Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20087
Title: Optimization of a Tubular Reactor for Parallel Reactions with Catalyst Decay
Authors: Rowbottom, Robert
Advisor: Crowe, C. M.
Department: Chemical Engineering
Keywords: Tubular Reactor;Parallel Reactions;Catalyst Decay
Publication Date: Oct-1970
Abstract: <p> The temperature policy with time is sought which maximizes a performance index for a fixed time in a tubular reactor with uniform temperature, decaying catalyst, and two first-order irreversible parallel reactions. </p> <p> For the case where the performance index is the total amount of desired product produced, an analogy between the optimization problems for a first-order reversible reaction and a parallel reaction first-order in both. paths is developed. </p> <p> A numerical procedure together with theoretical developments is used to solve the problem for a more general performance index which takes into account the cost of the reactant as well as the value of the desired product. The problem is· treated in the format of Pontryagin's Maximum Principle. </p>
URI: http://hdl.handle.net/11375/20087
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Rowbottom_Robert_S_1970Oct_Masters.pdf
Open Access
1.74 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue