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ABSTRACT	
 

In recent years, the RNA-sequencing (RNA-seq) method, which measures the 

transcriptome by counting short sequencing reads obtained by high-throughput 

sequencing, is replacing the microarray technology as the major platform in gene 

expression studies. The large amount of discrete data in RNA-seq experiments calls for 

effective analysis methods. In this dissertation, a new method to detect differentially 

expressed genes based on quasi-likelihood theory is developed in experiments with a 

completely randomized design with two experimental conditions. The proposed method 

estimates the variance function empirically and consequently it has similar sensitivities 

and FDRs across distributions with different variance functions. In a simulation study, 

the method is shown to have similar sensitivities and FDRs across the data with three 

different types of variance functions compared with some other popular methods. This 

method is applied to a real dataset with two experimental conditions along with some 

competing methods. 

The new method is then extended to more complex designs such as an experiment with 

multiple experimental conditions, an experiment with block design and an experiment 

with factorial design. The same advantages for the new method have been found in 

simulation studies. This method and some competing methods are applied to three real 

datasets with complex designs. 

The new method is also applied to analyze reads per kilobase per million mapped reads 

(RPKM) data. In the simulation, the method is compared with the Linear Models for 

Microarray Data (LIMMA) originally developed for microarray analysis (Smyth, 2004) 

and the question of normalization is also examined. It is shown that the new method 
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and the LIMMA method have similar performance. Further normalization is required for 

the proper analysis of the RPKM data and the best such normalization is the scaling 

method. Analyzing raw count data properly has better performance than analyzing the 

RPKM data. Different normalization and statistical methods are applied to a real dataset 

with varied gene length across samples. 
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CHAPTER 1. Introduction 
 

1.1 RNA-seq 

In the last two decades, the dominant platform to study gene expression has been the 

microarray. With the introduction of next generation high-throughput sequencing 

technology (NGS), gene expression can be studied by the RNA-seq method. In an 

RNA-seq experiment, ribonucleic acid (RNA) from a biological sample is converted to a 

library of complementary deoxyribonucleic acid (cDNA) fragments and then sequenced 

by a high-throughput sequencing platform such as Illumina’s Genome Analyzer. Millions 

of short sequences (reads) are produced in this process. Typically, these reads are then 

mapped to a reference genome or transcriptome. The number of short reads mapped to 

a specific gene is a measure of that gene’s expression level. Compared with microarray 

technology, RNA-seq has a wider dynamic range, less noise, and is a more accurate 

and reproducible method for quantifying gene expression levels (Ansorge, 2009; 

Metzker, 2010; Ozsolak and Milos, 2011). The gene expressions measured by 

microarray and RNA-seq have only moderate correlation (Wang et al., 2009). 

An example of an RNA-seq dataset, from Squadrito et al. (2014), is shown in Table 1. In 

this study, mice bone marrow cells were plated in macrophage serum-free medium and 

cultured to allow macrophage differentiation. They were polarized by adding interleukin-

4 to the medium or left untreated. The transcriptomes of the bone marrow-derived 

macrophages are profiled. In the dataset, there are four treated and four untreated 

samples. Each cell in Table 1 shows the count of short reads of a specific gene in a  
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Table 1: Snapshot of an RNA-seq Dataset 

(Squadrito et al., 2014) 

Ensembl* Gene ID 

Mouse Samples 

Treated Untreated 

1 2 3 4 1 2 3 4 

ENSMUSG00000025903 1590 2174 1870 1999 2667 2750 2407 2760

ENSMUSG00000033813 746 1054 931 951 1041 1203 1076 1101

ENSMUSG00000033793 4951 5233 4356 4433 8448 9570 8160 9140

ENSMUSG00000025905 0 0 0 0 2 1 0 0

ENSMUSG00000025907 2403 3745 3320 3232 2995 3594 3223 3457

ENSMUSG00000087247 0 0 0 0 0 0 0 1

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

* Ensembl is a public genetic database which provides annotation for human, mouse 

and other genomes (Zerbi et al., 2015; Cunningham et al., 2015). The gene ID 

information is retrieved from Ensembl release 83. 

biological sample. In the remainder of this dissertation, ‘gene’ is used as a general term 

for gene, exon or transcript. 

1.2 Detecting Differentially Expressed Genes 

One of the primary objectives in RNA-seq experiments is to compare gene expression 

levels across different experimental conditions. Researchers are particularly interested 

in detecting those differentially expressed (DE) genes. A simple and common study 

design in RNA-seq experiments is a completely randomized design with two 

experimental conditions.  
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The samples in an RNA-seq experiment could be either technical replicates or biological 

replicates. Technical replicates usually occur when the same sample is divided and 

measured multiple times. Biological replicates occur when biologically distinct samples 

are measured. For RNA-seq experiments with technical replicates, the data are usually 

assumed to have a Poisson distribution. Fisher’s exact test (Bloom et al., 2009), the 

goodness of fit test (Marioni et al., 2008) and the likelihood ratio test (Bullard et al., 

2010) are appropriate in this case. For RNA-seq experiments with biological replicates, 

the data usually exhibit larger variability than data containing only technical replicates. 

This is often called overdispersion relative to Poisson. For inference about a population, 

biological replicates are essential and it is assumed in this dissertation that all replicates 

are biological replicates. “Most statisticians agree that the overdispersion problem 

needs to be addressed” in order to have a valid statistical test (Wu et al., 2013). The 

overdispersion is well known to be gene-specific (Pritchard et al., 2001). The negative 

binomial (NB) distribution has a quadratic mean-variance relation with a dispersion 

parameter to model this gene-specific overdispersion. Based on the NB assumption, 

several methods have been proposed, including two popular methods which have been 

implemented in the R packages edgeR (Robinson et al., 2010) and DESeq (Anders and 

Huber, 2010). In the edgeR method, the NB dispersion parameter is modeled in 

different ways and estimated from the data. It can be assumed to be a constant, to have 

a trend or be gene-specific. In the DESeq method, the NB dispersion parameter is 

estimated by a smooth curve such as local regression. Once the dispersion parameters 

are estimated, the statistical tests of DE for both the edgeR and DESeq methods are 

analogous to Fisher’s exact test. 
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Some researchers argue that the gene-specific overdispersion in RNA-seq data has not 

been adequately accounted for even in an NB model. Esnaola et al. (2013) proposed a 

method based on a more general family of distributions for count data which is called 

the Poisson-Tweedie distribution. In this family of distributions, the variance is defined 

as the mean raised to a gene-specific power. With a more general or flexible 

distributional assumption, it fits the gene-specific overdispersion better. A more general 

distribution appears appealing but it is preferable to have a method without any 

distributional assumption. Furthermore, it is well known that most genes in RNA-seq 

data are overdispersed relative to Poisson; however, a smaller, but not negligible, 

number of genes are underdispersed relative to Poisson. For example, for the dataset 

presented in Table 1, approximately 9% of the gene-specific sample variances are 

smaller than their corresponding sample means after preprocessing. The preprocessing 

includes filtering those genes with zero interquartile range or those genes with low 

mean count (≤ 1), and then normalizing the rest of the raw count data by the weighted 

Trimmed Mean of M-values (TMM) method (Robinson and Oshlack, 2010).  

There is also a non-parametric statistical method called SAMSeq (Li and Tibshirani, 

2013) which does not assume any underlying distribution. The SAMSeq method uses 

the Wilcoxon rank statistic. A permutation-based approach is used to estimate the false 

discovery rate (FDR), which is the expected proportion of false positive findings. In a 

statistical method comparison study (Seyednasrollah et al., 2015), this method is 

recommended to be applied to RNA-seq data with at least a moderate number of 

replicates (about 10 or more). Rank-based as well as permutation-based tests have 

limitations when the sample size is small. In that case, there are a limited number of 
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unique rank combinations or permutations resulting in a low resolution of obtainable p-

values (Di Bucchiano, 1999). The requirement of at least a moderate number of 

replicates makes SAMSeq not applicable in many RNA-seq studies. 

A new quasi-likelihood approach (QuasiDE) is proposed in this dissertation to detect 

differentially expressed genes for RNA-seq data without assuming any underlying 

distribution. The methodology is developed in a simple and popular study design, which 

is a completely randomized design with two experimental conditions. In the theoretical 

framework of the QuasiDE method, the overdispersed and underdispersed data are all 

able to be modeled. Also, the QuasiDE method works well in the datasets with small 

sample size which is a limitation of the SAMSeq method. 

The quasi-likelihood method is also used by Lund et al. (2012) in the RNA-seq data 

analysis. In their work, a linear or quadratic variance function is assumed. The F statistic 

based on quasi-likelihood theory is used, which is the quasi-likelihood ratio test statistic 

divided by the estimated quasi-likelihood dispersion parameter. To have more reliable 

dispersion estimates, two shrinkage methods were proposed using an empirical Bayes 

method which is similar to that used in the LIMMA method (Smyth, 2004). To evaluate 

the F statistic, the form of variance function needs to be known. With a linear variance 

function assumption, this is straightforward. With the quadratic variance function 

assumption, the gene-specific NB dispersion parameters are estimated using the edgeR 

method. The main differences between the QuasiDE and NBQLSpline methods are 1) 

the QuasiDE method estimates the variance function empirically and the NBQLSpline 

method assumes a quadratic variance function; 2) the QuasiDE method estimates the 

dispersion by the Pearson moment estimator (McCullagh, 1983) and NBQLSpline 
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estimates the dispersion by the shrinkage method. In simulation, the QuasiDE method 

is compared with Lund’s recommended approach as well as with other popular 

approaches such as the edgeR and DESeq methods. The QuasiDE method is shown to 

have similar sensitivities and FDRs across the data with different forms of the variance 

function compared with the other methods. In addition, the data requirement of the 

QuasiDE method is not limited to the count data. It can also be applied to any 

continuous data, for example, to microarray data or to RPKM data.  

1.3 QuasiDE in Other Designs 

The QuasiDE method is developed in a completely randomized design with two 

experimental conditions. With a few modifications, it can be extended to be used in 

some other common study designs, namely a design with multiple experimental 

conditions, a block design or a multi-factorial design. With the extensions, the QuasiDE 

method offers flexibility for the purpose of testing differential expression in experiments 

with a complex design. 

1.4 Analysis of the RPKM Data 

The number of short reads mapped to a reference genome is known to be related to the 

library size and the gene length. Library size is the total number of short reads obtained 

in an RNA-seq experiment for a specific sample. Different library sizes would produce a 

proportionally different number of short reads from the same gene for the same sample. 

Longer genes tend to produce more fragments than shorter genes. In normalization, the 

impact of these factors needs to be removed or controlled. The widely used RPKM is a 

measure developed to correct the impact of these factors (Wagner et al., 2012). A 

number of important issues remain unclear, however. Among these are: 1) the proper 
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statistical method to detect DE genes based on the RPKM data; 2) whether further 

normalization of the RPKM data is necessary and if so, what type of normalization is 

needed in the DE analysis; and 3) the difference in the DE analysis using the RPKM 

data or using the raw count data. Two statistical methods are found applicable in the 

analysis of the RPKM data and compared: LIMMA by Smyth (2004) and the QuasiDE 

method. Seven normalization methods are found to be applicable in the analysis of the 

RPKM data and their effects are examined: TMM (Robinson and Oshlack, 2010), 

Relative Log Expression (RLE) (Anders and Huber, 2010), Upper Quartile (UQ) (Bullard 

et al., 2010), scaling (Affymetrix, 2001), quantile (Bolstad et al., 2003), cyclic loess 

(Yang et al., 2002) and invariant set (Li and Wong, 2001). To compare the analysis 

using the RPKM data and using the raw count data, three statistical methods are found 

to be applicable in the analysis of the raw count data in which the gene length and 

library size effects are taken into account: LIMMA, QuasiDE, and edgeR. It is shown in 

simulation that the LIMMA and QuasiDE methods have similar performance in the 

analysis of the RPKM data. The analysis of the RPKM data with the scaling 

normalization has the best controlled FDR among the seven normalization methods. 

The analysis of the raw count data with proper normalization is found to have a better 

performance than the analysis of the RPKM data.  

1.5 Notation 

Let ݕ௜௝௚ denote the number of read counts of the ݃௧௛ gene for the ݆௧௛ sample in the ݅௧௛ 

experimental condition. Let ݖ௜௝௚ denote ݕ௜௝௚ after normalization. ௜ܰ denotes the number 

of biological samples in the ݅௧௛ experimental condition. ܩ, ܰ and ܫ denote the total 

numbers of genes, samples and experimental conditions respectively. ܮ௜௝ ൌ ∑ ௜௝௚ݕ
ீ
௚ୀଵ  
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denotes the library size of the ݆௧௛ sample in the ݅௧௛ experimental condition. ݕത௚  denotes 

the average raw count for the ݃௧௛ gene. ݖ௚ denotes the normalized count vector for the 

݃௧௛ gene. ݖ௚̅ denotes the average of ݖ௚ and ௚ܵ
ଶ denotes the variance of ݖ௚. ݖ௜̅௚ denotes 

the average normalized count of the ݃௧௛ gene  in the ݅௧௛ experimental condition and ௜ܵ௚
ଶ  

denotes the corresponding sample variance.  

1.6 Data Description 

Six real RNA-seq datasets are used in this dissertation. The first dataset is from a study 

to detect guanine-cytosine (GC) responsive genes in airway smooth muscle cells 

(Himes et al., 2014). The dataset contains RNA-seq expression profiling of primary 

airway smooth muscle cells from four white male donors either treated with 1 µM 

dexamethasone or not treated for 18 hours. The first dataset is referred to as “Himes 

data” hereafter. The second dataset is from Squadrito et al. (2014) which is partly 

shown in Table 1. The bone marrow cells of eight-week old C57BL/6 mice were plated 

in macrophage serum-free medium and cultured for one week. The macrophages were 

either untreated or stimulated with interleukin-4. The transcriptomes of the bone 

marrow-derived macrophages are profiled. In this dataset, there are four treated 

samples and four untreated samples. The second dataset is referred to as “Squadrito 

data” hereafter. The third dataset is from Dolatshad et al. (2015). The transcriptomes of 

bone marrow CD34+ cells are compared among three groups: eight myelodysplastic 

syndrome patients with mutation in gene “SF3B1”, four myelodysplastic syndrome 

patients without known splicing mutation and five healthy patients as control. The third 

dataset is referred to as “Dolatshad data” hereafter. The fourth dataset is from Bottomly 

et al. (2011). The purpose of this study is to detect DE genes in mouse striatum 
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between two commonly used inbred mouse strains (labelled B6 and D2). This dataset 

contains RNA-seq profiling of 10 B6 and 11 D2 inbred mice. There are three separate 

experiments: two experiments both include three B2 and four D2 inbred mice and the 

third experiment includes four B2 and three D2 inbred mice. In the DE analysis, different 

experiments are treated as blocks. The fourth dataset is referred to as “Bottomly data” 

hereafter. In the fifth dataset, the oncogenic PAX8-PPARG fusion protein (PPFP) in 

thyroid carcinoma was studied (Zhang et al., 2015). PCCL3 rat thyroid cells are used to 

characterize the PPFP-dependent gene expression. The dataset contains six PPFP 

cells and six control empty vector (EV) cells. Half of these cells in each group are 

treated with pioglitazone. The fifth dataset is referred to as “Zhang data” hereafter. In 

the last dataset, the research interest is to detect those orthologs which have an 

interaction effect between species (Toxoplasma gondii and Neospora caninum) and 

time (Reid et al., 2012). Only those orthologs which have a one-to-one relationship 

between two species are used in the analysis. There are eight samples of Toxoplasma 

gondii and six samples of Neospora caninum in total. The gene expressions of each two 

Toxoplasma gondii samples were measured at day 2, 3, 4 and 6. The gene expressions 

of each two Neospora caninum samples were measured at day 3, 4 and 6. The sixth 

dataset is referred to as “Reid data” hereafter. 

1.7 Thesis Organization 

The main chapters of this dissertation focus on the three topics introduced in Section 

1.2, 1.3 and 1.4. In Chapter 2, a new quasi-likelihood approach (QuasiDE) is presented 

to detect DE genes in a completely randomized design with two experimental 

conditions. In Chapter 3, the QuasiDE method is extended to be used in other common 
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study designs. In Chapter 4, the statistical analysis of the RPKM data is presented. A 

summary of my work and possible directions for future research is discussed briefly in 

Chapter 5.   
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CHAPTER 2. A New Quasi-likelihood Approach to Detect Differentially 
Expressed Genes 
 

2.1 Introduction 

The recent advent of the NGS technology has revolutionized gene expression studies. 

The study of gene expression through sequencing (RNA-seq) is an important 

application of the NGS technology. In an RNA-seq experiment, the RNAs in a biological 

sample are converted to a library of complementary DNA fragments and then 

sequenced by the NGS technology. Millions of short sequences or reads are produced 

and then mapped to a reference genome or transcriptome, or assembled de novo. 

Those unmapped short reads are usually discarded. The count of reads mapped to a 

given gene, exon or transcript measures the expression level for this region of the 

transcriptome. In the statistical analysis of the RNA-seq data, detecting DE genes 

across experimental conditions is commonly the major goal. Differences in gene 

expression level have been found to be relevant to many diseases. For example, the 

subtypes of breast cancers were found to have different expression patterns (Sørlie et 

al., 2001).  

2.2 Preprocessing: Filtering and Normalization 

Before the formal statistical analysis of the RNA-seq data, the raw count data are 

usually preprocessed by some filtering and normalization methods.  

2.2.1 Filtering 

The filtering method is designed to remove less informative genes such as those with 

very little or no variation across samples or those with low expression. From a biological 
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perspective, “a gene must be expressed at some minimal level before it is likely to be 

translated into a protein or to be biologically important.” (Chen et al., 2016). After 

filtering and normalization, a statistical test is typically applied to one gene at a time to 

detect which genes show differential expression. There are a large number of statistical 

tests, due to a large number of genes. In genome-wide gene expression analysis, it is 

popular to use the false discovery rate (FDR) as the overall error rate to control. FDR is 

defined as the expected proportion of false positives among all significant hypotheses. If 

there are no positives, this proportion is defined to be zero. The use of filtering usually 

helps achieve better estimated FDR, due to a smaller multiple testing penalty and less 

impact from irrelevant genes in FDR estimation. There is no universal gold standard 

filtering method in the RNA-seq DE analysis. To remove low expressed genes, the 

method proposed by Sultan et al. (2008) is adopted to remove those genes with low 

mean count (≤ 1). To remove those genes with low variability, the variance filter (zero 

interquartile range) recommended by Morgan (2014) is used. In this and the next 

chapter, a filtering method is used in which genes with zero interquartile range or low 

mean count (≤ 1) will be considered to be equivalently expressed (EE) in different 

experimental conditions and therefore removed from the subsequent DE analysis. 

2.2.2 Normalization 

To ensure accurate inference of gene expression levels, normalization of RNA-seq data 

is essential (Risso et al., 2014). A number of factors were found to be relevant, and 

these include the between-sample differences such as library size (Mortazavi et al., 

2008) and library composition (Robinson and Oshlack, 2010), as well as within-sample 

gene-specific properties such as gene length (Oshlack and Wakefield, 2009) and GC 
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content (Pickrell et al., 2010). For example, a larger library size for a biological sample 

results in proportionally larger read counts for all genes in this sample. Consequently, 

there are systematic differences in read counts from the same gene among the 

biological samples due to different library sizes. Another factor is the library 

composition. When a small number of genes are highly expressed in one sample but 

not in another, they can consume a substantial proportion of the total library size, 

causing the remaining genes to be under-sampled. The remaining genes may appear to 

be down-regulated. The aim of normalization is to remove or control the effect from 

these factors. For example, the GC content is adjusted in a normalization method 

developed by Risso et al. (2011). Normalization may also be related to the statistical 

method in the DE analysis. If the effect of these factors is cancelled out in the DE 

analysis, normalizing by that factor is unnecessary. For example, the gene length is 

typically the same across samples if only one species is studied. In that case, it is 

unnecessary to consider normalizing by the gene length. Provided the experiment is 

well designed, technical effects unrelated to the experimental conditions are usually 

cancelled out in the DE analysis. There are two important assumptions for most 

normalization methods: 1) most genes are not DE genes; and 2) the proportion of over- 

and under-expression for those DE genes is approximately balanced (Bolstad et al., 

2003; Yang et al., 2002). Dillies et al. (2012) stated that “these assumptions appear 

reasonable in many studies”. In this dissertation, these two assumptions are also used 

in simulating the RNA-seq data. In a comprehensive evaluation of normalization 

methods for RNA-seq data (Dillies et al., 2012), the TMM method and the RLE method 

were found to be the two best methods of seven normalization methods under 
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evaluation. These two methods “are robust to the presence of different library sizes and 

widely different library compositions” (Dillies et al., 2012). They are able to control FDR 

while maintaining the power. In this and the next chapter, the TMM method is used as 

the normalization method in analyzing the simulated RNA-seq datasets.  

2.2.3 Weighted Trimmed Mean of M-values (TMM)  

The assumption of this method (Robinson and Oshlack, 2010) is that most genes are 

not DE genes. One of the observed samples, whose upper quartile is closest to the 

mean of upper quartiles of all observed samples, is set to be the reference sample. The 

expression values are first divided by their library sizes. M-values (log-2 expression 

ratios) and A-values (average log-2 expression values) for these adjusted expression 

values are calculated between the sample to be normalized and the reference sample. 

Normalization factors are calculated as a weighted mean of M-values not using those 

most expressed genes (largest A-values) or those genes with the largest log-ratios 

(largest M-values). Robinson and Oshlack (2010) suggested using those genes with 

their M-values in the middle 40% and their A-values in the middle 90%. The same 

setting for the TMM method is used in this dissertation. The inverse of the variance for 

each M-value is used as weight in the calculation. As a consequence of the Delta 

method, the M-value has a sampling distribution that is approximately normal. The 

variance of the gene-specific M-value ܸ݃ܯ is approximated by the following: 

ܯሺݎܸܽ  ௚ܸሻ ൎ
௜௝ܮ െ ௜௝௚ݕ
௜௝௚ݕ௜௝ܮ

൅
௥ܮ െ ௥௚ݕ
௥௚ݕ௥ܮ

 (1)

where ݕ௥௚ denotes the read count of the ݃௧௛ gene for the reference sample ݎ and ܮ௥ 

denotes the library size of the reference sample ݎ. 
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The TMM method produces a normalization factor for each sample. The normalization 

factors multiplied by the corresponding library sizes are referred to as effective library 

sizes. The calculation of normalization factors is implemented in the R function 

calcNormFactors which is contained in the edgeR package. 

2.3 Statistical Methods Review and Motivation 

The samples in an RNA-seq experiment could be either technical replicates or biological 

replicates. For inference about a population, biological replicates are essential. It is 

assumed in this dissertation that all replicates are biological replicates. Biological 

replicates usually exhibit greater variability than technical replicates. The restrictive 

mean-variance relationship for the Poisson distribution is reasonable for technical 

replicates but does not adequately accommodate the greater variability in biological 

replicates. The presence of greater variability in statistics is called overdispersion, 

sometimes referred to as unobserved heterogeneity. More strictly, overdispersion is the 

presence of greater variability than would be expected under the assumed distribution 

or a given statistical model (McCullagh and Nelder, 1989). Most genes in the RNA-seq 

data are overdispersed when an underlying Poisson distribution is assumed. To have a 

valid statistical test, the gene-specific overdispersion should be properly taken into 

account. The advantage of assuming the NB distribution is that its quadratic mean-

variance relation is able to model this overdispersion by a gene-specific NB dispersion 

parameter. Two popular methods based on the NB assumption are implemented in R 

packages edgeR and DESeq. 

In the edgeR method, the raw RNA-seq count data are assumed to have the following 

NB distribution with mean and variance: 
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~	௜௝௚ݕ  ௜௝ܮሺܤܰ ௜ܲ௚, ௜௝ܮ ௜ܲ௚ ൅ ߶௚ܮ௜௝
ଶ

௜ܲ௚
ଶ ሻ (2)

where ݆݅ܮ is the library size (If considering normalization, the effective library sizes are 

used) and ௜ܲ௚ is the abundance relative to the library size of the ݃௧௛ gene in the ݅௧௛ 

experimental condition, ߶݃ is the NB dispersion parameter which can be estimated from 

the data by assuming: 1) all genes have a constant NB dispersion parameter; or 2) 

there is a trend between NB dispersion parameter and average count; or 3) the NB 

dispersion parameter is gene-specific. The edgeR method uses the quantile-adjusted 

conditional maximum likelihood (qCML) method to estimate the NB dispersion 

parameters for experiments with a single factor. The raw counts are first adjusted using 

NB quantile-to-quantile method (Robinson and Smyth, 2008) so that their library sizes 

are all equal to the geometric mean of the original library sizes. The adjusted counts are 

called pseudo-counts, which “represent the equivalent counts would have been 

observed had the library sizes all been equal” (Chen et al., 2016). To estimate the 

common dispersion, the log-likelihood conditioning on the total pseudo-counts for each 

gene ݈௚ሺ߶ሻ is used, where ߶ is the common NB dispersion parameter. The common 

dispersion is estimated through maximizing the common log-likelihood ݈௖ሺ߶ሻ ൌ

	∑ ݈௚ሺ߶ሻ
ீ
௚ୀଵ .  To estimate the trended dispersion, the genes are divided into bins by 

average pseudo-counts. The common dispersion in each bin is estimated through 

maximizing the common log-likelihood in each bin. A smooth curve is fitted between the 

binned common dispersions and binned average pseudo-counts. Based on the 

estimated curve, the trended dispersion for each gene is the predicted value of each 

gene’s overall average pseudo-count. To estimate gene-specific dispersion, the strategy 

in the empirical Bayes method (Robinson and Smyth, 2007) is used. It is implemented 
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as a weighted conditional log-likelihood  ܹܮ൫߶௚൯ ൌ ݈௚൫߶௚൯ ൅  ௚ is theݓ ௚݈௖ሺ߶௚ሻ, whereݓ

gene-specific weight and the common log-likelihood is for all genes or subset of genes 

in the same bin. The gene-specific dispersion is obtained by maximizing the weighted 

conditional log-likelihood. If a dispersion trend is assumed, the common log-likelihood 

for the subset of genes in the same bin is used. Otherwise, the common log-likelihood 

for all genes is used. A dispersion trend is assumed in this dissertation. Compared with 

other estimators such as the maximum likelihood estimator, qCML is the most reliable 

(Chen et al., 2016). However, the qCML method is only applicable to experiments with 

one factor. When an experiment has more than one factor, it fails to take that into 

account. “It has been seen in many RNA-Seq datasets that allowing gene-specific 

dispersion is necessary in order that differential expression is not driven by outliers” 

(Chen et al., 2016). Therefore the gene-specific dispersion is strongly recommended. In 

this dissertation, the gene-specific dispersion is used in the edgeR method. 

Once the parameters in Equation (2) are all estimated from the data, the statistical test 

is analogous to Fisher’s exact test (Robinson and Smyth, 2008). In a two experimental 

conditions setting, let ݖଵ௚
∗  and  ݖଶ௚

∗  be the sum of pseudo-counts in experimental 

condition 1 and 2. Under the null hypothesis, 

݃݅ݖ 
∗ ܮቀܰ݅ܤܰ	~	

∗ܲ݅݃, ߶݃ ܰ݅⁄ ቁ ݅ ∈ 1, 2 (3)

where ܮ∗ is the geometric mean of the original library sizes. Conditional on the sum 

ଵ௚ݖ
∗ ൅ ଶ௚ݖ

∗  , the probability of group totals more extreme than the observed group totals 

can be calculated under the null hypothesis. The 2-sided p-value is defined as the sum 

of the probabilities of group totals lower than or equal to the probability of the observed 

group totals. This p-value is used to test differential expression. 
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In the DESeq method, the raw RNA-seq count data are assumed to have the following 

NB distribution with mean and variance: 

,௜௚ߜ௜௝ߟሺܤܰ	~	௜௝௚ݕ  ௜௚ߜ௜௝ߟ ൅ ߙ ௜௝ߟ
ଶ ௜௚ߜ

ଶ ሻ (4)

where ߟ௜௝ denotes size factor of the ݆௧௛ sample in the ݅௧௛ experimental condition. To 

calculate the size factor, a reference sample is first constructed using the geometric 

mean of all samples. The size factor is calculated as the median of the gene-specific 

ratios between the ݆௧௛ sample in the ݅௧௛ experimental condition and the reference 

sample. In this calculation, the genes with any zero count are not used since they 

produce zeros in the reference sample, and the gene-specific ratios become non-

evaluable. The raw count data adjusted by the size factor is referred to as the RLE 

normalization. To use the TMM normalization in DESeq, the size factor is replaced with 

the normalization factor calculated by the TMM normalization. ߜ௜௚ is a value proportional 

to the true concentration of the ݃௧௛ gene in the ݅௧௛ experimental condition. The variance 

is the sum of a shot noise term ߟ௜௝ߜ௜௚ and a raw variance term ߟߙ௜௝
ଶ ௜௚ߜ

ଶ , where ߙ is the 

dispersion parameter. The dispersion is modeled in four different ways: The first way is 

to assume that the dispersion is different for each gene in each experimental condition. 

Based on this assumption, the dispersion parameter is denoted as ߙ௜௚ and estimated by 

the following equation: 

ො݅݃ߙ  ൌ
ܵ݅݃
2 െ

݃݅ݖ̅

ܰ݅
ሺ∑ 1

݆݅ߟ
ሻ

ܰ݅
݆ൌ1

݃݅ݖ̅
2  (5)

where ݖ௜̅௚ is the average of the normalized counts in the ݅௧௛ experimental condition. 

The second way is to assume a common dispersion for each gene. In estimation, the 

experimental condition is ignored and the gene-specific dispersion is estimated as if all 
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samples are in the same experimental condition. The estimation can be applied to the 

situation even when there are no replicates. The dispersion is estimated similarly as 

Equation (5) but ignoring the experimental condition. The third way is also to assume a 

common dispersion for each gene. The common dispersion for each gene is estimated 

by: 

ො݃ߙ  ൌ
෤ܵ݃
2
െ

݃ݖ̅

ܰ
൬∑ ∑ 1

݆݅ߟ

ܰ݅
݆ൌ1

2
݅ൌ1 ൰

݃ݖ̅
2  (6)

where ෩ܵ݃
2
ൌ ∑ ∑ ሺ݆݃݅ݖ െ ഥ݅݃ሻݖ

2ܰ݅
݆ൌ1

2
݅ൌ1 ሺܰെ 2ሻൗ . The fourth way also assumes a common 

dispersion for each gene but is estimated through maximizing a Cox-Reid adjusted 

profile likelihood (Cox and Reid, 1987; McCarthy et al., 2012) and is usually used in the 

case of no replicates in some subgroups in a complex design. In this dissertation, the 

third method is used to obtain the raw dispersion estimates. The gene-specific 

abundance ߜ௚ is estimated by ݖ௚̅, which is the average of the normalized counts of the 

݃௧௛ gene. 

With the pairs of raw estimates ߙො௚ and ߜመ௚ by the third method, there are two approaches 

proposed to fit a smooth curve: 1) a parametric fit using a gamma-family Generalized 

Linear Model (GLM) to fit ߙ௚ ൌ ଴௚ߙ ൅  ଵ௚ are two coefficientߙ ଴௚ andߙ ௚, whereߜ/ଵ௚ߙ

parameters; and 2) local regression. In the second approach, a GLM of gamma family 

for the local regression is used to fit ෩ܵ݃
2
 and ߜመ௚. The resulting function is denoted as ݓෝ . 

The smooth function for dispersion is estimated by: 

መ௚൯ߜො൫ߙ  ൌ
መ௚൯ߜෝ൫ݓ െ

ఋ෡೒
ே
൬∑ ∑ ଵ

ఎ೔ೕ

ே೔
௝ୀଵ

ଶ
௜ୀଵ ൰

መ௚ଶߜ
 (7)
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For some datasets, the parametric fit in the first approach may give bad results (Anders 

and Huber, 2016). In this dissertation, the second approach is used for the DESeq 

method. In the statistical inference, the fitted values from the curve or the raw dispersion 

estimates are used. There are three choices: 1) only fitted values from the curve are 

used; 2) only raw dispersion values are used; and 3) to be conservative, the maximum 

of the fitted values and the raw gene-specific values are used for inference. With the 

assumption that the variation of the point estimates around the curve simply reflects 

sampling variability, the fitted values are used for the DESeq method in this dissertation 

for inference. 

In the DE analysis, the statistical test is analogous to Fisher’s exact test (Anders and 

Huber, 2010). Suppose there are two conditions 1 and 2, and the total observed counts 

of the ݃௧௛ gene in each condition are ݕ෤ଵ௚ and ݕ෤ଶ௚. Let ݕଵ௚ and ݕଶ௚ be the non-negative 

integers having the value from 0 to ݕ෤ଵ௚ ൅ ଵ௚ݕ ෤ଶ௚, which also satisfiesݕ ൅ ଶ௚ݕ 	ൌ ෤ଵ௚ݕ	 ൅

 ,෤ଶ௚. Under the null hypothesisݕ

,݅ߟො݃ߜ൫ܤܰ	~	݃݅ݕ  ො݅݃ߙ
∗ ݃ߜ

݅ߟ2
∗൯ ݅ ∈ 1, 2 (8)

where ߟ௜ ൌ ∑ ௜௝ߟ
ே೔
௝ୀଵ ௜ߟ   ,

∗ ൌ ∑ ௜௝ߟ
ଶே೔

௝ୀଵ መ௚ߜ   , ൌ ො௜௚ߙ  ௚̅, andݖ
∗ ൌ 	 ሺߜመ௚ ∑ ௜ߟ

ଶ
௜ୀଵ ൅ መ௚ଶߜመ௚൯ߜො൫ߙ ∑ ௜ߟ

∗ଶ
௜ୀଵ െ

௜ߟመ௚ଶߜ௜ሻ/ሺߟመ௚ߜ
ଶሻ. In Equation (8), ߙො൫ߜመ௚൯ is calculated by Equation (7), which is based on the 

normalized data. 

The probability of such a combination can be calculated using the above NB 

distribution. The probability is denoted as  ߨ൫ݕଵ௚,  ଶ௚൯. The p-value is calculated by theݕ

following equation: 
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௚ߨ  ൌ
∑ ,1݃ݕሺߨ 2݃ሻݕ,1݃ݕሺߨ2݃ሻݕ ൑ ෤2݃ሻݕ,෤1݃ݕሺߨ

∑ ,1݃ݕሺߨ 2݃ሻݕ
 (9)

In the latest implementation (Anders and Huber, 2016), the p-value is calculated 

differently since Equation (9) has problems when the dispersion is larger than 1. To 

address that, the probabilities of value pairs having a more extreme fold change are 

summed in the numerator of Equation (9).  

Beyond the NB distribution, there are also other possible distributions which are able to 

model the gene-specific overdispersion such as the negative binomial power distribution 

(Di et al., 2011), the Poisson-inverse Gaussian, the Sichel, the Delaporte and related 

distributions (Rigby et al., 2008). Esnaola et al. (2013) has argued that RNA-seq data 

can be modeled using a more general family of distributions, the Poisson-Tweedie 

family. These alternative distributions only have the flexibility to model overdispersed 

data but not underdispersed data. In real data, some genes are underdispersed. An 

approach without any distributional assumption and able to handle both overdispersed 

and underdispersed data is preferable. In Section 2.4, a statistical method is derived 

based on the theory of quasi-likelihood which is able to handle both overdispersed and 

underdispersed data without any distributional assumptions.  

The quasi-likelihood is defined in McCullagh and Nelder (1989) as 

 ܳሺߤ, ሻݕ ൌ න
ݕ െ ݐ
Φܸሺݐሻ

ݐ݀
ఓ

௬
 (10)

where ߤ	 is the mean, ݕ	 is the observed value, Φ is the dispersion parameter, and ܸ	is 

the variance function. The variance function describes how the variance of a random 

variable depends on its mean. In the quasi-likelihood framework, the variance of the 

random variable is modeled as Φܸሺߤሻ. To model a gene-specific variance, either Φ or 
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ܸ	or both could be modelled as gene-specific. Analogous with the deviance in GLM 

(McCullagh and Nelder, 1989), the quasi-deviance is  

,ߤሺܦ  ሻݕ ൌ െ2Φܳሺߤ, ሻݕ ൌ 2න
ݕ െ ݐ
ܸሺݐሻ

ݐ݀
௬

ఓ
 (11)

In an RNA-seq experiment with a simple completely randomized design with two 

experimental conditions, the quasi-likelihood ratio statistic for the ݃௧௛gene is  

ܴܮܳ  ௚ܶ ൌ෍෍ܦ൫̂ߤ௚, ௜௝௚൯ݕ െ

ே೔

௝ୀଵ

෍෍ܦ൫̂ߤ௜௚, ௜௝௚൯ݕ

ே೔

௝ୀଵ

ଶ

௜ୀଵ

ଶ

௜ୀଵ

 (12)

where ߤෝ݃and ߤෝ݅݃are the mean estimates from the quasi-likelihood method for the model 

with one overall mean (null model) and the model with two group means in two 

experimental conditions (full model). When the variance function is correct, McCullagh 

(1983) showed that under the null hypothesis 

ܴܮܳ  ௚ܶ ~ Φ௚߯௤ଶ (13)

where ݍ ൌ 1, which is the difference in degrees of freedom between the full model and 

the null model in a two-group setting. 

The dispersion parameter 	Φ௚ can be estimated from the data using deviance or 

moment approach. The deviance-based estimator is  

 Φ෡௚ௗ௘௩௜௔௡௖௘ ൌ
∑ ∑ ௜௚ߤሺ̂ܦ

ே೔
௝ୀଵ

ଶ
௜ୀଵ , ௜௝௚ሻݕ

ܰ െ ݌
 (14)

where ݌ ൌ 2	, which is the number of group means in a two-group setting. 

If Φ௚ is known, the quasi-likelihood ratio statistic ܴܳܮ ௚ܶ ⁄ݍ  can be used to test the 

difference between two models. If Φ௚ is unknown, the quasi-likelihood ratio statistic is 

not valid. In this case, the F statistic ܴܳܮ ௚ܶ ሺݍΦ෡௚ሻ⁄  should be used (Tjur, 1998). The F 

statistic is also valid when Φ௚ is known. The F statistic is compared with an F-

distribution with ݍ and ܰ െ  .degrees of freedom ݌
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Lund et al. (2012) proposed quasi-likelihood methods to analyze RNA-seq data by 

assuming a linear or quadratic variance function (corresponding to Poisson or NB 

variance functions). The gene-specific NB dispersion parameters of the quadratic 

variance functions are estimated through the edgeR method. The dispersion 	Φ௚ is 

estimated by Equation (14) which is often based on few degrees of freedom. To share 

information across genes, the empirical Bayes method (Smyth, 2004) to estimate the 

gene-specific error variance in microarray data can be adapted to estimate the 

dispersion 	Φ௚ in RNA-seq data. There are two approaches to apply this method:  

1) Using the Empirical Bayesian method, the gene-specific dispersion Φ௚ is assumed to 

have a scaled-inverse ߯ଶ prior distribution with ݀଴ degrees of freedom and a scale 

factor	Φ଴. It is also assumed that ሺܰ െ ܰ ሻΦ෡௚/Φ௚ has a ߯ଶ distribution with݌ െ  ݌

degrees of freedom. The hyperparameters ݀଴ and Φ଴ can be estimated using the 

moments approach described by Smyth (2004). Denoting these estimates as መ݀଴ and 

Φ෡଴, the first dispersion shrinkage estimator (QLShrink) is as follows: 

 Φ෡௚௦௛௥௜௡௞ ൌ
መ݀
଴Φ෡଴ ൅ ሺܰ െ ሻΦ෡௚݌

መ݀
଴ ൅ ܰ െ ݌

 (15)

The test statistic ܴܳܮ ௚ܶ ሺݍΦ෡௚௦௛௥௜௡௞ሻ⁄   is compared with an F-distribution with q  and 

pNd 0
ˆ  degrees of freedom. 

2) The second shrunken dispersion estimator is called QLSpline. A cubic spline is used 

to fit log	ሺΦ෡௚ሻ and log	ሺݕത௚ሻ and denote the predicted value as Φ෡଴௚. Φ෡௚ Φ෡଴௚ൗ  is assumed to 

follow a scaled F-distribution with scale factor ߬ and degrees of freedom ܰ െ and ݀଴ ݌
ᇱ . 

Using the method of moments approach, the hyperparameters ݀଴
ᇱ  and ߬ can be 
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estimated and denote the associated estimates as መ݀଴
ᇱ  and ߬̂. The second dispersion 

estimator QLSpline is as follows: 

 Φ෡௚
௦௣௟௜௡௘ ൌ

መ݀
଴
ᇱ Φ෡଴௚߬̂ ൅ ሺܰ െ ሻΦ෡௚݌

መ݀
଴
ᇱ ൅ ܰ െ ݌

 (16)

The test statistic ܴܳܮ ௚ܶ ሺݍΦ෡௚
௦௣௟௜௡௘ሻ⁄  is compared with an F-distribution with ݍ and 

መ݀
଴
ᇱ ൅ ܰ െ  .degrees of freedom ݌

Lund et al. (2012) recommended using QLSpline shrinkage estimator under the 

assumption of a quadratic variance function, which is denoted as NBQLSpline. This 

approach is implemented in the R package QuasiSeq and is used in this dissertation to 

compare with the QuasiDE method.  

The Poisson or NB assumption is useful, “but can be heavily influenced by outliers” (Li 

and Tibshirani, 2013). Also the underlying distribution for a real RNA-seq dataset may 

be different from the Poisson or NB distribution. The goal in this chapter is to develop a 

statistical method without any distributional assumption. Consequently it has similar 

sensitivities and FDRs across different distributions with different variance functions. 

The performance of this method should be at least as good as the existing methods.  

2.4 New Quasi-Likelihood Method (QuasiDE) 

A novel quasi-likelihood approach (QuasiDE) is proposed to detect differentially 

expressed genes for RNA-seq data in a completely randomized design with two 

experimental conditions. In the proposed method, there is no underlying distribution 

assumed. Instead, a single variance function with gene-specific dispersion is assumed. 

The variance function is estimated from the normalized count data empirically. In 

normalization, raw read counts are first divided by their associated effective library sizes 
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and then multiplied by the mean of the effective library sizes. The test statistic is 

constructed by quasi-likelihood theory.  

The variance of the normalized count for the thg gene has the following form: 

௜௝௚ሻݖሺݎܽݒ  ൌ Φ௚ܸሺߤ௜௚ሻ (17)

where ߤ௜௚ is the expected normalized count of the ݃௧௛ gene in the ݅௧௛ experimental 

condition and Φ௚ is the dispersion parameter in quasi-likelihood theory. It indicates that 

each gene has a gene-specific dispersion Φ௚, but all genes share a common variance 

function	ܸ. If there are no DE genes, the within-gene variance function can be estimated 

using the sample mean (ݖ௚̅) and sample variance ( ௚ܵ
ଶ) pairs of the normalized counts. 

The mean-variance relationship for those DE genes is quite different from those non-DE 

genes due to different experimental conditions which cause greater observed variance. 

To address that, the sample mean-variance pairs within experimental conditions 

	and	௜̅௚ݖ) ௜ܵ௚
ଶ ) are used to estimate the variance function	ܸ, although the resulting sample 

mean-variance relationship exhibits larger random variability due to a smaller sample 

size. For a simple completely randomized design with two experimental conditions, that 

means 2ܩ pairs of sample mean-variance are used to estimate the variance function. 

After applying the log transformation, Equation (17) changes to the following form: 

 logൣݎܽݒሺ݆݃݅ݖሻ൧ ൌ log൫Φ݃ ൯ ൅ log ቂܸሺ݃݅ߤሻቃ (18)

To estimate the variance function ܸ, the model in Equation (18) fails to be identifiable 

since multiple parameterizations are possible. To address that, a constraint 

∑ log൫Φ௚൯
ீ
௚ୀଵ ൌ 0 is imposed. A smooth cubic spline is fitted to model log	ሺ ௜ܵ௚

ଶ ሻ as a 

function of ݖ௜̅௚	 and treating log൫Φ௚൯ as the error terms with mean 0 and common 

variance ߦଶ. The resulting spline describes the overall biological variability across all 
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genes. The gene-specific dispersion Φ௚ models the gene-specific variability relative to 

the overall level. The fitted spline function is denoted as ෠݄.  The exponential of this 

spline function is the estimated variance function	෡ܸ . 

 ෠ܸ ൌ expሺො݄ሺݐሻሻ ݐ ൐ 0 (19)

With this estimated variance function ෠ܸ , a GLM model can be fitted using the quasi-

likelihood method. In this GLM model, the variance structure is specified by the 

estimated variance function and the mean structure is specified based on the 

experimental design. The GLM model with the identity link function can yield negative 

values for the predicted normalized counts, which is not a desirable feature. The GLM 

model with log link can only yield a positive predicted normalized count and has been 

employed. In a completely randomized design with two conditions, the full model is 

log൫ࢍࣆ൯ ൌ ଵ௚ߚ ൅ ࢍࣆ ,ଶ௚ܺ, where ܺ is an indicator of the experimental conditionߚ ൌ  ሻࢍࢠሺܧ

is the expected normalized count vector for the ݃௧௛ gene, and ߚଵ௚, ߚଶ௚ are the 

regression coefficients for the ݃௧௛ gene. In the quasi-likelihood framework, the 

coefficients are estimated by the quasi-likelihood estimating equations ௚ܷ൫ߚଵ௚, ଶ௚൯ߚ ൌ 0 , 

where   

 ܷ݃൫1݃ߚ, 2݃൯ߚ ൌ ऎࢍ
ࢍࢂܶ

െ1ሺࢍࢠ െ ሻ/Φ௚ (20)ࢍࣆ

ܰ is ࢍis the normalized count vector for the ݃௧௛ gene and ऎ ࢍࢠ ൈ 2 matrix: 

 ऎࢍ ൌ

ۉ

ۈۈ
ۇ

ଵ௚ߤ߲
ଵ௚ߚ߲

ଵ௚ߤ߲
ଶ௚ߚ߲

⋮ ⋮
ே௚ߤ߲
ଵ௚ߚ߲

ே௚ߤ߲
یଶ௚ߚ߲

ۋۋ
ۊ

 (21)

and ࢍࢂ is the ܰ ൈ ܰ diagonal matrix: 
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ࢍࢂ  ൌ ቌ
෠ܸሺ1݃ߤሻ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ෠ܸሺ݃ܰߤሻ

ቍ (22)

The equations ௚ܷ൫ߚଵ௚, ଶ௚൯ߚ ൌ 0 are solved to obtain the coefficient estimates ߚመଵ௚,  .መଶ௚ߚ

The null regression model is log൫ࢍࣆ൯ ൌ  ଵ௚. Using the same estimated varianceߚ

function, the ߚଵ௚ estimate ߚመଵ௚ can be similary obtained through the quasi-likelihood 

estimating equations.  

The fitted values for the null model are denoted as ̂ݖ௜௝௚,௡௨௟௟ and the fitted values for the 

full model are denoted as ̂ݖ௜௝௚,௙௨௟௟. This is implemented by using the glm function in R. 

The detailed R code is in Appendix A.  

The quasi-deviance of the null model is 

෩௚,௡௨௟௟ܦ  ൌ ෍෍2න
௜௝௚ݖ െ ݐ
ොܸሺݐሻ

௭೔ೕ೒

݈݈ݑ݊,݆݃݅ݖ̂

ݐ݀

ே೔

௝ୀଵ

ଶ

௜ୀଵ

 (23)

The quasi-deviance of the full model is 

෩௚,௙௨௟௟ܦ  ൌ ෍෍2න
௜௝௚ݖ െ ݐ
ොܸሺݐሻ

௭೔ೕ೒

݈݈ݑ݂,݆݃݅ݖ̂

ݐ݀

ே೔

௝ୀଵ

ଶ

௜ୀଵ

 (24)

The difference of Equation (23) and (24) is only on the fitted values used. 

The most popular dispersion estimator is the Pearson moment estimator (McCullagh, 

1983): 

 Φ෡௚
௣௘௔௥௦௢௡ ൌ

1
ܰ െ ݌

෍෍
൫ݖ௜௝௚ െ ௜௝௚,௙௨௟௟൯ݖ̂

ଶ

෠ܸሺ̂ݖ௜௝௚,௙௨௟௟ሻ

ே೔

௝ୀଵ

ଶ

௜ୀଵ

 (25)

The test statistic ሺܦ෩௚,௡௨௟௟ െ ෩௚,௙௨௟௟ሻܦ ሺݍΦ෡௚
௣௘௔௥௦௢௡ሻൗ  is proposed to compare with an F-

distribution with q  and pN   degrees of freedom. This method is referred to as 

“QuasiDE” in this dissertation. 
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2.5 Multiple-Comparison Procedures 

Although genes are not expressed independently, the DE analysis is typically applied 

one gene at a time. The DE analysis then involves thousands, or even millions of 

statistical tests of the null hypotheses. With multiple statistical tests, each test has type I 

and type II error and it is important to control the overall error rate. The first introduced 

measure of the overall error rate is the family-wise error rate (FWER), which is the 

probability of making one or more false discoveries among all these hypotheses. 

Instead of controlling the type I error for each test, the FWER is the target to be 

controlled. In many situations, controlling the FWER is too strict, especially in the 

genomic analysis which involves a large number of statistical tests. To address that, 

another measure of the overall error rate, false discovery rate (FDR), was introduced by 

Benjamini and Hochberg (1995). FDR is the expected proportion of false positive 

findings among all the rejected hypotheses. Compared with controlling the FWER, 

controlling the FDR is found to be more powerful but it has a higher overall type I error. 

Benjamini and Hochberg (1995) provided a sequential p-value method to control the 

FDR, which has been adopted in the edgeR and DESeq methods. To adjust the multiple 

comparisons in the NBQLSpline method, the q-value, which measures the proportion of 

false positives incurred (Storey and Tibshirani, 2003), is calculated for each test using 

the method by Nettleton et al. (2006). 

In this dissertation, the Benjamini and Hochberg procedure is adopted to adjust the raw 

p-values produced by the QuasiDE method. Since comparing the methods designed for 

correcting multiple comparisons is not intended in this dissertation, the multiple 

comparison procedure used in the NBQLSpline method has been changed to the 
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Benjamini and Hochberg procedure. This procedure is implemented in function p.adjust 

in R. 

2.6 Simulation 

To examine the performance of the QuasiDE method, a series of simulations have been 

conducted. The data are simulated based on three monotonic increasing variance 

functions (Table 2). In Table 2, the three simulated variance functions and their 

associated dispersion parameters are all listed. The dispersion parameters are specified 

by a lognormal random variable with mean and standard deviation on log scale. Only 

monotonic increasing variance functions are considered since it was suggested that 

variance grows with the mean in the RNA-seq data (Love et al., 2014). The first function 

is in a linear form, the second is a quadratic function and the last function is in a form of  

ߤ ൅ ݃ሺߤሻ.  ݃ሺߤሻ is chosen to be ln	ሺߤ ൅ 1ሻ, which has a different increase speed than the 

other two functions. The assumption of all these three variance functions satisfies 

ܸሺߤ ൌ 0ሻ ൌ 0. These three types of data are referred to as “QP data”, “QN data”, and 

“LN data” respectively hereafter. 

The gene-specific dispersion parameter is simulated as a log-normal random variable.  

The parameters for this log-normal random variable are chosen to make the simulated 

data roughly like the Himes data. Sample sizes are chosen to be 10, 20, and 40, split 

evenly between two experimental conditions. In a real RNA-seq dataset, the transcripts 

have at least one copy. Since a gene not expressed is not possible to appear in a real 

RNA-seq dataset, the simulated genes with zero total count are replaced with a new 

simulated gene. In each dataset, 20,000 genes are simulated and 5% of them are  
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Table 2: Variance Functions and Dispersion Parameters used in Simulation 

Variance Function Dispersion Parameter 

ܸሺߤሻ ൌ  Log-normal (0, 1.7) ߤ3

ܸሺߤሻ ൌ 0.5ሺߤ ൅
ଶߤ

16
ሻ Log-normal (0, 1.4) 

ܸሺߤሻ ൌ ߤ ൅ ln	ሺߤ ൅ 1ሻ Log-normal (0, 1.2) 

Note: Variance ܸ is a function of mean ߤ. The two parameters in the log-

normal random variable are the mean and standard deviation on the 

logarithm scale. 

chosen to be DE (1000 DE and 19,000 EE genes). The fold changes of those DE genes 

were set to be a constant in the dataset. This constant is chosen to be either 1.5 or 3 to 

represent low and high treatment effect. Half of the DE genes have higher mean 

expressions in condition 1 and the other half have higher mean expression in condition 

2. 

In each setting (per sample size and fold change), 200 datasets were simulated. The 

read counts were simulated as follows. First, the average count for each gene was 

randomly sampled with replacement from the observed within-group means from the 

Himes data. Three types of genes are simulated: EE genes, over-expressed DE genes 

and under-expressed DE genes. For an EE gene, the average count is assigned to all 

samples. For an over-expressed DE gene, the average count is firstly assigned to all 

samples; those in the second experimental condition will be multiplied by a constant 

(1.5 if low treatment effect, 3 if high treatment effect). For an under-expressed gene, the 

average count is firstly assigned to all samples; those in the second experimental 

condition will be divided by a constant (1.5 if low treatment effect, 3 if high treatment 
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effect). These assigned means are then scaled by a random factor which mimics library 

size effect. This random factor is two to the power of a normal random variable with 

mean 0 and standard deviation 0.5. Using this scaled average counts and the 

parameters in Table 2, the corresponding variances are calculated. For each pair of the 

scaled average count and its variance, the shape parameter and rate parameter for a 

gamma random variable can be estimated by a method of moments approach. A 

gamma random variable is then generated using these parameter estimates. This 

generated continuous random variable is then rounded to an integer and used as raw 

count data. 

The resulting raw count data are first filtered by removing those genes with zero 

interquartile range or low mean count (≤ 1). The TMM normalization method is applied 

to the remaining genes. The data are analyzed by different statistical methods (edgeR, 

DESeq, NBQLSpline and QuasiDE). A nominal FDR we are willing to allow is chosen at 

level of 0.05 throughout the simulation in this dissertation. All simulation and analyses 

were conducted using R 3.2.1 and the relevant R code is included in Appendix A. 

2.7 Simulation Results 

2.7.1 Variance Function Estimation 

The smooth cubic spline is used in the QuasiDE method to estimate the variance 

function. “Spline functions are the most successful approximating functions for practical 

application” (Rice, 1969). In estimation, the within-group mean-variance pairs of the 

normalized counts in the simulated dataset from those genes after filtering are used. 

The estimated variance functions are shown in Figure 1 for the QP, QN and LN 

simulated datasets with sample size 10, 20 and 40. In Figure 1, the estimated variance  
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Figure 1. Variance Function Estimation.  

The panels in the first, second and third columns show the estimated variance functions 

for the QP, QN and LN data respectively. The panels in the first, second and third rows 

show the estimated variance functions for sample size 10, 20 and 40 respectively. In 

each panel, there are 400 estimated variance functions based on 400 simulated 

datasets. In each panel, the red line is the true variance function.  

functions vary around the true variance function. The true variance functions of the QP 

and LN data are similarly, which are quite different from the true variance function of the 

QN data. The variability of the predicted functions at those larger normalized count is 

expected to be larger and this is also reflected in this figure.  
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The method of estimating the variance functions using the smooth cubic spline is 

compared with using the quadratic regression, in which the within-group variances on 

log scale is modeled as a quadratic function of the average normalized counts. The 

model fit is measured by mean integrated squared error (MISE) (Härdle, 1986), which is 

defined as 

ܧܵܫܯ  ൌ ܧ ൜නൣ݄ሺߤሻ െ ෠݄ሺߤሻ൧
ଶ
݂ሺߤሻ݀ߤൠ (26)

where ݄ and 	 ෠݄ are the true and estimated functions on log scale. ݂ሺߤሻ is the density 

function. The MISE is approximated by using the empirical distribution of mean 

normalized counts in the simulated dataset. For a specific sample size and variance 

function, there are 400 simulated datasets (200 with the simulated DE genes having low 

fold change and 200 with the simulated DE genes having high fold change). 

Table 3: MISEs of Estimated Variance Functions in Simulation  

Variance 
Function 

Sample Size 
n = 10 n = 20 n = 40 

Smooth Cubic Spline 

QP 0.20 0.09 0.05 

QN 0.09 0.03 0.03 

LN 0.07 0.02 0.02 

Quadratic Regression 

QP 5.56 5.49 5.42 

QN 15.47 15.55 15.48 

LN 4.87 4.86 4.82 

Note: The variance functions are estimated by a smooth cubic spline or a 

quadratic regression. The detailed form of variance functions are listed in 

Table 2.    
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The approximate MISE is calculated by the following equation:  

ܧܵܫܯ  ൎ
∑ ∑ ∑ ൣ݄൫̅݃݅ݖ

݀ ൯ െ ෠݄ሺ̅݃݅ݖ
݀ ሻ൧

ଶீ೏
௚ୀଵ

ଶ
௜ୀଵ

ସ଴଴
ௗୀଵ

∑ ∑ ௗଶܩ
௜ୀଵ

ସ଴଴
ௗୀଵ

 (27)

where ݀ denotes the ݀௧௛	dataset, ݖഥ݅݃
݀  is the mean normalized count of the ݃௧௛ gene for  

the ݅௧௛ experimental condition in the ݀௧௛ dataset and ܩௗ is the total number of genes 

after filtering in the ݀௧௛ dataset. The estimated MISEs in simulation are summarized in 

Table 3. In Table 3, the MISEs of the estimated smooth cubic spline are much lower 

than the estimated quadratic function obtained from quadratic regression. This indicates 

the estimated cubic splines have a better model fit. Within the method of smooth cubic 

spline, the model fit gets better in a larger sample size. Also, the model fit of the LN data 

is the best among three types of data and the model fit of the QP data is the worst. This 

is due to the designed dispersion parameters, in which the QP data has the largest 

variability and the LN data has the smallest variability (Table 2). Since the three 

variance functions on log scale are not in quadratic form, using quadratic regression 

does not have good performance. The variance function on log scale for the QP and LN 

data appears to be more close to a quadratic form than that for the QN data. This 

systematic error is not reduced with larger sample size.  

2.7.2 Performance of Different Methods 

An ideal statistical method has sensitivity as high as possible while the real FDR is well 

controlled at the nominal level. In simulation, the sensitivities and real FDRs by different 

statistical methods are compared in different simulation settings. With larger sample 

sizes and higher treatment effect, the power to detect the DE genes should increase.  
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The simulation result for the QuasiDE method is shown in Figure 2. The sensitivity 

increases with sample size and treatment effect. This suggests that more biological 

replicates result in higher statistical power. Compared with low treatment effect, 

QuasiDE has more statistical power to detect those DE genes with high treatment 

effect. The real FDR of QuasiDE increases slightly from sample size 10 to 20. From 

sample size 20 to 40, the real FDR becomes stable. For the QP and QN data, the real 

FDR is best controlled at sample size 10. For the LN data, the real FDR is best 

controlled at sample size 20 and 40. Moreover, the patterns of sensitivity and FDR are 

similar across three types of data. All real FDRs are close to the specified nominal level 

of 0.05. In the setting of sample size 10 and low treatment effect, the QuasiDE method 

has a bit lower sensitivity and higher variability of real FDR in the QN data compared to 

the other two types of data. The raw p-values and adjusted p-values produced by the 

QuasiDE method for those EE and DE genes are shown in Figure 3. The data used in 

this figure is from the first 10-sample QN simulated dataset in the high fold change 

setting. The raw p-values for the EE genes roughly have a uniform distribution. Most the 

raw p-values for those DE genes are very small and the density decreases sharply by 

the raw p-value. After multiple comparison correction, ideally, most of the adjusted p-

values for those EE genes are not small enough to be significant. And most of the 

adjusted p-values for those DE genes are still small enough to be significant. This is 

also observed in Figure 3. The distributions shown in Figure 3 are similar in other 

datasets and simulation settings.   
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Figure 2. Sensitivity and Real FDR by Sample Size and Treatment Effect for Different 
Types of Data (QuasiDE) 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 3. Histograms of Raw p-values and Adjusted p-values for the DE and EE genes 
in the simulation (QN dataset 1, High Fold Change, n = 10, QuasiDE)  

The two panels in the first row show the density of raw p-values for the DE and EE 

genes. The two panels in the second row show the density of adjusted p-values for the 

DE and EE genes. 
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Figure 4. Sensitivity and Real FDR by Sample Size and Treatment Effect for Different 
Types of Data (NBQLSpline) 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 5. Sensitivity and Real FDR by Sample Size and Treatment Effect for Different 
Types of Data (edgeR) 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 6. Sensitivity and Real FDR by Sample Size and Treatment Effect for Different 
Types of Data (DESeq) 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 7. Sensitivity and Real FDR by Sample Size for Different Types of Data in Low 
Treatment Effect (NBQLSpline vs. QuasiDE)  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 8. Sensitivity and Real FDR by Sample Size for Different Types of Data in High 
Treatment Effect (NBQLSpline vs. QuasiDE) 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow.  
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The simulation result for the NBQLSpline method is shown in Figure 4. The sensitivity 

also increases with sample size and treatment effect. The patterns of real FDR are quite 

different in three types of data. In the QP data, the real FDR increases with sample size. 

In the QN data, it is stable with sample size and almost perfectly controlled at nominal 

level of 0.05. In the LN data, it increases slightly with sample size. In the setting of 

sample size 10 and low treatment effect, NBQLSpline has a bit lower sensitivity which is 

similar as the QuasiDE method. The NBQLSpline method has the best performance in 

the QN data, in which the assumption of quadratic variance function is met.  

The performance of the edgeR method is shown in Figure 5. The sensitivity has a 

similar pattern to the QuasiDE and NBQLSpline methods. More severely than the 

QuasiDE and NBQLSpline methods, the edgeR method loses sensitivity in the setting of 

sample size 10 and low treatment effect. The real FDR has different patterns across 

three types of data. In the QP data, the real FDR decreases with sample size; however, 

all the real FDRs are above the nominal level especially in the case of sample size 10. 

In the QN data, the real FDR decreases with sample size. High real FDRs are observed 

in the case of sample size 10 and low treatment effect due to the severe loss of 

sensitivity. In the LN data, the real FDR appears to decrease with increased treatment 

effect. All the real FDRs are at an unacceptable high level (above 0.25) in different 

sample sizes. Overall, only the analyses in the setting of the QN data with sample size 

20 or 40 and the QP data with sample size 40 have the real FDR close to the nominal 

level.  

The performance of the DESeq method is shown in Figure 6. The sensitivity has a 

similar pattern as the edgeR method. Similar to the edgeR method, it also loses 
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sensitivity severely in the QN data with sample size 10 and low treatment effect. The 

real FDR seems to be badly controlled in all the simulation settings. For all three types 

of data, most of the real FDRs are above 0.2. 

Compared with the other three methods, the QuasiDE method has the most similar 

sensitivities and FDRs across the different types of data with different variance 

functions. Among all four methods, the performance of the NBQLSpline and QuasiDE 

methods are the best and similar. The edgeR method has the real FDR poorly 

controlled in most situations except when the sample size is 40 in the QP and QN data. 

The DESeq method has the real FDR badly controlled in all the simulation settings. The 

NBQLSpline and QuasiDE methods are further compared in Figure 7 and 8. 

In Figure 7, the performances of the NBQLSpline and QuasiDE methods in the 

simulated datasets with low treatment effect are compared. The sensitivity of the 

NBQLSpline method is slightly higher than or similar to that of the QuasiDE method. 

The real FDRs appear to be better controlled in the QP and LN data for the QuasiDE 

method. In the QN data, the NBQLSpline method has the real FDR better controlled. As 

mentioned before, the reason for this is that the QN data meet the assumption of 

quadratic variance function used in the NBQLSpline method. In Figure 8, the 

performances of the NBQLSpline and QuasiDE methods in the simulated datasets with 

high treatment effect are compared. The result is similar to that shown in Figure 7. In all 

simulation settings, the performance of the QuasiDE and NBQLSpline methods is worse 

in the QP data compared with the QN and LN data. For the NBQLSpline method, this 

might be due to the violation of the quadratic variance function assumption. For the 

QuasiDE method, this might be due to the larger designed dispersion for the QP data, 
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the larger error in approximating the QP variance function using cubic spline and the 

performance of normalization in the QP data. 

Overall, the QuasiDE and NBQLSpline methods have better performance than the 

edgeR and DESeq methods in simulation. Comparing the QuasiDE method with the 

NBQLSpline method, the QuasiDE method appears to have more similar sensitivities 

and FDRs against different variance functions whereas the performance of the 

NBQLSpline method deteriorates when the underlying assumption is not met.  

With a Windows workstation with two processors (CPU speed 2.83 GHz) and 16 G 

memory, to analyze one 10-sample LN simulated dataset in high fold change setting, it 

takes about 10 mins, 4 mins, 7 secs and 2 mins on average for the QuasiDE, 

NBQLSpline, edgeR and DESeq methods respectively (Table 4). The longer time used 

by the QuasiDE method is mainly due to the numeric evaluation of the quasi-deviance 

for each gene. The current R program in Appendix A can be optimized and this 

deserves some further work. 

 

Table 4: Computation Time in Simulation for Different Methods 

Method Time in Seconds 
Mean (SD*) 

QuasiDE 578.7 (28.0) 

NBQLSpline 245.8 (20.1) 

edgeR 7.2 (0.5) 

DESeq 149.1 (19.0) 

* Standard Deviation 

Note: Based on 200 LN simulated datasets  

in high fold change setting 
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2.8 Case Study 

The Squadrito data (Squadrito et al., 2014) is used to perform a real data analysis. 

Bone marrow (BM) cells were obtained from the long bones of eight-week old C57BL/6 

mice. C57BL/6 is a common inbred strain of laboratory mouse. BM cells were then 

plated in macrophage medium with penicillin-streptomycin and CSF-1. After one week, 

they were polarized by adding interleukin-4 to the medium or left untreated. There are 

four biological replicates in each group. The research interest is to detect those DE 

genes between the treated and untreated groups. There are 31,020 genes in the  

dataset. In the data filtering, there are 11,477 genes having both zero interquartile range  

and low mean count (≤ 1). There are an additional six and 1,912 genes filtered by zero 

interquartile range alone and low mean count (≤ 1) alone respectively. After data  

Table 5: Top 10 DE Genes by the QuasiDE Method and their Corresponding Results in 
the NBQLSpline and edgeR Methods (Squadrito Data) 

Ensembl Gene ID / 
Chromosomal Location  

Gene 
QuasiDE NBQLSpline edgeR 

Rank
Adjusted
p-value 

Rank
Adjusted 
p-value 

Rank
Adjusted
p-value 

ENSMUSG00000070942 Il1rl2 1 3.2e-06 6 1.6e-11 16 5.5e-247

Chr16, BP 93140249-93142672  2 3.2e-06 304 7.6e-08 575 7.0e-031

ENSMUSG00000028125 Abca4 3 3.9e-06 4 1.4e-11 4.5 0

ENSMUSG00000000563 Atp5f1 4 8.6e-06 8 1.9e-11 4.5 0

ENSMUSG00000061100 Retnla 5 1.0e-05 1 7.3e-12 4.5 0

ENSMUSG00000016128 Stard13 6 1.0e-05 135 1.5e-08 311 1.3e-046

ENSMUSG00000047250 Ptgs1 7 1.5e-05 10 4.9e-11 15 1.0e-253

Chr14, BP 44396128-44511076  8 1.5e-05 2 7.3e-12 4.5 0

ENSMUSG00000025469 Msx3 9 1.5e-05 5 1.4e-11 19 1.7e-236

ENSMUSG00000074170 Plekhf1 10 1.5e-05 12 7.2e-11 4.5 0
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Figure 9. Venn Diagram of DE Gene Counts (Squadrito Data) 

This shows the number of DE Genes detected by the QuasiDE, NBQLSpline and 

edgeR methods, and their relationship. 
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Figure 10. Venn Diagram of DE Gene Counts (results from a randomly chosen 

simulated dataset with 25% true DE genes) 

The simulated dataset has the following settings: QN data, 2 experimental conditions 

with 5 samples in each condition and 20,000 genes. The diagram shows the number 

of DE Genes detected by the QuasiDE, NBQLSpline and edgeR methods, and their 

relationship. The number of true DE genes and true EE genes are shown in 

parenthesis. 
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Figure 11. P-values and Adjusted p-values by the QuasiDE, NBQLSpline and edgeR 
Methods (Squadrito Data) 

The panels in the first row show the distributions of the raw p-values by the QuasiDE, 

NBQLSpline and edgeR methods. The panels in the second row show the distributions 

of adjusted p-values by the QuasiDE, NBQLSpline and edgeR methods. 
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Figure 12. Comparison of the p-values and Adjusted p-values by the QuasiDE, 
NBQLSpline and edgeR Methods 

The panels in the left column show the p-values by the QuasiDE method vs. p-values by 

the NBQLSpline and edgeR methods on -log10 scale. The panels in the right column 

show the adjusted p-values by the QuasiDE method vs. adjusted p-values by the 

NBQLSpline and edgeR methods on -log10 scale. 
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filtering, there are 17,625 genes remaining for the DE analysis. The TMM normalization  

is subsequently applied and the data are analyzed by the QuasiDE, NBQLSpline, 

edgeR and DESeq methods. The result of the DESeq method is not shown since it has 

badly controlled FDR in simulation. 

The DE genes detected by the QuasiDE, NBQLSpline, and edgeR methods are 

compared in Figure 9. There are 7,972, 7,877, and 7,621 DE genes detected by the 

NBQLSpline, edgeR and QuasiDE methods respectively. In the original paper, the 

edgeR method was used and about 7,560 DE genes were identified. It is also 

interesting to compare this diagram with the corresponding diagram in simulation. For 

this purpose, 200 10-sample QN datasets are simulated with 25% DE ratio. One of 

these datasets is randomly chosen to show the DE genes detected by the QuasiDE, 

NBQLSpline, and edgeR methods. The simulation results of this dataset are shown in 

Figure 10.  In Figure 10, the true status of the detected DE genes is also shown. The 

set of DE genes claimed by all three methods appears to have the lowest error rate. 

The sets of DE genes claimed by only one method appear to have the largest error rate. 

Compared Figure 9 with Figure 10, the DE genes detected by all three methods in 

Figure 9 are mostly true DE genes. The top 10 DE genes identified by the QuasiDE 

method are listed in Table 5 with the corresponding rank and adjusted p-values by the 

other two methods. For these 10 genes, the edgeR method appears to have relatively 

smaller adjusted p-values. The distributions of p-values and adjusted p-values by the 

QuasiDE, NBQLSpline, and edgeR methods are shown in Figure 11. The distributions 

of the raw p-values of all three methods are similar. The NBQLSpline and edgeR 

methods appear to have more small adjusted p-values (< 0.05) than the QuasiDE  
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Table 6: Reported DE Genes and their Corresponding Results for the QuasiDE, 
NBQLSpline and edgeR methods (Squadrito Data) 

Gene 
QuasiDE NBQLSpline edgeR 

Rank 
Adjusted
p-value 

Rank
Adjusted
p-value 

Rank
Adjusted 
p-value 

Arg1 85 4.8e-05 16 2.8e-10 12 1.9e-257 

Retnla 5 1.0e-05 1 7.3e-12 4.5 0 

Chi3I3 1039 4.6e-04 1044 3.6e-06 1055 1.1e-18 

Ccl22 1442 8.0e-04 873 1.8e-06 572 5.1e-31 

Mrc1 6145 9.6e-03 4194 2.1e-03 3463 1.5e-05 

 

method.  

To explore the difference in small p-values (< 0.05) and small adjusted p-values (< 

0.05), the p-values and adjusted p-values of the QuasiDE, edgeR and NBQLSpline 

methods are further compared on -log10 scale between the QuasiDE method and the 

other two methods in Figure 12. The small p-values for the QuasiDE method are similar 

to those from the NBQLSpline method. The edgeR method produced more extreme 

small p-values. The adjusted p-values have a similar pattern. 

Those DE genes reported in the original paper (Squadrito et al., 2014) such as Arg1, 

Retnla, Chi3l3 (Ym1), Ccl22, and Mrc1 are also identified by all three methods. Their 

corresponding analysis results for the QuasiDE, NBQLSpline and edgeR methods are 

shown in Table 6. 

2.8.1 Impact of DE ratio 

The statistical methods have detected about 25% of the genes as DE genes in this 

study. The ratio is much higher than the 5% DE ratio used in the previous simulation. 

Here a small simulation has been conducted to understand the impact of DE ratio on 
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different statistical methods. In this simulation, sample size is chosen to be 10 and 

those DE genes are simulated to have 3-fold change between experimental conditions. 

The DE ratio is chosen to be 1%, 10%, 30%, 50%, 70%, and 90%. All the rest of the 

simulation settings are identical to the previous simulation. The impact on the QuasiDE 

method is shown in Figure 13. In Figure 13, the sensitivity increases with the DE ratio in 

all three types of data. In the QP and LN data, the real FDR decreases with the DE ratio  

and jumps to be above 5% at the DE ratio of 70%. In the QN data, the real FDR 

decreases with the DE ratio and jumps at the DE ratio of 70%, but not above 5%. When 

the DE ratio is round 25%, the real FDR appears to be overly controlled. The impact of 

the DE ratio on the NBQLSpline method is shown in Figure 14.  In Figure 14, the 

sensitivity also increases with the DE ratio in all three types of data. In the QP and LN 

data, the real FDR has a small increase and then decreases with the DE ratio. At the 

DE ratio of 70%, the real FDR jumps to be around 10%. In the QN data, the real FDR 

slightly increases with the DE ratio. At the DE ratio of 70%, the real FDR jumps to be 

around 10%. When the DE ratio is round 25%, the real FDR appears to be close to 

0.05. The impact of the DE ratio on the edgeR method is shown in Figure 15. The 

sensitivity also increases with the DE ratio in all three types of data. The real FDR 

decreases with the DE ratio. When the DE ratio is round 25%, the real FDR is at the 

level of 5% to 10%. This is close to the QuasiDE and NBQLSpline methods. The impact 

of the DE ratio on the DESeq method is shown in Figure 16. The sensitivity increases 

with the DE ratio as the other methods. The real FDR roughly decreases with the DE 

ratio. When the DE ratio is about 25%, the real FDR is around 10%.   
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Figure 13. Sensitivity and Real FDR by DE ratio for Different Types of Data (QuasiDE) 

The three panels in the first row show the sensitivity varying with DE ratio for the QP, 

QN and LN data respectively. The three panels in the second row show the real FDR 

varying with DE ratio for the QP, QN and LN data respectively. In the second row of 

panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 14. Sensitivity and Real FDR by DE ratio for Different Types of Data 
(NBQLSpline) 

The three panels in the first row show the sensitivity varying with DE ratio for the QP, 

QN and LN data respectively. The three panels in the second row show the real FDR 

varying with DE ratio for the QP, QN and LN data respectively. In the second row of 

panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 15. Sensitivity and Real FDR by DE ratio for Different Types of Data (edgeR) 

The three panels in the first row show the sensitivity varying with DE ratio for the QP, 

QN and LN data respectively. The three panels in the second row show the real FDR 

varying with DE ratio for the QP, QN and LN data respectively. In the second row of 

panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 16. Sensitivity and Real FDR by DE ratio for Different Types of Data (DESeq) 

The three panels in the first row show the sensitivity varying with DE ratio for the QP, 

QN and LN data respectively. The three panels in the second row show the real FDR 

varying with DE ratio for the QP, QN and LN data respectively. In the second row of 

panels, the red reference line is the nominal FDR we are willing to allow. 
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2.9 Discussion 

Analytically, a larger sample size, treatment effect or DE ratio tends to have a larger 

sensitivity for all four methods. For the real FDR, higher treatment effect tends to have a 

better controlled FDR for all four methods. The QuasiDE method tends to have a stable 

and well controlled FDR with a larger sample size. With a larger DE ratio (< 70%), the 

real FDR tends to be overly controlled. The NBQLSpline method has a worse FDR 

control when the data deviates from the NB distribution. In the QN data, the FDR is well 

controlled. The impact from a larger DE ratio is similar as the QuasiDE method. The 

edgeR method tends to have better controlled FDR in larger sample size in the QN 

data. In the data not NB distributed, the real FDR is worse controlled. With a larger DE 

ratio, the FDR tends to be better controlled. The DESeq method has a badly controlled 

FDR regardless of the sample size and data type. The impact from a larger DE ratio is 

similar as the edgeR method. 

The edgeR and DESeq methods all assume the NB distribution. Their performance is 

not quite good in the QP and LN data where this assumption is not met. In the QN data, 

the NBQLSpline method has the best performance and the real FDR is almost perfectly 

controlled. In the QP and LN data, the real FDR is not controlled as well as in the QN 

data. The reason is that the QN data meet the assumption of a quadratic variance 

function.  

For a real dataset, the distribution is unknown and may have a different underlying 

distribution other than the NB distribution. As a result, the assumptions in the edgeR, 

DESeq and NBQLSpline methods may be violated. The corresponding analysis might 
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be invalid. The advantage of the QuasiDE method is that it has similar sensitivity and 

real FDR for different types of data with different variance functions.  

Beyond the three variance functions reported, the data were also simulated using a 

cubic function and a logistic function as the variance function, which gave the similar 

results. For the simulated data with a more complicated variance function, the QuasiDE 

method may fail. So do the other methods. 

In the edgeR, DESeq and NBQLSpline methods, they all assume the NB distribution.  

When the data are not NB distributed, one possible way to make these methods robust 

is to use the robust pseudo-likelihoods, which offer the advantage of preventing the 

model misspecification effects. This was not explored in this dissertation. 

When sample size is very large and most genes are not DE genes, the sensitivities of 

all four methods will presumably increase. Based on the previous simulation results, the 

real FDRs for the QuasiDE and NBQLSpline methods may have good control in the QN 

and LN data. In the QP data, the control of FDR may become stable and need further 

simulation to explore. The real FDR for the edgeR method may get better control of 

FDR in the QP and QN data. In the LN data, the real FDR may still be stably high based 

on the existing simulation results. For the DESeq method, the FDR may still be badly 

controlled.  

The filtering method is important to all these statistical methods. With less stringent 

criteria, it might result in many false positives from those low expressed genes or genes 

with less variable expression. In a real analysis with many such positive genes in the 

result, one should be cautious. If those genes with low expression or less variable 

expression are of less interest, a more stringent filtering method can be applied. 
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In the simulation, a balanced design is assumed, that is, the sample size in each 

experimental condition is same. In RNA-seq experiment, it is very common to have 

sample imbalance. For example, the Dolatshad data are unbalanced. There are many 

factors causing the sample imbalance, such as the limit source of samples, budgetary 

constraints and reducing samples due to bad quality (Yang et al., 2006). In general, the 

balanced design is more powerful than the unbalanced design. The impact of mild 

imbalance on the power is negligible whereas the extreme imbalance can cause severe 

loss of the power. 

The data requirement of the QuasiDE method is not limited to the count data. It can be 

applied to any continuous number, for example, to microarray data or to the RPKM 

data.  Its performance in the RPKM data will be evaluated in Chapter 4.  

The NBQLSpline, edgeR and DESeq methods have been extended to a more 

complicated design (Lund et al., 2012; McCarthy et al., 2012; Anders et al., 2016). The 

QuasiDE method in this chapter is limited to a two-group design. The methodology is 

extended to a couple of other common study designs in the next chapter.  

2.10 Conclusion 

In this chapter, a new quasi-likelihood method is proposed. The proposed method has 

no distributional assumption. Therefore it has similar sensitivities and FDRs against 

different types of data with different variance functions compared with other existing 

methods. Moreover, the performance of the new method is also better than the existing 

methods in most situations: the sensitivity is approximately the same as other popular 

methods while it has the real FDR better controlled in most situations.  
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CHAPTER 3. QuasiDE in Other Study Designs 
 

3.1 Introduction 

Any good statistical analysis method for RNA-seq experiments should be sufficiently 

flexible to analyze a general experimental design such as the design with multiple 

experimental conditions, block design and factorial design. For example, linear models 

(Smyth, 2004) have been successfully applied in microarray data, which allows the 

analysis of a complex design. For the RNA-seq data analysis, extensions of the existing 

statistical methods have the same capability. This includes extensions of the edgeR, 

DESeq and NBQLSpline methods through generalized linear models (GLM). In this 

chapter, the QuasiDE method is extended to achieve similar flexibility.  

3.2 Statistical Methods Review 

3.2.1 edgeR 

McCarthy et al. (2012) extended the edgeR method to a more complex experimental 

design. Recall ௜ܲ௚ is the relative abundance of the ݃௧௛ gene in the ݅௧௛ experimental 

condition. The associated log-linear model is  

௜௝௚ሻሿݕሺܧሾ݃݋݈  ൌ ௜ܺ௝
௚ߚ் ൅ ௜௝൯ (28)ܮ൫݃݋݈

where ݈݃݋൫ ௜ܲ௚൯ ൌ ௜ܺ௝
௚,  ௜ܺ௝ߚ்

்  is a row in the design matrix corresponding to the ݆௧௛ 

sample in the ݅௧௛ experimental condition. ߚ௚ is the coefficient vector for the ݃௧௛ gene. If 

considering normalization, the effective library sizes are used. The NB dispersion 

parameter is estimated based on a complex design.  
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To estimate the NB dispersion parameter ߶௚ in a complex design, the adjusted profile 

likelihood (APL) method (Cox and Reid, 1987) is used. The APL for ߶௚ is the penalized 

log-likelihood: 

௚൫߶௚൯ܮܲܣ  ൌ ℓ൫߶௚; ,௜௝௚ݕ መ௚൯ߚ െ
1
2
ሺॎ௚ሻሿ (29)ݐሾ݀݁݃݋݈

where ߚመ௚ is the estimated coefficient vector in the NB GLM, ℓ is the log-likelihood 

function, ॎ௚is the Fisher information of gβ evaluated at  ߚመ௚ and ߶௚. The regression 

coefficient ߚ௚ is assumed to be orthogonal to ߶௚. The ߚመ௚ is the maximum likelihood 

estimate of gβ given ߶௚, which is also a function of ߶௚. 

It has been shown that empirical Bayes methods give more reliable estimates in 

microarray analysis (Smyth, 2004). In the RNA-seq data analysis, it is not possible to 

apply the empirical Bayes method directly since there is no conjugate prior distribution 

for the NB dispersion ߶௚. A weighted likelihood can be used instead to approximate the 

empirical Bayes strategy by sharing information across genes.  

As mentioned in the previous chapter, the NB dispersion parameter can be estimated 

from the data by assuming 1) all genes have a constant dispersion parameter; or 2) 

there is a trend between dispersion parameter and average count; or 3) the dispersion 

parameter is gene-specific. 

A common dispersion is the simplest way to share information across genes. The 

common dispersion is estimated by maximizing the common APL, which is defined as 

௖ሺ߶ሻܮܲܣ  ൌ
1
ܩ
෍ܮܲܣ௚ሺ߶ሻ

ீ

௚ୀଵ

 (30)

The common APL can be considered as a weighted likelihood where each gene has the 

same weight.  
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To estimate the trended dispersion, NB dispersion is modeled as a smooth function of 

gene-specific average expression level. The gene-specific average expression is 

calculated from the GLM using the common dispersion and the library size. All genes 

are then sorted by their average expression values. A locally shared APL for the ݃௧௛ 

gene is denoted as ܮܲܣ௦ሺ߶௚ሻ, which is a weighted average of APLs of the ݃௧௛ gene and 

the set of genes which have closest average expression values. The weight for gene ܽ 

in this gene set is determined by the tricube function ݓ௔ ൌ ሺ1 െ ௔|ଷሻଷ, where െ1ݔ| ൏

௔ݔ ൏ 1 represents the scaled difference in average expression values for genes ݃ and 

ܽ. This function assigns larger weight to those genes with expression level closer to the 

݃௧௛ gene. The trended dispersion for the ݃௧௛ gene can be estimated by maximizing 

  .௦ሺ߶௚ሻܮܲܣ

To esimtate the gene-specific dispersion, the dispersion for the ݃௧௛ gene is estimated by 

maximizing: 

௚ሺ߶݃ሻܮܲܣ  ൅ ௦ሺ߶݃ሻ (31)ܮܲܣ଴ܩ

where ܮܲܣ௦ሺ߶௚ሻ is the local shared log-likelihood and ܩ଴ is the weight to be optimized.  

These three types of dispersion estimation are implemented in functions 

estimateGLMCommonDisp, estimateGLMTrendedDisp, and estimateGLMTagwiseDisp 

respectively in R package edgeR. In this dissertation, the gene-specific NB dispersion is 

used in the edgeR method. 

With the Cox-Reid dispersion estimates, Fisher’s scoring iteration is used in the NB 

GLM method to estimate the parameter gβ . This could fail to converge in some 

datasets since it is not guaranteed to produce an increase in the likelihood function in 

each iteration. To ensure the convergence for all genes and all datasets, Fisher-scoring 



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

64 
 

algorithm has been enhanced by Levenberg damping modification (Osborne 1992; 

McCarthy et al., 2012). The new algorithm forces a reduction in the residual deviance in 

each iteration. The testing procedure uses the GLM likelihood ratio test, which is based 

on the NB GLM with the Cox-Reid dispersion estimates.  

The edgeR method can also be extended with quasi-likelihood theory. This is 

considered in Lund’s work (2012). In their work, the F statistic based on the quasi-

likelihood theory uses the quasi-likelihood dispersion estimated from Equation (14) to 

test DE genes. 

3.2.2 DESeq 

Recall that the raw count ݕ௜௝௚ is assumed to follow the NB distribution with mean ߟ௜௝ߜ௜௚, 

where ߟ௜௝ denotes the size factors for the ݆௧௛ sample in the ݅௧௛ experimental condition, 

 ௜௚ is a value proportional to the true concentration of the ݃௧௛ gene in the ݅௧௛ߜ

experimental condition. In a complex design, there are two approaches to estimate the 

NB dispersion parameter (Anders and Huber, 2016). The first approach is to estimate 

the gene-specific dispersion in each subgroup. The overall gene-specific dispersion is 

calculated as the weighted average of all these subgroup estimates (weight is the 

number of samples in each subgroup). The second approach is to estimate the gene-

specific dispersion by fitting the NB GLM to maximize the Cox-Reid adjusted profile 

likelihood. This method was developed by McCarthy et al. (2010) in the edgeR method. 

In the DESeq method, the expression for the Cox-Reid adjusted profile likelihood has 

been optimized and the weighted maximum likelihood method is not used. The second 

approach in dispersion estimation is typically used when there are no replicates in some 

of the subgroups. The first approach is used in this dissertation to estimate the gene-
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specific NB dispersion parameter in the DESeq method. A smooth curve is then fitted 

between the gene-specific dispersion ߙො௚ and ߜመ௚. The fitted values from this curve are 

used as dispersion estimates for inference.  

After NB dispersion estimation, the NB GLMs are fitted for the full model and the 

reduced model with log link. The two models are compared by the likelihood ratio test. 

This is implemented in function fitNbinomGLMs in R package DESeq. 

3.2.3 NBQLSpline 

The NBQLSpline method is a sub-approach in QuasiSeq R package assuming a 

quadratic variance function (Lund et al., 2012). Recall that the gene-specific NB 

dispersion parameters are estimated by the edgeR method. The default setting in the 

NBQLSpline method is to use the trended dispersion. In a complex design, the 

dispersion for the ݃௧௛ gene is estimated using local shared adjusted profile likelihood, 

which is a weighted average of APLs of the ݃௧௛ gene and the set of genes which have 

closest average expression levels. With the trended dispersion estimate, a NB GLM is 

fitted for each gene. The full model and the reduced model are compared with an F test, 

which is constructed using the quasi-deviance of these two models and a shrunken 

quasi-likelihood dispersion estimate (QLSpline). This is implemented in function QL.fit in 

R package QuasiSeq.  

3.3 QuasiDE Extension to a Complex Design 

In the QuasiDE method, the variance function is estimated by the within-group mean-

variance pairs. In a complex design, there might be more groups than in a simple two-

group design. The variance function is proposed to be estimated by the smooth cubic 

spline using the mean-variance pairs for the normalized counts in all subgroups. In the 
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experiment with two conditions, the GLM with the quasi-likelihood method is used. In a 

complex design, a GLM model can also be used through the quasi-likelihood method 

with the estimated variance function. Just as the experiment with two conditions, the 

GLM model with log link is used. The quasi-score function is as follows: 

 ܷ݃൫1݃ߚ, ,2݃ߚ … , ൯݃ܯߚ ൌ ऎࢍ
ࢍࢂܶ

െ1ሺࢍࢠ െ ሻ/Φ௚ (32)ࢍࣆ

where ܯ denotes the total number of regression coefficients in the GLM, ࢍࣆ is the 

expected normalized count in a specified model (any model includes the full model or 

the reduced model), ऎࢍ is ܰ ൈܯ matrix: 

 ऎࢍ ൌ

ۉ

ۈۈ
ۇ

ଵ௚ߤ߲
ଵ௚ߚ߲
⋮

ே௚ߤ߲
ଵ௚ߚ߲

ଵ௚ߤ߲
ଶ௚ߚ߲
⋮
ே௚ߤ߲
ଶ௚ߚ߲

⋯

⋱

⋯

ଵ௚ߤ߲
ெ௚ߚ߲
⋮
ே௚ߤ߲
یெ௚ߚ߲

ۋۋ
ۊ

 (33)

and ࢍࢂ is same as Equation (20) which is a ܰ ൈ ܰ diagonal matrix. 

The estimating equations ௚ܷ൫ߚଵ௚, ,ଶ௚ߚ … , ெ௚൯ߚ ൌ 0  are solved to obtain the coefficient 

estimates ߚመଵ௚, ,መଶ௚ߚ … ,  መெ௚. The fitted values for the full model and the reduced model areߚ

denoted as ̂ݖ௜௝௚,௙௨௟௟ and ̂ݖ௜௝௚,௥௘ௗ௨௖௘ௗ respectively. The implementation uses the glm 

function in R and the detailed R code is in Appendix A.  

The fitted values are then used to calculate the quasi-deviance. Suppose there are ܵ 

subgroups and the number of samples in the ݏ௧௛ subgroup is ௦ܰ.  The quasi-deviance 

for a specified model is: 

෩௚,௠௢ௗ௘௟ܦ  ൌ෍෍2න
௦௝௚ݖ െ ݐ
෠ܸሺݐሻ

௭ೞೕ೒

௭̂ೞೕ೒,௠௢ௗ௘௟
ݐ݀

ேೞ

௝ୀଵ

ௌ

௦ୀଵ

 (34)
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where ݖ௦௝௚ is the observed normalized count of the ݃௧௛ gene for the ݆௧௛ sample in the 

 is the fitted value of the ݃௧௛ gene for the ݆௧௛ sample in the ݈݁݀݋݉,௦௝௚ݖ̂ ௧௛ subgroup andݏ

 .௧௛ subgroup for a specified modelݏ

In an experiment with multiple conditions, the ANOVA-like comparison involves 

comparing the quasi-deviances of two models: the model with group means and the 

model with an overall mean. In a block design, the treatment effect is tested by 

comparing the quasi-deviances of two models: the model with both the treatment effect 

and the block effect and the model with the block effect only. In a factorial design, the 

effect of interaction is tested by comparing the quasi-deviances of two models: the 

model with both the main effects and an interaction effect and the model with the main 

effects only. For all these model comparisons, the test statistic is constructed as an F 

statistic Δܦ෩௚/ሺݍΦ෡௚ሻ, where Δܦ෩௚ is the difference of the quasi-deviances between the two 

models to be compared, ݍ is the difference of degrees of freedom between the two 

models, and Φ෡௚ is the dispersion estimated from Equation (25). The test statistic is 

compared with an F distribution with ݍ and ܰ െ  is the ݌ degrees of freedom, where ݌

number of parameters in the full model. In an experiment with multiple conditions, the 

full model is the model with group means. In an experiment with a block design, the full 

model is the model with both the treatment effect and block effect. In a factorial design, 

the full model is the model with both the main effects and interaction effect. 

3.4 Simulation 

To examine the performance of the QuasiDE method in a complex design, a series of 

simulations have been conducted.   
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Table 7: DE Patterns in Experiments with Multiple Conditions 

DE Pattern Name Subgroup Means 

EMC 1 ߤ, ,ߤ1.5  ߤ3

EMC 2 ߤ, ,ߤ2  ߤ2

Note: ߤ represents the average count randomly sampled from the 

within-group mean normalized counts in the Himes data. 

3.4.1 Experiments with Multiple Conditions (EMC) 

The data are simulated based on the three types of variance functions listed in Table 2. 

Sample sizes are chosen to be 15, 30, and 60, split evenly across the three 

experimental conditions. Simulated genes with zero total count are replaced with a new 

simulated gene. In each dataset, 20,000 genes are simulated and 5% of them are 

chosen to be DE (1000 DE and 19,000 EE genes). The DE genes are designed to have 

one of the patterns listed in Table 7. These two patterns are referred to as “EMC1” and 

“EMC2” hereafter. Compared with the EMC1, The EMC2 is believed to be more difficult 

to detect. In simulation, the average counts of three experimental conditions in Table 7 

are set in random order. In each scenario (per sample size, variance function, and DE 

pattern), 200 datasets are simulated. The rest of simulation is done the same as 

described in Section 2.6.  

3.4.2 Block Design 

The data are also simulated based on three types of variance functions listed in Table 2. 

Sample sizes are chosen to be 20, 40, and 80, split evenly across two experimental 

conditions and two blocks. Simulated genes with zero total count are replaced with a 
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Table 8: DE Patterns in those Genes with Treatment Effect in Block Design 

 Block 

Experimental 
Conditions 

Number 
of 

Genes 1 2 

Pattern 1 
 ߤ2 ߤ 1

75 
 ߤ4 ߤ2 2

Pattern 2 
 ߤ ߤ2 1

75 
 ߤ2 ߤ4 2

Pattern 3 
 ߤ4 ߤ2 1

75 
 ߤ2 ߤ 2

Pattern 4 
 ߤ2 ߤ4 1

75 
 ߤ ߤ2 2

Pattern 5 
 ߤ2 ߤ 1

350 
 ߤ2 ߤ 2

Pattern 6 
 ߤ ߤ2 1

350 
 ߤ ߤ2 2

Note: ߤ represents the average count randomly sampled from the 

within-group mean normalized counts in the Himes data.  

new simulated gene. In each dataset, 20,000 genes are simulated. Of all the genes, 5% 

of them are DE genes due to the treatment effect.  Of these genes, 30% of them are 

also DE genes due to the block effect. The treatment effect and block effect are all 

assumed to be two-fold change. The 5% DE genes having treatment effect are 

assigned to have one of the following patterns listed in Table 8. 

Of those genes with no treatment effect (19,000 genes), 30% of them are simulated as 

DE genes due to the block effect. Of these 30% of the genes, half of them are over-

expressed and half of them are under-expressed for the block effect. The rest of 

simulation is done the same as described in Section 2.6.  
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3.4.3 Factorial Design 

The data are also simulated based on three types of variance functions listed in Table 2. 

Sample sizes are chosen to be 20, 40, and 80, split evenly across two levels of factor 

one and two levels of factor two. Simulated genes with zero total count are replaced 

with a new simulated gene. In each dataset, 20,000 genes are simulated. Five percent 

of them are chosen to have true non-zero main effects and interaction; Five percent of 

them are chosen to have a true non-zero main effect for factor one only; Five percent of 

them are chosen to have a true non-zero main effect for factor two only; Five percent of 

them are chosen to have true non-zero main effects for both factors but no interaction. 

The rest of the genes have zero main effects and interaction. The main effects of Factor 

one and two are set as 1.5 and 2 fold changes respectively. The genes with both main  

Table 9: DE Patterns in those Genes with Main Effects and Interaction in Factorial 
Design 

 
Factor Two 

Factor One 

1 2 

Pattern 1 1 ߤ1.5 ߤ 

 ߤ4 ߤ2 2

Pattern 2 1 1.5ߤ ߤ 

 ߤ2 ߤ4 2

Pattern 3 1 4ߤ2 ߤ 

 ߤ ߤ1.5 2

Pattern 4 1 2ߤ4 ߤ 

 ߤ1.5 ߤ 2

Note: ߤ represents the average count randomly sampled from the 

within-group mean normalized counts in the Himes data.  
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Table 10: DE Patterns in those Genes with only Main Effects from both Factor One and 
Factor Two in Factorial Design 

 
Factor Two 

Factor One 

1 2 

Pattern 1 1 ߤ1.5 ߤ 

 ߤ3 ߤ2 2

Pattern 2 1 1.5ߤ ߤ 

 ߤ2 ߤ3 2

Pattern 3 1 3ߤ2 ߤ 

 ߤ ߤ1.5 2

Pattern 4 1 2ߤ3 ߤ 

 ߤ1.5 ߤ 2

Note: ߤ represents the average count randomly sampled from the 

within-group mean normalized counts in the Himes data.  

effects and interaction are randomly assigned one of the patterns listed in Table 9. The 

genes with the main effects from both factor one and two are designed to have one of 

the patterns in Table 10. In simulation, those genes with only one main effect are 

randomly assigned as over-expressed or under-expressed. The DE genes with the main 

effects and interaction effect in Table 9 are balanced among all the subgroups. The DE 

genes with two main effects are also balanced based on the four patterns in Table 10. 

The rest of simulation is done the same as described in Section 2.6. 

3.5 Simulation Results 

3.5.1 Experiments with Multiple Conditions 

The performance of the QuasiDE method in experiments with multiple conditions is 

shown in Figure 17. The performance is similar as in the setting of two experimental 

conditions. The sensitivity increases with sample size in all settings. The sensitivity to 
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Figure 17. Sensitivity and Real FDR by Sample Size for Different Types of Data 

(QuasiDE) in Design with Three Experimental Conditions 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. EMC1 and EMC2 are different designed DE patterns (Table 

7). In the second row of panels, the red reference line is the nominal FDR we are willing 

to allow. 
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Figure 18. Sensitivity and Real FDR by Sample Size for Different Types of Data 
(NBQLSpline) in Design with Three Experimental Conditions  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. EMC1 and EMC2 are different designed DE patterns (Table 

7). In the second row of panels, the red reference line is the nominal FDR we are willing 

to allow. 
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Figure 19. Sensitivity and Real FDR by Sample Size for Different Types of Data 
(edgeR) in Design with Three Experimental Conditions  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. EMC1 and EMC2 are different designed DE patterns (Table 

7). In the second row of panels, the red reference line is the nominal FDR we are willing 

to allow. 
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Figure 20. Sensitivity and Real FDR by Sample Size for Different Types of Data 
(DESeq) in Design with Three Experimental Conditions  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. EMC1 and EMC2 are different designed DE patterns (Table 

7). In the second row of panels, the red reference line is the nominal FDR we are willing 

to allow. 
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Figure 21. Sensitivity and Real FDR by Sample Size for Different Types of Data and 
Statistical Methods (edgeR, NBQLSpline and QuasiDE) in EMC1 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. The red, green and blue colors are used for edgeR, 

NBQLSpline and QuasiDE respectively. EMC1 is the designed DE pattern (Table 7). In 

the second row of panels, the red reference line is the nominal FDR we are willing to 

allow. 
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Figure 22. Sensitivity and Real FDR by Sample Size for Different Types of Data and 
Statistical Methods (edgeR, NBQLSpline and QuasiDE) in EMC2 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR in the same setting. The red, green and blue colors are used for edgeR, 

NBQLSpline and QuasiDE respectively. EMC2 is the designed DE pattern (Table 7). In 

the second row of panels, the red reference line is the nominal FDR we are willing to 

allow. 
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detect the EMC2 is lower than that to detect the EMC1 since the EMC1 is designed to 

be easier to detect compared with the EMC2. The real FDR is stable with different 

sample sizes. The real FDRs in the QN and LN data appear to be similar and the real 

FDRs in the QP data are slightly higher. In the QP data, the increase of FDR from 

sample size 15 to 30 is less than that increase from sample size 10 to 20 in simulation 

of two-condition experiments. This might be due to a larger total sample size.  

The performance of the NBQLSpline, edgeR and DESeq methods are shown in Figure 

18, 19 and 20. In Figure 18, the sensitivity of the NBQLSpline method has a similar 

pattern as the QuasiDE method. The real FDR increases with sample size in the QP 

and LN data. In the QN data, the real FDR is almost perfectly controlled. This is also 

observed in the simulation of an experiment with two conditions. The performance is still 

the best in the QN data since the QN data meets the assumption of quadratic variance 

function in the NBQLSpline method. In Figure 19, the sensitivities of the edgeR method 

show a similar pattern as the QuasiDE and NBQLSpline methods. The real FDR 

decreases with sample size in all three types of data. In the setting of sample size 60 in 

the QN data, the edgeR method has the real FDR almost perfectly controlled. In all 

other settings, it has worse controlled real FDRs than those from the QuasiDE and 

NBQLSpline methods. In Figure 20, the real FDRs of DESeq are very badly controlled 

with all observed FDRs greater than 0.3 despite the criterion that the FDR should be 

controlled at 0.05.  

The edgeR, NBQLSpline and QuasiDE methods are further compared in Figure 21 and 

22 for EMC1 and EMC2 respectively. In Figure 21, the QuasiDE method appears to 

have a slightly smaller sensitivity compared with the other two approaches. The real 
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FDRs of the QuasiDE method appear to be the best controlled among these three 

approaches in the QP and LN data. In the QN data, the NBQLSpline method has a 

better controlled real FDR. In Figure 22, the three approaches have similar patterns as 

shown in Figure 21. Overall, the QuasiDE method has the most similar sensitivities and 

FDRs across three types of data, which is similar as the results in experiments with two 

conditions. 

3.5.2 Block Design 

The performance of the QuasiDE method is compared with the NBQLSpline method in 

Figure 23. The sensitivity is about the same for these two approaches. The real FDR is 

better controlled for the QuasiDE method in the QP and LN data. In the QN data, the 

real FDRs of the NBQLSpline method are slightly better. This is not a surprise since the 

QN data perfectly meet the quadratic variance function assumption in the NBQLSpline 

method. The performance of the QuasiDE method is compared with the edgeR method 

in Figure 24. The sensitivities are similar for these two approaches. The QuasiDE 

method has better controlled real FDRs in almost all situations except when the sample 

size is 40 in the QN data. In that setting, the real FDRs of these two approaches are 

competitive. In the QN data with sample size 80, the edgeR method has overly 

controlled FDRs. The performance of the QuasiDE method is compared with the DESeq 

method in Figure 25. The sensitivity of the two approaches is about the same. The 

DESeq method has very badly controlled real FDR in all the simulation settings.  

Overall, the performance of the QuasiDE method is at least as good as the other three 

approaches in the block design simulation. The sensitivities are similar to those from the 

other three approaches in all settings. In most simulation settings, the QuasiDE method  
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Figure 23. Sensitivity and Real FDR by Sample Size for Different Types of Data 
(NBQLSpline vs. QuasiDE) in Block Design 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow.  
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Figure 24. Sensitivity and Real FDR by Sample Size for Different Types of Data (edgeR 
vs. QuasiDE) in Block Design 

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 25. Sensitivity and Real FDR by Sample Size for Different Types of Data (DESeq 
vs. QuasiDE) in Block Design  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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has a better controlled real FDR. In the rest simulation settings, the real FDR of the 

QuasiDE method is also competitive to those from the other three approaches. Just as 

the results in experiments with two conditions, the QuasiDE method has similar 

sensitivities and FDRs across the data with three types of variance functions. 

3.5.3 Factorial Design 

The performance of the QuasiDE method is compared with the NBQLSpline method in 

Figure 26. The sensitivities of the NBQLSpline method are slightly higher than those 

produced by the QuasiDE method in the QP and LN data. In the QN data, it is slightly 

complicated. The sensitivities of the NBQLSpline method are lower when the sample 

size is 20. When the sample size is 40, the sensitivities of the two approaches are about 

the same. When the sample size is 80, the QuasiDE method has a slightly lower 

sensitivity. The real FDRs of the QuasiDE method are better controlled in the QP and 

LN data. In the QN data, the NBQLSpline method appears to have similarly controlled 

FDR to those from the QuasiDE method. Similarly, as with the simulation in other 

designs, the NBQLSpline method has the best performance in the QN data since it 

meets the quadratic variance function assumption.  

The performance of the QuasiDE method is compared with the edgeR method in Figure 

27. The edgeR method loses sensitivity in QN data with sample sizes 20 and 40. The 

QuasiDE method has slightly higher sensitivities in almost all the simulation settings 

except in the LN data with sample size 20. The real FDRs of the QuasiDE method are 

consistently better controlled than those from the edgeR method in all the simulation 

settings.  
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Figure 26. Sensitivity and Real FDR by Sample Size for Different Types of Data 
(NBQLSpline vs. QuasiDE) in Factorial Design  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 27. Sensitivity and Real FDR by Sample Size for Different Types of Data (edgeR 
vs. QuasiDE) in Factorial Design  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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Figure 28. Sensitivity and Real FDR by Sample Size for Different Types of Data (DESeq 
vs. QuasiDE) in Factorial Design  

The three panels in the first row show the sensitivity varying with sample size for the 

QP, QN and LN data respectively. The three panels in the second row show the real 

FDR varying with sample size for the QP, QN and LN data respectively. In the second 

row of panels, the red reference line is the nominal FDR we are willing to allow. 
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The performance of the QuasiDE method is compared with the DESeq method in Figure 

28. The DESeq method also loses sensitivity in the QN data with sample size 20 and 

40. The QuasiDE method has slightly higher sensitivities in almost all the simulation 

settings except in the LN data with sample size 20. The DESeq method has very badly 

controlled FDRs even though they are aimed to be controlled at 0.05. 

Overall, the QuasiDE method has similar sensitivities and FDRs across the data with 

three types of variance functions. The performance is also at least as good as the other 

three methods. 

3.6 Case Studies 

There are three case studies in this section. The first case study is an experiment with 

three conditions. The second is an experiment with treatment and technical effects. The 

technical effect is treated as block effect. The third case study is in a factorial design 

and the research interest is to test the interaction between two binary factors. The 

QuasiDE, NBQLSpline, edgeR, and DESeq methods are used to analyze these three 

real studies and the results of the DESeq method are not shown since it has very badly 

controlled FDRs in simulation.  

3.6.1 Case Study 1 

The Dolatshad data (Dolatshad et al., 2015) are used to perform a real data analysis by 

comparing the gene expressions of bone marrow CD34+ cells among three groups:  

eight myelodysplastic syndrome patients with SF3B1 mutation, four myelodysplastic 

syndrome patients with no known splicing mutation and five healthy control patients. 

The research interest is to detect those genes differentially expressed at least in one 

group. The original dataset has 58,023 genes. After filtering, there are 29,375 genes to 
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be analyzed. There are 27,020 genes filtered due to both zero interquartile range and 

low mean count (≤ 1). There are 1,002 and 626 additional genes filtered due to zero 

interquartile range alone and low mean count (≤ 1) alone respectively.  

The DE genes detected by the QuasiDE, NBQLSpline, and edgeR methods are 

compared in Figure 29. The numbers of DE genes detected by the QuasiDE, 

NBQLSpline, and edgeR methods are 526, 339 and 863 respectively. The top 10 DE 

genes identified by the QuasiDE method are listed in Table 11 with the corresponding 

rank and adjusted p-values by the other two methods. In these 10 genes, the adjusted 

p-values by the NBQLSpline and the edgeR method are smaller than the QuasiDE 

method. The p-values and the adjusted p-values by all three methods are shown in 

Figure 30. The number of small p-values (< 0.05) by the QuasiDE method is much  

Table 11: Top 10 DE Genes Detected by the QuasiDE Method and their Corresponding 
Results in the NBQLSpline and edgeR Methods (Dolatshad Data) 

Ensembl Gene ID Gene 
QuasiDE NBQLSpline edgeR 

Rank
Adjusted
p-value 

Rank
Adjusted 
p-value 

Rank 
Adjusted
p-value 

ENSG00000113108 APBB3 1 9.4e-05 1 1.5e-08 50 1.5e-06

ENSG00000092621 PHGDH 2 3.9e-03 2 4.3e-08 7 3.0e-09

ENSG00000238608  3 7.7e-03 157 1.4e-04 523 1.5e-02

ENSG00000231476  4 9.8e-03 3 4.0e-07 172 4.2e-04

ENSG00000232931 LINC00342 5 9.8e-03 29 6.9e-06 228 1.2e-03

ENSG00000143839 REN 6 9.8e-03 60 2.3e-05 28 1.4e-07

ENSG00000006210  7 9.8e-03 72 3.2e-05 47 9.4e-07

ENSG00000224070 HMGN1P6 8 9.8e-03 95 4.9e-05 227 1.2e-03

ENSG00000124942 AHNAK 9 9.8e-03 4 4.3e-07 26 1.3e-07

ENSG00000230176 LINC01433 10 9.8e-03 17 4.1e-06 10 2.6e-08
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Figure 29. Venn Diagram of DE Gene Counts (Dolatshad Data) 

This shows the number of DE Genes detected by the QuasiDE, NBQLSpline and 

edgeR methods, and their relationship. 
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Figure 30. P-values and Adjusted p-values by the QuasiDE, NBQLSpline and edgeR 
Methods (Dolatshad Data) 

The panels in the first row show the distributions of the raw p-values by the QuasiDE, 

NBQLSpline and edgeR methods. The panels in the second row show the distributions 

of adjusted p-values by the QuasiDE, NBQLSpline and edgeR methods. 
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Figure 31. Comparison of the p-values and Adjusted p-values by the QuasiDE, 
NBQLSpline and edgeR Methods (Dolatshad Data) 

The panels in the left column show the p-values by the QuasiDE method vs. p-values by 

the NBQLSpline and edgeR methods on -log10 scale. The panels in the right column 

show the adjusted p-values by the QuasiDE method vs. adjusted p-values by the 

NBQLSpline and edgeR methods on -log10 scale. 
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Table 12: Reported DE Genes and their Corresponding Results for the QuasiDE, 
NBQLSpline and edgeR methods (Dolatshad Data) 

Gene 
QuasiDE NBQLSpline edgeR 

Rank 
Adjusted
p-value 

Rank
Adjusted
p-value 

Rank
Adjusted 
p-value 

ALAS2 133 2.2e-02 87 1.3e-02 43 6.2e-07 

ABCB7 42 1.5e-02 91 1.4e-02 390 6.2e-03 

 

larger than the other two approaches. After multiple comparison correction, the number 

of small adjusted p-values (<0.05) by the edgeR method is the largest. The small p-

values and adjusted p-values are further compared on the -log10 scale between the 

QuasiDE method and the other two methods in Figure 31. The small p-values (< 0.05) 

from the QuasiDE method appear to be similar to those from the NBQLSpline method. 

The edgeR method produced more extreme small p-values. The adjusted p-values have 

a similar pattern.  

In the original paper (Dolatshad et al., 2015), the edgeR method was used to detect DE 

genes. The DE genes reported such as ALAS2 and ABCB7 are also identified by all 

these three methods. Their corresponding analysis results for the QuasiDE, 

NBQLSpline and edgeR methods are shown in Table 12.  

3.6.2 Case Study 2 

The Bottomly data (Bottomly et al., 2011) are used to perform a real data analysis by 

comparing the gene expression between two mouse inbred strains. This dataset 

contains RNA-seq profiling of 10 B6 and 11 D2 inbred mice. There are three separate 

experiments: two experiments both include three B2 and four D2 inbred mice and the 

third experiment includes four B2 and three D2 inbred mice. The data have been  
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Table 13: Top 10 Genes with Treatment Effect Detected by the QuasiDE Method and 
their Corresponding Results in the NBQLSpline and edgeR Methods (Bottomly Data) 

Ensembl Gene ID 
QuasiDE NBQLSpline edgeR 

Rank
Adjusted
p-value 

Rank
Adjusted
p-value 

Rank 
Adjusted
p-value 

ENSMUSG00000028009 1 8.7e-10 47 1.9e-09 79 1.4e-16

ENSMUSG00000015484 2 8.7e-10 4 5.7e-14 4 4.7e-73

ENSMUSG00000035775 3 9.5e-10 1 5.7e-14 2 2.8e-77

ENSMUSG00000037461 4 9.5e-10 35 2.7e-10 40 7.6e-26

ENSMUSG00000024248 5 3.2e-09 5 1.2e-13 5 4.2e-66

ENSMUSG00000023236 6 4.1e-09 3 5.7e-14 6 6.9e-66

ENSMUSG00000030532 7 5.8e-09 10 4.0e-12 13 2.7e-43

ENSMUSG00000067235 8 5.9e-09 44 1.4e-09 94 1.6e-15

ENSMUSG00000027855 9 6.9e-09 8 3.6e-12 23 2.0e-36

ENSMUSG00000068299 10 8.5e-09 16 6.8e-12 18 1.7e-40

 
analyzed by taking the experiment number as the block effect. The RNA-seq data in the 

original study is used mainly to compare the RNA-seq platform with the microarray 

platform. The original dataset has 36,536 genes. After filtering, there are 10,908 genes 

to be analyzed. The majority 24,567 genes are filtered by both zero interquartile range 

and low mean count (≤ 1). There are an additional 1,061 genes filtered by low mean 

count (≤ 1) alone.  

The genes with treatment effect detected by the QuasiDE, NBQLSpline, and edgeR 

methods are compared in Figure 32. The NBQLSpline, edgeR, and QuasiDE methods 

have detected 1,781, 1,983 and 1,640 genes with the treatment effect respectively. The 

top 10 genes with the treatment effect detected by the QuasiDE method are listed in 

Table 13 with the corresponding rank and adjusted p-values by the other two  
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Figure 32. Venn Diagram of DE Gene Counts (Bottomly Data) 

This shows the numbers of DE Genes detected by the QuasiDE, NBQLSpline and 

edgeR methods, and their relationship. 
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Figure 33. P-values and Adjusted p-values by the QuasiDE, NBQLSpline and edgeR 
Methods (Bottomly Data) 

The panels in the first row show the distributions of the raw p-values by the QuasiDE, 

NBQLSpline and edgeR methods. The panels in the second row show the distributions 

of adjusted p-values by the QuasiDE, NBQLSpline and edgeR methods.  
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Figure 34. Comparison of the p-values and Adjusted p-values by the QuasiDE, 
NBQLSpline and edgeR Methods (Bottomly Data) 

The panels in the left column show the p-values by the QuasiDE method vs. p-values by 

the NBQLSpline and edgeR methods on -log10 scale. The panels in the right column 

show the adjusted p-values by the QuasiDE vs. adjusted p-values by the NBQLSpline 

and edgeR methods on -log10 scale. 
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approaches. For these 10 genes, the edgeR method has much smaller adjusted p-

values than the other methods. The p-values and the adjusted p-values by all three 

methods are shown in Figure 33. The numbers of small p-values (< 0.05) by all three 

methods are similar. After multiple comparison correction, the edgeR method has the 

highest number of small adjusted p-values (< 0.05). The small p-values and adjusted p-

values are further compared on -log10 scale between the QuasiDE method and the 

other two methods in Figure 34. The small p-values (< 0.05) from the QuasiDE method 

also appear to be similar to those from the NBQLSpline method. More extreme small p-

values are produced by the edgeR method.  The adjusted p-values have a similar 

pattern. 

3.6.3 Case Study 3 

The Zhang data (Zhang et al., 2015) are used to perform a real data analysis by  

Table 14: Top 10 Genes with Interaction Detected by the QuasiDE Method and their 
Corresponding Results in the NBQLSpline and edgeR Methods (Zhang Data) 

Ensembl Gene ID 
QuasiDE NBQLSpline edgeR 

Rank
Adjusted
p-value 

Rank
Adjusted
p-value 

Rank 
Adjusted
p-value 

ENSRNOG00000001205 1 6.6e-05 5 2.4e-04 29 2.8e-06

ENSRNOG00000007060 2 6.6e-05 1 6.6e-06 3 2.2e-21

ENSRNOG00000025167 3 1.6e-04 13 8.5e-04 79 4.9e-04

ENSRNOG00000056457 4 3.4e-04 3 5.1e-05 4 1.3e-15

ENSRNOG00000039862 5 4.9e-04 184 2.8e-02 800 3.2e-01

ENSRNOG00000011789 6 4.9e-04 7 2.4e-04 20 9.9e-07

ENSRNOG00000019077 7 4.9e-04 26 1.4e-03 120 2.4e-03

ENSRNOG00000019372 8 4.9e-04 29 1.8e-03 174 9.2e-03

ENSRNOG00000009867 9 4.9e-04 23 1.1e-03 85 7.0e-04

ENSRNOG00000005589 10 4.9e-04 12 8.4e-04 63 2.5e-04
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Figure 35. Venn Diagram of Gene Counts with Interaction (Zhang Data) 

This shows the numbers of genes with interaction detected by the QuasiDE, 

NBQLSpline and edgeR methods, and their relationship. 

  



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

99 
 

 

 

 

 

Figure 36. P-values and Adjusted p-values by the QuasiDE, NBQLSpline and edgeR 
Methods (Zhang Data) 

The panels in the first row show the distributions of the raw p-values by the QuasiDE, 

NBQLSpline and edgeR methods. The panels in the second row show the distributions 

of adjusted p-values by the QuasiDE, NBQLSpline and edgeR methods. 
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Figure 37. Comparison of the p-values and Adjusted p-values by the QuasiDE, 
NBQLSpline and edgeR Methods (Zhang Data) 

The panels in the left column show the p-values by the QuasiDE method vs. p-values by 

the NBQLSpline and edgeR methods on -log10 scale. The panels in the right column 

show the adjusted p-values by the QuasiDE method vs. adjusted p-values by the 

NBQLSpline and edgeR methods on -log10 scale. 
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comparing the gene expression between two different cells treated with or without 

pioglitazone. The oncogenic PAX8-PPARG fusion protein (PPFP) in thyroid carcinomas 

is caused by a chromosomal translocation. In the study, PPFP was expressed in 

PCCL3 rat thyroid cells. The PPFP-dependent gene expression was studied. The 

comparison is between six PPFP cells and six empty cells. Half of the six PPFP cells 

and half of the six empty cells are treated with pioglitazone. The research interest is to 

detect those genes which have the interaction between cell type and treatment. The 

original dataset has 16,816 genes. After filtering, there are 11,586 genes to be 

analyzed. There are 4,333 genes filtered due to both zero interquartile range and low 

mean count (≤ 1). In addition, there are 897 genes filtered by low mean count (≤ 1) 

alone. The genes with interaction detected by the QuasiDE, NBQLSpline, and edgeR 

methods are compared in Figure 35. The edgeR, NBQLSpline, and QuasiDE methods 

have detected 292, 272, and 250 genes with interaction respectively. The top 10 DE 

genes with interaction identified by the QuasiDE method are listed in Table 14 with the 

corresponding rank and adjusted p-values by the other two approaches. Of these 10 

genes, the fifth gene has been detected as a gene with interaction by the QuasiDE and 

NBQLSpline methods but not by the edgeR method. The p-values and adjusted p-

values by all the three methods are shown in Figure 36. The number of small p-values  

 (< 0.05) by the QuasiDE and NBQLSpline methods are higher than the edgeR method. 

After multiple-comparison correction, the numbers of small adjusted p-values (< 0.05) of 

all three methods are similar. The small p-values and small adjusted p-values (< 0.05) 

are further compared on -log10 scale between the QuasiDE method and the other two 

methods in Figure 37. The p-values of the QuasiDE method appear to be similar to 
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those from the NBQLSpline method. The edgeR method produced more extreme small 

p-values. The adjusted p-values have a similar pattern. 

The analysis in the original paper (Zhang et al., 2015) focused on pair-wise 

comparisons between subgroups. There are no DE genes found between the empty 

cells treated with or without pioglitazone. There are 250 DE genes detected between 

PPFP cells treated with and without pioglitazone.  

3.7 Discussion 

In this chapter, the QuasiDE method is extended to three types of designs: design with 

multiple experimental conditions, block design and factorial design. The QuasiDE 

method can also potentially adapt to other complex designs. There are numerous other 

complex designs in the literature such as matched pairs design and time course design. 

In matched pairs design, the differences in expression between pairs are typically 

analyzed to test if the difference is zero. The number of groups in this case reduces to 

one group. The variance function can be estimated by the mean-variance pairs of these 

gene expression differences. The quasi-likelihood F statistic can be constructed 

accordingly. In the time course design, the time covariate can be considered as a 

continuous covariate by the QuasiDE method. Using the QuasiDE method in a complex 

design, the linear predictor is log൫ࢍࣆ൯ ൌ ଵ௚ߚ ൅ ଶ௚ߚ ଵܺ ൅ ⋯൅ ,ெ௚ܺெ, where ଵܺߚ ܺଶ, … , ܺெ 

are the covariates. The covariates can be either categorical or continuous. There is no 

problem to include a continuous covariate in the QuasiDE method. However, the way to 

estimate the variance function adjusting for a continuous covariate may need careful 

consideration. The options might be to develop an estimation procedure to adjust for a 

continuous covariate. The generalized additive model can be considered. The variance 
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function can possibly be estimated using smooth cubic spline adjusting for a continuous 

covariate. If the time can be modeled as a factor, the impact from time in this situation 

can be easily taken into account in estimating variance function, in which the mean-

variance pairs in all the subgroups can be used.  

With numerous possible designs, the current extension of the QuasiDE method to three 

common designs is just a start.  

3.8 Conclusion 

In this chapter, the QuasiDE method is adapted to some common study designs: design 

with multiple experimental conditions, block design and factorial design. In simulation, 

the same advantages have been found as in experiments with two conditions: the 

sensitivity is about the same as other popular methods while the real FDR is better 

controlled in most situations. The sensitivities and FDRs are more similar across 

different types of data with different variance functions than those from the other 

methods. Also, it is promising to be applied in some other complex designs. 
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CHAPTER 4. Statistical Analysis of the RPKM Data 

4.1 Background 

The RNA-seq read count is associated with two important factors: the gene length and 

the library size. It is obvious that more reads will be produced from longer transcripts. 

To adjust for the gene length, a simple gene-wise normalization is to divide the number 

of reads by the gene length and then multiply it by a constant 10ଷ. On the other hand, if 

a larger number of reads are obtained in the experiment for a specific biological sample 

(library size), the number of reads for each gene will be proportionally larger. To adjust 

for this factor, a simple sample-wise normalization is to divide the number of reads by 

the associated library size and then multiply it by a constant 10଺.  Reads per kilobase 

per million mapped reads (RPKM) combines the above two adjustments and facilitates 

comparisons between samples (Dillies et al., 2012). The RPKM of the ݃௧௛gene for the 

݆௧௛ sample in the ݅௧௛ experimental condition is defined as 

௜௝௚ܯܭܴܲ  ൌ ௜௝௚ݕ
103

݆݃݅ߣ

106

݆݅ܮ
ൌ
௜௝௚ݕ
௜௝௚ߣ

10ଽ

௜௝ܮ
 (35)

where ߣ௜௝௚ denotes the gene length of the ݃௧௛ gene for the ݆௧௛ sample in the ݅௧௛ 

experimental condition. Wagner et al. (2012) found that RPKM is not a consistent 

measure of mRNA abundance. With this finding, researchers focused more on 

developing a statistical method using the raw read counts. These include two methods 

implemented in R packages edgeR (Robinson et al., 2012) and DESeq (Anders et al., 

2010) and a quasi-likelihood approach implemented in R package QuasiSeq (Lund et 

al., 2012). The first two methods assume a NB distribution and the QuasiSeq method 

assumes a linear or quadratic variance function. When the comparison is between 

samples in different experimental conditions and the gene length is fixed, the effect of 
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gene length will usually cancel out in statistical analysis. However, there are cases 

where researchers are interested in making comparisons between similar genes in 

different species (Reid et al., 2012). In this situation, the gene length is different for most 

orthologs. Even when the comparison is among biological samples of the same species, 

the gene length may be varied for the same gene among these samples due to 

mutation, insertion or other mechanisms. In this case, the gene length may be different 

to a low or moderate extent. When the gene length is different among samples, 

normalization using the gene length becomes necessary. The RPKM value is able to 

correct the impact from both the library size and the gene length and facilitates the 

comparisons in this situation. In addition, the RPKM value is a popular choice in 

practical applications (Mortazavi et al., 2008) especially for biologists. The proper 

methods to conduct the DE analysis based on the RPKM data remain unclear in the 

literature.  

An example of RPKM data from Reid et al. (2012) is shown in Table 15. In this dataset, 

the samples are from two different, but closely related, species of parasites: 

Toxoplasma gondii and Neospora caninum. There are eight independent Toxoplasma 

gondii samples and six independent Neospora caninum samples. In cell culture, the 

parasites were grown asynchronously for a period of six days. RNAs were taken from 

each two Toxoplasma gondii samples at day 2, 3, 4 and 6. RNAs were taken from each 

two samples of Neospora caninum at day 3, 4 and 6. These RNA samples were 

sequenced on an Illumina GAIIx machine. The research interest is to detect those 

orthologs which have an interaction effect between species and time. 
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Table 15: Example of an RNA-seq RPKM Dataset 

(Reid et al., 2012) 

Day Species 
Sample  

No 

Orthologs 

NCLIV_000010* 

TGME49_092920**

NCLIV_000020 

TGME49_092930 

… 

… 

2 
Toxoplasma  

gondii 

1 59.8 0.4 … 

2 37.1 0.1 … 

3 

Neospora 

caninum 

1 30.9 0 … 

2 22.7 0 … 

Toxoplasma  

gondii 

1 52.9 0.4 … 

2 45.8 0.3 … 

4 

Neospora 

caninum 

1 28.1 0 … 

2 22.3 0.1 … 

Toxoplasma  

gondii 

1 24.9 1.3 … 

2 24.9 0.5 … 

6 

Neospora 

caninum 

1 33.8 0 … 

2 25.1 0 … 

Toxoplasma  

gondii 

1 37.9 0.3 … 

2 32.7 0.1 … 

*    Neospora caninum gene ID 

**   Toxoplasma gondii gene ID 

The distributions of the raw count data and RPKM data on log scale are compared in 

Figure 38 using one sample of Neospora caninum and one sample of Toxoplasma 

gondii at day 3. The percent of zero values for these two samples are all lower than 2%. 

The ranges of the raw count data and the RPKM data are quite different.  

Theoretically, RPKM can also be thought of as a normalization method. Preprocessing 

RPKM data may include filtering and further normalization. The filtering method under 

consideration is to remove those genes with zero interquartile range in the RPKM data  
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Figure 38. Histogram of Raw Count Data and RPKM Values on log scale (One sample 
in each of two Species on Day 3, Reid Data) 
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or with low mean RPKM value (≤ 1). Since the range of RPKM values is quite different 

from the range of the raw count data, the filtering method is chosen to only remove 

those genes with zero interquartile range in the RPKM data. For further normalization, 

the RPKM data are either used directly without further normalization or are normalized 

by the existing methods not originally developed for the RPKM data. In the next section, 

the normalization methods applicable to the RPKM data are described as well as the 

applicable statistical methods. The comparison among these normalization and 

statistical methods is made in a simulation. In this chapter, a completely randomized 

design with two experimental conditions is assumed.  

4.2 Normalization Methods 

Many normalization methods have been proposed in the literature for the RNA-seq data 

and microarray intensity data. For the RPKM data, at least seven methods were found 

applicable to the RPKM data regardless of whether they are designed for the RNA-seq 

data or for microarray intensity data. These normalization methods are introduced 

below: 

4.2.1 TMM 

In this method, normalization factors are calculated as weighted Trimmed Mean of M-

values. This method is described in Section 2.2.  

4.2.2 RLE 

In this method (Anders et al., 2010), a reference sample is calculated as the geometric 

mean of each gene across all samples. Normalization factors are the median of the 

ratios between the sample to be normalized and the reference sample. Since the genes 
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with zero count will result in zero geometric mean for those genes in the reference 

sample, the ratios between the sample to be normalized and the reference sample for 

those genes become not evaluable. To calculate the normalization factors, genes with 

zero counts are not used in the calculation. This method is referred to as Relative Log 

Expression (RLE).  

4.2.3 UQ 

In this method (Bullard et al., 2010), the raw count data are scaled by their associated 

library size first. Normalization factors are the upper quartiles of the scaled data for each 

sample. This normalization method is referred to as Upper Quartile (UQ). 

4.2.4 Scaling 

In this method (Affymetrix, 2001), all samples are scaled to have the same median. The 

median of all genes for each sample is calculated first. The geometric mean of these 

sample-specific medians is used as common median. The scale factor in each sample 

is calculated as the sample-specific median divided by the common median. The genes 

in each sample are then divided by this sample-specific scale factor.  

4.2.5 Quantile 

The quantile normalization (Bolstad et al., 2003) imposes the same empirical 

distribution to each sample. Within each sample, the raw data are sorted first. The 

empirical distribution is obtained by the arithmetical means of the sorted values with the 

same rank across all samples. To impose this distribution to each sample, the raw data 

of each sample are replaced by the values in the empirical distribution with the same 

rank.  
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4.2.6 Cyclic Loess 

In each cycle, the loess normalization (Yang et al., 2002) is applied to all possible pairs 

of samples. The raw values of two samples are first log transformed. The M-values and 

A-values of the raw values are calculated. A loess curve is then fitted between M-values 

and A-values. The differences between the fitted M-values and raw M-values ∆ܯ௚ are 

calculated. The log transformed raw values for the first sample are adjusted by adding 

 ௚/ܰ. The log transformed raw values for the second sample are adjusted byܯ∆

reducing ∆ܯ௚/ܰ. The adjusted values are reverted to the original scale. The procedure 

iterates until convergence or the maximum number of iterations is reached. The 

convergence is measured by how much additional adjustment on that iteration.   

4.2.7 Invariant Set 

This method (Li and Wong, 2001) also works in a pairwise manner. In a pair of samples, 

one sample is used as reference. The raw values in each sample are ranked. Those 

genes with similar rank across the two samples are selected. A cubic smooth spline is 

fitted using the raw values of these selected genes between the sample to be 

normalized and the reference sample. The raw values of the sample to be normalized 

are replaced by the fitted values of the estimated spline.  

The TMM, RLE and UQ methods are devised for the RNA-seq count data and 

applicable to the RPKM data. They are implemented in R package edgeR. To apply 

these methods to the RPKM data, the RPKM data are divided by their normalization 

factors. The scaling, quantile, cyclic loess, and invariant set methods were initially 

devised for microarray intensity data and are also applicable to the RPKM data. They 

are implemented in R package limma.  
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4.3 Statistical Methods 

Two methods are found applicable to analyze the continuous RPKM data directly. They 

are the LIMMA (Smyth, 2004) method and the QuasiDE method. It is also of interest to 

understand the difference in analyzing the RPKM data and analyzing the raw count data 

with different normalization methods other than RPKM if RPKM is considered as a 

normalization method. When the gene length is the same across samples, the gene 

length effect will cancel out by using these two statistical methods. One of the proper 

preprocessing methods on the raw count data uses the filtering method and the 

normalization method in Chapter 2. The raw count data are filtered by zero interquartile 

range or low mean count (≤ 1). The data after filtering is normalized by the TMM 

method. When the gene length is not fixed across samples, the proper preprocessing 

method on raw count data has not been studied. In this setting, two approaches are 

proposed to do the preprocessing. The first approach is to do the same preprocessing 

as if the gene length is fixed across samples. Using this preprocessing, the 

consequence of ignoring the gene length can be studied. In the second approach, the 

raw count data will be filtered by zero interquartile range or low mean count (≤ 1). After 

filtering, the raw count data is firstly corrected by the gene length (the raw count data is 

divided by the associated gene length and multiplied by a constant 10ଷ). The data is 

then normalized by the TMM method. The performance of the second approach is 

studied in simulation later in this chapter.  

The analysis of the raw count data with the normalization other than RPKM is only 

possible when the raw count data is available. This is used to compare with the analysis 

of the RPKM data, which assumes only the RPKM data available. The edgeR method is 
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not able to analyze the continuous RPKM data but is able to analyze the raw count data 

adjusting for the impact from the library size and the gene length in a GLM model. It is 

also included for comparison purpose.  

4.3.1 LIMMA 

The method was originally developed in Smyth (2004) for the continuous intensity data 

in microarray experiments but is also applicable to the RPKM data. For the RPKM data 

in two experimental conditions, the ordinary ݐ statistic is 

ݐ  ൌ
തതതതതതതതതଵ௚ܯܭܴܲ െ തതതതതതതതതଶ௚ܯܭܴܲ

s௚,ோ௉௄ெ/√ܰ
 (36)

where ܴܲܯܭതതതതതതതതതଵ௚and ܴܲܯܭതതതതതതതതതଶ௚ are the mean RPKM values of the ݃௧௛ gene in experimental 

condition 1 and 2, and ݏ௚,ோ௉௄ெ is the pooled standard deviation for the ݃௧௛ gene. In the 

case of small sample size, the estimate of ݏ௚,ோ௉௄ெ may not be reliable. To come up with 

a more reliable estimate, ݏ௚,ோ௉௄ெ is moderated by the empirical Bayes approach which 

borrows information from the other genes. 

The statistic proposed in the LIMMA method is the moderated ݐ statistic: 

݀݁ݐܽݎ݁݀݋ܯ  ݐ ൌ
തതതതതതതതതଵ௚ܯܭܴܲ െ തതതതതതതതതଶ௚ܯܭܴܲ

ܰ√/௚,ோ௉௄ெݏ̃
 (37)

where ̃ݏ௚,ோ௉௄ெ is the gene-specific posterior standard deviation, in which ̃ݏ௚,ோ௉௄ெ
ଶ  is a 

weighted average of ݏ௚,ோ௉௄ெ
ଶ  and a global prior variance estimate ݏ଴,ோ௉௄ெ

ଶ . The raw 

variances of each gene are shrunken to the global prior estimate. The assumptions in 

the LIMMA method are that the data follow the normal distribution and the moderated ݐ 

statistics follows the ݐ distribution with the degrees of freedom estimated from the data. 

To make the LIMMA method applicable to the RPKM data, the RPKM data are assumed 
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to have a normal distribution. To adjust for multiple comparisons, the Benjamini and 

Hochberg procedure is used in the LIMMA method (Benjamini and Hochberg, 1995).  

The performance will be evaluated in simulation later in this chapter. In simulation, the 

LIMMA method is used as a method to analyze the RPKM data. In addition, the LIMMA 

method will also be used to compare the analysis of the RPKM data and the analysis of 

the raw count data with normalization other than RPKM. 

4.3.2 QuasiDE 

This approach was introduced in Chapter 2. It was initially designed for the normalized 

count data but is also applicable to the RPKM data. In this chapter, it is used to analyze 

the RPKM data. Just as the LIMMA method, it will also be used to compare the analysis 

of the RPKM data and the analysis of the raw count data with normalization other than 

RPKM. 

4.3.3 edgeR 

To adjust for the library size ݆݅ܮ and gene length ߣ௜௝௚ in the edgeR method, the following 

log-linear model is used:  

 logሾܧሺݕ௜௝௚ሻሿ ൌ ௜ܺ௝
௚ߚ் ൅ log൫ܮ௜௝൯ ൅ log൫ߣ௜௝௚൯ െ

∑ log൫ߣ௜௝௚൯ீ
௚ୀଵ

ܩ
 (38)

where ௜ܺ௝
்	is the design matrix and	ߚ௚		is a vector of regression coefficients for the ݃௧௛ 

gene. Only the TMM normalization is considered for the edgeR method in this chapter. 

To apply the TMM normalization, the effective library sizes, which are the TMM 

normalization factors time the corresponding library sizes, are used in Equation (38) 

instead of the original library sizes. The raw count data are assumed to follow the NB 

distribution specified in Equation (2).  



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

114 
 

In the GLM framework, the NB dispersion parameter ߶௚ can be estimated by assuming: 

1) all genes have a constant dispersion parameter through Equation (30); or 2) there is 

a trend between dispersion parameter and average count; or 3) the dispersion 

parameter is gene-specific through Equation (31). The Cox-Reid profile-adjusted 

likelihood method is used in estimating these dispersion parameters. The statistical test 

is the likelihood ratio test, which is obtained from fitting NB GLM models. In this 

dissertation, the dispersion parameter is considered gene-specific when using the 

edgeR method. The edgeR method is not designed for the RPKM data but is able to 

analyze the raw count data adjusting for the gene length and the library size in a GLM 

framework. On the contrary, the two other statistical methods are able to analyze the 

RPKM data directly. 

4.4 Simulation 

A simple balanced study design with two experimental conditions is assumed in 

simulation. To examine the performance of the normalization and statistical methods, a 

series of simulations have been conducted. The data are also simulated using the three 

variance functions (Table 2). Sample sizes were chosen to be 10, 20, and 40, split 

evenly between two treatment groups. Simulated genes with zero total count were 

replaced with a new simulated gene. Gene length is randomly selected from the human 

gene lengths from the University of California Santa Cruz (UCSC) database (Kent et al., 

2002; Rosenbloom et al., 2015). In each dataset, there are 20,000 genes simulated and 

5% of them are randomly chosen as DE genes. The treatment effects of DE genes were 

set to be constant as the fold change of 1.5 or 3 which represent low and high treatment 

effect respectively. Gene length is set to be either fixed or varied across experimental 
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conditions. In each scenario (3 variance functions x 3 sample sizes x 2 treatment effects 

x 2 gene length settings = 36), 200 datasets were simulated. For the DE genes, half of 

them are simulated as over-expressed and half of them are simulated as under-

expressed. The RPKM data were simulated as follows: First, the average count for each 

gene was randomly sampled from the within-group mean normalized count in the Himes 

data. The average count was then assigned to all samples. If the gene is over-

expressed, the average count multiplied by the treatment effect will be assigned to the 

samples in the second treatment group. If the gene is under-expressed, the average 

count divided by the treatment effect will be assigned to the samples in the second 

treatment group. The next step is to modify the average count further by multiplying a 

random scale factor which mimics the library size effect. This random factor is two to the 

power of a normal random variable with mean 0 and standard deviation 0.5. The 

average count is further modified by multiplying the randomly selected gene length. 

Only one gene length is randomly selected for each gene. In a varied gene length 

setting, the gene lengths of the orthologs are assumed to be different to a low or 

moderate extent. The gene length in the second condition is modified by a random 

scale factor, which is two to the power of a normal random variable with mean 0 and 

standard deviation 1/3. The modified average count is then divided by a constant 10ଷ. 

With this scaled average count, the corresponding variance is calculated using the 

variance functions in Table 2. With the mean and the calculated variance, the shape 

and rate parameters of the gamma distribution can be estimated by a method of 

moments approach. A gamma random variable is then generated using these 

parameter estimates. This continuous random variable is then rounded to a discrete 
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number. This discrete number is used as raw count data. From the raw count data, the 

corresponding RPKM values are found using Equation (35).  

4.5 Simulation Results 

Using the QuasiDE or LIMMA methods, ten ways to analyze the RPKM dataset are 

compared in simulation: 1) analyzing the RPKM data without further normalization; 2) 

analyzing the RPKM data with the TMM normalization; 3) analyzing the RPKM data with 

the RLE normalization; 4) analyzing the RPKM data with the UQ normalization; 5) 

analyzing the RPKM data with the scaling normalization; 6) analyzing the RPKM data 

with the quantile normalization; 7) analyzing the RPKM data with the cyclic loess 

normalization; 8) analyzing the RPKM data with the invariant set normalization; 9) 

analyzing the raw count data with the TMM normalization; 10) analyzing the raw count 

data with the gene length and TMM normalization: the raw count data is first divided by 

the gene length and multiplied by a constant 10ଷ, and the resulting data is normalized 

by the TMM method. Method 10 is used only when the gene length is varied across 

samples. When gene length is fixed across samples, Method 10 reduces to Method 9.  

Using the QuasiDE method, the first nine methods used in the fixed gene length setting 

are compared in Figure 39 in the simulation setting of sample size 10 and low fold 

change. In Figure 39, the sensitivities are similar across different approaches. In the QP 

and LN data, the real FDRs of Method 1, 2, 3, 4 have many large outliers. In the QN 

data, there is one case of the real FDRs in Method 1, 2, 3, 4 is zero since their 

sensitivities are zero. By definition of FDR, it is defined as zero when there is no DE 

genes found. In all three types of data, only Method 5 and 9 have the real FDRs 

reasonably controlled. Method 5 is to analyze the RPKM data with the scaling 
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normalization and Method 9 is to analyze the raw count data with the TMM 

normalization. Comparing Method 5 and 9, Method 9 has slightly higher sensitivity and 

better controlled real FDR with fewer outliers. Method 9 is superior to Method 5, which 

suggests that analyzing the raw count data with proper normalization when raw count 

data is available is a better choice. This pattern remains the same for the other 

simulation settings in fixed gene length setting (different sample sizes and treatment 

effects). Detailed results for the other simulation settings are presented in Appendix B 

(Figure B1-B5). Overall, when the gene length is fixed across samples, analyzing raw 

count data with the TMM normalization is the best method. If there is only RPKM data 

available, the scaling normalization is the best choice. 

Using the QuasiDE method, the ten methods are compared in Figure 40 in the 

simulation setting of sample size 10, low fold change and varied gene length. In Figure 

40, the sensitivity of Method 9 is the highest in all three types of data but with a very 

badly controlled FDR. In the QP and LN data, the sensitivities of Method 1, 2, 3, 4 and 

10 are in the second largest group. Method 5, 6, 7 and 8 have similar sensitivities but 

are lower than the other methods. In the QN data, Method 9 has the second largest 

sensitivity. The methods other than Method 9 and 10 have similar sensitivities. For the 

real FDR, it is best controlled in Method 5 and 10. Comparing Method 5 and 10, Method 

10 has FDR better controlled, which indicates that analyzing the raw count data with 

proper normalization when raw count data is available is superior to analyzing the 

RPKM data with the scaling normalization. In addition, Method 9 has very badly 

controlled FDR, which indicates the gene length effect must be adjusted to have a valid 

analysis. This pattern remains the same for the other simulation settings in the varied 
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gene length setting (different sample sizes and treatment effects), which are presented 

in Appendix B (Figure B6-B10). In summary, when the gene length is varied across 

experimental conditions, analyzing the raw count data normalized by the gene length 

and the TMM method is a better choice compared with the analysis of the RPKM data. It 

not only has a higher sensitivity but also a better controlled FDR without many outliers. 

If there is only the RPKM data available, the scaling normalization is the best choice. 

The simulation results by the LIMMA method are similar to the QuasiDE method. The 

details are presented in Appendix C (Figure C1-C12). To understand the impact of the 

statistical methods, they are compared in ten scenarios: in the setting of fixed gene 

length, 1) the raw count data are analyzed by the edgeR method using the TMM 

normalization; 2) the raw count data are normalized by the TMM method and analyzed 

by the LIMMA method; 3) the RPKM data are normalized by the scaling method and 

analyzed by the LIMMA method; 4) the raw count data are normalized by the TMM 

method and analyzed by the QuasiDE method; 5) the RPKM data are normalized by the 

scaling method and analyzed by the QuasiDE method; in the setting of varied gene 

length, 6) the simulated raw count data are analyzed by the edgeR method adjusting for 

the gene length and the library size with the TMM normalization; 7) the raw count data 

are normalized by the gene length and the TMM method and then analyzed by the 

LIMMA method; 8) the simulated RPKM data are normalized by the scaling method and 

analyzed by the LIMMA method; 9) the raw count data are normalized by the gene 

length and TMM method and then analyzed by the QuasiDE method; 10) the simulated 

RPKM data are normalized by the scaling method and analyzed by the QuasiDE  
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Figure 39. Sensitivity and Real FDR by Different Approaches for Different Types of Data 
(Sample Size 5 vs. 5, Low Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure 40. Sensitivity and Real FDR by Different Approaches for Different Types of Data 
(Sample Size 5 vs. 5, Low Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure 41. Sensitivity and Real FDR by Different Approaches for Different Types of Data 
(Sample Size 5 vs. 5, Low Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 
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Figure 42. Sensitivity and Real FDR by Different Approaches for Different Types of Data 
(Sample Size 20 vs. 20, High Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 
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method. These scenarios are compared in Figure 41 in the simulation setting of sample 

size 10 and low fold change. Scenarios 1 and 6 have very low sensitivities, in which the 

edgeR method loses sensitivity. This is due to the low treatment effect and relative 

small sample size. The performance of the QuasiDE method is similar to the LIMMA 

method and they are better than the edgeR method. Analyzing the raw count data 

normalized by the gene length and TMM method has a higher power than analyzing the 

RPKM data. In addition, the real FDR is better controlled with fewer outliers. The 

performance of the edgeR method gets better in a relative larger sample size and high 

treatment effect. This is shown in Figure 42, in which the above scenarios are compared 

in the simulation setting of sample size 40 and high treatment effect. The edgeR method 

is comparable with the QuasiDE and LIMMA methods in analyzing the RPKM data but 

is still inferior to the QuasiDE and LIMMA methods in analyzing the raw count data 

normalized by the gene length and TMM method. In this figure, analyzing the raw count 

data normalized by the gene length and TMM method is also better than analyzing the 

RPKM data normalized by the scaling method for the QuasiDE and LIMMA methods. 

The comparisons of the above scenarios in other simulation settings are presented in 

Appendix D (Figure D1-D4). In summary, the QuasiDE and LIMMA methods have 

similar performance and are better than the edgeR method in most of the simulation 

settings. Only in the setting of high treatment effect and sample size 40, the edgeR 

method is competitive to the QuasiDE and LIMMA methods in analyzing the RPKM 

data. Analyzing the raw count data normalized by the gene length and TMM method is 

better than analyzing the RPKM data in all the simulation settings for the QuasiDE and 

LIMMA methods. 
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4.6 Case Study 

In Reid data (Reid et al., 2012), toxoplasma gondii is a zoonotic protozoan parasite and 

Neospora caninum is its close relative. Both species share many common features. The 

research interest is to detect those orthologs which have an interaction effect between 

species and time. The dataset has 6,017 pairs of one-to-one orthologs, which are used 

in this real data analysis. The ortholog pairs were found by Stacy Hung (Hospital for 

Sick Children and University of Toronto). The gene lengths of these orthologs are 

mostly different between these two species to a low or moderate extent. The raw count 

data are analyzed in three approaches: the first approach is to analyze the raw count 

data by the edgeR method adjusting for the gene length and the library size effect; the 

other two approaches are using the QuasiDE and LIMMA methods, in which the raw 

count data are normalized by the gene length and TMM method. The RPKM data are 

analyzed by the QuasiDE and LIMMA methods in which the RPKM data is further 

normalized by the scaling method. To detect those orthologs which have an interaction 

between time and species, the time covariate is modeled as a continuous variable. In 

the QuasiDE method, the variance function is estimated by the mean variance pairs 

within each subgroup: there are four subgroups for Toxoplasma gondii and three 

subgroups for Neospora caninum. The number of orthologs with interaction detected by 

the QuasiDE and LIMMA methods between analyzing the raw count data with the gene 

length and TMM normalization and analyzing the RPKM data with the scaling 

normalization are presented in Table 16. The results from these analyses are similar.  

Since the main focus of this chapter is on the analysis of the RPKM data, the analysis 

results by the QuasiDE and LIMMA methods using the raw count data are not  
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Table 16: Comparison between the Analysis of the Raw Count Data and the RPKM 
Data by the QuasiDE and LIMMA Methods 

Number of Orthologs 

Analysis of the Raw Count Data 

QuasiDE LIMMA 

EE DE EE DE 

Analysis of the 
RPKM data 

QuasiDE 
EE 5418 29   

DE 32 538   

LIMMA 
EE   5355 4 

DE   57 601 

Table 17: Top 10 DE Orthologs Detected by the QuasiDE Method and their 
Corresponding Results in the LIMMA and edgeR Methods 

Orthologs 
QuasiDE LIMMA edgeR 

Rank
Adjusted
p-value 

Rank 
Adjusted 
p-value 

Rank 
Adjusted 
p-value 

NCLIV_009495.1* TGME49_099000** 1 8.0e-04 459 3.0e-02 5869 1.0e-00

NCLIV_034790 TGME49_072530 2 1.8e-03 71 3.0e-03 56 2.9e-07

NCLIV_017600 TGME49_042570 3 4.5e-03 4058 7.2e-01 1 6.3e-21

NCLIV_018330 TGME49_043610 4 4.5e-03 6 5.6e-04 41 4.8e-08

NCLIV_065203 TGME49_047570 5 5.0e-03 183 7.1e-03 30 1.3e-08

NCLIV_033460 TGME49_033860 6 7.3e-03 68 2.9e-03 491 6.8e-03

NCLIV_059660 TGME49_016610 7 7.3e-03 2724 4.4e-01 80 3.8e-06

NCLIV_027170 TGME49_059620 8 7.3e-03 1082 1.1e-01 157 1.2e-04

NCLIV_004720 TGME49_020940 9 7.3e-03 129 4.7e-03 283 8.5e-04

NCLIV_032360 TGME49_032380 10 7.3e-03 5 4.6e-04 155 1.2e-04
 

*    Neospora caninum gene ID 

**   Toxoplasma gondii gene ID 

Note: The RPKM data with the scaling normalization are used in the QuasiDE and 

LIMMA methods. The raw count data is used in the edgeR method adjusting for the 

gene length and using the TMM normalization. 
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Figure 43. Venn Diagram of Counts for Ortholog having the interaction between species 
and time (Reid Data) 

This shows the number of orthologs having the interaction betwwen time and species 

detected by the QuasiDE, LIMMA, edgeR methods, and their relationship. The RPKM 

data is normalized first with the scaling method and then analyzed by the QuasiDE and 

LIMMA methods. They are compared with the edgeR method adjusting for the gene 

length and using the TMM normalization.  
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Figure 44. P-values and Adjusted p-values by QuasiDE, LIMMA and edgeR (Reid Data) 

The three panels in the first row show the distributions of the raw p-values by the 

QuasiDE, LIMMA and edgeR methods. The three panels in the second row show the 

distributions of adjusted p-values by the QuasiDE, LIMMA and edgeR methods. The 

RPKM data are used in the QuasiDE and LIMMA methods. The raw count data are 

used in the edgeR method. 
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Figure 45. Comparison of the p-values and Adjusted p-values by the QuasiDE, LIMMA 
and edgeR Methods (Reid Data) 

The panels in the left column show the p-values by the QuasiDE method vs. p-values by 

the LIMMA and edgeR methods in -log10 scale. The panels in the right column show 

the adjusted p-values by the QuasiDE method vs. adjusted p-values by the LIMMA and 

edgeR methods in -log10 scale. The RPKM data are used in the QuasiDE and LIMMA 

methods. The raw count data are used in the edgeR method. 
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presented subsequently. Instead, the analysis results by the QuasiDE and LIMMA 

methods using the RPKM data as well as the analysis results by the edgeR method are 

presented. The edgeR method is included since it is a popular method in the RNA-seq 

data analysis, although it is only possible to analyze the raw count data. The number of 

orthologs with interaction detected by the QuasiDE, LIMMA methods using the RPKM 

data and the edgeR method using the raw count data are compared in Figure 43. The 

edgeR, LIMMA and QuasiDE methods have detected 1,071, 658 and 570 orthologs with 

interaction respectively. The top ten orthologs with interaction detected by the QuasiDE 

method using the RPKM data are listed in Table 17 with the corresponding rank and 

adjusted p-values by the LIMMA method using the RPKM data and the edgeR method 

using the raw count data. The gene, which is ranked third by the QuasiDE method, is 

not statistically significant in the LIMMA method but is statistically significant in the 

edgeR method. The corresponding raw p-values and adjusted p-values by these three 

methods are compared in Figure 44. The QuasiDE and edgeR methods have a higher 

number of small p-values (< 0.05) compared with the LIMMA method. After multiple 

comparison correction, the edgeR method has the largest number of small adjusted p-

values (< 0.05). The small p-values and adjusted p-values are further compared on -

log10 scale by these three methods in Figure 45. The small p-values of the QuasiDE 

method using the RPKM data appear to be similar as those from the LIMMA method 

using the RPKM data. The edgeR method produced much more extreme small p-

values. The adjusted p-values have a similar pattern. 
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4.7 Discussion 

Dillies et al. (2012) compared many normalization methods including the RPKM. In their 

paper, the TMM and RLE normalization methods are recommended. They have 

reported that using RPKM directly results in poorly controlled FDR. This is consistent 

with the findings in this dissertation.  

In this chapter, the normalization methods are compared assuming only RPKM data 

available. This is different from the work by Dillies et al. (2012), which assumed the raw 

count data is available. In their work, the normalization methods are applied to the raw 

count data. In the Gene Expression Omnibus database (Edgar et al., 2002; Barrett et 

al., 2013), many datasets are uploaded as RPKM datasets only. Analyzing RPKM data 

is necessary if the raw count data can not be obtained.  

The LIMMA method has not been considered in Chapter 2 since the method was 

developed for the microarray continuous intensity data, but not for the RNA-seq count 

data. Also, extending the LIMMA method in the setting of the RNA-seq count data is not 

the major goal in Chapter 2. In Chapter 4, the LIMMA method has been considered 

since the continuous RPKM data is a potential candidate to be analyzed by the LIMMA 

method. Furthermore, to compare with the analyses using the raw count data, the 

LIMMA method is also extended to be applied to the continuous normalized count data.  

When gene length is varied, a method has been proposed to normalize the raw count 

data by the gene length and then use the TMM method. This method works well and is 

valid in the simulation. However, the proper normalization methods in this setting have 

not been studied extensively in this dissertation. It is still not clear what is the best 
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normalization method to use in this setting when the gene length is varied across 

samples. This deserves further research.  

In the literature, there are some other gene expression units in RNA-seq experiments 

such as FPKM (fragments per kilobase per million), TPM (normalized by gene length 

first to have reads per kilobase (RPK), then scaled by a factor which represents the total 

number of RPKs in a sample) and CPM (counts per million, which is calculated as 

dividing the raw count by its library size and then multiplying by 10଺). These metrics are 

either the raw read counts adjusted by the gene length or the library size or both. Like 

the RPKM, they can be considered as a certain type of normalization. In a situation 

where the comparison is between species, adjusting for different gene lengths is a 

must. In this case, RPKM, FPKM and TPM are useful. Just like the RPKM, the FPKM 

and TPM may need further normalization to have a valid analysis. In a situation that the 

gene length is fixed across samples, adjusting for the gene length appears to be 

irrelevant when the effect can be canceled out in the statistical analysis. In this situation, 

the raw count data and the CPM can be used. For the CPM, it may need further 

normalization as well. The QuasiDE method can be useful to analyze all these metrics.  

4.8 Conclusion 

In this chapter, it has been shown that it is not proper to analyze the RPKM data directly 

without any further normalization. Comparing different normalization methods initially 

not devised for the RPKM data, simple scaling is the best method which produces 

results with relatively well controlled real FDR in most cases. Compared with the valid 

approach to analyze the raw count data, the further normalization on the RPKM data 

loses efficiency and also has a worse controlled FDR. When gene length varies across 
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samples, analyzing the raw count data without adjusting for the gene length is not a 

valid approach. The QuasiDE and LIMMA methods have similar performance and they 

are better than the edgeR method in most cases. 
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CHAPTER 5. Future Research 

In this dissertation, a new method, the QuasiDE method, has been developed based on 

quasi-likelihood theory to detect DE genes in RNA-seq data analysis in an experiment 

with two conditions. It has been extended to some other popular experimental designs 

such as an experiment with multiple conditions, an experiment with block design and an 

experiment with factorial design. The QuasiDE method is also applied to analyze the 

RPKM data. In simulation, the QuasiDE method has been shown to have more similar 

sensitivities and FDRs across the data with different variance functions compared with 

other methods. Also the performance of the QuasiDE method is at least as good as the 

other popular methods. Throughout the new methodology development, the following 

topics have been found to be worth pursuing in future research: 

1. It has been previously mentioned that the normalization methods in the RNA-seq 

data with varied gene length across samples deserve further research. Possible 

normalization methods may include two parts: correct or remove the impact from the 

gene length and the library size. The normalization can be on the gene length first or 

on the library size first. Alternatively, these two factors may be able to be adjusted 

simultaneously such as using the GLM methodology. The existing normalization 

methods used in the RNA-seq data analysis in the setting of fixed gene length can 

also be used in designing the potential normalization methods in the varied gene 

length setting. The validity and performance of these methods need to be evaluated.   

2. It also has been mentioned that most normalization methods assume the balance of 

the over-expressed and under-expressed DE genes. The influence of imbalance on 

the normalization is unknown. To explore that, a simulation study can be employed. 
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With different extents of imbalance in the simulated datasets, the performance of 

different normalization methods can be evaluated. In the evaluation, the QuasiDE 

method can be used as the statistical method along with other popular methods. 

3. Most normalization methods assume most genes are non-DE genes. In this 

dissertation, 5% of DE genes are used in simulation. Also a small simulation using 

different DE ratios has been conducted. To fully understand the impact of a high 

proportion of DE genes on different statistical methods, a comprehensive simulation 

study can be used. There are possibly some interactions between over-expressed 

and under-expressed imbalance and the percentage of DE genes. This can be 

studied in a more extensive simulation in which these two factors are used.  

4. There are numerous possible experimental designs in RNA-seq experiments. It is 

important to understand the proper way to use the QuasiDE method in those 

designs, such as matched pairs design and time course design. In matched pair 

design, the differences within pairs are of interest and only form one group. To apply 

the QuasiDE method in this setting, the variance function can be estimated by the 

mean-variance pairs in this group. The quasi-likelihood F statistic can be constructed 

by comparing two models: one model is that the true difference is zero and the other 

model is that the true difference is the mean of the differences. The performance of 

the QuasiDE method in matched pairs design can be evaluated through simulation. 

In time course design, the gene expressions can be measured in the same sample 

but at different time points. Alternatively, the gene expressions can be measured in 

different samples at different time points. For example, the mouse in some cases is 

sacrificed after the tissues are taken out. Also, different ways to model time can be 



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

135 
 

studied. Time can be modeled as a continuous covariate or as a categorical 

variable. The proper method to estimate the variance function in these models can 

be studied.  

5. There are also other gene expression measures such as FPKM, TPM and CPM. 

These types of data are potentially analyzable by the QuasiDE method. As when 

studying the RPKM data, the proper normalization methods and statistical methods 

for these types of data can be studied.  

6. The computation time for the QuasiDE method is longer than the other three 

methods. It has been mentioned that this is due to the numeric evaluation of the 

quasi-deviance in the R program. This can be possibly improved by optimizing the 

algorithm, using the parallel processing or using the C program implementation. 
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APPENDIX A 
 
# ======================================================================================== 
# R.code (Chapter 2) 
# ======================================================================================== 
 
# Modified quasi function used in R GLM function 
# The log link function is used and the variance function is a spline object 
# Quasi-deviance is numerically evaluated 
 
quasi1 <- function (link = "log", variance = "spline", splmodel = modnorm1)  
{ 
   # trapz - trapezoid rule to calculate Area  
    trapz <- function (x,y) { 
 area <- NULL 
 if (length(x) == 1) area <- 0 
 else area <- sum((y[-1]+y[-length(y)])/2*(x[-1]-x[-length(x)])) 
 return(area) 
    } 
  # evaluate the quasi-deviance numerically using  the spline variance function 
    areadev.unit <- function(y,mu,wt){ 
 res <- NULL 
 if ((length(mu) == 1) && length(mu)<length(y)) m = rep(mu,length(y)) 
 else m = mu 
 for (i in 1:length(y)){ 
  x <- seq(m[i], y[i],len = 501)  
  ql <- 2*(y[i]-x)/(exp(predict(splmodel,x)$y)) 
  if (sum(is.nan(ql))>0) { 
   x <- x[! is.nan(ql)] 
   ql <- ql[! is.nan(ql)] 
  } 
  res <- c(res,trapz(x,ql)) 
 } 
 return(res) 
    } 
    linktemp <- substitute(link) 
    if (!is.character(linktemp))  
        linktemp <- deparse(linktemp) 
    if (linktemp %in% c("logit", "probit", "cloglog", "identity",  
        "inverse", "log", "1/mu^2", "sqrt"))  
        stats <- make.link(linktemp) 
    else if (is.character(link)) { 
        stats <- make.link(link) 
        linktemp <- link 
    } 
    else { 
        stats <- link 
        linktemp <- if (!is.null(stats$name))  
            stats$name 
        else deparse(linktemp) 
    } 
    vtemp <- substitute(variance) 
    if (!is.character(vtemp))  
        vtemp <- deparse(vtemp) 
    variance_nm <- vtemp 
   # modified to add new option spline 
    switch(vtemp, `spline` = { 
        varfun <- function(mu) exp(predict(splmodel,mu)$y) 
        validmu <- function(mu) all(mu > 0) 
        dev.resids <- function(y, mu,wt) areadev.unit(y,mu,wt) 
        initialize <- expression({ 
            n <- rep.int(1, nobs) 
            mustart <- y + 0.1 * (y == 0) 
        }) 
    }, variance_nm <- NA) 
    if (is.na(variance_nm)) { 
        if (is.character(variance))  
            stop(gettextf("'variance' \"%s\" is invalid: possible values are \"spline\"",  
                variance_nm), domain = NA) 
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        varfun <- variance$varfun 
        validmu <- variance$validmu 
        dev.resids <- variance$dev.resids 
        initialize <- variance$initialize 
        variance_nm <- variance$name 
    } 
    aic <- function(y, n, mu, wt, dev) NA 
    structure(list(family = "quasi", link = linktemp, linkfun = stats$linkfun,  
        linkinv = stats$linkinv, variance = varfun, dev.resids = dev.resids,  
        aic = aic, mu.eta = stats$mu.eta, initialize = initialize,  
        validmu = validmu, valideta = stats$valideta, varfun = variance_nm),  
        class = "family") 
} 
 
# QuasiDE approach  
# if there are two models, compare two models 
# if only one model supplied,  then compare the model with null model 
# return F statistic and raw p-value 
 
quasiDE <- function(data,design1,design2=NULL,splmodel){ 
# data - the input data frame or matrix with normalized count data 
# design 1 - design matrix for the full model 
# design 2 - design matrix for the reduced model 
# splmodel is the estimated spline variance function 
j <- 1 
res <- matrix(NA,nrow=nrow(data),ncol=2) 
repeat{ 
# calculate some initial values in case the model fitting is failed 
yobs=as.numeric(data[j,]) 
stf1 <- as.data.frame(cbind(yobs,design1)) 
sfit1 <- glm(yobs~.,data=stf1) 
stf1$u <- predict(sfit1) 
if (! is.null(design2)){ 
stf2 <-  as.data.frame(cbind(yobs,design2)) 
sfit2 <- glm(yobs~.,data=stf2) 
stf2$u <- predict(sfit2) 
} 
# fit GLM using Quasi-likelihood and estimated spline varinance function 
fit1 <- tryCatch({glm(yobs~design1, family = quasi1(variance = "spline", link = "log",splmodel=splmodel))}, error = function(e){} ) 
# if model fitting is failed, try new initial values 
if (is.null(fit1)) fit1 <- tryCatch({glm(yobs~design1, family = quasi1(variance = "spline", link = 
"log",splmodel=splmodel),mustart=stf1$u)}, error = function(e){} ) 
if (! is.null(design2)){ 
fit2 <- tryCatch({glm(yobs~design2, family = quasi1(variance = "spline", link = "log",splmodel=splmodel))}, error = function(e){} ) 
if (is.null(fit2)) fit2 <- tryCatch({glm(yobs~design2, family = quasi1(variance = "spline", link = 
"log",splmodel=splmodel),mustart=stf2$u)}, error = function(e){} ) 
} 
if ((!is.null(fit1)) & (!is.null(design2))) { 
if (!is.null(fit2)) { 
res[j,1] <- ((fit2$deviance-fit1$deviance)/(ncol(design1)-ncol(design2)))/(sum(residuals(fit1,"pearson")^2)/fit1$df.residual) 
res[j,2] <- 1-pf(res[j,1], df1=ncol(design1)-ncol(design2),df2=fit1$df.residual) 
} 
} 
if (is.null(design2) & (!is.null(fit1))) { 
res[j,1] <- ((fit1$null.deviance-fit1$deviance)/(ncol(design1)-1))/(sum(residuals(fit1,"pearson")^2)/fit1$df.residual) 
res[j,2] <- 1-pf(res[j,1], df1=ncol(design1)-1,df2=fit1$df.residual) 
} 
j <- j + 1 
if (j==nrow(data)) break 
} 
colnames(res)<-c("F","p-value") 
return(res) 
} 
 
# evaluate performance  
paraest <- function(nDE, ngene, p, ng, der){ 
# nDE - number of DE genes after filtering 
# ngene - number of genes after filtering 
# p - adjusted p-values 
# ng - number of DE genes before filtering, it is 20000 in simulation 
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# der - percent of DE genes before filtering, it is 5% in simulation 
 
tp <- sum(p[1:nDE]<0.05,na.rm = TRUE) 
fp <- sum(p[(nDE+1):(ngene)]<0.05,na.rm = TRUE) 
pfilter <- ng*der-nDE 
nfilter <- ng*(1-der) - (ngene-nDE) 
tn <- sum(p[(nDE+1):(ngene)]>=0.05,na.rm = TRUE)+ nfilter 
fn <- sum(p[1:nDE]>=0.05,na.rm = TRUE) + pfilter 
sen <- tp/(tp+fn) 
spc <- tn/(tn+fp) 
accuracy <- (tp+tn)/(tp+tn+fp+fn) 
typ1err <- fp/(tn+fp) 
typ2err <- fn/(tp+fn) 
FDR <- fp/(tp+fp) 
return(round(c(tp,fp,tn,fn,sen,spc,accuracy,FDR),digits=4)) 
} 
 
# adjust raw p-values, allow na in p-values 
getadjp <- function(data,rawp){ 
  select <- is.nan(rawp) | is.na(rawp) 
dset1 <- data[select,] 
dset2 <- data[! select,] 
  if (nrow(dset1)>0) dset1$adjp <- NA 
dset2$adjp <- p.adjust(rawp[! select], method="BH") 
dset <- rbind(dset1,dset2) 
lbl <- rownames(dset) 
lblnum <- as.numeric(substr(lbl,2,max(nchar(lbl)))) 
dset <- dset[order(lblnum),] 
return(dset$adjp) 
} 
 
# load libraries for the edgeR method 
library(edgeR) 
# use the sample means in experimental conditions from Himes data to simulate data 
library(airway) 
data(airway) 
air <- assays(airway)$count 
# rearrange by experimental conditions 
air <- air[,c(1,3,5,7,2,4,6,8)] 
n <- 8 
libsize = apply(air[,1:n],2,sum) 
# normalized by the TMM method 
nrmfactor1 <-calcNormFactors(air[,1:n],method = "TMM")*libsize 
air1 <- as.data.frame(t(t(air[,1:n])/nrmfactor1))*mean(nrmfactor1) 
# calculate the means in each experiemtnal conditions 
air1$mean1 <- apply(air1[,1:(n/2)],1,mean)  
air1$mean2 <- apply(air1[,(n/2+1):n],1,mean) 
meanest1 <- c(air1$mean1,air1$mean2) 
# use only non-zero means  
# zero means are dropped since it will produce zero variance by variance function in subsequent simulation 
mnair <- meanest1[meanest1>0] 
 
# ======== simulate a dataset with 2 conditions ======== 
 
# sample size 
n <- 10 
# treatment effect 
foldchg <- 3 
# total number of genes needed 
n.genes.need <- 20000 
# total number of genes simulated may have those all zero genes 
n.genes<- n.genes.need * 1.2 
# 5% DE genes 
ratio <- 0.05 
# treatment variable 
trt<-rep(1:2,each=n/2) 
# sample means from himes data, same in two experimental conditions 
sim.mn<-matrix(sample(mnair,n.genes, replace=F),n.genes,2) 
# simulate over-expressed and under-expressed genes  
nover <- 0.5*n.genes*ratio 
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nunder <- 0.5*n.genes*ratio 
sim.mn[1:nover,1]<- sim.mn[1:nover,1]/foldchg 
sim.mn[(nover+1):(nover+nunder),1]<-foldchg*sim.mn[(nover+1):(nover+nunder),1] 
 
# Simulate library size factors 
a <- sim.mn[,trt] 
offset<-2^(rnorm(n,0,.5)) 
a<-t(t(a)*offset) 
# dispersion 
disp <- exp(rnorm(n.genes, 0, 1.2)) 
# variance function 
vf <- a+log(a+1)  
# simulate gamma random variable 
simdat<-round(matrix(rgamma(n.genes*n, a^2/rep(disp,n)/vf, a/rep(disp,n)/vf),n.genes,n)) 
# drop those all zero genes and keep only number of genes needed 
nDEover <- sum(rowSums(simdat[1:(n.genes*ratio/2),1:n])>0) 
nDEunder <- sum(rowSums(simdat[(n.genes*ratio/2+1):(n.genes*ratio),1:n])>0) 
nNDE <- sum(rowSums(simdat[-(1:(n.genes*ratio)),1:n])>0) 
if ((nDEunder>(n.genes.need*ratio/2)) && (nDEover>(n.genes.need*ratio/2)) && (nNDE>(n.genes.need*(1-ratio)))){ 
  simdat1 <- simdat[1:(n.genes*ratio/2),] 
  simdat2 <- simdat[(n.genes*ratio/2+1):(n.genes*ratio),] 
  simdat3 <- simdat[-(1:(n.genes*ratio)),] 
  simdat1 <- simdat1[rowSums(simdat1[,1:n])>0,] 
  simdat2 <- simdat2[rowSums(simdat2[,1:n])>0,] 
  simdat3 <- simdat3[rowSums(simdat3[,1:n])>0,] 
  simdat1 <- simdat1[1:(n.genes.need*ratio/2),] 
  simdat2 <- simdat2[1:(n.genes.need*ratio/2),] 
  simdat3 <- simdat3[1:(n.genes.need*(1-ratio)),] 
  simdat <- rbind(simdat1,simdat2,simdat3) 
  simdat <- as.data.frame(simdat) 
  rownames(simdat) <- paste("n",1:n.genes.need,sep="") 
} 
 
# analyze the simuated data 
 
# load libraries for DESeq and NBQLSpline 
library(DESeq) 
library(QuasiSeq) 
 
n <- 10 
simdat <- as.data.frame(simdat[,1:n]) 
 
 # filter genes with zero IQR and low count 
 IQR <- apply(simdat,1,IQR) 
 simdat <- simdat[IQR != 0 & rowMeans(simdat)>1,] 
 
# normalized the raw count data by the TMM method 
 libsize = apply(simdat[,1:n],2,sum) 
 nrmfactor1 <-calcNormFactors(simdat[,1:n],method="TMM")*libsize 
 simdatnorm1 <- as.data.frame(t(t(simdat[,1:n])/nrmfactor1))*mean(nrmfactor1) 
 
# ======== QuasiDE ======== 
 
# estimate the variance function by smooth cubic spline 
 simdatnorm1$mean <- apply(simdatnorm1[,1:n],1,mean)  
 simdatnorm1$mean1 <- apply(simdatnorm1[,1:(n/2)],1,mean)  
 simdatnorm1$mean2 <- apply(simdatnorm1[,(n/2+1):n],1,mean) 
 simdatnorm1$var <- apply(simdatnorm1[,1:n],1,var)  
 simdatnorm1$var1 <- apply(simdatnorm1[,1:(n/2)],1,var) 
 simdatnorm1$var2 <- apply(simdatnorm1[,(n/2+1):n],1,var) 
 meanest1 <- c(simdatnorm1$mean1,simdatnorm1$mean2) 
 varest1 <- c(simdatnorm1$var1,simdatnorm1$var2) 
 modnorm1 <- smooth.spline(meanest1[varest1 != 0],log(varest1[varest1 != 0])) 
 
# specify model  
 dsgn <- model.matrix(~as.factor(trt)) 
 d1 <- quasiDE(simdatnorm1[,1:n],design1=dsgn,splmodel=modnorm1) 
# get raw p-value  
 simdat$quasiDE.1.praw <- d1[,2] 
# adjusted raw p-values by the BH method 
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 simdat$quasiDE.1 <- getadjp(simdat, simdat$quasiDE.1.praw) 
 
# ======== NBQLSpline ======== 
 
# put two models to compare into a list object 
 design.list<-vector("list",2) 
 design.list[[1]]<-model.matrix(~as.factor(trt))  
 design.list[[2]]<-rep(1,n) 
# specify contrast (model 1 vs. 2 in the list) and give a name 
 test.mat <- matrix(1:2,nrow=1,ncol=2) 
 row.names(test.mat) <- c("trt") 
 
# GLM NB model with the TMM normalization 
 fit1.NB<-QL.fit(as.matrix(simdat[,1:n]),test.mat=test.mat,design.list,log.offset=log(nrmfactor1),Model="NegBin") 
# get p-values and adjusted p-values 
 results1.NB<-QL.results(fit1.NB,Plot=FALSE) 
 simdat$NBQLSPq.trt.1.rawp <- as.numeric(results1.NB$P.values$QLSpline[,"trt"]) 
 simdat$NBQLSPq.trt.1 <- p.adjust(simdat$NBQLSPq.trt.1.rawp, method="BH") 
 
# ======== edgeR ======== 
 
# estimate dispersion 
 grp = as.factor(rep(1:2,each=n/2)) 
 DGE1 = DGEList(simdat[,1:n],lib.size=nrmfactor1,group=grp) 
 DGE1 = estimateCommonDisp(DGE1) 
 DGE1 = estimateTrendedDisp(DGE1) 
 DGE1 = estimateTagwiseDisp(DGE1) 
# exact test 
 et1 <- exactTest(DGE1) 
# processing results and get adjusted p-value  
 results1 <- topTags(et1,n=nrow(simdat))$table 
 gname1 <- rownames(results1) 
 num1 <- as.numeric(substr(rownames(results1),2,max(nchar(gname1)))) 
 edgeRres1 <- results1[order(num1),] 
 simdat$edgeq1 <- edgeRres1$FDR 
 
# ======== DESeq ======== 
 
 # estimate dispersion 
 dcds1 <- newCountDataSet(simdat[,1:n], grp) 
 dcds1 <- estimateSizeFactors(dcds1) 
 pData(dcds1)$sizeFactor <- nrmfactor1/mean(nrmfactor1) 
 dcds1 <- estimateDispersions(dcds1, method="pooled",sharingMode = "fit-only", fitType="local") 
 # statisitcal test 
 DESeqres1 <- nbinomTest(dcds1, "1", "2") 
 # get results 
 simdat$DESeqq1 <- DESeqres1$padj 
 
 # evaluate performance 
 # total number of genes before filtering 
 ngenes <- 20000 
 lblnum <- as.numeric(substr(rownames(simdat),2,max(nchar(rownames(simdat))))) 
 # number of truly DE genes in filtered dataset 
 numDE <- sum(lblnum <= ngenes*ratio) 
 # number of genes in filtered dataset 
 nGen <- nrow(simdat) 
 
 # labels 
 collbl <- c("tp","fp","tn","fn","sen","spc","accuracy","FDR") 
 rowlbl <- c("NBSpline","EdgeR","DESeq","QuasiDE") 
 para <- matrix(NA,nrow=4,ncol=8)  
 para[1,] <- paraest(numDE,nGen, simdat$NBQLSPq.trt.1,ngenes,ratio) 
 para[2,] <- paraest(numDE,nGen, simdat$edgeq1,ngenes,ratio) 
 para[3,] <- paraest(numDE,nGen, simdat$DESeqq1,ngenes,ratio) 
 para[4,] <- paraest(numDE,nGen, simdat$quasiDE.1,ngenes,ratio) 
 
 rownames(para) <- rowlbl 
 colnames(para) <- collbl 
 para 
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# ======================================================================================== 
# R.code (Chapter 3) Experiments with multiple conditions 
# ======================================================================================== 
 
 
# ======== simulate three groups: each group has 5 samples ======== 
n <- 15 
# number of genes needed in the simulation 
n.genes.need <- 20000 
# simulated more than needed to discard those not needed (genes with all zeros) 
n.genes<- n.genes.need * 1.3 
# percent of DE genes 
ratio <- 0.05 
# treatment effect in three groups 
models <- c(1,1.5,3.0) 
grp<-rep(1:3,each=n/3) 
sim.mn<-matrix(sample(mnair,n.genes, replace=F),n.genes,3) 
numDE <- n.genes*ratio 
j <- 1 
# impose the treatment effect in random order 
repeat{ 
 sim.mn[j,] <- sim.mn[j,]*sample(models) 
 j <- j + 1 
 if (j==numDE) break 
} 
 
### Simulate library size factors 
a<-sim.mn[,grp] 
offset<-2^(rnorm(n,0,.5)) 
a<-t(t(a)*offset) 
 
### simulate dispersion 
disp <- exp(rnorm(n.genes, 0, 1.2)) 
# variance function 
vf <- a+log(a+1)  
# simulate gamma random variable to have the above variance function with dispersion 
simdat<-round(matrix(rgamma(n.genes*n, a^2/rep(disp,n)/vf, a/rep(disp,n)/vf),n.genes,n)) 
# drop genes with all zeros and keep number of genes we need 
nDE <- sum(rowSums(simdat[1:numDE,1:n])>0) 
nEE <- sum(rowSums(simdat[-(1:numDE),1:n])>0) 
if ( (nDE >(n.genes.need*ratio)) && (nEE>(n.genes.need*(1-ratio)))){ 
 simdat1 <- simdat[1:numDE,] 
 simdat2 <- simdat[-(1:numDE),] 
 simdat1 <- simdat1[rowSums(simdat1[,1:n])>0,] 
 simdat2 <- simdat2[rowSums(simdat2[,1:n])>0,] 
 simdat1 <- simdat1[1:(n.genes.need*ratio),] 
 simdat2 <- simdat2[1:(n.genes.need*(1-ratio)),] 
 simdat <- rbind(simdat1,simdat2) 
 simdat <- as.data.frame(simdat) 
 rownames(simdat) <- paste("n",1:n.genes.need,sep="") 
} 
 
 
 # analysis begins 
 # filter genes with zero IQR and low mean count 
 subn <- n/3  
 grp<-rep(1:3,each=subn) 
 IQR <- apply(simdat[1:n],1,IQR) 
 simdat <- simdat[IQR != 0 & rowMeans(simdat)>1,] 
 
 # normalize the data by the TMM method 
 libsize = apply(simdat[,1:n],2,sum) 
 nrmfactor1 <-calcNormFactors(simdat[,1:n],method="TMM")*libsize 
 simdatnorm1 <- as.data.frame(t(t(simdat[,1:n])/nrmfactor1))*mean(nrmfactor1) 
  
# ======== QuasiDE ======== 
 
 # Estimate variance function 
 simdatnorm1$mean <- apply(simdatnorm1[,1:n],1,mean)  
 simdatnorm1$mean1 <- apply(simdatnorm1[,1:(n/3)],1,mean)  
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 simdatnorm1$mean2 <- apply(simdatnorm1[,(n/3+1):(2*n/3)],1,mean) 
 simdatnorm1$mean3 <- apply(simdatnorm1[,(2*n/3+1):n],1,mean) 
 simdatnorm1$var <- apply(simdatnorm1[,1:n],1,var)  
 simdatnorm1$var1 <- apply(simdatnorm1[,1:(n/3)],1,var) 
 simdatnorm1$var2 <- apply(simdatnorm1[,(n/3+1):(2*n/3)],1,var) 
 simdatnorm1$var3 <- apply(simdatnorm1[,(2*n/3+1):n],1,var) 
 meanest1 <- c(simdatnorm1$mean1,simdatnorm1$mean2,simdatnorm1$mean3) 
 varest1 <- c(simdatnorm1$var1,simdatnorm1$var2,simdatnorm1$var3) 
 modnorm1 <- smooth.spline(meanest1[varest1 != 0],log(varest1[varest1 != 0])) 
 
 # two models to be compared 
 dsgn.full <- model.matrix(~as.factor(grp)) 
 dsgn.null <- dsgn.full[,1,drop=F] 
 
d1 <- quasiDE(simdatnorm1[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel=modnorm1) 
simdatnorm1$quasiDE.1.praw <- d1[,2] 
# adjusted raw p-value by the BH method 
simdatnorm1$quasiDE.1 <- getadjp(simdatnorm1,simdatnorm1$quasiDE.1.praw) 
 
# ======== NBQLSpline ======== 
 
# set up two models to be compared 
 design.list<-vector("list",2) 
 design.list[[1]]<-dsgn.full  
 design.list[[2]]<-dsgn.null 
 test.mat <- rbind(1:2) 
 row.names(test.mat) <- c("anova") 
 
 # fit model by NB regression using quasi-likelihood 
 fit1.NB<-QL.fit(as.matrix(simdat[,1:n]),test.mat=test.mat,design.list,log.offset=log(nrmfactor1),Model="NegBin") 
 # get results 
 results1.NB<-QL.results(fit1.NB,Plot=FALSE) 
 simdatnorm1$NBQLSPq1.rawp <- as.numeric(results1.NB$P.values$QLSpline[,"anova"]) 
 simdatnorm1$NBQLSPq1 <- p.adjust(simdatnorm1$NBQLSPq1.rawp,method="BH") 
 
# ======== edgeR ======== 
 
 # estimate the gene-specific dispersion 
 grp = as.factor(rep(1:3,each=n/3)) 
 design <- model.matrix(~grp) 
 DGE1 = DGEList(simdat[,1:n],group=grp) 
 DGE1 = calcNormFactors(DGE1, method="TMM")  
 DGE1 <- estimateGLMCommonDisp(DGE1,design) 
 DGE1 <- estimateGLMTrendedDisp(DGE1,design) 
 DGE1 <- estimateGLMTagwiseDisp(DGE1,design) 
 
 # statistical test using GLM 
 fit1 <- glmFit(DGE1,design=design) 
 lrt1 <- glmLRT(fit1,coef=2:3) 
 
 # get results 
 results1 <- topTags(lrt1,n=nrow(simdat))$table 
 gname1 <- rownames(results1) 
 num1 <- as.numeric(substr(rownames(results1),2,max(nchar(gname1)))) 
 edgeRres1 <- results1[order(num1),] 
 simdat$edgeq1 <- edgeRres1$FDR 
 
# ======== DESeq ======== 
 
 # prepare the dataset  
 dcds1 <- newCountDataSet(simdat[,1:n], grp) 
 # set up size factor to be TMM  
 dcds1 <- estimateSizeFactors(dcds1) 
 pData(dcds1)$sizeFactor <- nrmfactor1/mean(nrmfactor1) 
 # estimate dispersion 
 dcds1 <- estimateDispersions(dcds1, method="pooled",sharingMode = "fit-only", fitType="local") 
 # commpare two models 
 fit1 <- fitNbinomGLMs(dcds1,count~grp) 
 fit0 <- fitNbinomGLMs(dcds1,count~1) 
 # statistical test 
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 pvGLM1 <- nbinomGLMTest(fit1,fit0) 
 # adjusted p-value by the BH method 
 padj1.DESeq <- p.adjust(pvGLM1, method="BH")  
 simdat$DESeqq1 <- padj1.DESeq 
 
 lblnum1 <- as.numeric(substr(rownames(simdat),2,max(nchar(rownames(simdat))))) 
 # number of DE genes in the simulated dataset after filtering 
 numDE1 <- sum(lblnum1 <= ngenes*ratio) 
 # number of genes in the simulated dataset after filtering 
 nGen1 <- nrow(simdat) 
 
 # evaluate performance  
 paralbl <- c("tp","fp","tn","fn","sen","spc","accuracy","FDR") 
 rowlbl <- c("NBQLSpline","edgeR","DESeq","QuasiDE") 
 para <- matrix(NA,nrow=length(rowlbl),ncol=length(paralbl)) 
 rownames(para) <- rowlbl 
 colnames(para) <- paralbl 
 para[1,] <- paraest(numDE1,nGen1,simdatnorm1$NBQLSPq1,ng=ngenes,der=ratio) 
 para[2,] <- paraest(numDE1,nGen1,simdat$edgeq1,ng=ngenes,der=ratio) 
 para[3,] <- paraest(numDE1,nGen1,simdat$DESeqq1,ng=ngenes,der=ratio) 
 para[4,] <- paraest(numDE1,nGen1,simdatnorm1$quasiDE.1,ng=ngenes,der=ratio) 
 para 

 
# ======================================================================================== 
# R.code (Chapter 3) Block Design 
# ======================================================================================== 
 
# ======== simulate 2 blocks x 2 treatment groups ======== 
# number of samples 
n <- 20 
# number of genes needed 
n.genes.need <- 20000 
# the number of genes simulated more than needed will be dropped 
n.genes<- n.genes.need * 1.4 
# percent of DE genes  
ratio <- 0.05 
# percent of genes having block effect 
blkratio <- 0.3 
repnum <- 200 
i <- 1 
# effect patterns in simulated data, first 6 for genes with treatment effect, last two for genes without treatment effect 
eff <- matrix(NA,nrow=8,ncol=4) 
eff[1,] <- c(1,2,2,4)  
eff[2,] <- c(2,1,4,2) 
eff[3,] <- c(2,4,1,2) 
eff[4,] <- c(4,2,2,1) 
eff[5,] <- c(1,1,2,2) 
eff[6,] <- c(2,2,1,1) 
eff[7,] <- c(1,2,1,2) # block effect only 
eff[8,] <- c(2,1,2,1) # block effect only 
 
while (i <= repnum){ 
 # number of simulated genes with treatment effect 
 numDE <- n.genes*ratio 
 # number of simulated genes with both treatment and block effect  
 numblktrt <- n.genes*ratio*blkratio 
 # number of simulated genes with only treatment effect 
 numtrt <- numDE-numblktrt 

# number of simulated genes with only block effect 
 numblk <- n.genes*(1-ratio)*blkratio 
 # assign a random mean count to all 4 groups 
 grp <- rep(1:4,each=n/4) 
 sim.mn <- matrix(sample(mnair,n.genes, replace=F),n.genes,4) 
 # apply the designed effects 
 sim.mn[1:(numblktrt/4),] <- t(t(sim.mn[1:(numblktrt/4),])*eff[1,]) 
 sim.mn[(numblktrt/4+1):(numblktrt/2),] <- t(t(sim.mn[(numblktrt/4+1):(numblktrt/2),])*eff[2,]) 
 sim.mn[(numblktrt/2+1):(numblktrt*3/4),] <- t(t(sim.mn[(numblktrt/2+1):(numblktrt*3/4),])*eff[3,]) 
 sim.mn[(numblktrt*3/4+1):numblktrt,] <- t(t(sim.mn[(numblktrt*3/4+1):numblktrt,])*eff[4,]) 
 sim.mn[(numblktrt+1):(numblktrt+numtrt/2),] <- t(t(sim.mn[(numblktrt+1):(numblktrt+numtrt/2),])*eff[5,]) 
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 sim.mn[(numblktrt+numtrt/2+1):numDE,] <- t(t(sim.mn[(numblktrt+numtrt/2+1):numDE,] )*eff[6,]) 
 sim.mn[(numDE+1):(numDE+numblk/2),] <- t(t(sim.mn[(numDE+1):(numDE+numblk/2),])*eff[7,])  
 sim.mn[(numDE+numblk/2+1):(numDE+numblk),] <- t(t(sim.mn[(numDE+numblk/2+1):(numDE+numblk),])*eff[8,])  
 
   # Simulate library size factors 
 a<-sim.mn[,grp] 
 offset<-2^(rnorm(n,0,.5)) 
 a<-t(t(a)*offset) 
 
 # Simulate dispersion 
 disp <- exp(rnorm(n.genes, 0, 1.2)) 
 # variance function 
 vf <- a+log(a+1) 

# simulate gamma random variable to have the variance determined by variance function and dispersion 
 simdat<-round(matrix(rgamma(n.genes*n, a^2/rep(disp,n)/vf, a/rep(disp,n)/vf),n.genes,n)) 
 simdat <- cbind(simdat, sim.mn,disp) 
 # number of non-all-zero genes in each type of simulated genes 
 n1 <- sum(rowSums(simdat[1:(numblktrt/4),1:n])>0) 
 n2 <- sum(rowSums(simdat[(numblktrt/4+1):(numblktrt/2),1:n])>0) 
 n3 <- sum(rowSums(simdat[(numblktrt/2+1):(numblktrt*3/4),1:n])>0) 
 n4 <- sum(rowSums(simdat[(numblktrt*3/4+1):numblktrt,1:n])>0) 
 n5 <- sum(rowSums(simdat[(numblktrt+1):(numblktrt+numtrt/2),1:n])>0) 
 n6 <- sum(rowSums(simdat[(numblktrt+numtrt/2+1):numDE,1:n])>0) 
 n7 <- sum(rowSums(simdat[(numDE+1):(numDE+numblk/2),1:n])>0) 
 n8 <- sum(rowSums(simdat[(numDE+numblk/2+1):(numDE+numblk),1:n])>0) 
 n9 <- sum(rowSums(simdat[(numDE+numblk+1):n.genes,1:n])>0) 
 # number of simulated genes with treatment effect needed 
 numDE.need <- n.genes.need*ratio 
 # number of simulated genes with treatment and block effect needed 
 numblktrt.need <- n.genes.need*ratio*blkratio 
 # number of simulated genes with only treatment effect needed 
 numtrt.need <- numDE.need-numblktrt.need 
 # number of simulated genes with only block effect needed 
 numblk.need <- n.genes.need*(1-ratio)*blkratio 
 # number of simulated EE genes needed 
 numEE.need <- n.genes.need*(1-ratio) 
 # remove those genes with all zeros counts and keep the number of genes needed 
 if ( (n1>numblktrt.need/4) && (n2>numblktrt.need/4) && (n3>numblktrt.need/4) && (n4>numblktrt.need/4) && 
(n5>numtrt.need/2)  
  && (n6>numtrt.need/2) && (n7>numblk.need/2) && (n8>numblk.need/2) && (n9 > numEE.need-numblk.need)){ 
  simdat1 <- simdat[1:(numblktrt/4),] 
  simdat2 <- simdat[(numblktrt/4+1):(numblktrt/2),] 
  simdat3 <- simdat[(numblktrt/2+1):(numblktrt*3/4),] 
  simdat4 <- simdat[(numblktrt*3/4+1):numblktrt,] 
  simdat5 <- simdat[(numblktrt+1):(numblktrt+numtrt/2),] 
  simdat6 <- simdat[(numblktrt+numtrt/2+1):numDE,] 
  simdat7 <- simdat[(numDE+1):(numDE+numblk/2),] 
  simdat8 <- simdat[(numDE+numblk/2+1):(numDE+numblk),] 
  simdat9 <- simdat[(numDE+numblk+1):n.genes,] 
  simdat1 <- simdat1[rowSums(simdat1[,1:n])>0,] 
  simdat2 <- simdat2[rowSums(simdat2[,1:n])>0,] 
  simdat3 <- simdat3[rowSums(simdat3[,1:n])>0,] 
  simdat4 <- simdat4[rowSums(simdat4[,1:n])>0,] 
  simdat5 <- simdat5[rowSums(simdat5[,1:n])>0,] 
  simdat6 <- simdat6[rowSums(simdat6[,1:n])>0,] 
  simdat7 <- simdat7[rowSums(simdat7[,1:n])>0,] 
  simdat8 <- simdat8[rowSums(simdat8[,1:n])>0,] 
  simdat9 <- simdat9[rowSums(simdat9[,1:n])>0,] 
  simdat1 <- simdat1[1:(numblktrt.need/4),] 
  simdat2 <- simdat2[1:(numblktrt.need/4),] 
  simdat3 <- simdat3[1:(numblktrt.need/4),] 
  simdat4 <- simdat4[1:(numblktrt.need/4),] 
  simdat5 <- simdat5[1:(numtrt.need/2),] 
  simdat6 <- simdat6[1:(numtrt.need/2),] 
  simdat7 <- simdat7[1:(numblk.need/2),] 
  simdat8 <- simdat8[1:(numblk.need/2),] 
  simdat9 <- simdat9[1:(numEE.need-numblk.need),] 
  simdat <- rbind(simdat1,simdat2,simdat3,simdat4,simdat5,simdat6,simdat7,simdat8,simdat9) 
  simdat <- as.data.frame(simdat) 
  rownames(simdat) <- paste("n",1:n.genes.need,sep="") 
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  datafile<-paste(datadir,dsgn,"-n",n,"-",i,"-",varf,".dat",sep="") 
  write.table(simdat,file=datafile) 
  i <- i + 1 
 } 
} 
 
 
# analysis 
# treatment group 
trt <- rep(1:2,each=2*subn)  
# block group 
blk <- c(rep(1:2,each=subn),rep(1:2,each=subn)) # block 
 
# genes are filtered by zero IQR and low mean count 
IQR <- apply(simdat[1:n],1,IQR) 
simdat <- simdat[IQR != 0 & rowMeans(simdat)>1,] 
 
# normalize the data by the TMM method 
libsize = apply(simdat[,1:n],2,sum) 
nrmfactor1 <-calcNormFactors(simdat[,1:n],method="TMM")*libsize 
simdatnorm1 <- as.data.frame(t(t(simdat[,1:n])/nrmfactor1))*mean(nrmfactor1) 
 
# ======== QuasiDE ======== 
 
# estimate the variance function 
simdatnorm1$mean <- apply(simdatnorm1[,1:n],1,mean)  
simdatnorm1$mean1 <- apply(simdatnorm1[,1:(n/4)],1,mean)  
simdatnorm1$mean2 <- apply(simdatnorm1[,(n/4+1):(2*n/4)],1,mean) 
simdatnorm1$mean3 <- apply(simdatnorm1[,(2*n/4+1):(3*n/4)],1,mean) 
simdatnorm1$mean4 <- apply(simdatnorm1[,(3*n/4+1):n],1,mean) 
simdatnorm1$var <- apply(simdatnorm1[,1:n],1,var)  
simdatnorm1$var1 <- apply(simdatnorm1[,1:(n/4)],1,var) 
simdatnorm1$var2 <- apply(simdatnorm1[,(n/4+1):(2*n/4)],1,var) 
simdatnorm1$var3 <- apply(simdatnorm1[,(2*n/4+1):(3*n/4)],1,var) 
simdatnorm1$var4 <- apply(simdatnorm1[,(3*n/4+1):n],1,var) 
meanest1 <- c(simdatnorm1$mean1,simdatnorm1$mean2,simdatnorm1$mean3,simdatnorm1$mean4) 
varest1 <- c(simdatnorm1$var1,simdatnorm1$var2,simdatnorm1$var3,simdatnorm1$var4) 
modnorm1 <- smooth.spline(meanest1[varest1 != 0],log(varest1[varest1 != 0])) 
 
dsgn.blk <- model.matrix(~as.factor(blk)) 
dsgn.full <- model.matrix(~as.factor(trt)+as.factor(blk)) 
 
d1 <- quasiDE(simdatnorm1[,1:n],design1=dsgn.full, design2=dsgn.blk, splmodel=modnorm1) 
simdat$quasiDE.1.praw <- d1[,2] 
# adjusted raw-p by the BH method 
simdat$quasiDE.1 <- getadjp(simdat,simdat$quasiDE.1.praw) 
 
# ======== NBQLSpline ======== 
 
# specify the models to be compared 
design.list<-vector("list",2) 
design.list[[1]]<-model.matrix(~as.factor(trt)+as.factor(blk))  
design.list[[2]]<-model.matrix(~as.factor(blk))  
test.mat <- rbind(1:2) 
row.names(test.mat) <- "trt" 
# fit GLM using quasi-likelihood assuming NB 
fit1.NB<-QL.fit(as.matrix(simdat[,1:n]),test.mat=test.mat,design.list,log.offset=log(nrmfactor1),Model="NegBin") 
# get results 
results1.NB<-QL.results(fit1.NB,Plot=FALSE) 
simdat$NBQLSPq.trt.1.rawp <- as.numeric(results1.NB$P.values$QLSpline[,"trt"]) 
simdat$NBQLSPq.trt.1 <- p.adjust(simdat$NBQLSPq.trt.1.rawp,method="BH") 
 
# ======== edgeR ======== 
 
# Specify the full model and prepare the data 
design <- model.matrix(~as.factor(trt)+as.factor(blk)) 
grp = as.factor(rep(1:4,each=n/4)) 
DGE1 = DGEList(simdat[,1:n],group=grp) 
# normalize by the TMM method 
DGE1 = calcNormFactors(DGE1, method="TMM")  
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# estimate dispersion 
DGE1 <- estimateGLMCommonDisp(DGE1,design) 
DGE1 <- estimateGLMTrendedDisp(DGE1,design) 
DGE1 <- estimateGLMTagwiseDisp(DGE1,design) 
# statistical test of the treatment effect 
fit1 <- glmFit(DGE1,design=design) 
lrt.trt.1 <- glmLRT(fit1,coef=2) 
# get the results 
results1.trt <- topTags(lrt.trt.1,n=nrow(simdat))$table 
gname1.trt <- rownames(results1.trt) 
num1.trt <- as.numeric(substr(rownames(results1.trt),2,max(nchar(gname1.trt)))) 
edgeRres1.trt <- results1.trt[order(num1.trt),] 
simdat$edgeq1.trt <- edgeRres1.trt$FDR 
 
# ======== DESeq ======== 
 
# specify the factors in the models 
desn <- data.frame(trt=as.factor(trt),blk=as.factor(blk)) 
dcds1 <- newCountDataSet(simdat[,1:n], desn) 
# assign the TMM normalized factor 
dcds1 <- estimateSizeFactors(dcds1) 
pData(dcds1)$sizeFactor <- nrmfactor1/mean(nrmfactor1) 
# estimate the dispersion 
dcds1 <- estimateDispersions(dcds1, method="pooled",sharingMode = "fit-only", fitType="local") 
# compare two models 
fit1 <- fitNbinomGLMs(dcds1,count~trt+blk) 
fit0 <- fitNbinomGLMs(dcds1,count~blk) 
pvGLM1.trt <- nbinomGLMTest(fit1,fit0) 
# adjust raw p-values 
padj1.DESeq.trt <- p.adjust(pvGLM1.trt, method="BH")  
simdat$DESeqq1.trt <- padj1.DESeq.trt 
 
# number of genes before filtering 
ngenes <- 20000 
# calculate the number of DE genes after filtering 
lblnum1 <- as.numeric(substr(rownames(simdat),2,max(nchar(rownames(simdat))))) 
numDE1 <- sum(lblnum1 <= ngenes*ratio) 
# the number of genes in the data after filtering 
nGen1 <- nrow(simdatnorm1) 
 
# evaluate performance 
paralbl <- c("tp","fp","tn","fn","sen","spc","accuracy","FDR") 
rowlbl <- c("NBQLSpline","edgeR","DESeq","QuasiDE") 
para <- matrix(NA,nrow=length(rowlbl),ncol=length(paralbl)) 
rownames(para) <- rowlbl 
colnames(para) <- paralbl 
para[1,] <- paraest(numDE1,nGen1,simdat$NBQLSPq.trt.1 ,ng=ngenes,der=ratio) 
para[2,] <- paraest(numDE1,nGen1,simdat$edgeq1.trt,ng=ngenes,der=ratio) 
para[3,] <- paraest(numDE1,nGen1,simdat$DESeqq1.trt,ng=ngenes,der=ratio) 
para[4,] <- paraest(numDE1,nGen1,simdat$quasiDE.1,ng=ngenes,der=ratio) 
para 
 
# ======================================================================================== 
# R.code (Chapter 3) Factorial Design 
# ======================================================================================== 
# ======== simulate 2x2 factorial design data ======== 
# number of samples 
n <- 20 
# number of genes needed 
n.genes.need <- 20000 
# number of genes simulated 
n.genes<- n.genes.need * 1.3 
# 5% DE genes 
ratio <- 0.05 
 
# the effect models for the DE genes 
models1 <- models2 <- matrix(NA, nrow=4,ncol=4) 
# main effect and interaction 
models1[1,] <- c(1,1.5,2,4)  
models1[2,] <- c(1.5,1,4,2) 
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models1[3,] <- c(4,2,1.5,1) 
models1[4,] <- c(2,4,1,1.5) 
# main effects from two factors 
models2[1,] <- c(1,1.5,2,3) 
models2[2,] <- c(1.5,1,3,2) 
models2[3,] <- c(3,2,1.5,1) 
models2[4,] <- c(2,3,1,1.5) 
models3 <- models4 <- matrix(NA, nrow=2,ncol=4) 
# main effect from one factor 
models3[1,] <- c(1,1.5,1,1.5) 
models3[2,] <- c(1.5,1,1.5,1) 
models4[1,] <- c(1,1,2,2) 
models4[2,] <- c(2,2,1,1) 
 
# number of genes simulated 
numDE <- n.genes*ratio 
# two factors each with two levels = 4 groups 
grp<-rep(1:4,each=n/4) 
# sample the mean from the himes data and assign to 4 groups 
sim.mn <- matrix(sample(mnair, n.genes, replace=F),n.genes,4) 
# impose the treatment effect models to the DE genes  
j <- 1 
repeat{ 
 if (j<=numDE) sim.mn[j,] <- sim.mn[j,]* models1[sample(1:4,1),] 
 else if (j<=2*numDE) sim.mn[j,] <- sim.mn[j,]* models2[sample(1:4,1),] 
 else if (j<=3*numDE) sim.mn[j,] <- sim.mn[j,]* models3[sample(1:2,1),] 
 else if (j<=4*numDE) sim.mn[j,] <- sim.mn[j,]* models4[sample(1:2,1),] 
 if (j==4*numDE) break 
 j <- j + 1 
} 
 
# Simulate library size factors 
a<-sim.mn[,grp] 
offset<-2^(rnorm(n,0,.5)) 
a<-t(t(a)*offset) 
 
# simulate dispersion 
disp <- exp(rnorm(n.genes, 0, 1.2)) 
# variance function 
vf <- a+log(a+1) 
# simulate rounded gamma random variable with the variance determined by variance function and dispersion 
simdat<-round(matrix(rgamma(n.genes*n, a^2/rep(disp,n)/vf, a/rep(disp,n)/vf),n.genes,n)) 
# remove those genes with all zero counts and keep only the number of genes needed 
nDE1 <- sum(rowSums(simdat[1:numDE,1:n])>0) 
nDE2 <- sum(rowSums(simdat[(numDE+1):(2*numDE),1:n])>0) 
nDE3 <- sum(rowSums(simdat[(2*numDE+1):(3*numDE),1:n])>0) 
nDE4 <- sum(rowSums(simdat[(3*numDE+1):(4*numDE),1:n])>0) 
nEE <- sum(rowSums(simdat[-(1:(4*numDE)),1:n])>0) 
crt <- n.genes.need*ratio 
eecrt <- n.genes.need*(1-4*ratio) 
if ( (nDE1 > crt) && (nDE2 > crt) && (nDE3 > crt) && (nDE4 > crt) && (nEE>eecrt)){ 
 simdat1 <- simdat[1:numDE,] 
 simdat2 <- simdat[(numDE+1):(2*numDE),] 
 simdat3 <- simdat[(2*numDE+1):(3*numDE),] 
 simdat4 <- simdat[(3*numDE+1):(4*numDE),] 
 simdat5 <- simdat[-(1:(4*numDE)),] 
 simdat1 <- simdat1[rowSums(simdat1[,1:n])>0,] 
 simdat2 <- simdat2[rowSums(simdat2[,1:n])>0,] 
 simdat3 <- simdat3[rowSums(simdat3[,1:n])>0,] 
 simdat4 <- simdat4[rowSums(simdat4[,1:n])>0,] 
 simdat5 <- simdat5[rowSums(simdat5[,1:n])>0,] 
 simdat1 <- simdat1[1:crt,] 
 simdat2 <- simdat2[1:crt,] 
 simdat3 <- simdat3[1:crt,] 
 simdat4 <- simdat4[1:crt,] 
 simdat5 <- simdat5[1:eecrt,] 
 simdat <- rbind(simdat1,simdat2,simdat3,simdat4,simdat5) 
 simdat <- as.data.frame(simdat) 
 rownames(simdat) <- paste("n",1:n.genes.need,sep="") 
} 
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# analysis 
 
n <- 20  
subn <- n/4  
grp<-rep(1:4,each=subn) 
# treatment factor 1 and 2 
trt1 <- rep(1:2,each=2*subn)  
trt2 <- c(rep(1:2,each=subn),rep(1:2,each=subn))  
 
# genes with zero IQR and low mean count are filtered 
IQR <- apply(simdat[1:n],1,IQR) 
simdat <- simdat[IQR != 0 & rowMeans(simdat)>1,] 
 
# normalize data by the TMM method 
libsize = apply(simdat[,1:n],2,sum) 
nrmfactor1 <-calcNormFactors(simdat[,1:n],method="TMM")*libsize 
simdatnorm1 <- as.data.frame(t(t(simdat[,1:n])/nrmfactor1))*mean(nrmfactor1) 
 
# ======== QuasiDE ======== 
 
# estimate the variance function 
simdatnorm1$mean <- apply(simdatnorm1[,1:n],1,mean)  
simdatnorm1$mean1 <- apply(simdatnorm1[,1:(n/4)],1,mean)  
simdatnorm1$mean2 <- apply(simdatnorm1[,(n/4+1):(2*n/4)],1,mean) 
simdatnorm1$mean3 <- apply(simdatnorm1[,(2*n/4+1):(3*n/4)],1,mean) 
simdatnorm1$mean4 <- apply(simdatnorm1[,(3*n/4+1):n],1,mean) 
simdatnorm1$var <- apply(simdatnorm1[,1:n],1,var)  
simdatnorm1$var1 <- apply(simdatnorm1[,1:(n/4)],1,var) 
simdatnorm1$var2 <- apply(simdatnorm1[,(n/4+1):(2*n/4)],1,var) 
simdatnorm1$var3 <- apply(simdatnorm1[,(2*n/4+1):(3*n/4)],1,var) 
simdatnorm1$var4 <- apply(simdatnorm1[,(3*n/4+1):n],1,var) 
meanest1 <- c(simdatnorm1$mean1,simdatnorm1$mean2,simdatnorm1$mean3,simdatnorm1$mean4) 
varest1 <- c(simdatnorm1$var1,simdatnorm1$var2,simdatnorm1$var3,simdatnorm1$var4) 
modnorm1 <- smooth.spline(meanest1[varest1 != 0],log(varest1[varest1 != 0])) 
 
# Compare models to test interaction 
dsgn.full <- model.matrix(~as.factor(trt1)+as.factor(trt2)+as.factor(trt1):as.factor(trt2)) 
dsgn.main <- model.matrix(~as.factor(trt1)+as.factor(trt2)) 
 
d1 <- quasiDE(simdatnorm1[,1:n],design1=dsgn.full, design2=dsgn.main, splmodel=modnorm1) 
simdat$quasiDE.int.1.praw <- d1[,2] 
# adjusted raw-p by the BH method 
simdat$quasiDE.int.1 <- getadjp(simdat,simdat$quasiDE.int.1.praw) 
 
# ======== NBQLSpline ======== 
 
# Specify the models to be compared 
design.list<-vector("list",2) 
design.list[[1]]<-model.matrix(~as.factor(trt1)+as.factor(trt2)+as.factor(trt1):as.factor(trt2))  
design.list[[2]]<-model.matrix(~as.factor(trt1)+as.factor(trt2))  
test.mat <- rbind(1:2) 
row.names(test.mat) <- c("int") 
# fit GLM by quasi-likelihood under NB assumption 
fit1.NB<-QL.fit(as.matrix(simdat[,1:n]),test.mat=test.mat,design.list,log.offset=log(nrmfactor1),Model="NegBin") 
# get results 
results1.NB<-QL.results(fit1.NB,Plot=FALSE) 
simdat$NBQLSPq.int.1.rawp <- as.numeric(results1.NB$P.values$QLSpline[,"int"]) 
simdat$NBQLSPq.int.1 <- p.adjust(simdat$NBQLSPq.int.1.rawp,method="BH") 
 
# ======== edgeR ======== 
 
# specify the model 
design <- model.matrix(~as.factor(trt1)+as.factor(trt2)+as.factor(trt1):as.factor(trt2)) 
grp = as.factor(rep(1:4,each=n/4)) 
DGE1 = DGEList(simdat[,1:n],group=grp) 
 
# normalize the data by the TMM method 
DGE1 = calcNormFactors(DGE1, method="TMM")  
# estimate dispersion 
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DGE1 <- estimateGLMCommonDisp(DGE1,design) 
DGE1 <- estimateGLMTrendedDisp(DGE1,design) 
DGE1 <- estimateGLMTagwiseDisp(DGE1,design) 
# test the interaction 
fit1 <- glmFit(DGE1,design=design) 
lrt.int.1 <- glmLRT(fit1,coef=4) 
# get results 
results1.int <- topTags(lrt.int.1,n=nrow(simdat))$table 
gname1.int <- rownames(results1.int) 
num1.int <- as.numeric(substr(rownames(results1.int),2,max(nchar(gname1.int)))) 
edgeRres1.int <- results1.int[order(num1.int),] 
simdat$edgeq1.int <- edgeRres1.int$FDR 
 
# ======== DESeq ======== 
 
# model factors 
desn <- data.frame(trt1=as.factor(trt1),trt2=as.factor(trt2)) 
dcds1 <- newCountDataSet(simdat[,1:n], desn) 
dcds1 <- estimateSizeFactors(dcds1) 
# assign TMM normalized factor as size factor 
pData(dcds1)$sizeFactor <- nrmfactor1/mean(nrmfactor1) 
# estimate dispersion 
dcds1 <- estimateDispersions(dcds1, method="pooled",sharingMode = "fit-only", fitType="local") 
# compare two models by the likelihood ratio test 
fit0 <- fitNbinomGLMs(dcds1,count~trt1+trt2+trt1:trt2) 
fit1 <- fitNbinomGLMs(dcds1,count~trt1+trt2) 
pvGLM1.int <- nbinomGLMTest(fit0,fit1) 
# adjust p-values 
padj1.DESeq.int <- p.adjust(pvGLM1.int, method="BH")  
simdat$DESeqq1.int <- padj1.DESeq.int 
 
# number of genes in the data before filtering 
ngenes <- 20000 
lblnum1 <- as.numeric(substr(rownames(simdat),2,max(nchar(rownames(simdat))))) 
# number of DE genes after filtering 
numDE1 <- sum(lblnum1 <= nd) 
# number of genes after filtering 
nGen1 <- nrow(simdat) 
 
# evaluate performance 
paralbl <- c("tp","fp","tn","fn","sen","spc","accuracy","FDR") 
rowlbl <- c("NBQLSpline","edgeR","DESeq","QuasiDE") 
para <- matrix(NA,nrow=length(rowlbl),ncol=length(paralbl)) 
rownames(para) <- rowlbl 
colnames(para) <- paralbl 
para[1,] <- paraest(numDE1,nGen1, simdat$NBQLSPq.int.1 ,ng=ngenes,der=ratio) 
para[2,] <- paraest(numDE1,nGen1, simdat$edgeq1.int ,ng=ngenes,der=ratio) 
para[3,] <- paraest(numDE1,nGen1, simdat$DESeqq1.int,ng=ngenes,der=ratio) 
para[4,] <- paraest(numDE1,nGen1, simdat$quasiDE.int.1 ,ng=ngenes,der=ratio) 
para 
 
# ======================================================================================== 
# R.code (Chapter 4)   
# ======================================================================================== 
 
# ======== simulate data with two experiment conditions, gene length varied with experimental coditions ======== 
 
# load gene length dataset (not provided) 
load("c:/genlen.RData") 
# sample size 
n <- 10 
# treatment effect 
foldchg <- 3 
# number of genes needed  
n.genes.need <- 20000 
# nnumber of genes simulated 
n.genes<- n.genes.need * 1.2 
# 5% DE genes 
ratio <- 0.05 
# treatment group 
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trt<-rep(1:2,each=n/2) 
# sample means from himes data 
sim.mn<-matrix(sample(mnair,n.genes, replace=F),n.genes,2) 
# half DE genes over-expressed, half under-expressed 
nover <- 0.5*n.genes*ratio 
nunder <- 0.5*n.genes*ratio 
# setup treatment effect 
sim.mn[1:nover,1]<- sim.mn[1:nover,1]/foldchg 
sim.mn[(nover+1):(nover+nunder),1]<-foldchg*sim.mn[(nover+1):(nover+nunder),1] 
 
# Simulate library size factors 
a <- sim.mn[,trt] 
offset<-2^(rnorm(n,0,.5)) 
a<-t(t(a)*offset) 
 
# varied gene length effect 
# sample gene length 
glen <- sample(genlen) 
glenraw <- glen[1:n.genes] 
# set up the gene length in the other treatment group 
# fixed gene length: gvlen <- glenraw 
gvlen <- ceiling(2^(rnorm(n.genes,0,1/3))*glenraw) 
glen <- cbind(glenraw,gvlen) 
# apply gene length effect 
a <- a*glen[,trt]/1000 
# simulate dispersion 
disp <- exp(rnorm(n.genes, 0, 1.2)) 
# variance function  
vf <- a+log(a+1)  
# simuate gamma random variable having the designed variance and then rounded  
simdat<-round(matrix(rgamma(n.genes*n, a^2/rep(disp,n)/vf, a/rep(disp,n)/vf),n.genes,n)) 
# remove those genes with all zero and keep the number of genes needed 
# the corresponding gene length is also kept for future use 
nDEover <- sum(rowSums(simdat[1:(n.genes*ratio/2),1:n])>0) 
nDEunder <- sum(rowSums(simdat[(n.genes*ratio/2+1):(n.genes*ratio),1:n])>0) 
nNDE <- sum(rowSums(simdat[-(1:(n.genes*ratio)),1:n])>0) 
if ((nDEunder>(n.genes.need*ratio/2)) && (nDEover>(n.genes.need*ratio/2)) && (nNDE>(n.genes.need*(1-ratio)))){ 
 simdat1 <- simdat[1:(n.genes*ratio/2),] 
 glen1 <- glen[1:(n.genes*ratio/2),] 
 simdat2 <- simdat[(n.genes*ratio/2+1):(n.genes*ratio),] 
 glen2 <- glen[(n.genes*ratio/2+1):(n.genes*ratio),] 
 simdat3 <- simdat[-(1:(n.genes*ratio)),] 
 glen3 <- glen[-(1:(n.genes*ratio)),] 
 ind1 <- rowSums(simdat1[,1:n])>0 
 ind2 <- rowSums(simdat2[,1:n])>0 
 ind3 <- rowSums(simdat3[,1:n])>0 
 simdat1 <- simdat1[ind1,] 
 glen1<-glen1[ind1,] 
 simdat2 <- simdat2[ind2,] 
 glen2<-glen2[ind2,] 
 simdat3 <- simdat3[ind3,] 
 glen3<-glen3[ind3,] 
 simdat1 <- simdat1[1:(n.genes.need*ratio/2),] 
 glen1<-glen1[1:(n.genes.need*ratio/2),] 
 simdat2 <- simdat2[1:(n.genes.need*ratio/2),] 
 glen2<-glen2[1:(n.genes.need*ratio/2),] 
 simdat3 <- simdat3[1:(n.genes.need*(1-ratio)),] 
 glen3<-glen3[1:(n.genes.need*(1-ratio)),] 
 simdat <- rbind(simdat1,simdat2,simdat3) 
 gene.length <- rbind(glen1,glen2,glen3) 
 simdat <- as.data.frame(simdat) 
 simdat$gl <- gene.length 
 rownames(simdat) <- paste("n",1:n.genes.need,sep="") 
} 
 
# analysis 
 
# R package for LIMMA 
 library(limma) 
 library(edgeR) 
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 # load R package which has the normalization functions for microarray data 
 library(affy) 
 
# produce the RPKM data 
 glen <- simdat[,-(1:n)] 
 glen <- glen[,trt] 
 libsize <- apply(simdat[,1:n],2,sum) 
 simdatRPKM <- as.data.frame(t(t(simdat[,1:n])/libsize))/glen*(10^9) 
 
# filter data by zero IQR and low mean count for raw count data, keep the corresponding  gene lengths 
 IQR1 <- apply(simdat[,1:n],1,IQR) 
 simdatglen <- glen[IQR1 != 0 & rowMeans(simdat)>1,] 
 simdat <- simdat[IQR1 != 0 & rowMeans(simdat)>1,] 
  
 # filter data by zero IQR for the RPKM data, keep the corresponding  gene lengths 
 IQR2 <- apply(simdatRPKM[,1:n],1,IQR) 
 simdatRPKMglen <- glen[IQR2 != 0,] 
 simdatRPKM <- simdatRPKM[IQR2 != 0,] 
  
# normalize raw count data by the gene length and the TMM method 
simdatgl  <- simdat/simdatglen*10^3 
libsizegl <- apply(simdatgl [,1:n],2,sum) 
nrmfactorgl <- calcNormFactors(simdatgl[,1:n],method = "TMM")* libsizegl 
simdatglTMM <- as.data.frame(t(t(simdatgl[,1:n])/ nrmfactorgl))*mean(nrmfactorgl) 
 
# normalize raw count data by the TMM method 
 nrmfactorTMM1 <-calcNormFactors(simdat[,1:n],method="TMM")*libsize 
 simdatTMM <- as.data.frame(t(t(simdat[,1:n])/nrmfactorTMM1))*mean(nrmfactorTMM1) 
 
 # normalize the RPKM data by the TMM method 
 nrmfactorTMM2 <-calcNormFactors(simdatRPKM[,1:n],method="TMM") 
 simdatRPKMTMM <- as.data.frame(t(t(simdatRPKM[,1:n])/nrmfactorTMM2)) 
 
# normalize raw count data by the RLE method 
 nrmfactorRLE1 <-calcNormFactors(simdat[,1:n],method="RLE")*libsize 
 simdatRLE <-as.data.frame(t(t(simdat[,1:n])/nrmfactorRLE1))*mean(nrmfactorRLE1) 
 
# normalize the RPKM data by the RLE method 
 nrmfactorRLE2 <-calcNormFactors(simdatRPKM[,1:n],method="RLE") 
 simdatRPKMRLE <-as.data.frame(t(t(simdatRPKM[,1:n])/nrmfactorRLE2)) 
 
# normalize raw count data by the UQ method 
 nrmfactorUQ1 <-calcNormFactors(simdat[,1:n],method="upperquartile")*libsize 
 simdatUQ <- as.data.frame(t(t(simdat[,1:n])/nrmfactorUQ1))*mean(nrmfactorUQ1) 
 
 # normalize the RPKM data by the UQ method 
 nrmfactorUQ2 <-calcNormFactors(simdatRPKM[,1:n],method="upperquartile") 
 simdatRPKMUQ <- as.data.frame(t(t(simdatRPKM[,1:n])/nrmfactorUQ2)) 
 
# scale normalization for the RPKM data  
 simdatRPKMscale <- as.data.frame(normalizeBetweenArrays(as.matrix(simdatRPKM[,1:n]),method = "scale")) 
 rownames(simdatRPKMscale) <- rownames(simdatRPKM) 
 
# quantile normalization for the RPKM data  
 simdatRPKMqn <- as.data.frame(normalizeBetweenArrays(as.matrix(simdatRPKM[,1:n]),method = "quantile")) 
 rownames(simdatRPKMqn) <- rownames(simdatRPKM) 
 
# cyclic loess normalization for the RPKM data 
 simdatRPKMcl <- as.data.frame(normalizeBetweenArrays(as.matrix(simdatRPKM[,1:n]),method = "cyclicloess")) 
 rownames(simdatRPKMcl) <- rownames(simdatRPKM) 
 
# invariantset normalization for the RPKM data 
 
 simdatRPKMIV <- simdatRPKM[,1:n] 
 ref <- simdatRPKM[,1] 
 for (m in 2:n){ 
 x <- simdatRPKM[,m] 
 tmp <- normalize.invariantset(x, ref) 
 simdatRPKMIV[,m]<- as.numeric(approx(tmp$n.curve$y, tmp$n.curve$x, xout = x, rule = 2)$y) 
 } 



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

159 
 

  
 # analysis 
 
 # ======== LIMMA ======== 
 
 # model specification 
 design<-model.matrix(~as.factor(trt))  
 colnames(design) <- c("ref","beta") 
 
# analyze the raw data with the gene length and TMM normalization 
 fit <- lmFit(simdatglTMM[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatglTMM)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatglTMM$lq.gl.TMM <- lres$adj.P.Val 
 LIMMA.gl.TMM <- lres 
 
 # analyze the RPKM data directly 
 fit <- lmFit(simdatRPKM[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKM)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKM$lq.raw <- lres$adj.P.Val 
 LIMMA.RPKM <- lres 
 
 # analyze the TMM normalized count data 
 fit <- lmFit(simdatTMM[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatTMM)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdat$lq.TMM <- lres$adj.P.Val 
 LIMMA.TMM <- lres 
 
 # analyze the TMM normalized RPKM data 
 fit <- lmFit(simdatRPKMTMM[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMTMM)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKM$lq.TMM <- lres$adj.P.Val 
 LIMMA.RPKM.TMM <- lres 
  
 # analyze the RLE normalized count data 
 fit <- lmFit(simdatRLE[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRLE)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdat$lq.RLE <- lres$adj.P.Val 
 LIMMA.RLE <- lres 
 
 # analyze the RLE normalized RPKM data 
 fit <- lmFit(simdatRPKMRLE[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMRLE)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKM$lq.RLE <- lres$adj.P.Val 
 LIMMA.RPKM.RLE <- lres 
 
 # analyze the UQ normalized count data 
 fit <- lmFit(simdatUQ[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatUQ)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdat$lq.UQ <- lres$adj.P.Val 
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 LIMMA.UQ <- lres 
 
 # analyze the UQ normalized RPKM data 
 fit <- lmFit(simdatRPKMUQ[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMUQ)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKM$lq.UQ <- lres$adj.P.Val 
 LIMMA.RPKM.UQ <- lres 
 
 # analyze the scaling normalized RPKM data 
 fit <- lmFit(simdatRPKMscale[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMscale)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKMscale$lq.scale <- lres$adj.P.Val 
 LIMMA.RPKM.scale <- lres 
 
 # analyze the quantile normalized RPKM data 
 fit <- lmFit(simdatRPKMqn[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMqn)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKMqn$lq.qn <- lres$adj.P.Val 
 LIMMA.RPKM.qn <- lres 
 
 # analyze the cyclic loess normalized RPKM data 
 fit <- lmFit(simdatRPKMcl[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMcl)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKMcl$lq.cl <- lres$adj.P.Val 
 LIMMA.RPKM.cl <- lres 
 
 # analyze the invariant set normalized RPKM data 
 fit <- lmFit(simdatRPKMIV[,1:n], design) 
 fit <- eBayes(fit) 
 lres <- topTable(fit, coef ="beta",adjust = "fdr",number=nrow(simdatRPKMIV)) 
 lnum <- as.numeric(gsub("n","",rownames(lres))) 
 lres <- lres[order(lnum),] 
 simdatRPKMIV$lq.IV <- lres$adj.P.Val 
 LIMMA.RPKM.IV <- lres 
 
 # ======== edgeR ======== 
 
 # analyze the raw count using the TMM normalization by adjusting for gene length 
 DGE1 <- DGEList(counts=simdat[,1:n],lib.size=libsize,group=trt,norm.factors=as.numeric(nrmfactorTMM1)) 
 
 # Column correct log gene lengths 
 # Columns of gl should add to zero 
 gl <- log(glen[IQR1 !=0,]) 
 gl <- t(t(gl)-colMeans(gl)) 
 
 # Combine library sizes, norm factors and gene lengths: 
 offset <- expandAsMatrix(getOffset(DGE1)) 
 offset = sweep(gl,2,offset,"+") 
 DGE1$offset <- offset 
 DGE1 <- estimateGLMCommonDisp(DGE1, design) 
 DGE1 <- estimateGLMTrendedDisp(DGE1, design) 
 DGE1 <- estimateGLMTagwiseDisp(DGE1, design,trend=T)  
 fit1 <- glmFit(DGE1,design) 
 results1 <- glmLRT(fit1,coef=2) 
 edgeres <- topTags(results1,n=nrow(simdat))$table 
 gname1 <- rownames(edgeres) 
 num1 <- as.numeric(substr(rownames(edgeres),2,max(nchar(gname1)))) 
 res1 <- edgeres[order(num1),] 
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 #analyze the raw count using the RLE normalization by adjusting for gene length 
 DGE2 <- DGEList(counts=simdat[,1:n],lib.size=libsize,group=trt,norm.factors=as.numeric(nrmfactorRLE1)) 
 
 # Column correct log gene lengths 
 # Columns of gl should add to zero 
 gl <- log(glen[IQR1 !=0,]) 
 gl <- t(t(gl)-colMeans(gl)) 
 
 # Combine library sizes, normalization factors and gene lengths: 
 offset <- expandAsMatrix(getOffset(DGE2)) 
 offset = sweep(gl,2,offset,"+") 
 DGE2$offset <- offset 
 DGE2 <- estimateGLMCommonDisp(DGE2, design) 
 DGE2 <- estimateGLMTrendedDisp(DGE2, design) 
 DGE2 <- estimateGLMTagwiseDisp(DGE2,design,trend=T)  
 fit2 <- glmFit(DGE2,design) 
 results2 <- glmLRT(fit2,coef=2) 
 edgeres <- topTags(results2,n=nrow(simdat))$table 
 gname2 <- rownames(edgeres) 
 num2 <- as.numeric(substr(rownames(edgeres),2,max(nchar(gname2)))) 
 res2 <- edgeres[order(num2),] 
 
 # analyze the raw count using the UQ normalization by adjusting for gene length 
 DGE3 <- DGEList(counts=simdat[,1:n],lib.size=libsize,group=trt,norm.factors=as.numeric(nrmfactorUQ1)) 
 
 # Column correct log gene lengths 
 # Columns of gl should add to zero 
 gl <- log(glen[IQR1 != 0, ]) 
 gl <- t(t(gl)-colMeans(gl)) 
 
 # Combine library sizes, normalization factors and gene lengths: 
 offset <- expandAsMatrix(getOffset(DGE3)) 
 offset = sweep(gl,2,offset,"+") 
 DGE3$offset <- offset 
 DGE3 <- estimateGLMCommonDisp(DGE3, design) 
 DGE3 <- estimateGLMTrendedDisp(DGE3, design) 
 DGE3 <- estimateGLMTagwiseDisp(DGE3,design,trend=T)  
 fit3 <- glmFit(DGE3,design) 
 results3 <- glmLRT(fit3,coef=2) 
 edgeres <- topTags(results3,n=nrow(simdat))$table 
 gname3 <- rownames(edgeres) 
 num3 <- as.numeric(substr(rownames(edgeres),2,max(nchar(gname3)))) 
 res3 <- edgeres[order(num3),] 
 
 simdat$edgeq.TMM <- res1$FDR 
 simdat$edgeq.RLE <- res2$FDR 
 simdat$edgeq.UQ <- res3$FDR 
 edgeRres.TMM <- res1 
 edgeRres.RLE <- res2 
 edgeRres.UQ <- res3 
 
# ======== QuasiDE ======== 
 
# analyze the raw count data normalized by the gene length and the TMM method 
 simdatglTMM$mean <- apply(simdatglTMM[,1:n],1,mean)  
 simdatglTMM$mean1 <- apply(simdatglTMM[,1:(n/2)],1,mean)  
 simdatglTMM$mean2 <- apply(simdatglTMM[,(n/2+1):n],1,mean)  
 simdatglTMM$var <- apply(simdatglTMM[,1:n],1,var)  
 simdatglTMM$var1 <- apply(simdatglTMM[,1:(n/2)],1,var) 
 simdatglTMM$var2 <- apply(simdatglTMM[,(n/2+1):n],1,var)  
 meanest <- c(simdatglTMM$mean1,simdatglTMM$mean2) 
 varest <- c(simdatglTMM$var1,simdatglTMM$var2) 
 modnormglTMM <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 dsgn.full <- model.matrix(~as.factor(trt)) 
 dsgn.null <- dsgn.full[,1,drop=F] 
 d1 <- quasiDE(simdatglTMM[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel=modnormglTMM) 
 simdatglTMM$QDE.gl.TMM.praw <- d1[,2] 
 # adjusted raw-p by the BH method 
 simdatglTMM$quasiDE.gl.TMM <- getadjp(simdatglTMM, simdatglTMM$QDE.gl.TMM.praw) 
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 # analyze the RPKM data 
 simdatRPKM$mean <- apply(simdatRPKM[,1:n],1,mean)  
 simdatRPKM$mean1 <- apply(simdatRPKM[,1:(n/2)],1,mean)  
 simdatRPKM$mean2 <- apply(simdatRPKM[,(n/2+1):n],1,mean)  
 simdatRPKM$var <- apply(simdatRPKM[,1:n],1,var)  
 simdatRPKM$var1 <- apply(simdatRPKM[,1:(n/2)],1,var) 
 simdatRPKM$var2 <- apply(simdatRPKM[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKM$mean1,simdatRPKM$mean2) 
 varest <- c(simdatRPKM$var1,simdatRPKM$var2) 
 modnormRPKM <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 dsgn.full <- model.matrix(~as.factor(trt)) 
 dsgn.null <- dsgn.full[,1,drop=F] 
 d1 <- quasiDE(simdatRPKM [,1:n],design1=dsgn.full, design2=dsgn.null, splmodel=modnormRPKM) 
 simdatRPKM$QDE.praw <- d1[,2] 
 # adjusted raw p-values by the BH method 
 simdatRPKM$quasiDE <- getadjp(simdatRPKM, simdatRPKM$QDE.praw) 
 
 # analyze the TMM normalized raw count data  
 simdatTMM$mean <- apply(simdatTMM[,1:n],1,mean)  
 simdatTMM$mean1 <- apply(simdatTMM[,1:(n/2)],1,mean)  
 simdatTMM$mean2 <- apply(simdatTMM[,(n/2+1):n],1,mean)  
 simdatTMM$var <- apply(simdatTMM[,1:n],1,var)  
 simdatTMM$var1 <- apply(simdatTMM[,1:(n/2)],1,var) 
 simdatTMM$var2 <- apply(simdatTMM[,(n/2+1):n],1,var)  
 meanest <- c(simdatTMM$mean1,simdatTMM$mean2) 
 varest <- c(simdatTMM$var1,simdatTMM$var2) 
 modnormTMM <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatTMM[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel=modnormTMM) 
 simdatTMM$QDE.praw <- d1[,2] 
 simdatTMM$quasiDE <- getadjp(simdatTMM, simdatTMM$QDE.praw) 
 
 # analyze the TMM normalized RPKM data 
 simdatRPKMTMM$mean <- apply(simdatRPKMTMM[,1:n],1,mean)  
 simdatRPKMTMM$mean1 <- apply(simdatRPKMTMM[,1:(n/2)],1,mean)  
 simdatRPKMTMM$mean2 <- apply(simdatRPKMTMM[,(n/2+1):n],1,mean)   
 simdatRPKMTMM$var <- apply(simdatRPKMTMM[,1:n],1,var) 
 simdatRPKMTMM$var1 <- apply(simdatRPKMTMM[,1:(n/2)],1,var) 
 simdatRPKMTMM$var2 <- apply(simdatRPKMTMM[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMTMM$mean1,simdatRPKMTMM$mean2) 
 varest <- c(simdatRPKMTMM$var1,simdatRPKMTMM$var2) 
 modnormRPKMTMM <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRPKMTMM[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMTMM) 
 simdatRPKMTMM$QDE.praw <- d1[,2] 
 simdatRPKMTMM$quasiDE <- getadjp(simdatRPKMTMM, simdatRPKMTMM$QDE.praw) 
 
 # analyze the RLE normalized raw count data 
 simdatRLE$mean <- apply(simdatRLE[,1:n],1,mean)  
 simdatRLE$mean1 <- apply(simdatRLE[,1:(n/2)],1,mean)  
 simdatRLE$mean2 <- apply(simdatRLE[,(n/2+1):n],1,mean)   
 simdatRLE$var <- apply(simdatRLE[,1:n],1,var) 
 simdatRLE$var1 <- apply(simdatRLE[,1:(n/2)],1,var) 
 simdatRLE$var2 <- apply(simdatRLE[,(n/2+1):n],1,var)  
 meanest <- c(simdatRLE$mean1,simdatRLE$mean2) 
 varest <- c(simdatRLE$var1,simdatRLE$var2) 
 modnormRLE <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRLE[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel=modnormRLE) 
 simdatRLE$QDE.praw <- d1[,2] 
 simdatRLE$quasiDE <- getadjp(simdatRLE, simdatRLE$QDE.praw) 
 
 # analyze the RLE normalized RPKM data 
 simdatRPKMRLE$mean <- apply(simdatRPKMRLE[,1:n],1,mean)  
 simdatRPKMRLE$mean1 <- apply(simdatRPKMRLE[,1:(n/2)],1,mean)  
 simdatRPKMRLE$mean2 <- apply(simdatRPKMRLE[,(n/2+1):n],1,mean) 
 simdatRPKMRLE$var <- apply(simdatRPKMRLE[,1:n],1,var)   
 simdatRPKMRLE$var1 <- apply(simdatRPKMRLE[,1:(n/2)],1,var) 
 simdatRPKMRLE$var2 <- apply(simdatRPKMRLE[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMRLE$mean1,simdatRPKMRLE$mean2) 
 varest <- c(simdatRPKMRLE$var1,simdatRPKMRLE$var2) 
 modnormRPKMRLE <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
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 d1 <- quasiDE(simdatRPKMRLE[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMRLE) 
 simdatRPKMRLE$QDE.praw <- d1[,2] 
 simdatRPKMRLE$quasiDE <- getadjp(simdatRPKMRLE, simdatRPKMRLE$QDE.praw) 
 
 # analyze the UQ normalized raw count data 
 simdatUQ$mean <- apply(simdatUQ[,1:n],1,mean)  
 simdatUQ$mean1 <- apply(simdatUQ[,1:(n/2)],1,mean)  
 simdatUQ$mean2 <- apply(simdatUQ[,(n/2+1):n],1,mean)   
 simdatUQ$var <- apply(simdatUQ[,1:n],1,var) 
 simdatUQ$var1 <- apply(simdatUQ[,1:(n/2)],1,var) 
 simdatUQ$var2 <- apply(simdatUQ[,(n/2+1):n],1,var)  
 meanest <- c(simdatUQ$mean1,simdatUQ$mean2) 
 varest <- c(simdatUQ$var1,simdatUQ$var2) 
 modnormUQ <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatUQ[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormUQ) 
 simdatUQ$QDE.praw <- d1[,2] 
 simdatUQ$quasiDE <- getadjp(simdatUQ, simdatUQ$QDE.praw) 
 
 # analyze the UQ normalized RPKM data 
 simdatRPKMUQ$mean <- apply(simdatRPKMUQ[,1:n],1,mean)  
 simdatRPKMUQ$mean1 <- apply(simdatRPKMUQ[,1:(n/2)],1,mean)  
 simdatRPKMUQ$mean2 <- apply(simdatRPKMUQ[,(n/2+1):n],1,mean) 
 simdatRPKMUQ$var <- apply(simdatRPKMUQ[,1:n],1,var)   
 simdatRPKMUQ$var1 <- apply(simdatRPKMUQ[,1:(n/2)],1,var) 
 simdatRPKMUQ$var2 <- apply(simdatRPKMUQ[,(n/2+1):n],1,var) 
 meanest <- c(simdatRPKMUQ$mean1, simdatRPKMUQ$mean2) 
 varest <- c(simdatRPKMUQ$var1, simdatRPKMUQ$var2) 
 modnormRPKMUQ <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRPKMUQ[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMUQ) 
 simdatRPKMUQ$QDE.praw <- d1[,2] 
 simdatRPKMUQ$quasiDE <- getadjp(simdatRPKMUQ, simdatRPKMUQ$QDE.praw) 
 
 # analyze the scaling normalized RPKM data  
 simdatRPKMscale$mean <- apply(simdatRPKMscale[,1:n],1,mean)  
 simdatRPKMscale$mean1 <- apply(simdatRPKMscale[,1:(n/2)],1,mean)  
 simdatRPKMscale$mean2 <- apply(simdatRPKMscale[,(n/2+1):n],1,mean)  
 simdatRPKMscale$var <- apply(simdatRPKMscale[,1:n],1,var)  
 simdatRPKMscale$var1 <- apply(simdatRPKMscale[,1:(n/2)],1,var) 
 simdatRPKMscale$var2 <- apply(simdatRPKMscale[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMscale$mean1,simdatRPKMscale$mean2) 
 varest <- c(simdatRPKMscale$var1,simdatRPKMscale$var2) 
 modnormRPKMscale <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRPKMscale[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMscale) 
 simdatRPKMscale$QDE.praw <- d1[,2] 
 simdatRPKMscale$quasiDE <- getadjp(simdatRPKMscale, simdatRPKMscale$QDE.praw) 
 
 # analyze the quantile normalized RPKM data 
 simdatRPKMqn$mean <- apply(simdatRPKMqn[,1:n],1,mean)  
 simdatRPKMqn$mean1 <- apply(simdatRPKMqn[,1:(n/2)],1,mean)  
 simdatRPKMqn$mean2 <- apply(simdatRPKMqn[,(n/2+1):n],1,mean)   
 simdatRPKMqn$var <- apply(simdatRPKMqn[,1:n],1,var) 
 simdatRPKMqn$var1 <- apply(simdatRPKMqn[,1:(n/2)],1,var) 
 simdatRPKMqn$var2 <- apply(simdatRPKMqn[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMqn$mean1,simdatRPKMqn$mean2) 
 varest <- c(simdatRPKMqn$var1,simdatRPKMqn$var2) 
 modnormRPKMqn <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRPKMqn[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMqn) 
 simdatRPKMqn$QDE.praw <- d1[,2] 
 simdatRPKMqn$quasiDE <- getadjp(simdatRPKMqn, simdatRPKMqn$QDE.praw) 
 
 # analyze the Cyclic Loess normalized RPKM data 
 simdatRPKMcl$mean <- apply(simdatRPKMcl[,1:n],1,mean)  
 simdatRPKMcl$mean1 <- apply(simdatRPKMcl[,1:(n/2)],1,mean)  
 simdatRPKMcl$mean2 <- apply(simdatRPKMcl[,(n/2+1):n],1,mean) 
 simdatRPKMcl$var <- apply(simdatRPKMcl[,1:n],1,var)   
 simdatRPKMcl$var1 <- apply(simdatRPKMcl[,1:(n/2)],1,var) 
 simdatRPKMcl$var2 <- apply(simdatRPKMcl[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMcl$mean1,simdatRPKMcl$mean2) 
 varest <- c(simdatRPKMcl$var1,simdatRPKMcl$var2) 
 modnormRPKMcl <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
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 d1 <- quasiDE(simdatRPKMcl[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMcl) 
 simdatRPKMcl$QDE.praw <- d1[,2] 
 simdatRPKMcl$quasiDE <- getadjp(simdatRPKMcl, simdatRPKMcl$QDE.praw) 
 
 # analyze the invariant set normalized RPKM data 
 simdatRPKMIV$mean <- apply(simdatRPKMIV[,1:n],1,mean)  
 simdatRPKMIV$mean1 <- apply(simdatRPKMIV[,1:(n/2)],1,mean)  
 simdatRPKMIV$mean2 <- apply(simdatRPKMIV[,(n/2+1):n],1,mean)   
 simdatRPKMIV$var <- apply(simdatRPKMIV[,1:n],1,var) 
 simdatRPKMIV$var1 <- apply(simdatRPKMIV[,1:(n/2)],1,var) 
 simdatRPKMIV$var2 <- apply(simdatRPKMIV[,(n/2+1):n],1,var)  
 meanest <- c(simdatRPKMIV$mean1,simdatRPKMIV$mean2) 
 varest <- c(simdatRPKMIV$var1,simdatRPKMIV$var2) 
 modnormRPKMIV <- smooth.spline(meanest[varest != 0],log(varest[varest != 0])) 
 d1 <- quasiDE(simdatRPKMIV[,1:n],design1=dsgn.full, design2=dsgn.null, splmodel= modnormRPKMIV) 
 simdatRPKMIV$QDE.praw <- d1[,2] 
 simdatRPKMIV$quasiDE <- getadjp(simdatRPKMIV, simdatRPKMIV$QDE.praw) 
 
# calculate number of DE genes and total genes after filtering in different datasets 
 lblnum <- as.numeric(substr(rownames(simdat),2,max(nchar(rownames(simdat))))) 
 numDE <- sum(lblnum <= ngenes*ratio) 
 nGen <- nrow(simdat) 
 
 lblnum.gl.TMM <- as.numeric(substr(rownames(simdatglTMM),2,max(nchar(rownames(simdatglTMM))))) 
 numDE.gl.TMM <- sum(lblnum.gl.TMM <= ngenes*ratio) 
 nGen.gl.TMM <- nrow(simdatglTMM) 
 
 lblnumRPKM <- as.numeric(substr(rownames(simdatRPKM),2,max(nchar(rownames(simdatRPKM))))) 
 numDERPKM <- sum(lblnumRPKM <= ngenes*ratio) 
 nGenRPKM <- nrow(simdatRPKM) 
 
 lblnumscale <- as.numeric(substr(rownames(simdatRPKMscale),2,max(nchar(rownames(simdatRPKMscale))))) 
 numDEscale <- sum(lblnumscale <= ngenes*ratio) 
 nGenscale <- nrow(simdatRPKMscale) 
 
 lblnumqn <- as.numeric(substr(rownames(simdatRPKMqn),2,max(nchar(rownames(simdatRPKMqn))))) 
 numDEqn <- sum(lblnumqn <= ngenes*ratio) 
 nGenqn <- nrow(simdatRPKMqn) 
 
 lblnumcl <- as.numeric(substr(rownames(simdatRPKMcl),2,max(nchar(rownames(simdatRPKMcl))))) 
 numDEcl <- sum(lblnumcl <= ngenes*ratio) 
 nGencl <- nrow(simdatRPKMcl) 
 
 lblnumIV <- as.numeric(substr(rownames(simdatRPKMIV),2,max(nchar(rownames(simdatRPKMIV))))) 
 numDEIV <- sum(lblnumIV <= ngenes*ratio) 
 nGenIV <- nrow(simdatRPKMIV) 
 
# calculate sensitivities and real FDR in different settings  
 collbl <- c("tp","fp","tn","fn","sen","spc","accuracy","FDR") 
 rowlbl <- 
c(“GL.TMM”,"TMM","RLE","UQ","RPKM","RPKM.TMM","RPKM.RLE","RPKM.UQ","RPKM.scale","RPKM.qn","RPKM.cl","RPKM.IV") 
 paraQuasiDE <- matrix(NA,nrow=12,ncol=8)  
 paraLIMMA <- matrix(NA,nrow=12,ncol=8)  
 paraedgeR <- matrix(NA,nrow=3,ncol=8)  
 rownames(paraQuasiDE) <- rownames(paraLIMMA) <- rowlbl 
 colnames(paraQuasiDE) <- colnames(paraLIMMA) <- collbl 
 rownames(paraedgeR) <- rowlbl[1:3] 
 colnames(paraedgeR) <- collbl 
 
 paraQuasiDE[1,] <- paraest(numDE.gl.TMM,nGen.gl.TMM,simdatglTMM$quasiDE.gl.TMM,ngenes,ratio) 
 paraQuasiDE[2,] <- paraest(numDE,nGen,simdatTMM$quasiDE,ngenes,ratio) 
 paraQuasiDE[3,] <- paraest(numDE,nGen,simdatRLE$quasiDE,ngenes,ratio) 
 paraQuasiDE[4,] <- paraest(numDE,nGen,simdatUQ$quasiDE,ngenes,ratio) 
 paraQuasiDE[5,] <- paraest(numDE,nGen,simdatRPKM$quasiDE,ngenes,ratio) 
 paraQuasiDE[6,] <- paraest(numDE,nGen,simdatRPKMTMM$quasiDE,ngenes,ratio) 
 paraQuasiDE[7,] <- paraest(numDE,nGen,simdatRPKMRLE$quasiDE,ngenes,ratio) 
 paraQuasiDE[8,] <- paraest(numDE,nGen,simdatRPKMUQ$quasiDE,ngenes,ratio) 
 paraQuasiDE[9,] <- paraest(numDE,nGen,simdatRPKMscale$quasiDE,ngenes,ratio) 
 paraQuasiDE[10,] <- paraest(numDE,nGen,simdatRPKMqn$quasiDE,ngenes,ratio) 
 paraQuasiDE[11,] <- paraest(numDE,nGen,simdatRPKMcl$quasiDE,ngenes,ratio) 
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 paraQuasiDE[12,] <- paraest(numDE,nGen,simdatRPKMIV$quasiDE,ngenes,ratio) 
 
 paraLIMMA[1,] <- paraest(numDE.gl.TMM,nGen.gl.TMM,simdatglTMM$lq.gl.TMM,ngenes,ratio) 
 paraLIMMA[2,] <- paraest(numDE,nGen,simdat$lq.TMM,ngenes,ratio) 
 paraLIMMA[3,] <- paraest(numDE,nGen,simdat$lq.RLE,ngenes,ratio) 
 paraLIMMA[4,] <- paraest(numDE,nGen,simdat$lq.UQ,ngenes,ratio) 
 paraLIMMA[5,] <- paraest(numDE,nGen,simdatRPKM$lq.raw,ngenes,ratio) 
 paraLIMMA[6,] <- paraest(numDE,nGen,simdatRPKM$lq.TMM,ngenes,ratio) 
 paraLIMMA[7,] <- paraest(numDE,nGen,simdatRPKM$lq.RLE,ngenes,ratio) 
 paraLIMMA[8,] <- paraest(numDE,nGen,simdatRPKM$lq.UQ,ngenes,ratio) 
 paraLIMMA[9,] <- paraest(numDE,nGen,simdatRPKMscale$lq.scale,ngenes,ratio) 
 paraLIMMA[10,] <- paraest(numDE,nGen,simdatRPKMqn$lq.qn,ngenes,ratio) 
 paraLIMMA[11,] <- paraest(numDE,nGen,simdatRPKMcl$lq.cl,ngenes,ratio) 
 paraLIMMA[12,] <- paraest(numDE,nGen,simdatRPKMIV$lq.IV,ngenes,ratio) 
 
 paraedgeR[1,] <- paraest(numDE,nGen,simdat$edgeq.TMM,ngenes,ratio) 
 paraedgeR[2,] <- paraest(numDE,nGen,simdat$edgeq.RLE,ngenes,ratio) 
 paraedgeR[3,] <- paraest(numDE,nGen,simdat$edgeq.UQ,ngenes,ratio) 
 
 print(paraQuasiDE) 
 print(paraLIMMA) 
 print(paraedgeR) 
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APPENDIX B 

 

Figure B 1. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, Low Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure B 2. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, Low Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure B 3. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, High Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure B 4. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, High Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure B 5. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, High Fold Change, Fixed Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure B 6. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, Low Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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 Figure B 7. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, Low Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure B 8. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, High Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure B 9. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, High Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure B 10. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, High Fold Change, Varied Gene Length, QuasiDE) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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APPENDIX C 

 

Figure C 1. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, Low Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure C 2. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, Low Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 

  



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

178 
 

 

Figure C 3. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, Low Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure C 4. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, High Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure C 5. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, High Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 

  



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

181 
 

 

Figure C 6. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, High Fold Change, Fixed Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method. In the second row of panels, 

the red reference line is the nominal FDR we are willing to allow. 
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Figure C 7. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, Low Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure C 8. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, Low Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure C 9. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, Low Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure C 10. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, High Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure C 11. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, High Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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Figure C 12. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, High Fold Change, Varied Gene Length, LIMMA) 

P = RPKM data without further normalization, T = RPKM data after the TMM method, L 

= RPKM data after the RLE method, U = RPKM data after the UQ method, S = RPKM 

data after the scaling normalization, Q = RPKM data after the quantile normalization, C 

= RPKM data after the cyclic loess normalization, I = RPKM data after the invariant set 

normalization, R = Raw count data with the TMM method, G = Raw count data with the 

gene length and TMM normalization. In the second row of panels, the red reference line 

is the nominal FDR we are willing to allow. 
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APPENDIX D 

 

Figure D 1. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, Low Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 



Ph.D. Thesis - Chu-Shu Gu; McMaster University - Clinical Epidemiology and Biostatistics 
 

189 
 

 

Figure D 2. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 20 vs. 20, Low Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 
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Figure D 3. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 5 vs. 5, High Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 
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Figure D 4. Sensitivity and Real FDR by Different Approaches for Different Types of 
Data (Sample Size 10 vs. 10, High Fold Change) 

The first part of the labels on horizontal axis indicates the gene length setting: F = Fixed 

Gene Length; V = Varied Gene Length. The second part indicates the statistical 

method: E = edgeR; L = LIMMA; Q = QuasiDE. The last part indicates the type of data: 

R = Raw count data normalized by the TMM method when gene length is fixed; Raw 

count data normalized by the gene length and the TMM method when gene length is 

varied. S = RPKM data with the scaling normalization. In the second row of panels, the 

red reference line is the nominal FDR we are willing to allow. 


