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SCOPE AﬁD CONTENTSQ The pressure gradients for sphere trains
An 1 in. and 2 in. ﬁipes have been measured with water flowing
past the statioﬁary sphefes at Réynélds numbers (based on pipe
diameter) from 104 - lbs, and sphere/pipe diameter ratios rang-
ing from 0,488 - 0.84. Two dimensionless pressure ratios have
been derived so that the experimental results obtained can be
generalised to any pipe éiameter with the above constraiﬁts on
Reynolds number andvdiametef ratio., Drag coefficients have al-
s0 been calculated ffom éressqre drop measurements for the 0.84
diam. ratio spheresliﬂil in. pipe. These have.been coﬁpared
with McNoun's drag cqefficient.

The application of the results to predict pressure gradients

for sphere trains in any pipe diameter has been illustrated.
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ABSTRACT

vA'series of,exgerimenté was made to measure the press-

ure drop across stationary sphere traiﬁs located in 1 in.
and 2 in. smooth pipes through which water was flowing. The
size of spheres used ranged from % in. to 1% in. in diameter;
sph@fe»pipe diameter ratios were 0. 486, 0 60, 0.737 and 0.84,
while the'effectivg Reynolds number based on pipe diameter

ranged'from 104 ;ovlos. The length of sphere train, for
; each diameter ratio, was adjusted by #aryinq the number of

spheres from 1 through to 12.

Twe dimensionless pressure ratles, PRI and PR2, were
derlved to reiate the pressure gradient with spheres located
in the pipe to the pressure gradient thh spheres absent.
These enable the‘expeximental results to be of general appli-
cation to any pipe aiametéf, with Reynolds numbers in the
above range and sphere-pipe diametér_ratios ianging from 0.486
- 0.840“ PR1 pertainé theoretically to the pressure gradient
for an infinitely long»sphere train. Tt was approximated
in practice by measuring the pressufe gradient within the
length of the sphere trains, i.e. by locating pressure taps
‘such thét they weré unaffected by end effects, and was found
to be a function of diameter ratio-vaxying linearly on a

ioq«seale when plotted against the Reynolds number.



PR2 is a function of the number of spheres making up a train,
‘the diameter ratio, and the Reynolds number. It was observed
that PR2 decreased with increase in the number of spheres.

It also tended to decrease with increase in diameter ratio
for a given number of Sphere§ at a given Reynolds number.
:Pressuré gradiemts based on ihe length of sphere train were
plotted together with the end effect parameters. Drag co-
efficients weke caléuléted from pressure drop measurements
for the 0.84 diameter ratio, and cqmpared with McNoun's |
theoretical equation. The discrepaﬁcy was less than 10% for
Reynolds numbers greater than 8 x 104.‘ Leés:good agreement
was observed at lower ngnoldé numbers and diameter ratios.
Finally it is shown how the PRl and PR2 relations may be
used to predict the floﬁ conditions 'in any smooth pipe with
spheres located in them, for the Reynolds number range 104 -

105 and sphere-pipe diameter ratios 0.486 - 0.84,



1. INTRODUCTION

A substantial amount of literaiuré exists on the vis-
cous flow past spheres, particularly at low Reynolds nﬁmbers
(1-12), but to date no research wérk has been reported on the
flow past‘trains of spheres at-Reynélds numbers > 100. Most
of the previous work has concentrated on multi-particle assem-
blies relating to sedimentation, fluidization and othefrso?
called 'creeping motion'lphenoﬁené.~_The trénsportation of
capsules in pipelines has however roused interest on the tur-
bulent flow past spheres in bipes. The Research Council of
Alberta has been largely responsib;e for work that has been
done in this area so far, and the papers ﬁublished by the re-
searchers at the Reséaréh éouncil haVevdealt extensively with
the flow of cylindrical capsules an& single spheres. In a
series of papers having the general title "The Pipeline Flow
of Capsules" (16-26), the emphasis has been on the determinat-
ion of the capsule velocity or velocity ratio (capsule/free
stream) as a function of avefage velocity, diameter ratio,

and capsule/liquid dehsity ratio. Some of the concepts in

* The word 'capsule' in this context has come to mean
a large, regularly shapéd body - hollow or solid,
cylindrical or spherical in shape - whose minor dia-
meter is comparable to the diameter of the pipe in
which it is travelling. '



the present study like 'pressure ratio' (see Chapter 2),
have been influenced by the terminclogy contained in these
| papers. |

In designing a pipeline to transport solid materials
or capsulgs,'one wquld in the first instance be interested
in predicting the pressure gradient énd subsequently the
power cdﬁsumption. The following study relates to this in
that it essentially consists of determining experimentally
:the présSure qradiéhts associated ﬁith stationarv fully eccen-
tric spheres in a turbulent flow.fieldf as the number of
.spheres making up ﬁhe train increases and the sphere/pipe
diameter ratio variés; A correlation has been developed so
that the data collected could be related to behaviour for
pipe diameters othef than those used in the present study.

Some considerations of drag coefficients have also been made.



2. THEORY

2.1. Pressure Gradient in a Free Pipe
The DARCY-WEISBACH équatién may be written in the form,

The above equatlon applies to any steady incompressmble flow

.whether lamlnar~or turbulent.

The BLASIUS eqﬁapion for friction factor in turbulent
flow is given as
£ = 0,316 a
- This eguation approximates the f?iction factor - Reynolds
, nunkber plot (Moody diaqram) over the region in which we
are interested. We may therefore expect'a slight variation

on'the Reynclds number exponent in experimental work.

Substituting (2.1.2) in (2.1.1)

= 0.316 _ vo?

- (g
(dz}LIQ Re% Zgn_

' R
But Vo = “8“3

=_0,3L§g$e?v2
R4 2gD3

'QE)
dz/LIQ




Now, if v is in £t%/sec.

1.75 2 3..75 2

| (QE)Y ‘= 0.316 x 144% _ Rey w2 . 0.316pm. %
dz JLIQ 2 x 386 o3 -7 2903
If we substitute
o o - -4 .
Re , = 10 X Re
dp = P2 ReleTS e (2.1.3)
o\ 3 ) - ~

"~ where Ki =(Q;§%§;£)

'The eyponent of P 1n equatlon (2 l 3) 1n practlce is noL

' econstant at 1 JS but varles betWeen 1 7 and 2.0 (27)

o

2.2 ggessure g£§§ieﬁt with Spheree Present

For sta&lonary spheres located in a plpe w1th fluld
'flow1ng past them, we. would expect the pressure drop measur-

"~ ed to be a funrtlon of

{V(a)'iThe sphere dlameter and number, a and'ﬁ

’(B)_vThe v1sc051ty and den51ty of the flow1ng
' -fluid p and p ‘ :

.(c)l;Thm ve1001ty of the fluld Vo

-{d) The spac;ng between the spheres



{e} The pipe diameter, D, and the relative dis-
placements of the spheres from the centre

line of the pipe; in other words, the eccen-
tricity

~(£) The location of the pressure taps
Where condition (dl is kept constant, a dimensional analy~
’ . . v
" sis indicates that APS = fin, %, Re ;) (2.2.1).
S ) . A v ’ :
' T¢-define equation (2.2.1) we shall look more

closely at the possible sphefe'ar:énQementsg_ (cf. Fig. 1)
~Case B - Single sphere -

We shall define the terﬁ 'end effect zone' as the
zone upstreém and downstream of a sphere train within
which there is signifiéaht aeviation_from'the relation-
ship given by’equatioh;(2,1.3}; Theoretically, the down-
stréam,zché'couldbexist for,a very large number of pipgl
‘diameters. .In the case of one sphere, the énd effect zone
is of length izias shown in Fig. 1. -

The pressure drop between BC,

AP_ ‘= [Pyq=P,yqy | - ég) f. + 2 :
- Te-cC (ll 21) .(’dz,LIQ(l 3> (2.2.4)

ap) = bPg.c = [P11-Pp1 ) - (gg (ﬁlifg (2.2.31)
z /s8] 22 22 dz LIQ Ry

.Also ﬁi + 22 + 23 = 1,



Case B - two spheres

Pressure drop across BC,

pp_ = (P~ ) - (dp) (2. _+2
B-C (,12 22) (dz)LIQ( 12 32) (2.2.B)

(S!E)__ ~ APpq o ('PIZ*P'Z.‘Z“)_— (51_2) (21 2+£32>
le s§2 222 222 ‘ dz} LIQ’ 922

(2.2.81)

Case C - three or more spheres

Here is a 51tuat10n in whlch the pressure taps

: ‘may concelvably lie within the end effect zones. The
:pressure drop’measured cannot be predicted semi-empiri-

cally as we have done in (A) and (B).

However, we would expect a sudden drop in the value of

Plaand‘Pel and P should Le about the same for 3, 4, 5,

€2
...+.20 or more spheres.

Case D - n - spheres

In this case, as far as end effects on the pressure
taps is concerned n - » i.e. the end effects are remote
from Pln_and P,,+ The pressure gradient for an 'n-sphere’

systenm is

(g_p_) _ (Pln‘PZn) (2.2.D)
dz/n L _



CASE A — | SPHERE

1 2
-. b4 . "gj . 'Ll * .
— : @ 3 -
A B c 0 aB -1,
BC ? Iz
P .
—= : =
TR e B c O
CASE B — 2 SPHERES
Ry Ry
) ltg= ‘28 Sl
L B

olmn

" CASE ¢ — 3

OR MORE SPHERES

CASE D — N- SPHERES
FIGURE NO-1

'ARRANGEMENT OF SPHERES
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Having c@nSidered case A, B, C and D, it is clear
that we have two general arrangements in whiech the press-
ure gradient can be handled semi-empirically!: The arrange-
ment in.which pressufevtaps lie beyond the end effect zones;
and the 'n~sphere system’. AThe_latter pressure gradient
is represented by equation (2.2.D); but in order to gen-
erali?e the former for any number of spheres, we make the
following assumption:—A Let end effect pressure drops
“nfcr any.numbér OfAspheres in the train of given diameter -

be constant for a givén Vo and giveﬁ]by P.; and P‘,:2

Then the pressure drop for case B can he expressed as

APy o2 = (Elz:zznf x d + ( +P ) a ) ) %ﬁ
B-c2 = [ R- ) el*Pey ,ag,LIQ 12732

blmllarly if Pl3 and P, are placed bkeyond the end

23
effect zones,

AP, 1n*P2n F Y a») I
B~C3, ( - ) x 2d +(§€1+Ps%) + (EE,LIQ ( 13+ 33)
Also AP K bln*PQn : 7 \. 'd f ’

‘ B-Cy (m_ 4 x°30 +(Py4p |+ (dRY (%14*234)

in general, the pressure drep‘measured when pressure taps

are placed beyond end-effect zonés of a given sphere train is



11

Py _~P o |
= (_in “2n\ |, (n~-1)d + {P_;+P_,| + (4
APn ( L ) (n .) (,el sg} + (EE)LIQ (iln+£3§>
(2.2.2)

Case A, i.e. n = 1, is a sPécial case of eguation (2.2.2);
for then |

AP, - fdp - - (v . |
t. 1 (a%)nxo * <k11*231)] (§31+Pe2>_ (2.2.3)

If we could determine the unknowns xln‘ 13n, P;Z

we would be able to predict the préésure drép across any
S§here train in which the pressure taps are placed béyénd
thé end-effect zones, knowing the ‘N-sphere' pressure
gradient. To do so, anothef assumption will.be made which
Vis necessary to verify experiméntaily: that (Ei+€2) is
constant for any number of spheres of given diameter

making up the sphere train at a given velocity. 1In general,
(21ptl3g,) + (e1+ep) + (p-1)d = L (2.2.4)

Some wcrﬁ has been done oﬁ_the wéke behind a sphere
at low Reynolds numhefs (TANEDA (€) ). At a sphere Rey~
neolds number of 100, Taheda fognd (sz/d) appreximately pro-
portional to the logarithm of the Reynolds numbefo But
whether or not these results apply.to §ipe flow KWith boun-
dary effect), and whethei they éaﬁ be extra?clated t§ the

'high Reynolds numbers (104 - 105) in the present study is
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still to be verified experimentallys» A possible experimental
' technlque would be to move the pressure taps in small steps
away from both ends of the sphere train and note the dis-
't@nces Ql_and 23' at which there is s;gnxflcanﬁ change in

pressure gradient.

2.3 End Effeets

Egdation Q?.Z@?) can be re+Writtén in the form

/ap Py P ,
- (4p) ln 2n P 1P
ho o) - (52 73
Since AP > fdp\ f .
n .(dé)LIQ(L-n§)' we can replace (£1n+g3 } by (L-nd).

Then AP - QR ‘ N _(Pin- p2 ’
. (d'a)LzQ_(L ndl = “““"“‘ (“’})@“’ Fe1*Pez

(2.3.1)

-

dz
relative to the total pressure drop as the length of train

The term, (QE)LIQ <%~n §> becgmes increas;ngly insignificant

increases.

Dividimg both sides of (2a3.l§ by n.d, we obtain.

APn p_nd P1B°P2n' _i_ P +P
dz LIQ nd 1 n dz corr.

(2.3.2)
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What equation (2.3.2) expresses is the pressure gradient

due to the sphere train's presence, i.e. apart from pipe
wall friction over the length (L-nd). The pressure gradient
‘obtained thus is independent of how far the pressure taps
are away from the ends of the train, provided of course,

that they lie outside the end effect zones.

‘(P€1+P€2),can be further reduced analytically by
considering the Bernoulli effects at the nose and tail of
- the 3phere‘trainé Referring to Fig. 2b, we can approxi-

mate Psl:gs due only to the Bernoulli effect; i.e.

_ \'51 Vo .
Pel - p( 2 ) (2‘304)
. ‘ g -«

For the tail end efféct, however, there are other head
losses which must be taken into account in the RBernoulli

equation: so that:

P oo 2 o 2
»—53.=-hA + (VQ'"Vl, {2.3.5)
p . L \ - Zg ® °

Adding equations (2.3.4) and (2.3.5), we still find that
there is a head loés term which can only be determined ex-

.perimentally.

We shall therefore adopt the approach of rearrang-

ing eqguation (2.3.2) to the form
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(1_1“’_3) - (f?f’_a) " (%), (m) - (Pln-Pzn)(-a)
nd n.d dz JLIQ n.d L a
(2.3.6)

so that the end effects can be evalvated from experimental

data.

2.4 The Concept of Pressure Ratios, PRl and PR2

Just as the free pipe pressure gradient is a
function 6f Rg V. and D, (see equation (2.1.3) so we
would expect tQ@ 'N-sphere' pressure gradient to be a
function of the variables Re, and an equivalent dia-
meter d,, The eaquivalent diameter is a function of sphere
‘diameter 4 and pipe diameter D. The reasoning behind the
~first statement above, is that we can think of the flow in
the 'N-sphere' system as that through a pipe of undular
cross-section, with the sphere surfaces as part of the pipe
inner wall. 1If our aim is to obtain general results which
apply to all pipe diameters, and are not dependent on tem-
perature (as v is) then we will have to introduce other non-
dimensional parameters

'N-SPHERE' PRESSURE GRADIENT
FREE PIPE PRESSURE GRADIENT

N\
i.e. PRI = gfleﬁfzﬂﬁ{ (2.4.1)

(vp/p2) 110

Let PRESSURE RATIO, PRl =
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where the numerator and'denominator correspond to the same
Reynolds number. To show that PRl is truly independent of
D, v and Re, but a function of diameter ratio, g, only; we
shall ultimately resort to experiment. Meanwhile, on the
basis of the equivalent diameter concept we shall carry
out a simple analysis to derive an expression for (Pln—PZn)/L
in the same way that the free pipe pressure gradient (see
equation 2.1.3) was obtained. Such an analysis of turbu-
lent flow in an eccentric, three-dimensional annulus does
not appear to have been made. 1In any case, the following
derivation gives us some insight into the nature of the
'n-sphere' pressure gradient and the pressure ratio, PRl:-
Consider the fluid element IJKL (in three dimensions)

shown in Fig. 2a.
Vol, of Element

‘Mean cross-sectional area, A =
Length

Surface area, S = 7mD.d + 4n(§)2

2
ﬂd(p+é)

Assume that there are no other effects on the fluid element

than those due to normal pressure drop and wall shear stress.

Resolving forces in the direction of flow,



FIGURE 2a

SETRRIT

FIGURE 2b

DEFINITION DIAGRAMS




A}—AP) = T,. S

where 1, is shear stress, and steady flow prevails.

By definition, 41, = £V . pYiE where double prime refers

2q
to values in the annulus.

: E « | we
AP £, DL . S
4 2g A

Comparing thisIQQUation with the Darcy-Weisbach eguation,
the equivalent diameter, d, = 4A | g since d is the length

. : S
of the fluid element.

' 5 2.2 |
. a4 = Eléffﬁfgl . @

d (p+d)
d. = (02-282)/(p+a) (2.4.2)
e 54 4.
. .' Reu\)
Now, V"' = P and by continuity,
[ - i
2 42 2
T xpte D d = Vo x 1D° = 71 . Rg.D.v
v xn(z*g) 2 o

since R, = Vo D

v
R "t 2 _
SoV' o= R, . DV = DT . Vo (2.4.3)
- 3
and since V* = Re-V by substituting for V" and dg in
de

equation (2.4.3),



R" =¢2D Y\ .R . {2.4.4)
€ <§+d> ©

‘We have obtained above the relation,

' n w . i ) ] 2 2
ap 3~§“‘=DY-E-° S where § = TD(d+D) and A = n/2 %.)q
' 4 A 14 6

‘N-sphere' pressure gradient,

(?;13:?;@) = AP = f£" | ,ye2 | p

a+D
1 a 3 75 Ez~az> (2.4.5)
: 4 €

If 4 x 103 « Rg < 105,}as we expect it will be for Ry bet-

ween 109 and 10° (Ssee equatlgn 2.4.4) then BLASIUS eguation

for frletjon factor can be used to replace f£":

el
SR

Substituting (2.4.6) and £2.4.3) in (2,4.5)’we obtain

f" = 0.316 = 0 316 ) (2.406)

'ﬁgnffgé\ _ [0.31€ x 144%y 2)_ s 2 /p né>l°75

° B eame &D
S A AN 29 (92—25555

= k°v2 1
1 - =
31 €
g} - g«g; 1P
1.25
| d |
- x (i | RLTS

ﬁ__#%ﬂ3 Cp3

~As in equation (2. 1 3), if we substltute
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LI -4
Re 10 X Re
end v = 105 X v
gAloZS‘_ o :
,EEE:F22> Ky 1+ D) '<v'2R;1°7S> (2.4.7)
3.

‘where k, = 8.487 x 10

- Divide equation (2.4.7) by (2.1.3) we find that

.m. (14.5 );{1—(--)”1

(2 4. 8)
That is, PRl is a funétion_of dia. ratio only.
Fquation {(2.4.8) satisfies the boundary condition that
when diameter ratio, g, equals zero PR1 eqﬁals 1; meaning

that we then have a free pipe pressure gradient.

A seCon&,pressuré rafio>(PR2)vis defined for the
'éet—up wheréby the'pressurebtapg'lie beYond the end-effact
Zones: ~ _

PR2 = ((pP/Dz)cotr.)/((Pln-Pzn)/L)
| (2.4.9)

The numerator is given in equation (2.3.2) as

<%§)corr- (?;gifzé) - <} % %> ' <§Ei§f§2>

So PR2 4-<Pel+?ez> L
- Pln+?2n nd

Wi
Pt
3=
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PR2 = 1+1( 1+P82>/d)—1}
P1n-Pon /L

(2.4.10)

Equation (2.4.10) cannot be reduced analytically

any further since P_,+P_, can be obtained only empirically.

2.5 Considerations of Drag of the Sphere Train

The total drag on the fluid as it flows past the
sphere train comprises the skin friction on the surface
of the spheres, pipe wall friction, and drag due to dis-
tortion of the flow. | B

In order to evaluate the drag coefficient of the’
sphere or sphere train in a pipe, we need to separate
total pipe wall frictioh drag from the drag measurable
through pressure drops. This is nct'a simple matter, as
the following discussion wil show. The pressure drop
APS = (Pl~P2) over a length, L, of tube may be thought of
as being composed of three components: (cf. Fig. 3a)

(i} The pressure drop APL due to the liquid flow-

ing in the tube without the sphere present.
This is easily calculated from the Darcy-

weisbach formula.
(ii) The pressure drop APm'associated with dis-

tortion of the flow and energy dissipation in
the wake.
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1
L

change in the shear stress distribution on

(iii) A pressure drop AP which is caused by a

the pipe wall in thevvicinity of the sphere
due to the change of flow velocity. A 1i§uid~
flowihg‘in*a tube without a sphére experiences
uniform wall stress from cross-section to
cross-section. |

| Figufe Ja illus;rates the point thaﬁ to obtain APy
and hence the &ragveéefficiént, AP, and appd will have to
vbeAsuhtxécﬁed from (Pl;Pé). Since there is no feasible
7way of évéluaﬁing A?Ll, the only practicalbway to obtain
drag coeffiéients wiliibe to measure the drag force direct-
iy usiﬁé'fbxce transducer; or suspend the spheres in in- |
clined tubes'as Round and Kruyer (28) have done. Never-
theless, on the baéi§ of the foli@wénq analysis, an es-
timate of the drag ;oefficient for single spheres in the

pipes can bhe made:-

The drag force, by definition, is given as

‘ 2 | 2
= P /%d  pVo
Py CD'\4>'_29

is used to distinguish it from

{2.5.1)

| The asterisk Qﬁ CD

the dfaq coefficient of a sphere in an unbounded medium.
The @@hvefqinq flow upstream from the sphere's

equator is essentially ifrotational; s0 &e can apply the

Bernoulli equation (See Fig. 3b).
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' 2
po + o¥02 = py 4+ oY1 (2.5.1a)
2 2
by continuity,
2
Vo . H—D—.—_ - V . ki1 Dz‘“dz
2 1 3( )
s 2 - 2 2
i.e. V4.0° = V,(D%-a%) (2.5.2)

If the pressure over the downstream face of the sphere is
assumed to be equal to p, as in the analysis of an abrupt
pipe expansion, the momentum équation can be applied between

points-l_ahd_z (Fig. 3b).
,
(Py-py)™D7/4 = 0Q(Vy-V ) (2.5.3)

The momentum egquation can again be applied for points 0 and
2, whereby a relationship between the total pressure drop

and the drag force is obtained:
-p)1D%/4 = F (2.5.4)
(po-pp) "D /4 = F, -5.
Relatin‘g (205-1') and (2.50‘4) z

_ o P2 )
c, = 237 5.9

Substitute (2.5.2) in (2.5.1a) and (2.5.3):

02_g2\2
(po-pP1) /P = %vlz[}—(%gz-> }

' 2_42 2 2
(py-py)/p = <_2_..D ~d ) LN [1'<’-"2'2'd ﬂ
D ‘ . \p
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(recez ) { § ( 7 )] (Dz_d2)+[25%5§‘%']2}

2 / 2 2
= < p? ) vo? ;r1-<132—d2>} = (\’ p? ) o |
p%-¢2/ 29+ p2 /i  \p2-a2 29

' Now substitute this and (2.5.1) in eguation (2.5.4):

| 2 o2 2 47 52 \2 2
c* mat - vt v,g__afg)v_ ™D °
p g - Py P3g \b D—f”‘z_d> 2
L] d 2
: ﬁ L] L
CD =i _1 5 (2.5.6)
-
Blf
Apo-pP2} = oggu . &D . {2.5.7)
/ o )
T )
o 5

It is evident that the assumptions made in the
derivation of (2.5.5) and (2.5.6) are justifiable only if

d is near unity. Observations by McNoun and Newlin (15)
D _ : ,

show that equations (2.5.5) and (2.5.6) agree well with
experimentbfor diameter ratios greater than 0.8,

Correlations by Round and Kruyer (28) will also be



useful in checking pressure drbps‘Withim the approximate

diameter ratio range as will equation (2.5.7)

25
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3, APPARATUQ AND EXPERIMENTAL PROCEDURE

3.1. General Requirements

The hydraulic system illustrated in Fig. 4 was design-

ed to meet the following requirements:-

(i)

The water flow velocityvceuld be varied between 0 and
12 ft./sec.  The effective Reynolds number range

. based on pipe diameter 104 w'los,'so that flow was

{ii)

(iii)

{iv)

(v)

fully turbulent.

The number of spheres mounted, their spacing, and
sphere-to-pipe diameter ratio could be varied.

Pressure drops across the spheres could be measured
continuously. '

There would be a high enough water pressure (up to

- 45 ft., of water)vat the test sections not to atall

the flow when spherewto—plpe diameter ratios of up
to 0.95 were used

Pressure fluctuations in the system shauld be mini-

‘mlsedo

3.2 Description of Apparatus (c f. Figs. 4 - 9)

the tank (reservoir) measured 36" % 36" x 30" and

.  was fitted with a 2%7_diameter line leading to the pump; and
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~a 1" diameter drain line. The centrifugal pump provided
was rated at 3 H.P; delivering up to 100 IGPM at 50 ft.
| water head. It was driven by an electric motor running at
3600 rpm. o |

A 2" discharge line from the pump led to the Surge
Chamber'aSSmely as shown in Fig. 8a. The Surge Chamber had
an effective volume of 2904 cu. in..énd was connected to a
nitrogen bottle through a l-in. globe valve.

Two rotameters, one covering the range 0 - 10 IGPM
-and the‘othéf 10 - 100 IGPM, indicated the flow rate. A
butterfly valve was located betweén the surge chamber and
flowméters so that the'flow could be requlat@d; Two gate
valves and two globe valves for fine flow control were con-
nected as éhown ianig5 5. |

Details of the 2-in. test-éections are shown in Fig.
6. The l-in. test-sections were identical in design exéept
that the}spacingnbetween the sphere-location holes was %"
aéd‘%" respectively; énd there was an extra pressure tap
érovided in each test-section so that the pressﬁre transducers
could be located 3 ins. apart. A honeycomb flow-straightenexr
- was located 4 £t. from each test section. Valves downstream
 of the test sections enabled back pressure to be applied..
(see Fig. 4) | |

TWo prong dévices were designed and built for locating
the spheres. (see Fig. 7.) |

The pressure transducersg are shown in Fig. 8b. The
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sensing element in each transducer is a stainless steel dia-
phram. Applied pressure varieé the capacitance between the
diaphram and a fixed electrode. This capacitance variaticn
is cOnﬁerted into a d.c. voltage output proportional to the
pressure differencé between the two sides of the diaphram
through the oscillator~convérter arrangement described in
appendix'3.-‘The sensitivity of the préssure transducers is
- dependent on diaphram.thickness, so four diaphrams, with
thicknesses between 0.005 in. and 0.030 in., were made and
fitted in the transducer units 1ab¢lied-PTr3, PT 4, PT.1,
and PT,.2; in that order of SenSitiQity. The pressure ranées
covered by these are 0 - 30 ins. water, 0 - 10 ft. water,

10 - 30 ft. water, and 20 - 50 ft. water respectively. See

Calibration curves (Appendix 1) .

There were difficulties in getting the equipment
designed and the instruments calibrated and working properly,

but these were eventually solved.

3.3. Experimental Procedure

The comvertet units were switched on to warm up, at
least l'hr. before the start of each experiment. This mini-
mised drift.

The reservoir was filled with water to % capacity
~ and the pump stuffing box nuts (2 off) were adjusted so that

there was slight drip of water as the driving-shaft was rof'
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tated slowly by hand. This indicated that the pump was well
primed.

| , Spheresvwere 1bcated,in the appropriate testésection
using the prong devices mentioned above; and the test-section
was fitted into place by bolting the Johnson dresser couplings
provided. | |

The apprcpriaté transducers were a&justed so that the
output voltéges vere ZzZero, andiths valves in the system were
checked to ensure that'thé right ones weiekopeh and the others
elosed.,;Care,was‘taken ﬁhat the fl@w rate which was obtained
did not @xcéed the range of fhe‘smaller flowmeter when that
rotameter was used, |

Care was also taken that the output of the pregsure
 transducers did not exceed 6 volts d.c.

The readings of voltage Were'téken'from the recorder,
and millimeﬁer readings'éf the rotameters were also noted as
flow rate was VAried.A Water témperature was meaSuréd usihg
a mercury thermometer. Since the variation of water temp- .
erature throughout ahy'axperimenf was»iess than 3%, water‘
 ;emperatures were taken only at the begihning and at fhe end
of each experiment.

Using calibration'chaftsy valués of the flow rate,
presstre drop, and Reynolds numbers ﬁere calculated from

the.readiﬁgs listed above.
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4. RESULTS AND CALCULATIONS

The experiments were conducted using the following
series of spheres:-

1" diameter spheres in 2" pipe (diam. ratio = 0.486);
%" spheres in 1" pipe (diam. ratio = 0.60);
1%" spheres in 2" pipe (diam. ratio = 0.737); and

%" spheres in‘l"'pipe {diam. ratio = 0.84).

The ihternal'diametér of each pipe (test section)
was measured and found to be 1.030  0.010 in. and 2.000 % .010
in. respectively. |
| For each diameter ratio, tests were performed, as
described in section 3.2 with 1 sphere, 2 sﬁhefes, 4 spheres,
8 spheres, and 12 {(or 10) spheres located in the pipe. Calcu-
lation§ of the basic parameters - pressure drop and Reynolds
number - were made from readings of the flow rate, transducer

voltage output and temperature as follows:
Pressure Drop = Vo3 Cl - V02 C2

where Vol was the upstream transducer voltage output, C; was
the calibraiion constant for the upstream pressure transducer,
and suffix 2 refers to the downstream pressure transducer.

The valuves of C; and c, depended on which of the four trans-
ducers - PT.1, PTrZ, PTrB, PTr4 - were used; and were obtain-

able from the calibration charts. See Fig. 9
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Reynolds number (based on pipe diam.) = 0,04083(525) (4.1)

‘where Q is the flow rate inAImperial gal./min,, D is the
pipe internal diameter in in. and Qt‘is the kinematic vis-
cosity of water (in ftg/sec.) atbtbe temperature measured.
The values of kinematic viscosity were obtained from tables.
(See appendix 1 for the derivation of equation (4.1))

‘Having obtéined»the pressuré drops and corresponding
‘ Reynolds numbhers, the parameters develop¢d~in Chapter 2

were evaluated. The correlation of these parameters is pre-

sented helow and will be further discussed ig the next chapter.

4.1 'MN-sphere' system: PRL as a function of Reynolds

&gmggghgbd Diameter Ratio.

Data collected with the °h¥sphere' system (cf. Fig. %,
Case D)were used to cbmpute the parameter PRIl defined by
equations {(2.4.1) and (2.1.3)° {(The computer program output.

is given in appendix 4.) The data are given in tabhle No. 5.

Contfary to the.simple apalysis of section 2.4,
PR1 was not completely indepen&éﬁt.of Reynolds number, as
shown in Fig. 10. The maximum variation of PRl with Reynblds
number occured with the sﬁhére/pipe diameter ratio of 0.84.
The miaimuﬁjvaxiaﬁion was found with the 0.60 and 0.737

diameter ratios.

The values of PRl given by equation (2.4.8) were



40

compared with those compoted from daéa. ,DiscrepancieS'of
ﬂaboot 100.% ox moreA'were observed between the two sets of
PR1. This suggests that the simple analysis of section 2.4,‘}
_ based on the equivelent diameter concept, is ihadequate for |
the complex:flow phenomena within the corrugated annuli.

| Correlatlng the values of PRl at a. Peynoldq numher
of 10 000, an emplrlcal formula for PRl as a functlon of '

'dlametellratio waa ‘obtained:

4.543

PRl = 259.133- ad) (4.2)

Considering equation_(4;2) and’the variation of the pressure

ratio, PR1, with Reynolds numbey, e.more general formula was

 derived: .
o a 4.543] 4o .
PRl = [259.133° (~) S a3
. - for d R =10t R
~where ¢ = 0.232, for £ = 0.486 - Re = 107", Ke
¢ = 0.074, for g = 0.6
¢ = 0.082, for d = 0.737
and ¢ = 0.33, for 4 = 0.84
- D

‘ That is, ¢ varied between 0 ané 0,33 fo; the ranje of a154
meter ratios‘and Reyholds numbers considered. '1t‘will be
vseen}from the plot of PRl vs;'R that- the ﬁean value of PRL
for each diameter ratio corresponds to a Reynolds number
between 3 x 109 and 4 x 104. Flg. ll therefore applles more'

aecurately.ﬁm‘Reynolds numbers within that range.
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4.2 Measurements including end effects (cf. Fig.1 case A,B & C)

(i) Pressure Gradient based on length of the sphere train, n.d.

The parameter (gg) defined in eguation (2.3.2)

COTT,
. was calculated from the data given in tables 1 - 4, It is a
function of Reynolds number, diameter ratio, and number of
spheres; and has been plotted'fo:_each of thé four diameter
ratios as shown in Fig. 12. |
All the plots are linearvon.a log-log scale. The
gradients vary between 1.5 and 2.0, with the exception of
the smallest diameter ratio where lesser gradients were ob¥‘
served. From the plots, the foliowing general observationsl'

- were made:

2 d . ° . - » 'y .
{a) DPEC (1we@ (ag)c@rr.) 1nereasefW1th inecrease

of Reynolds number

(b) For a given pipe diameter and number of spheres,

DPZC increases with increase in diameter ratio

(c) For diameter ratios of 0.6 and 0.737, DP2C
decreased steadily with increase in number
of spheres. An oscillating decrease in DPZC
was however observed with the 0.486 and 0.84
diameter ratios as the number of spheres in-
creased.

(ii) End effect (on pressure gradient) as a function of
Reynolds Number, Diameter Ratio, and number of spheres.

From equation (2.3.6) the end-effeet‘component of
pressure gradient was computed and the results plotted as

shown in Fig.13. Like the DPZC versus R, plots the end
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effect graphs were linear on a log-log scale with the ex-
ception of the 0.486 diam. ratio plot, where some nonlinear-
ities were observed. The following general observations are
made: - | |

" (a) The end-effect component of pressure gradient
tends to decrease as the number of spheres in
the train increases. It decreases from 100 %
cf DP2C (total pressure gradient) for 1 sphere,
to between 20 % and 60 % DPZC for 12 spheres,

- depending on the diameter ratio. The respective
lower limits of end effect computed were 58.7 %
for ($) = 0.486; 40.9 % for (3) = 0.60; 23 ¢ for

(%) = 0.737; and 48.2 % for (3) = 0.84,

(b) The end effeécts generally increased with in-
crease of Reynolds numker and sphere-to-pipe diam.
ratio for any given pipe diameter.

(iii) PR2 as a function of Rey. No. of spheres, and Diameter
ratio. N

The pressure ratio PR2, is defined in equation
(2.4.9). Figs. 14 and 15 illustrate the variation of PR2
with Reynol&s number and number of spheres in the train.
PR2 tends to decreaée with increase in diameter ratio for a

given number of spheres amd a given Reynolds number.

{iv) Pressure gradient based on length, L, between
pressure taps.

_Equation (2.3.2) can be written in the form

[[- (3;;3) - (gg)nm-i),gg (

in

DPZCL\

;
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T ~ i
= [dp iL - (n-1)d » d, R nyj
(GZIMQ ! L ; (‘5' o, )|

where £ (%, R, n) is directly dependent on thes end effects.
N, ' _

To check the validity of equation (2.3.2), and hence
the results presented above, DPZCL was computed and plotted
against (gg)LIQA using all the data. For the results to be

valid, the graphs of DPZCL versus (éﬁq must pass through

dz/L1Q
the origin and with gradients reflecting the end effects.
As shown. in Fig. 16 the graphs of DPZCL versus (gg)LIQ pass

through the origin.

4.3 Drag Coefficient

From eguation (2.5.5) and (2.5.6) the drag coefficients
were evaluated for the diameter ratio of 0.84 using pressure
drop measurements. Values of drag coefficient calculated from
pressure drop data were higher than those corresponding to the
theoretical.formula, |

oo = |(3)a - (8]

4

The best agreement between the latter values and the former

was at pipe-Reynolds-numbers greater than 8.5 x 104. The

corresponding discrepancy was less than 10 %. See Fig. 17.
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The following analysis is based on estimates of

error due to such factors as instrument error, calibration

error, reading error, errors in measurement of the length

and diameter of test-sections, and manufacturer's quotation.

Pressure drop measurement Max. error estimated

Flow rate measurement N "

Length, L, between trans- _
ducers , s " "

_ Mean &1ameter, D, of test
. section , , s " o

Klnematlc viscosity (with
temperature measurement : " "

Sphere diameter measure—'
. ment o s

it
I+

" = ¢

[
e

{i) FRevnolds number - calculated from eguation {4.1).

. Max. error in R, = % error in Q + % error in v + %

°N

error inD=(6+ 2 + 1)% = ¢ 9 %

L

(ii) Pressure gradient, (gg)n = (Elﬂ:ggﬂ)

*. Max. error in DPZN = error in pressure drop +
error in 1L measurement.

=2 (7 + 0.5)%
= £ 7.5 8

‘¢ & o -’ & S d
(iii) Free pipe pressure gradient, (aig)mg-

equation (2.1.3).

- calculated from

i
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2 x error in kinem. viscosity

», Max. errxor in DPZL
+ 1.75 x error in Rey
+ 3 x error in D

23 %

= 2(4 + 16 + 3)%

(iv) Pressure gradient (DPZC) based on the length of the

sphere train - defined .in eguation (2.3.2).

Frror in DPZC Error in pressure drop measurement +

error in sphere diameter

t 8 %
Jn

(dz)LIQ

.. Max. error in PRl = Max. error in(ga)n

= (7 + 1)%

3 O
o

(v) Pressure Ratio, PRl =

5

N

. fdp
+ Max. error ln(dZ)LIQ

= $(7.5 + 23}% = 31 %

DPZC

DPZN

H

{(vi) Pressure ratio, PR2Z

i

.. Max. error in PR2 Max. error in DPZC + Max. error

in DPZIN

= (8 + 7.5)%

= % 16 %

(vii) Drag coefficient, Cp = 23.. Pressure Drop
a? 27
- Vo 2g
' R
v
where Vg = .eN‘x 14.4

D
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Error in Vo = 2 + 9 +. 1 = % 11 ¢

Max. Error in CD = 2{(2) + 7 + 22 = 33 %

4.5 Application of the results

The esgénce of the non-dimensional parameters, PR1
and PR2, was to generalize the results of this experimental
sﬁudy so that they may be applicable to any pipe diameter and
for any sphere-pipe diameter ratio between 0.486 and 0.85;
the Reynolds number range being 104 - 105. We shall illius-
trate in this section how the results can be applied to pre-
dict the pressure drop in‘an arhbitrary pipe of diameter, D
(say 6vin.) with n (say 100) spheres of diameter d (say 4% ins.)
located in the piperas water flows past them with a mean
velocity Vo (say 1 ft/sec.) at a temperature, T (say 74 F,

5

i.e. kinematic viscosity = 1.0 »x 10 ftzfsec.).

The following procedure is recommended: -

{(a) Calculate the Reynolds number based on pipe
internal diameter, knowing the kinematic vis-

cosity corresponding to the temperature, T.

| . - . dp
(b) Calculate the free-pipe pressure gradlent,(dz)LIQ

using the equation

. ;d-B = w4 7 \)2 . ReNlo75
(dz)LIQ 8.48 ( p3

where D is in inches and v is in ftz/sec.
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if the length, L, between pressure measurement

points aIOng the pipe is less or egual to the

total length of the sphere train, then we re-

~quire the parameter PRl only. If L is greater

than the total length of the sphere train, we

raguire both PR1 and PR2.

(i) Suppose L is less or equal to n.d. Referr-
ing to Fig. 10, the value of PRl cor-
responding to the given sphere~t@~pipe'
diameter ratio and Reynolds number is
read off. Interpolate if necessary.

" @0

where AP is the pressure drop in inches

Now, PRl

water required, and L is also in inches.

d

Knowing (“2 L and PR1, we thus pre-

dz)LIQ,
dict the pressure drop. -
Eguation (4.3) could also

‘bé~applie@ to calculate PR1.

(ii) If L is greater thanm n.d, we use Fig. 14.
Depending on the number of spheres in
the train, the value of PR2 is read off
corresponding to the diameter ratio and
Reynolds number calculated above. Where
the number of spheres is very large (say
50 or more spheres) a conservative es-
timate of pressufe drop can be obtained
by.readinq off PR2 from the lowest graph
corresponding to the given diameter ratio.
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-/
Now, PR2 = ae \gg)LIQ (L"(n‘l)d)

nxdzx (PRl x (%)LIQ)

where AP is the pressure drop required, and{gg)LIQ and PR1

are evaluated as indicated above.

Substituting, therefore, we obtain AP.

For example, using the figures given above, let L = 500

ins.
Reynolds number = lig?f—é-x 105 = 5.0 x 104
92) = 8-487 x 5175 . .3
dz/ 110 - 3 x 1073 .~ inches water per inch length
6 of pipe.
= 000654

We note that L > 100 x 4.5, so we reguire both parameters,

. PR1 and PR2. Diameter ratio = 0.75. S0 we interpolate
between 0.737 and 0.24. From Fig. ll we read that PRl = 9.0
approximately af the Reynolds numher of 5 x 10% and g = 0.75.
From Fig. 14 we take PR2 = 1.2 for the given numker of spheres

and Reynolds number.

Substituting in equation (4.4),

1.2 = AP - 6.54 x 1074 (500 - 445.5)
100 x 4.5 x 9 x 6.5 x 107

SAP = 1.2 x 4.5%x 9 x 6.54 x 1072 + 6.54 x 54.5 x 104
3.18 + 0.0357 = 3.216

]
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i
i

+ + Pressure drop expécted = 3.2 ins. water
We have thus predicted the pressure drop ¢ orresponding to the data
chosen arbitrarily above.

4,6 Optimum Diameter Ratio For Sphere Trains °

The power consumption per unit mass flow rate is given as:

H.P,/ft PRI

Teons/sec) 8 (d)Z (5.5.1)
i)

where B 1is a constant

See appendix 2 for the derivation of equation 5.5.1. Using fiqure 11
the above parameter can be calculated and tabulated as follows:

(-g-) PRI HP/ft .1
- . tons/sec B
1.0 © ®

0 1l ©

0.4 10.5 65.6

0.45 12 59.3

0.5 14.5 58.0

0.55 18 59.5

0.6 23 63.9

0.7 52 106.1

0.8 150 234.4

The minimum power consumption for a given solids through put thus
‘corresponds to a sphere/pipe diameter ratio of 0.5.
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PARLE NO.1

, d
DATA FOR 2" DIA. PIPE D =0,486

= 12 ins.

1 Sphere

‘ Klr&m Vluco?xtv wO 96f13

N
Press.Drop
tinsowateqp.4 2.2 1.5

1
i | | L = 60 ins. |
! - 2 8pheres . s
‘ Kinem. Viscosity =, 94£t2/qec x:o

——-i 25 4T e D e e e et g L T L]
e o e T AT T T LS L I R !. Sharg s v

e T e 2 prxtor g SR g ey s HlR 3 ™ i L
- Lo
ke x 1079 09 12,72 3.42 4.94p. 72{; 537.33|7.338. 17‘9 19&0.1;

.6 2.052.5 2.9} 2. 9&3 1 3 4 4 254

e e

Py x 1074 5 4 2.88| 4.45 4.45'6.1-6.1 7.8 7.8 9.7 9.7 ao 7
Press.Drop T T T
{ins.water} 3.7 (3.5 { 4.1 |4,

-

A Aokl el
6.7} 6.7 7.1(7.1{9.0 59 019.2 g,
.12 ins, o ,

Kinemﬁ v;scoslty =0. QSitzfger, x[dﬁf

- o
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-4 Spheres

T A e s T AN A S e A > ] A e G mime ’ N.-:..-:! ¢
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g A SO S, ot . ; - 1’ ! % : ‘

fress.Drop § ‘ o o i
ins.vates 1.&}2.5 3.8 ls.s ?4'1i4'7 5.6 P 6 7.0 §7.o§ 8.1
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TABLE NO.2

' d
, DATA FOR 1" DIA, PIPE D = 0.60 o
f L= g ins@ . 1
! 1 Sphere 5
A ' Rinew, Viscosity =0. 95fr T/sec.xl0” 5?

ne s e St e iR s s s RS i,
fe, * 1°_4L.4z 2.1112.57 [2.82 ?.04 3.6|3.8 [4.06!4. 64 21;5 5 |
press.prop | o “?' B T

‘_ins.‘fater:llo4 ) 108 2.8 206 i3.35 ‘401 505 504 609 i 00 59&1 3
i | - he”és L= 3ins | ui
i - @ opbhes hinem. Vvscosity =0. BSftz/qsﬂ RI0 53
F:.::.-:::.r...'.,-.v-.:...‘-.“. T .',-m:..,;_«....,,.,.. SN I LT : PN TR ‘f'“.;
! _4 ‘ | g

F~N * 107% 47]2.06 2.7 14.37 5.5 %.64 7.2 7. 79f8°37 o | 9 53
_bress.nropf"' I A S -

‘ins.watelfl .6 3.2 4.4 6.58 0. 415 013.020 6{23 o?s 5 31 a

-
L o= 3 1ns¢

_Kinem, Viscosity =0. 95f giaer xM35 f

ey . atdoet iy - A A it A.wn-- me s EY Suntansine ¢ eas -~
ity it i S AT oS e s SR S Ay IINTTRE s PSRN A VoA

«‘3o;é- R | o T ;

FEN *h 4712.7 .78 . 37*4 94/5.5/6.07 7. 2\8. 37§ 96 9.5]
a

(

- 4 Spheres

e i s et
R

] , | ,
] ‘ ; _r

M1 3.48.2 k 4 !12 o%s 9h9.326. % 5. 2p9 .2{45. 7“

H
Setiee ST amre nage L

ai"CﬁS..‘ - Drﬁp
g*nq Wa»eh

: o ‘ L = 48 ing,
g Spheras

e LN

N Klnam Vj@ﬁﬁs 1 875:?*/*f xec _

g,». - TR e .,‘ PP 3,4. s - ) e -,g i P A ) B ; ‘ g e

%em x 107 ﬁ4 07g4.74 3 5.93 6. 55}7 7.7% 894?9.02 9,5510.3_

e U T N ' 76 7ho.0]

fans.wmce§14 lils 25, ze3z 2i37a%44.751 .86, 570 o) 76 759 3
I H

e

, !
% q i

rocraas- WA BT B, 3 . s 3 o 0 A E b D syt e e e et o

=~ 48 Inm,
_Eimem. Viscosity =0.90ft2/soc .08

Tei oak MudaL et Lot X

3

12 Sph@raé

T . e IR A s SRR

A ¥ 10;43 i :

.96}4.575. 1715.76 6,355.957.57%39168076g9.37 9,9§
et b o Dl L

EN P . o im Bt e oo Sy A e ny b e oo
lpress.Dro ' , ]
(ins.wateynog, 3 26009507 %1.2 51.061.9772.4185.3 9709§11L9124.Q
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d
DATA FOR 2" DIA. PIPE b =0,737 _
L =12 ins.
1 Sphere 5
_ Klnem“;mgljg‘_os;ty SO 95 £t /m,c X 107 5 }
x 10’452.1 2.85/3.6 14.41/5.2{6.036.88 7.7/8.6 5.65 10.5;
Press.Dro B 1 ) _ -
(ins.wate:}0.90|3.0 (4.4 _4.4 6.0 {7.4/9.2 11.202.7 14.9{16.6;
2 heres =60 ins. ' |
| p ® ' Kinem. ViSCOSJ.ty =0. 9Q€t2/sec ;UD"’§
PR S AL G ey e It o gelsd PR STt A g o Sl bt arihveap - sl et .‘.._. "‘“’5
e,y X 10°42.2 13,0 [3.8 |4.7 |5.5]6.4 7.26 eeljs.oa‘:a 211, 23
Press.Drop| o : f Jg !
. {ing.wategl0.7 3.5 2.9 5.2 6. 0 8 610.8113. 0}16 1?0 2;25.9
. . | JOMRNpT .
4 Spheres . L= 12 ins.
Kinem. VlSQQslty = 875ft2/sec x10™5
S ‘4,_,«mm~* ........ R “m“_rw__j s
ReN x 10 z.zq 3.13.9 {4.8 5.6 16.5 [7.46(8. 35{ 9.310. 5§11 .5
i ;
bress.Dro ' ! ;
{ins.wateéi.SO 2.80| 4.6_£S.4 9.2 12.2(16.8(20. 8;2‘7 0532 spg 1;
e s ssiviy i oo s msmon Ftounnae
o h . L= 36 t;k&e '
'10 P &rg"s_.. Kinem. Visz u_y 9235‘?2/ur~ xlc)‘S
D e R T e st e
. ! i 5
’? x 107 ,2 16 2.932 3.7 | 4.535.356.197. 07]7.9 8.84/9.92010.9!
zvess Dro i ; : 5 : {
{ins. wate .8 {7.8 11.8 6.7 FZ.S?Q.?BB 4? 6l. 6675 391 3
Soh L = ins. _}
eres ]
P Kinem, Viscosity = £ed/sec.x 075 |
e ez menEi s e e 1 [.. e
R, x 107
N 1 B R .
‘lPress.Dro 5 |
{ings.wate !
TP
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4

' DATA FOR 1" DIA. PYPE D = 0.8¢4
- L= g Iins.
1 Sphere o sl
| — finem. Vi 8c08itym g 95 £L%/ ff’f’m’f_w ol
Fe, ¥ 19 h.48[2.0q 3.264.38(4.995.529.07 8.5{7. %és 886.32
. 1.48)2.06 814.9 302 b bk
PresSs.Drop : . }
(ins.water}5.3 |8.417.732.7 |40.650,2018 [07 [99.9 aoeﬁsses
| 2 Spheres = 9 ins. VE
) "? . . Kz.nem.yVEscosity zﬁogff_tz B, le‘ﬂ
;:.-:r:::::"z'.‘f)-._.._..; o o s g ..\.,':;......... P B Mt i S e o~ r v } kAl ety ot (et -..,I«.'.,..,..A ‘.g } tulindas ..‘z
ey * 107" 10.3]9.7 [s.56 {7.40 6.,79‘{6.2 5.1(5.1 b.47 3.873.27)
Press.Drop| ' ‘ { j ;
~ ltins.watezjl56 159 (130 95.2 |8d. 059 7]@6 +0146.086.228.0(20.6
s Spheres L = 9 ins. | |
5 o iainema vi wtwity =, 925 \ftzmﬁc KO~ 5’
frmmnes s e . U o o *~-i~ AU WAL S Sy sl L =t : ;:-'“‘:‘f‘:’_\_é
-4 - ’ i (o
e * 20715 12.7113.27]3.87 5.095.66.7917. 98]8 56]9. Mig 74%
0 e i i X et bl 4
Fress.Drop RN o L | :
(lrxs'wateﬁ 8.1 ?201 32.1 45.4 ?602;;970 F 173 28 g l. &7 %
.h : = 48 ins. g
8 Spheres Kinem. izmscosz.ty =0,91f < /‘*se:m X“?”f?
. ‘!_,A-.,....A....w. .,...-.Ajég..ﬂ.‘,...,..,g " [paiioct »Uﬁ_., i raraneH é faiiaiet | ._,_.g
¥ 10793,9 4.5 | ' | | L ng !
e, 3.9 4. 5 4.5 {5.1 5.1(5.7 5.7 6.3 6a89=765 8.09;
 Press. Dropi » %
iins. wate%llz 52 {152 0195 1195 |246 Péﬁ 295 345 5397 }452
12 Soh | L =48 ins.
eres
® _ Kinem, Viscosity _,,9251t2/9’°§h_>§l¢:f‘i
1o~
Fe,, * 10 éa.u 3.8553.35 4.4 14.4(5.015.0 |5.6/5.6 |6.2 6.2
Press.Drop - | . i
(inS-wate%lsa 196 1196 1266 |266 (346 1346 {417 [417 1502 gsoz,‘
. . - - S U
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d = 0.737 l0Spheres
D v

Rinam. Vlscosity =0. SBftzfsec Xio~5

By b

Rt

At e e ot e

s St toon iren

s

TABLE NO.. 5
'N-SPHERE SYSTEMS' DATA
L = 12 ina, ' '
d- 0.486 12 Spheres 2 o 5%
D Klneg. Vlscchty a.gzaft /seu.xso j
” v LA L4 3 £ty e Gyt G T SR ) PRy M foivhd r‘ i. R ”“'I
Re, * 10'43,7 3.715.35 /6.19 16.197.07) 7.938.84]8. 84,9 92ho 84 5.
e e s § ot e f e RS DO s RO SEPUPRNEIOIRY S -4
>ress.D » . ! PIPE
(ins.watod 1.7 1.7 |2.2 [4.7 [4.715.3 7.9 |9.7 0.7 ?o 0513 .
£ 0. 60 Spheres L= 3ins. ) %\
D= 81w? alAw_ Kinem. Viscos:ty =0. %Fftzfﬁec X 1075 |
pozsnim o ".'----v;l o -,-_ camat oo s e g mtEme » ,.r::.r.,. ol I_ earoere e
QeN x -107 1.45/2.6}3.14 {4.29 5.41F;537.66 8.2%8.80;9.35 9.911“
rress.Drop i - 3 ;
{{ins.wategl.0 12.30{3.5 |5.3 |7.8]12.717.2p0. sgzz 9@7.792 .7, PIPE
L = 12 ins, | o

e ymmu, : 3
“eN x 10 %;.3 3.1i{3.91!4.8 5.6!6.5 7.4 8.3 ;9 .3 po 4?11 4
o ol - _ J j SN S 2
' | i ] " ;
Press.Drop : : PIPE
{ins.waterj3. 6 (5.2 8.7 12.4 15.7P1,527,335 7244 3F5 7i63 .2
d . B L . 9 ins. o Lm“ﬁ
= = 0 .8 5 5 TS .
i D ;2 Sphezes Kiuuw lFCO%lLy Lf925r+~fue” Xﬂ-';
f S oatgos Sre iy it S I, Pty sbabing et vid g s ".'E AN j "‘:’j’
Req X 10“40.95'1.5§2.1 2.7 13.3 3,9 4.5i5.1 %5.6 Es.zls.s 31
) AR VU S N S "
vvess . Drog § : 5 ’ { { PIPE
jlins.watere,9 20.3528 4:47.373.511421187 247 ;310 297 353 g
Sth . = insg.
nere
P Kinem, Viscosity = f+2/@pc°
; o 8 A i A T S -;.": Lo
2 x 107 {
Press.Dro H
{ins.wate g :
S T R S T e é
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5. DISCUSSION o
5.1 Pressure Ratio, PRl, as a function of Reynolds Number and Diameter

ratio

The exparimental results- for PR].~ did not agree with equation (2.4.8),
which expresses fthe pressure ratio, PRl, as a function of diamester ‘
ratio only. PRIl was observed to be a function of Reynolds number as
well. The main explanation for this is that the theory assumes

P, - P
( In 2n)= e p L5
L N
(5.1.1)

dp) 3 1.75
and ('az—' LIQ. = f. Reﬁ

where F and f arve functions of diameter ratio, kinematic viscosity and
pipe diameter. In practice however, the exponent of R, in equation
(5.1.1.) is not necessarily 1.75. It varies between l?g and 2; as

confimed in reference No. 27.

o
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" Moreover, the equivalené diameter concept used in the analysis
may not be applié&ble to annuli of this type, apart from the
,high'Reynolds numbers involvedf Wé; thérefore, conclude that
"ﬁhe theory haé been ovér simplified and that the experimentai
values-bf le are acceptdbie, within the limits of error es-

timated in section (414).

5.2. . Pressure gradient DPZC and end effects, as a function

. of Reynolds number and number of spheres.

fThe §raphs of DPZC and end effect versus Reynolds
nurber, are vefy much wﬁat one woula expect: the pressure
éradient incfeases with increase of Reynolds number and diam‘
meter ratio, the plots are lineaf oh a log-log scale and have
:&arying intercepts gnd gradients, and the end effects diminish
- as the nﬁmber of sphe:es in‘the,traip incréases. Also the
,éstimaégd error in the brgssure gra&ient'values obtained is
felatively low - aboutla%: signifying that figures 12 and 16

are quife reliable.
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5.3 Pressure ratio, PR2, as a function of Rey diameter
) . ¢

[N,

ratio, and number Qf spheres..

Rememberinq that PR2 is the ratio of pressure grad-
ient with end effects to the pressure gradient w1thout end
'@ffects for a given sphere train, one would expect PR2 to
tend to.l.@ as the mumber of spheres becomes very large.
The lowest value of PR2 cbtaiﬂe& for the maximum of 12
- spheres was-about 1.3, Taking into account the estimated
error,iﬁ PR2 of about 16%, the results suggest that we |
need'mbre thén 12 spheres for the lower limit in PR2 to be
:eachéd. ‘That is, the end éffects.@ohstitute still quite a
significant part of the preséure gradient when the sphere

- train comprises 12 or less number of spheres;

5.4 Drag coefficients

AThe discrepancy between the drag coefficients eval-
uated from data (with % = 0.84) én& values corresponding to
'McNoun's fdrmmla lies well within the margin of error esti-
mated in section (4;4.vii)e Considering that the error in
CD could be as large as 33%; measuring pressure drops is
obviously an inaccurate approach to finding the drag co-

efficients. En-aﬁy case the formula}

C* = g; Pressure Drop
4 vo/2g




can be applied only for single si:heres and diameter ratios greater or
,equalbto 0.8, It seems thereforé, that the best method of obtaining
drag ¢oefficients for sphere trains like this is to measure the drag
directly using a force transducer. We suggest that the test sections
be redesigned sc that measurements of force on the sphere trains can

be made.

5.5 Optimum Diemeter Ratio for Sphere Trains

The horsepcwer / unit mass flow rate is an important pararrzetér
relating to'the economy of a capsule or solids pipeline. A minimum
value of the paramete.f is usually desi_réd.

The results presented in section 4.6 indicate that for spherical
capsules the optimum diameter ratio (sphere / pipe) is 0.5 for the
above parameter to be minimum. In practice, however, we would

recommend a diameter ratio of about 0 e,6l as this would reduce the

tendency for the spheres to ride one above the other.
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6. CONCLU%ION

sy g m————

On the basié of the analyses and experimental results

A~fpresented above, the'following gmnclusions can be. made:

Co(d)

(i)

(iii)

(ivj

. 0.84 3 %);'0.486 and 104 < r

The hydraullc gradlent 1n smooth pipes conta1n~

‘1ng sphere trains is a logarlthmlc function of the
‘.Reynolds number as shown in Figs. lz(a—d) for 1"

and . 2% plpes, and Reynolds numbers between 104 and

'105 It tends to increase with increase in diameter
vratlo, and’ decrease with lncrease in the number of

spheres, for any given plpe dzameter and Feynolds )
numher. o

" For 1ong sph@re tralﬂs, the ratio of the press-

“ure gradxent with sph@res 1ocated in the pipe to

the free- ~pipe pressure gradlent can be approximated
by the regression egquation:-

PR1 = 259. 13( )4 543(ﬁag 4)6

wvhere ¢ varies between 0 and 0.33 given that
5
< 10-.
N
End effects diminish from 100% of the total
pressure gradient to about 20% as the number of
spheres comprising the sphere train 1ncrease%

frgm 1 to l2.

The drag coefficients estimated-from pressure

"drop measurements for 1 sphere compare well with
~McNoun's drag coefficients only for the highest
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spher@wto—pipekdiameter ratio used, 0.84. For
diameter ratios less than 0.8, drag coefficients

cannot be accurately evaluated from presSure»drops.

By using‘the results presented in Figs. 10, 11
and 14, the pressure drop due to a sphere train
located in a pipe of any'diametervcan be estimated

as illustrated in section 4.5; given that the sphere-

»td-pipe diametex ratio lies between 0.486 and 0.84,
for the Reynolds number range 10% - 10°.
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APPENDICES



A.'li CALCULATION OF THE REYNOLDS NUMBER FPOM FLOW RATE,

PIPE DIAMETER,

AND TEMPERATURE MEASUREMENTS.

Mean velocity,

1l cu. ft/sec.

Vo

il

T x 373.73 D

Vo = 40' x 144ft/sec where O is in
w2 . ‘

ft3/gec. and D is in inches.
373.733 Imperial gall./min.

4 x 144 Q

ft/sec. where 0 is in

Impefial gall./min.

0.4905 0

ft/séc.
Dz

Vo D!
v

where v (ftz/sec.} is the kine-

matic viscosity at the temperature, T,
§ ., .
measured; and D ig in ft.

Vo P

12y

Substituting for Vg, .

Re

=

0;04033 ;Qm)

v.D
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A.2 Derivation of Equation {5.5.1)

Horsepower / ft. = Bl(PRl)( g—-g* )

LIQ
where ‘Bl is a constant.
Flow rate = V D R °Y) o’ _ Dy R
"o.‘;4"eD"4—4'e
L9 = -d£
o % Horsepower / ft 31 . (PR1) ( dz)LIQ o« mD . Re
v 4 4,3
Mass flow rate = Capsgl@ Tass 2———%—-——»——9
where Ve is the capsule wvelocity.
o mp.ee | By PRUGH L, . DRy
¢ * T(tons/sec.}) dz v

o]
where By is a constant.

At any spécified Reynolds number, we can take (g—g) LIO as

constant, So also is the capsule velocity, Ve

H.P./ft By ¢(PRL).D _ . PR
(tons/sec.) @" " P&
D

Given any pipe diameter, therefore,

HP.Sft. o, PRL .

where B is a constant.





