Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20257
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCanty, Angelo-
dc.contributor.authorGu, Chu-Shu-
dc.date.accessioned2016-08-30T13:46:01Z-
dc.date.available2016-08-30T13:46:01Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/20257-
dc.description.abstractIn recent years, the RNA-sequencing (RNA-seq) method, which measures the transcriptome by counting short sequencing reads obtained by high-throughput sequencing, is replacing the microarray technology as the major platform in gene expression studies. The large amount of discrete data in RNA-seq experiments calls for effective analysis methods. In this dissertation, a new method to detect differentially expressed genes based on quasi-likelihood theory is developed in experiments with a completely randomized design with two experimental conditions. The proposed method estimates the variance function empirically and consequently it has similar sensitivities and FDRs across distributions with different variance functions. In a simulation study, the method is shown to have similar sensitivities and FDRs across the data with three different types of variance functions compared with some other popular methods. This method is applied to a real dataset with two experimental conditions along with some competing methods. The new method is then extended to more complex designs such as an experiment with multiple experimental conditions, an experiment with block design and an experiment with factorial design. The same advantages for the new method have been found in simulation studies. This method and some competing methods are applied to three real datasets with complex designs. The new method is also applied to analyze reads per kilobase per million mapped reads (RPKM) data. In the simulation, the method is compared with the Linear Models for Microarray Data (LIMMA) originally developed for microarray analysis (Smyth, 2004) and the question of normalization is also examined. It is shown that the new method and the LIMMA method have similar performance. Further normalization is required for the proper analysis of the RPKM data and the best such normalization is the scaling method. Analyzing raw count data properly has better performance than analyzing the RPKM data. Different normalization and statistical methods are applied to a real dataset with varied gene length across samples.en_US
dc.language.isoenen_US
dc.subjectRNA-seqen_US
dc.subjectQuasi-likelihooden_US
dc.subjectRPKMen_US
dc.titleA QUASI-LIKELIHOOD METHOD TO DETECT DIFFERENTIALLY EXPRESSED GENES IN RNA-SEQUENCE DATAen_US
dc.typeThesisen_US
dc.contributor.departmentClinical Epidemiology/Clinical Epidemiology & Biostatisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gu_Chu-Shu_finalsubmission201608_PhD.pdf
Open Access
Main article913.15 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue