o o^{2} / 2 g}\right]$
where $V_{0}=\frac{v \cdot R_{e_{N}}}{D} \times 14.4$

```
Error in Vo \(=2+9+1= \pm 11 \%\)
Max. Error in \(C_{D}=2(2)+7+22=33 \%\)
```


4.5 Application of the results

The essence of the non-dimensional parameters, PRI and PR2, was to generalize the results of this experimental study so that they may be applicable to any pipe diameter and for any sphere-pipe diameter ratio between 0.486 and 0.85 ; the Reynolds number range being $10^{4}-10^{5}$. We shall illustrate in this section how the results can be applied to predict the pressure drop in an arbitrary pipe of diameter, D (say 6 in.) with $n\left(s a y\right.$ 100) spheres of diameter d (say $4 \frac{1}{2}$ ins.) lncated in the pipe as water flows past them with a mean velocity Vo (say $1 \mathrm{ft} / \mathrm{sec}$.) at a temperature, T (say 74 F . i.e. kinematic viscosity $\left.=1.0 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec}.\right)$.

The following procedure is recommended:-
(a) Calculate the Reynolds number based on pipe internal diameter, knowing the kinematic viscosity corresponding to the temperature, T.
(b) Calculate the free-pipe pressure gradient, $\left(\frac{d p}{d z}\right)_{I I Q}$ using the equation

$$
\left(\frac{d p}{d z}\right)_{\mathrm{LIQ}}=8.487\left(\frac{v^{2} \cdot \mathrm{ReN}^{2} .75}{\mathrm{D}^{3}}\right)
$$

where D is in inches and v is in $f t^{2} / s e c$.
(c) If the length, $L_{\text {, }}$ between pressure measurement points along the pipe is less or equal to the total length of the sphere train, then we require the parameter PRI only. If I is greater than the total length of the sphere train, we require both PRI and PR2.
(i) Suppose L is less or equal to $\mathrm{B} . \mathrm{d}$. Referring to fig. 10 , the value of $P R I$ corresponding to the given sphere-to-pipe diameter ratio and Reynolds number is read off. Interpolate if necessary. Now, PRI $=\frac{\Delta P}{L\left(\frac{d P}{d L}\right)_{I I Q}}$
where ΔP is the pressure drop in inches water required, and L is also in inches. Knowing $\left(\frac{d p}{d z}\right)_{L I Q}, I$ and PRI, we thus predict the pressuxe drop. -

Equation (4.3) could also
be applied to calculate PRI.
(ii) If L is greater than $n_{0} d$, we use fig. iA. Depending on the number of spheres in the train, the value of $P R 2$ is read off corresponding to the diameter ratio and Reynolds number calculated above. Where the number of spheres is very large (say 50 or more spheres) a conservative estimate of pressure drop can be obtained by reading off PR2 from the lowest graph corresponding to the giver diameter ratio.

Now, PR2 $=\frac{\Delta P-\left(\frac{d p}{d z}\right)_{L I Q}(L-(n-1) d)}{n \times d \times\left(\operatorname{PR1} \times\left(\frac{d p}{d z}\right)_{L I Q}\right)}$
where ΔP is the pressure drop required, and $\left(\frac{d p}{d z}\right)$ IIQ and $P R I$ are evaluated as indicated above:

Substituting, therefore, we obtain ΔP.

For example, using the figures given above, let $\mathcal{L}=500$ ins.

$$
\text { Reynolds number }=\frac{1.0 \times 15}{1} \times 10^{5}=5.0 \times 10^{4}
$$

$\left(\frac{d p}{d z}\right)_{L I Q}=\frac{8-487 \times 5^{1.75}}{6^{3}} \times 10^{-3} \quad \begin{aligned} & \text { inches water per inch length } \\ & \text { of pipe. }\end{aligned}$

$$
=.000654
$$

We note that $I>100 \times 4.5, ~ s o$ we require both parameters, PRI and PR2. Diameter ratio $=0.75$. So we interpolate between 0.737 and 0.84 . From Fig. 11 we read that PRI $=90.0$ approximately at the Reynolds number of 5×10^{4} and $\frac{d}{D}=0.75$. From Fig. 14 we take $\mathrm{PR} 2=1.2$ for the given number of spheres and Reynolds number.

Substituting in equation (4.4),

$$
\begin{aligned}
1.2 & =\frac{\Delta \mathrm{P}-6.54 \times 10^{-4}(500-445.5)}{100 \times 4.5 \times 9 \times 6.5 \times 10^{-4}} \\
\therefore \Delta \mathrm{P} & =1.2 \times 4.5 \times 9 \times 6.54 \times 10^{-2}+6.54 \times 54.5 \times 10^{-4} \\
& =3.18+0.0357=3.216
\end{aligned}
$$

\therefore Pressure drop expected $=3.2$ ins. water
We have thus predicted the pressure drop corresponding to the data chosen arbitrarily above.

4.6 Optimum Diameter Ratio For Sphere Trains

The power consumption per unit mass flow rate is given as:

$$
\begin{equation*}
\frac{\text { H.P. } / \mathrm{ft}}{(\text { tons/sec) }}=\beta \frac{\mathrm{PRI}}{\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{2}} \tag{5.5.1}
\end{equation*}
$$

where β is a constant
See appendix 2 for the derivation of equation 5.5.1. Using figure 11 the above parameter can be calculated and tabulated as follows:

$\left(\frac{\mathrm{d}}{\mathrm{D}}\right)$	PRI	$\frac{\mathrm{HP} / \mathrm{ft}}{\mathrm{tons} / \mathrm{sec}}$
1.0	∞	∞
0	1	∞
0.4	10.5	65.6
0.45	12	59.3
0.5	14.5	58.0
0.55	18	59.5
0.6	23	63.9
0.7	52	106.1
0.8	150	234.4

The minimum power consumption for a given solids through put thus corresponds to a sphere/pipe diameter ratio of 0.5 .

SAEES NO. 1

MABLE NO. 2

TABLE NO. 3

DATA FOR 2" DIA. PIPE $\frac{\mathrm{d}}{\mathrm{D}}=0.737$

TABLE NO.

MABEE NO. 5

'N-SPHERE SYSTEMS ${ }^{\text {® }}$ DATA

$\frac{d}{d}=0.486 \quad 12$	pher	res	$\mathrm{L}=$	12 L			$=.9231$	$35 t^{2} / 5$	sec. x	- ${ }^{-5}$	
$\beta_{e_{\mathrm{NV}}} \times 10^{-4} 3.7$	3.7	5.35	6.19	6.197	7.07		8.848	8.84		10.88	
Bress.drop (ins.water 1.7	1.7	2.2	4.7	4.7	5.3	7.9	9.7	9.7	10.0	13.1	PIPE
$\frac{d}{D=0.60} \quad 8 \text { Spheres } \quad \begin{aligned} & 1=3 \text { ins. } \\ & \text { Kinem. viscosity }=0.95 f+2 / \text { sec } \times 10^{-5} \end{aligned}$											
$\begin{array}{\|c\|c\|c\|} \hline e_{\mathrm{N}} \times 10^{-4} & 1.45 \\ \hline \end{array}$	2.6	3.14	4.29	5.416	6.53	7.66	8.22	88.80	9.35	9.91	
press.Drop (ins.water, 1.0	2.30	3.5	5.3	7.8		17.22	20.8	22.9	27.7	32.7	PIPE
$\frac{d}{D}=0.737 \text { lospheres } \quad \begin{aligned} & L=12 \text { ins. } \\ & \text { Kinem. Viscosity }=0.88 \mathrm{f}^{2} / \mathrm{sec} . \times 10^{-5} \end{aligned}$											
$\operatorname{ce}_{N} \times 10^{-4} / 2.3$	3.1	3.9	4.8	5.6			8.3		10.4	11.4	
press.Drof (4ins watez3. 6	5.2	8.7	12.4	15.7			35.7	44.35	55.7	63.2	PIPE
$\begin{array}{ll} \frac{d}{D}=0.8512 \text { Spheres } & L=9 \text { ine } \\ \text { Kinen. Viscosity }=.925 \mathrm{t}^{2} / \mathrm{sen} \times 10^{-5} \end{array}$											
$\times 10^{-4} 00.95$	1.5	2.1	2.7		3.9	4.5	5.1	5.6	6.2	6.8	
$\begin{aligned} & \text { Eress.mrof } \\ & \text { [ins.waterf } 6.9 \end{aligned}$	20.3	28.4	47.3	73.5	142	187	247	310	297	353	
Spheres			$L=\text { ins. }$ Kinem. Visco			x		$f{ }^{2}$			
$\begin{array}{\|l\|} R_{\mathrm{N}} \times 10^{-1} \\ \text { eress.Drod } \\ \text { (ins.wate } \end{array}$											

Fig. 10
PRESSURE RATYO PRI, VERSUS R

Fig. 1d PRESSURE RATIO. PR1, VERSUS DIAM.RATIO

Fig. 12a.

Fig. 12b.

Fig. 12c. PRESS. GRADIENT, ($\left.\frac{d}{d} p_{c}\right)_{c}$ VERSUS Re

Fig. 12d. PRESS. GRADIENT, $\left(\frac{d p}{d z}\right)_{C}$ VERSUS R_{e}

Fig. 13a end effect press. GRAdIENT VERSUS Re

Fiq. 13c. END EFFRCTS

Fig. 13d. END EFPECT PRESSURE GRAD. VERSUS Re

Fig. 14b PRESSURE RATIO, PR2, VERSUS Re

Fig. 14c PRESSURE RATIO, PR2, VERSUS Re

Fig. 14d PRESSURE RATIO, PR2, VERSUS Re

Fig. 15
pressure ratio, pr2, versus no. of spheres

Fig. 162.

Fig. 17
DRAG COEFF., C_{D}^{*}, VERSUS R_{e}
5. DISCUSSION
5.1 Pressure Ratio, PRI, as a function of Reynolds Number and Diameter ratio

The experimental results for PR1 did not agree with equation (2.4.8), which expresses the pressure ratio, PRI, as a function of diameter ratio only. PRI was observed to be a function of Reynolds number as well. The main explanation for this is that the theory assumes

$$
\left.\begin{array}{l}
\left(\frac{\mathrm{P}_{1 n}-\mathrm{P}_{2 n}}{\mathrm{~L}}\right)=\mathrm{F} \cdot \mathrm{R}_{\mathrm{e}_{\mathrm{N}}} 1.75 \\
\text { and } \quad\left(\frac{\mathrm{dp}}{\mathrm{dz}}\right)_{\text {LIQ. }}=\mathrm{f} \cdot \mathrm{R}_{\mathrm{e}_{\mathrm{TI}}} 1.75 \tag{5.1.1}
\end{array}\right]
$$

where F and f are functions of diameter ratio, kinematic viscosity and pipe diameter. In practice however, the exponent of R_{e} in equation (5.1.1.) is not necessarily 1.75. It varies between 1.5 and 2; as confimed in reference No. 27.

Moreover, the equivalent diameter concept used in the analysis may not be applicable to annuli of this type, apart from the high Reynolds numbers involved. We, therefore, conclude that the theory has been over simplified and that the experimental values of PRI are acceptable, within the limits of error estimated in section (4:4).
5.2. pressure gradient DPZC and end effects, as a function of Reynolds number and number of spheres.

The graphs of DPZC and end effect versus Reynolds number, are very much what one would expect: the pressure gradient increases with increase of Reynolds number and diameter ratio, the plots are linear on a $\log -\log$ scale and have varying intercepts and gradients, and the end effects diminish as the number of spheres in the train increases. Also the estimated exror in the pressure gradient values obtained is relatively low - about 8%; signifying that figures 12 and 16 are guite reliable.
> 5.3 Pressure satio, PR2. as a function of Ren, diameter ratio, and number of spheres.

Remembering that PR2 is the ratio of pressure gradient with end effects to the pressure gradient without end effects for a given sphere train, one would expect PR2 to tend to 1.0 as the number of spheres becomes very large. The lowest value of PR2 obtained for the maximum of 12 spheres was about 1.3. Taking into account the estimated error in PR2 of bout 16%, the results suggest that we need more than 12 spheres fox the lower limit in pr2 to be reached. That is, the end effects constitute still quite a significant part of the pressure gradient when the sphere train comprises 12 or less number of spheres.

5.4 Drag Coefficients

The discrepancy between the drag coefficients evalwated Erom data (with $\frac{d}{\bar{D}}=0.84$) and values corresponding to McNoun's formula lies sell within the margin of error estimated in section (4.4.vii). Considering that the error in C_{D} could be as large as 339 , measuring pressure arops is obviously an inaccurate approach to finding the drag com efficients. In any case the formulag

$$
\frac{C}{D}=\frac{D^{2}}{d^{2}} \cdot \frac{\text { Pressure Drop }}{V o / 2 g}
$$

can be applied only for single spheres and diameter ratios greater or equal to 0.8 . It seems therefore, that the best method of obtaining drag coefficients for sphere trains like this is to measure the drag directly using a force transducer. We suggest that the rest sections be redesigned so that measurements of force on the sphere trains can be made. .

5.5 Optimun Diameter Ratio for Sphere Trains

The horsepower / unit mass flow rate is an important paramater relating to the economy of a capsule or solids pipeline. A minimum value of the parameter is usually desired.

The results presented in section 4.6 indicate that for spherical capsules the opimum diameter xatio (sphere / pipe) is 0.5 for the above parameter to be minimum. In praccice, however, we would recommend a dianeter satio of about 0.6 as this would reduce the tendency for the spheres to ride one above the other.

6. CONCLUSIONS

On the basis of the analyses and experimental results presented above, the following conclusions can be made:
(i) The hydraulic gradient in smooth pipes containing splaexe trains is a logarithmic function of the Reynolds number as shown in Figs. $12(2-d)$ fox $1^{1 "}$ and $2^{\prime \prime}$ pipes, and Reynolds numbers between 10^{4} and 105. It tends to increase with increase in diameter ratio, and decrease with increase in the number of spheres, for any given pipe diameter and Reynolds number.
(ii) For long sphere trains, the ratio of the pressure gradient with spheres located in the pipe to the free-pipe pressure gradient can be approximated by the regression equation:-

$$
\mathrm{PR1}=259.13\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{4.543}\left(\mathrm{Re}_{N} 10^{-4}\right)^{C}
$$

where c vaxies between 0 and 0.33 given that $0.84 \geqslant\left(\frac{d}{D}\right) \geqslant 0.486$ and $10^{4} \leqslant R_{e_{N}} \leqslant 10^{5}$.
(iij) End effects diminish from 100% of the total pressure gradient to about 20 as the number of spheres comprising the sphere train increases from 1 to 12.
(iv) The dxag coefficients estimated from pressure drop measurements for 1 sphere compare well with McNoun's drag coefficients only for the highest
sphere-to-pipe diameter ratio used; 0.84. For diameter ratios less than 0.8 , drag coefficients cannot be accurately evalusted from pressure drops.
(v) By using the results presented in Figs. 10, 11 and 14 , the pressure drop due to a sphere train located in a pipe of any diameter can be estimated as illustrated in section 4.5; given that the sphere-to-pipe diameter ratio lies between 0.486 and 0.84 . for the Reynolds number range $10^{4}-10^{5}$.
(1) BRENAER, H, "SIOW Viscous Slow pest a Sphere in a CYlindrical Tube", Journal of Fluid mechasics, Volume 4. 1958, pages 195-213
(2) FOXEN, H, "The Motion of Rigid Sphere along the Axis of a Ripe fillea with Viscous Fluid , Arkiv. Math. Astrom. Fysik. Volume $17(27), 1923$, pages 1 -28. (In German.)
(3) FAYON, A.M. and rapPeL, John, "Effect of a Cylindrical Boundary on Fixed Rigid Sphere in a Moving Viscous Fluid", American Institute of Chemical Engineers, Journai, Volume 6(1), 1960, pages 55-58.
(4) HAPPEL John and BXRNE, B.J. MMotion of sphere and Fluid in cylindrical Tube" Industrial and Engineering Chemistry, Volume 46(6), 195A, pages 1181-1186.
(5) PLISKIN, IEwin, and BRENMER, Howard, "Esperiments in the Pressure Drop created by a Sphexe settling in a Viscous Liquid", Journel of Fluid Mechanics, Volume 7(1): 2963. pages 89-96.
(6) TANEDA, S., "Experimental Investigetions of the wake behind e Sphere at low Reynolds Numbers". Journal of the Physical Society of Japan, Volume 11 (10), 1956. pages 1104-1108.
(7) WAGENER, P.P. and ASHKERAS, Harry, "Wind Tumnel Measurements of Sphere Drag at Supersonic Speeds and low Reynolds numbers": Journal of Fiuid Mechanics, Volume 10(4),1961, pages 550-560.
(8) SRIMATHI, C.R. and BHAT, G.N., "Drag in Linear Sphexe Assemblies", British Journal of Applied Physics, Volume 16, 1965, pages 551-556.
(9) ERICHHORN, R. and SMALL, S., "Experiments in the Lift and Drag of Spheres Suspended in a Poiseuille Flow". Journal of Fluid Mechanics, Volume 20(3), 1964, pages 513-522.
(10) ZRESON, G.F.. "Interaction between two equal-sized equalsettling Spheres moving through a Viscous Liquid". British Journal of Applied Physics, Volume 11, 1960, pages 87-8B.
(11) ERESON, G.F., HALL, E.N., and WARD, S.G.. "Interaction between two equal sized settling Spheres moving through a Viscous Iuquid", British Journal of Applied Physics, Volume $10(1)$. 1959, pages 43-47.
(12) FIDLERIS, V.and WHITMORE, R.L.,"Experimental Determination of the Wall Effect for Spheres falling anially in Cylindrical Vessels", British Journal of Applied physics. Volume $12(9)$. 1961, pages 490-494.
 Sphexes following sach other is c Viscous. Iuxan Anesican Institute of chancel magineer Volume 611. 2960; pages 129-133.
 "Influence of Boundary Proximity on the Dreg of spheres. Proc. 7tho Intex im Congress of mppinca Mechenics. (London) 2, 1902, pages 27-29。
(15) MGNOUN, J.S. and NEWLEN. J. "DEag On Spheres mithin Cyindrical Boundarisen Proc. Ist. U.S. Natronzl Congress of Applied Mechenies. Chicago I11.) 195]. pages 801-806.
(16) HODGSON.G.W. and CXARUS. M. FThe Pipeline wow of Capsules: Part 1: The Concept of capsule pipedining ${ }^{\circ}$ Canadian Jonrmal of Chemaci Enginexing Volume al 1963. pages 43-45.
 Theoretical Analysis or the concentre rlow or cyinndx cal Fomms canedier Joursal of chemical ringineering Vol-

 An Experimemtal Tmwotigetior or the Mreszocrt by Water of single cylindricel ond Sphericel capmules mith Density
equal to that of the Nater" " Canadian Joumnal of Chemical Engineering, Volume $42(1), 1964$, pages $1-8$.
(19) ELUIS. H.S., "The Pipedine Fiow of Capsules; part A: An Expeximental Investigation of the Transport in water of single cylindricel Capmules with Density greater than that of Water" Canacian Journal of chemical Enginearing, Volume $42(2), 1964$, pages 69-76.
(20) ELLIS, H.S., "The Pipeline FIow of Capsules; paxt 5: An Experimental Investigetion of the Transport by Water of Single Spherical Capsules with Density greater than that of the Water". Canadian Journal of Chemical Engineexing. Volume 42(4). 1964, pages 255-161.
(21) NEWION, R., REDEERGER, P.J. AND ROUND, G.F., "Mhe PipeLine Flow of Capsules: Paxt 6: Numexical Analysis of some Variables determining Free Flow", Canaidan Journal of Chemical Engineering, Volume 42(4), 1964, pages 168-273.
(22) ELIIS, H.S. and BOLT, Lot. WThe pipeline mow of cepsuies; Part 7: An Expeximental Investigation of tin manspoxt by two Oils of single cylundical and Spherical cepsules with Density equal to that of the oif" Canadian Joumnal of Chemical Engimesting; volume 42(5), 1964. pages 201-210.
(23) ROUND, G.F. and BOLT,. . Part : An Experimental Investigetion of the pronspoxt
in Oil of Single, Denser-than-Oil Spherical and cylindrical Capsulea." Canadian Journal of Chemical Engineering, Volume 43 (4), 1965. pages 197-205.
(24) JAN KRUYER, REDBERGER, $P . J$. and ELLIS, H.S. "The Pipeline Flow of Capsules; Part 9". Journal of Fluid Mechanics. Volume $30(3), 1967$, pages 513-531.
(25) HINZE. J.O., "Turbulence", McGraw-Hill Book Co. 1959, pages 517-518.
(26) KNUDSEN, J.G. and KATZ, D.L. "Fluid Dynamics and Heat Transfer", Chemical Engineexing Series, McGraw-Hill Book Co., 1958, pages 158-164.
(27) STREETER, "Fluid Mechanics", McGraw-Hili, 3xd. Edition, pages 184-186, and 188.
(28) ROUND, G.F. and KRUYER. J. "Experiments on the Suspension of Spheres in Inclined Tubes - Suspension by Weter in Tuxbulent Flow", Chemical Engineering Science, Volume 22, 1967, pages 1133-1145.

APPENDICES

A. 1 CALCULATION OF THE REYNOLDS NUMBER POM FLOW RATE, PIPE DIAMETER, AND TEMPERATURE MEASUREMENTS.

Mean velocity, $\quad V_{0}=\frac{4 Q^{\prime}}{\pi D^{2}} \times 1445 t / s e c$ where Ω is in $f t^{3} / \mathrm{sec}$. and D is in inches.
$1 \mathrm{cu} . \mathrm{ft} / \mathrm{sec}=373.733$ Imperial gall./min.

$$
v_{0}=\frac{4 \times 1440}{\pi \times 373.73 \mathrm{D}^{2}} \mathrm{ft} / \mathrm{sec} \text {. where } Q \text { is in }
$$

Imperial gall./min.

$$
v_{0}=\frac{0.49050}{\nu^{2}} \mathrm{ft} / \mathrm{sec}
$$

$$
R_{e}=\frac{V_{0} D^{\prime}}{v} \text { where } v\left(f t^{2} / \text { sec. }\right) \text { is the kine- }
$$

$$
\text { matic viscosity at the temperature, } T \text {, }
$$ measured, and D^{\prime} is in $f t$.

$=\frac{V_{0} D}{12 v}$

Substituting for V_{0},

$$
R_{e}=0.01083\left(\frac{0}{V . D}\right)
$$

A. 2 Derivation of Equation (5.5.1)

Horsepower / ft. $=\beta_{1}($ PR $)\left(\frac{d p}{d z}\right)_{\text {LIQ }} \times$ Flow rate
where β_{1} is a constant.
Flow rate $=v_{0} \cdot \frac{\pi D^{2}}{4}=\left(R_{e} \cdot \frac{\nu}{D}\right) \cdot \frac{\pi D^{2}}{4}=\frac{\pi D_{\nu}}{4} \cdot R_{e}$
\because Horsepower $/ \mathrm{ft}=\beta_{I} \cdot(\mathrm{PRI})\left(\frac{d \mathrm{p}}{d z}\right)_{L I Q} \cdot \frac{\pi v D}{4} \cdot \mathrm{R}_{\mathrm{e}}$
Mass flow rate $=\frac{\text { Capsule mass }}{\mathrm{d}} \times \mathrm{V}_{\mathrm{C}}=\frac{\frac{4}{3} \pi\left(\frac{\mathrm{~d}}{2}\right)^{3} \cdot \mathrm{~V}_{\mathrm{c}}}{\mathrm{d}}$
where V_{c} is the capsule velocity.
$\left.\therefore \frac{H . P \cdot / f t}{(t o n s / s e c}\right)=\frac{\beta_{2} \cdot(\mathrm{PRI})\left(\frac{d p}{d z}\right)_{L I Q} \cdot D \cdot R_{e}}{d^{2} \cdot V_{C}}$
where β_{2} is a constant.
At any specified Reynolds number, we can take $\left(\frac{d p}{d z}\right)_{\text {LIQ }}$ as constant. So also is the capsule velocity, V_{c}.
$\frac{\mathrm{H} \cdot \mathrm{P} \cdot / \mathrm{ft}}{\text { (tons/sec.) }}=\beta_{3} \cdot(\mathrm{PRI}) \cdot \frac{\mathrm{D}}{\overline{\mathrm{a}}^{2}}=\beta_{3} \cdot \frac{\mathrm{PRI}}{\frac{\mathrm{D}}{\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{2}}{ }^{2}}$
Given any pipe diameter, therefore,

$$
\frac{\mathrm{H} . \mathrm{P} \cdot / \mathrm{ft} .}{(\text { tons } / \text { sec. })}=\beta \cdot \frac{\mathrm{PRI}}{(\mathrm{~d} / \mathrm{D})^{2}}
$$

where β is a constant.

