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The temperature policy with time is sought which maximizes a
performance index for a fixed time in a tubular reactor with uniform
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For the case where the performance index is the total amount of
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CHAPTER 1 -

INTRODUCTION

Commercial reactions which involve catalyst decay
are numerous and as such the determination of optiﬁal
operating policies for reaction schemes of this type is of
considerable interest. The problem of optimizing such a
system is not a simple one; catalyst activity at any instant
depends on the entire previous history of the operating
variables and thus the control variable must be chosen at
every instant with regard to both its instantaneous and long
term effect on the system. "

For all but the simplest reaction schemes complete
analytical solutions have not been found. For simple
irreversible reactions (i.e. A—B) the solution is well known
and many workers [Jackson (1965, 1967), Szepe (1966), Crowe
(1969)] have emphasized different aspects of it.

Jackson (1965, 1967) has considered the optimal
temperature profile in a tubular reactor with a reversible
exothermic reaction. The problem is easily formulated, but
as yet no analytical solutions are ayai]ab]e.

Drouin (1969) has studied the reversible reaction,
deriving the necessary conditions for an optimal policy and
using a numerical method together with the analytical develop-
ments to obtain a complete solution.

The present study examines a parallel reaction

scheme and follows essentially the approach used by Drouin(1969)

(1)
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to obtain a complete solution. An analogy is developed

between the optimization problem for the reversible reaction
and the problem for a parallel reaction. Using this analogy
the results of Droui’n's work can be used as the solution to

a similerly stated problem for a parallel reaction scheme.



CHAPTER 2

STATEMENT OF THE PROBLEM

For a single tubular reactor at uniform temperature

and fulfilling the further conditions and assumptions

described herein, it is required to maximize the performance

index, as represented by the objective function, over a fixed

total reaction time, T, by choosing the temperature at every

instant.

The reactor system is further defined by the

following conditions and assumptions:

(1)

There is a parallel reaction irreversible in both
paths. and represented;schemaiicaﬂ1y by:
A swmmmpp B
c .
A material balance on B, assuming plug flow, is a

function of catalyst activity{ , temperature T, and

~concentration of A.

82+ 8 =fTA (2.1)
wheref}(ql,T,A) is the rate of formation of B, # is
the space-time through the bed, t is the time on
stream and B= B{(t) at&= 0 (B{ js the inlet concen-
tration of B)

Similarily a material balance on A gives

3A ., oA _
T 5z = fz(llf,T,A) (2.2)



(2)

(3)

(4)

The catalyst activity tp, is defined [Anderson (1968),
Kunii and Levenspiel (1969)] as the ratio of the rate
of reaction with decayed catalyst to that with fresh
catalyst. For the present study it is assumed that
this ratio is independent of the temperature at

which the reaction rates are measured.

The rate of decay of catalyst activity is assumed to
depend on the temperature and on activity itself but
not on concentration- of products or reactant, as
follows: .

#= - k(T) gly)=¢

Y=V¥o at t=0 for all 2 (23)
with O < g(\p) € 1. Since the reactor has
uniform temperature at any time, equation (2.3)
implies that Y is uniform over the distance g .

The decay rate described by equation (2.3)

could represent a catalyst which loses activity by

evaporation of active species, by sintering, or by
deposition of a poison at a rate unaffected by

position in the bed.

It is required that temperature and inlet conditions
be essentially constant over a time period equal to
the space time in order that activity can be assumed

constant for integration over g , and it can be




(5)

assumed that

i&.«as gnd' 6A<<QA...

at FE3 at o0z

'Ky and K; are the rate constants of A to B and

A to C respectively and are related to the catalyst
decay rate constant by
K, & kP
K, a kP2
If K, » Kg and k are of the Arrhenius form then p,,
are the ratios of the respectiQe activation energies
E,p to Ec with osp-..-:gcwo]
Since, for E.>0 k (T) is a strictly monotonic
increasing function of T, the temperature may be
replaced as a decision variable by k . If E. =0
k(T) is constant, the choice of T does not affect
the activity and the optimal policy is then the

same as without catalyst decay.

The performance index , P, is defined by:

PEIT[B(B—Bi) + a(A-Ai)] dat (2.4)

where

value per unit of B

B

a = value per unit of A

and
B>a2z20.



The performance index may be visualized as the
integral of the instantaneous profit over the operating period,
for the case of negligible relative value of product C,

activity, and time.

The problem now consists of maximizing the objective
function over a fixed total reaction time, T , by choosing

the rate coefficient K (and thence T) at every instant.

That is,
Pt =mMax P o ' (2.5)
k(+)
subject to
osk<ksk® . (2.6)



CHAPTER 3

THEORETICAL DERIVATIONS

3.1 KINETICS:

" For the general parallel reaction

2
the rate per unit volume of reacting fluid at which substance

B is being formed is defined by the expression

bvdt . bvdTr
m

which for a reaction th order in A is also given by
r=K,Ath
or ‘ _
_t dvB) _ m (3.1.1)
bvar = KAY o

For the case of:

(1) a first order reactionm = 1

(2) b =1

(3) constant volume of reacting fluid,equation
'(3.i.1) reduces to

%—%= K AY= f (\p; T, A) (3.1.2)

Similarly for a = 1, ¢ = 1 and first order
reaction A to C the rate per unit volume or reacting fluid
at which A is being formed is given by

dA
dt

- (K, + Ky) AW (3.1.3)
f,(¢. T, A) |

Combining equations (2.1) and(2.2) with (3.1.2) and



and (3.1.3) gives the following equations describing the
reaction system

8B 4 9B _ 3.1.4
3 + 3= K.AHP ( )
dA dA
at T 9z = TAVIK*K,) (3.1.5)
B(t,0) = B; A(t,0) =
Under assumption (4) equations (3.1.4) and (3.1.5) reduce to
2= Ky - (3.1.6)
dA
cdz = - (K KA (3.1.7)

Equations (3.1.6) and (3.1.7) can now be solved

analytically to give the exit concentrations of A and B at
time t:

A(t,8) = 9“"’9(’(‘+Kz) (3.1.8)
-Ya(K,+K,)

B(t,0) - B + K& _(1-¢€ )

(t.8) i K, + Kz (3.1.9)

For convenience the time unit is defined such that

the space time 6 equals 1, so that T in equation (2.4) is the
number of space times.

Equations (3.1.8) and (3.1.9) may be used to alter

the form of equation (2.4) to:

(3.1.10)
,[(K-G-Ka _(A A)dt :



3.2  THE MAXIMUM PRINCIPLE

The problem as stated'by equations (2.3), (2.5),
(2.6), (3.1.8) and (3.1.10) may be conveniently treated in
the format of Pontryagin's Maximum Principle [Pontryagin |
et. al. (1962)].

The -Hamiltonian H is defined by

HOP Xk 1) = (2K -a)(Ai~A)+)\<‘;'>l 2

K-+K%
where A\ , the adjoint variable, is defined by
an _ (BK a)2A _ >\a¢
at K+ Ke: oy oy (3.2.2)
with‘

Mo)y=0 if Ylr)>o

Mo 20 if Yln)=o0

The maximization of P in equation (3.1.10) is. then
equivalent, according to Pontryagin's maximum principle
[Pontryagin et al (1962), Halkin (1966)1, to requiring of an.
optimal policy k¥ (t) that it satisfy

H(y*, XK', 1) =MAét)H(w*.X',k,t) (3.2.3)

at almost all1 t and for all admissible values of k.
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If kf(t) is the optimal policy then one of the
following three conditions is necessary at any time t< T :
(a) Stationary curve:

AHK" = o and H <o if k<K<K
ok . Ok® ™

(b) Upper constraint

: %
___%*:(k‘)?_ 0 it k'=k (3.2.4)

(c) Lower constraint

AH(KY ¢ it K=K,
ok "
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3.3 PkOPERTIES OF OPTIMAL POLICIES

3.3.1 Stationary Curve S

4

From condition (3.2.4a) and Equations (3.2.1) and (3.1.8)
along a sub-policy S

oH s v s . L VWS
3k | 9,04t k (K] +K))2

*1
A _
+ " 0
_OR
. =T 2
(K, + k)2
BK, -¥(K, +K,)
- [‘Kl K, ¢ Ajv(piK) + pKy) e ' (3.3.1)

From Equations (3.2.1) and (3.3.1) the expression for the

-

Hamiltonian on the sub-policy S is

BK
N R T — A -
Hy = [K'l + K, °] [A; - A - Ap(pjK; + poKy)]

BK_K .
172
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with A = A(B, Ai’ Bi’ k)
¥ = y(B, Ai’ B R)
from Equations (3.1.8) and (3.1.9).

Then

Hs = £(B, A k).

i’ Bi’

Consider the case of constant inlet concentrations

b G W
dt dt
then
s _ BHS dB Bﬂé dk (3.3.3)
dt 8B dt 9k dt ° e
However
dH
s _ du
Franadisvs (general)
and for dA,
' —L.-9, _p (see Appendix A2)
at » see ~pp \
therefore dH
—S 2 0.

dt

Evaluating the partial derivatives of H_, Equation (3.3.3)

becomes
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_ BRy(py-py) _( ! ) i e S (1 _ BBy (Kf’Kz))] B

- o
Kl + K.2 K1+K2 Kl Kl Ai dt
K, (p, - p,) - . :

+ ___Z__i(l____g_ [many terms] %lé' =0 (3.3.4)

When p, = p,= p, Equation (3.3.4) reduces to

, BKl
[(-K—;-:—I-(; - a) (l"p)(Kl + K2)

) ( BKl _ a) p(K1 + K2) . (1¥ (B—Bi)(Kl + Kz))] @ _
Kl + K2 Kl Kl Ai dt |
(3.3.5)
Equation (3.3.5) has two solutions:
(D %% = 0 whichimplies B = a constant
2 [K BilK - ozl K1K+ %2 [1 -p-pm [1 ~(B_B§) (isz}}] =0
1 2 1 171
s [, 5]
OR B=3B, +=——— |1 ~e¢e
i K1+K2
BKl
for =———-qa #0
Kl + K2
BKl
It is shown in Appendix A3 that ———— - o cannot be
. : Kl + K2
negative or zero on an optimal policy.
K
1
For Pi =Py g K. "2 constant, and therefore the

2
second solution is also

B=a constant.
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Hence for the special case where P, =Py the stationary temperature
policy is one which maintains a constant outlet concentration of B
for constant Ai and Bi'

From Equation (3.1.9) where

1 P
K, = —— &k

1 a P

c

and a

K2=—3— kP

a P

c

(ai, a, and a, are the frequency factors for the two reactions and the
catalyst decay respectively) the stationary policy for Py =Py, =D

is given by

a, A,
174 )
lAi + (Bi-B)(al+az)
w(a1 + az)

pln (7

k(t) = —a-l (3.3.6)

n

For the general case Py # Py> the complexity of Equation
(3.3.4) makes a complete analytical solution impractical.
In order that the Hamiltonian along the stationary

curve be locally maximum at any t, it is necessary that

2
3—-‘23.5 0.
3k

From Equation (3.2.1) we have

2 2 BK
3°H 3 1 ]
= -of (A, - A) + X}
ak? ok’ [[Kl + K i ]

(Cont'd.)



-'b(K1+K2) Kl(Pz"l"Pl) + Kz(pl-l-pz)
= BAK K, (py-p,) (1-e ) 2 3
' k (Kl <+ K2) !

-

ZBAiKlew(pl = Py) (P1K1 +p,K,) 7e-¢(K1+K2)

+
2 2
k,(Kl + Kz)
gK sz +p2K-pK-pK—lP(PK +pK)2
1 11 272 11 22 171 22
tAVIR TR, @ 5
1 2 k
—1p(K1+K2)
e
=0
. , BKl
Aga?n consider thg special case Py = Py = P- K1+K2 - o is

constant and always positive on an optimal policy (A3 ), and the

3%H
sign of — 1is given by
ok

for p <1 - < 0 and the statiomary policy is optimal.

for p > 1 —5 may be positive, negative or zero.

2

For the general case Py # Py the sign of 3—% must be

ok

evaluated numerically to determine whether the Hamiltonian is a maximum

on the stationary policy.
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At t = 1, A = 0 and from Equation (3.2.1) the Hamiltonian is

[ 1 ] ( ) (3.3.7)
H= |—2— - & A - A . 3.3.7
K, + K, i _

Ai - A > 0 since the reaction is irreversible.

From the Maximum Principle

+ .+ + +
By, AT, kT, t) > HGY, AT, K,t)

BK

therefore if there exists a feasible k such that 3 a >0,
BK KK
then at t = 71, —L . a must be positive or zero on the optimal
ik BK
policy. If there is no feasible k such that —1 o > 0 the process
_ Kl + K2

is not economical to operate since the value of A consumed will always
be greater than the value of B produced. The optimal policy for such

a problem would be the trivial case of not operating. It will therefore

e
K1+K2

be assumed that o » 0 for at least one feasible k.

From Equation (3.3.7) on an optimal policy at t = 1

H>0

For constant inlet concentration of A it has been shown that

di -
T 0 _ (AZ)

dA,
e for-azl = 0, on an optimal policy

H30 forOg¢tgT (3.3.8)
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On an optimal policy

-A>0 v t<rT (see Appendix A3)

and therefore from Equation (3.2.1)

BKl
H ¢ [W - a] (’Ai - A) (3.3.9)

on an optimal policy.

3.3.2 Initial Temperature Limitations

Some regions of initial temperature will not have any
stationary policies associated with them which satisfy the Maximum
Principle; initial temperatures in such regions will violate conditions

3.3.8 or 3.3.9‘

The Hamiltonian on a stationary policy may be written as

[BKI: ]

’ N 3l——— - a| (A, - A)
. =[ BK K, + K, i

S

—— - O (A, - A) -k
K1 + K2 | i dk
- BKl
If we consider a graph of |z——=— - o| (A, - A) vs k then condition
Kl + K2 i

3.3.8 limits initial temperatures (or k) to those above a tangent from
the origin. While condition 3.3.9 limits initial temperatures to

regions of positive or zero slope

BK,
= - -a| (A.-A)
(75
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For Py > P, condition 3.3.9 is always satisfied (k 2 0) and
thereforg there is no upperbound on the initial temperature.

For P; <Py there will be an upperbound on the initial
temperature which may or may not be in the region of physically
permissibie temperatures, k, < k & k*,

If at t = 0, we permit only those starting temperatures which

satisfy condition 3.3.8 then
8K .
2 [ 1 ]
8 o -« (A, - &)
K1+K2 i
8k2

<0

in the permissible region, since the tangent point from the origin

will be above the inflection point. Also from Equation (3.2.1) with

o =k
| 2 [R'—B;lf{‘“‘] g - &
3°H _ 17 ™

ok’ - ok

. %

e T3 < 0 for a starting temperature which satisfies condition 3.3.8,
ok

and hence the stationary policy is optimal at t = 0 (condition 3.2.4a)$1)

3.3.3 Behaviour of the Optimal Temperature Policy as t > 1.

At the end of the process (t = T1) since the activity is
free the adjoint is fixed and by definition is zero, then from
Equatioﬁ (3.3.1)
1. Constrained policies starting at such temperatures can also be optimal,

however the period of operation will be different from the optimal policy
which is initially stationary. '
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o A BK K, (p,-p,) -¥(K; + K,)
ok = 7 (d-e )
P, t=T k(K1+K2)
BK. Ay -9 (K, +K.)
1 ;1 12
+Ho——r—-0a| —— (p.K, +p.K,)) e
[Kl T ] k 11 22 (3.3.10) -

The second term is always positive, and for Py > Py the first

term is positive or zero, .°. for P; > Py

3H

>0
Bk,

T

which implies that the optimal policy ends on the upper constraint.
For Py <Py Equation (3.3.10) may be positive, negative or
zero and the policy may end respectively on the upper constraint, lower

constraint or in the unconstrained region.
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3.4 - ANALOGY BETWEEN OPTIMAL POLICIES FOR FIRST ORDER REVERSIBLE

AND PARALLEL REACTIONS WITH CATALYST DECAY

For the case without catalyst decay Horn (1961) was able

to show that the optimization problems of maximizing product concentration

1!f6rké first order reversible and for one product of a first order
parallel reaction were analogous after a suitable transformation. of
variables. If a similar analogy could be found between first order
reversible and first order parallel reactions with catalyst decay, then
the optimal policies as reported by Drouin (1969) for a reversible
reaction with catalyst decay could be applied to the parallel reaction
system.

The optimization problem as solved by Drouin (1969) for

first order reversible reactions can be stated in the following manner:

with 2 - w0 =1 o (3.4.1)

it is required to

T
MAXk P = f B(t,8)dt (3.4.2)
0 .

subject to

*

0Osk,sksk.

An optimization problem for a first order parallel reaction could be
stated in the same manner as for the reversible reaction (equations

3.4.1, 3.4.2) with the exception that the expression for B(t,8) will
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be different in the general case for the two reactions.
In Appendix Al a general analogy is developed between
first order reversible and parallel reactions. The analogy is as

follows:

REVERSIBLE PARALLEL
K
1
A- eq K, + K, A
B B
K,
Ay At By
1
B, B,

The optimization problems for the reversible and parallel
reactions are the same if the corresponding expressions for the
Hamiltonian are identical. The Hamiltonian on a stationary policy, for

the problem as stated by equations 3.4.1 and 3.4.2 is

If B and %%- are identical for the two cases then the two optimization
problems may be considered as one.

Consider the following cases:

1 B,=0,0stg5t
then . KA [1 i Y8 (K, + KZ)]
K. + K e
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for both parallel and reversible reactions (see Equations Al.4 and 3.1.9).

Also for Bi =0, Ai reverse is analogous to A.i parallel and therefore

38

the expressions for B and K

are identical and the optimal temperature
policies for first order reversible reactions can be directly applied
to first order parallel reactions.

The optimal policies reported by Drouin (1969) were for
cases where Bi =0, 0 gt < 1, and these policies may therefore be used

as the solution to the optimization problem as stated by equations

3.4.1 and 3.4.2 for a parallel reaction first order in both paths.

(2) Bi 4 0; Ai’ Bi constant for 0 g t € T

on substituting,

BiKZ
Ai=Ai+—k—l—-

for the parallel reaction, the expressions for B reduce to the same

form for reversible and parallel reactions with B reverse corresponding

-

1 parallel.

to B parallel and Ai reverse corresponding to A
However, A{ is a function of k while Ai is not, therefore
the exﬁressionsfor %g- are not the same, from which it may be concluded
that Hs(reversible) and Hs(parallel) are not identical express?ons.
However if A{ is constrained to be a constant value equal
to Ai reverse, by varying Ai parallel, then the optimal policy as
found for one case could be used to extract an optimal policy for

the other reaction system.

For Example if the optimization problem for the reverse
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reéction is solved with

Ai = a constant cl

t
Bi = g constan c2

the resulting optimal policy is k+(t). This solution will correspond

to the optimal control policy for the parallel reaction problem where

i~ %
Al=¢

K
2 ’
‘I<—‘ . (3-4'4)

Therefore for k+(t) other than a constént, Ai for the parallel system

must vary with time according to Equation 3.bob.




CHAPTER 4

NUMERICAL SOLUTIONS

4.1 CALCULATION METHOD

. The properties of an optimal policy, developed in sections

3.2 and 3.3, are used as the basis for the computational algorithm
embodied in the FORTRAN program listed in(Appendix B. The main
features of the algorithm are as follows.

Given a definition of the reaction system (i.e., P1s Py»
Ec/R’ a_, T*, T,) and a set of initial conditions, the outlet concentration
of A and B and the initial Hamiltonian are calculated from Equations
(3.1.8), (3.1.9) and (3.3.2). The Hamiltonian is then checked against
conditions (3.3.8) and (3.3.9); if it fails to fulfil either of these
conditions the initial temperature has no optimal policy associated with
it. If the Hamiltonian fulfils both condition (3.3.8) and (3.3.9) the
optimal policy begins as a stationary policy.

The calculations now enter a repetitive phase. For a
small time increment the same temperature is assumed and the activity
concentration of A and B, and the Hamiltonian are evaluated. If the
constancy of the Hamiltonian is respected, the time is incremented
and the procedure repeated, if not, a searching procedure is implemented
to find the new temperature which will keep the Hamiltonian constant.

2
Before each time increment-a-% is evaluated and checked for the sign

ok
required by condition 3.2.4a.
When the policy reaches a temperature constraint calculations

are switched to another section of the algorithm. On the constrained

(24)
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3H
3k

the adjoint equation. For each time increment activity and concentration

policy is no longer zero and the adjoint is evaluated by integrating
of A and B are updated, and the adjoint is evaluated from an integrated
form of Eéuation (3.2.2), the Hamiltonian is then calculated from
Equation (3.2.1) and tested for constanéy. %%’is checked for the
appropriate sign required by condition 3.2.4b or 3.2.4c. The optimal
policy terminates when the adjoint becomes zero.

An alternative method for calculating the comstrained
policy is to evaluate the adjoint from Equation (3.2.1) using the
value of the stationary Hamiltonian for H. Then a sufficient check

oH

for the policy to be optimal is that Ezihave the sign required by

condition 3.2.4 b or c.

4.2 RESULTS

4.2.1 Classification of Results

A parallel reaction can be conveniently classified according
to the relative magnitudes of the activation energies of its two paths.

Parallel reactions in general may be divided into three classes:

(1) Py = Py
(2) P, > Py
(3) Py <Py

A further classification may be made by considering the

relative size of the reaction activation energy to the catalyst decay
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activation energy. For instance, class 2 may then be considered as the

following group of sub-classes:

(a) Py > Py 21
(b) P21 >p,

(@ 1 >p>p

4.2.2 Definition of the Reaction System: Numerical Values

Numerical solutions were calculated for the following

hypothetical reaction system:

g =y
' -1
Catalyst decay frequency factor: a, = 100 s
Ec .
Catalyst decay temperature factor: X = 15,000°K

900°K
800°K

Reactor temperature constraints: T¥%
T

o

%*

Ratio of reactor length to linear velocity: 6 = 1s
Initial catalyst activity: ¢o = 1.00

Inlet concentrations: Ai = 1.0, Bi =0

Value coefficients: o = 0.25, B8 = 1.0

In order to compare reactions with different values of Py
and P, the following criterion was used: at maximum temperature (900°K)

and maximum activity (1.00) the conversion of A is 90%, 457 to B and 45%
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to C. Oor

Bk = C* = 0.45 (at T* and y )

The criterion was satisfied for each set of Py and Py by setting the

frequency factors for the two reaction paths.

4.2.3 Unconstrained Optimal Policies

(a) p, =py, =P

For this type of reaction one numerical solution has been
calculated for p = 1.0; the reéults are shown in Figure 1.

As determined in section 3.3 the optimal control policy‘is
one of constant conversion and k+(t) is given by Equation (3.3.6). The
unconstrained solution has no finite operating time associated with it
although temperature rises very sharply after 118 hours of operation.

The reaction rates A to B and A to C are edual for P, =P,
and changing temperature has no effect on the ratio of B to C which is 1.
The reaction then behaves identically to a first order irreversible
reaction (A > D). Hence the constrained solutions for this type of

reaction will be of the same form as those calculated by Crowe (1969)

for a first order irreversible reaction. .

(®) py > py
For this class of reactions numerical solutions have been

calculated for the following cases:

(1) 1 %‘Pl > P2 (pl = 0.8, pz = 0.5)
(Cont'd)
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() p;21 >p, (py =11, p,=0.9)
(3 py>py 21 (p; = 1.5, p, = 1.3)

The results for these 3 cases are presented in Figures 2 to 4 respectively.
All of the calculated policies exhibit increasing concentrations
of A and consist of rising temperature curves which do not end at finite
temperatures. The concentration of B is observed in the 3 cases to be
respectively decreasing, decreasing and increasing, and increasing.
It was shown in sgction 3.3. that, for P; 2 Py at the end
of the optimal policy %% > 0. However for the case of no temperature
constraint the optimal policy is stationary (%E = 0) and hence continues
indefinitely. As activity approaches zero.the. temperature must rise
with increasing rapidity to keep up the production of B; thus the
behaviour exhibited in Figures 2 to 4 where temperature approaches a

vertical asymptotic behaviour as activity approaches zero.

For Py > py an increase in temperature increases the ratio
of B produced to C produced. The optimal policy strives to prevent a
sbarp decrease in B; for Py > Py by increasing temperature one is able
to maintain a favourable production of B and at the same time increase
the B to C ratio and thereby require the consumption of less A for the
same result in B.

In cases where B+ is decreasing or essentially constant,
the above jmplies that A% will increase, this behaviou; is observed in
Figures 2 and 3. In cases where B+ is rising while temperature is

increased the behaviour of A% will depend on the sensitivity of the



29.

ratio B to C to temperature increase, In Figure ﬁ, B+ is increasing
while at the same time A+ increases, this behaviour indicates that
the B to C ratio is highly sensitive to the increasing temperature and

C is being reduced rapidly enough to increase both A and B.

() py <p,

For this class of reactions numerical solutions have been

calculated for the following cases:

) 1 3 Py > P . (pl = 0.5, p, = 0.8)

(2) P21 >py (py = 0.5, p, = 1.5)

(3) Py > Py > 1. (p1 1.3, Py =.1.5)

The results for these three cases are presented in Figures 5 to 7
respectively. All of the calculated policies exhibit falling concentrat-
ions of A and B and consist of rising temperature curves ending at
finite temperatures.

For 1.0 < P, an increase in temperature decreases the ratio
of B to C produced. An optimal policy will tend to slow the decline
in B+ caused by falling activity by raising the temperature. Raising
the temperature causes a decrease in the ratio of B to C produced and
thereby necessitates the consumption of more A to produce the same
amount of B. Even for a slightly decreasing B+ the decrease in the
ratio of B to C caused by increasing temperature is likely to be great
enough to require the consumption of more A to produce even the lower

amount of B.
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4.2.4 Constrained Optimal Policies

(a) p; > p,

Figure 8 shows the constrained optimal policies associated
with various fixed operating periods, for P = 1.1 and P, = 0.9.

As the initial temperature is increased the operating
period of the respective bptimal policies decreases. The shortest
optimal policy is 59.15 hours and has as an initial temperature the
upper constraint (900°K). The longest possible optimal policy has a
starting temperature of 830.58°K. Below this temperature the Hamiltpnian
is negative violating condition (3.3.9), and hence policies with
initial temperatures in this range cannot be optimal in the sense of
Pontryagin's Maximum Principle.

As determined in section 3.3. for P; > Py all optimal
policies end on the upper temperature conétraint. The four policies
shown in Figure 8 ;erify this property and in addition are observed
to consist only of increasing temperature curves and or T%.

Using a down-time of 12 hours for replenishing the catalyst,
the performance index per hour has been calculated for each policy.
The maximum average performance index is réalized for the policy
starting on the upper temperature constraint. |

Figure 9 shows the behaviour of catalyst activity and
outlet concentrations of A and B along the optimal policy for T =
211.48 (curve 3 in Figure 8). The behaviour of the variables is much

as one would expect. On reaching the temperature constraint:
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(1) The rate of decline of the catalyst activity
slows appreciably, reflecting the stop in the

increase of the catalyst decay rate constant.

(2) The concentration of A increases very rapidly
due to the decreasing activity and constant

temperature.

(3) The concentration of B decreases répidly
due to the decreasing catalyst activity and

the constant temperature.

() p; <Py

Figure 10 shows the constrained optimal policies associated
with varioué.fixed operating periods for Py = 1.0 and P, = 1.5.

As was the case for Py > Py increasing the initial temper-
ature decreases the operating period. The longest optimal policy is
458.08 hours and has as its initial temperature the lower constaint
(800°K). The shortest optimal policy operates for zero time beginning
at 888.62°K. At initial temperatures above 888.62K no optimal policies
exist as condition 3.9 is violated in this region.

For P; <P, an optimal policy does not have to end on the
upper temperature constraint. Of the policies calculated only one
ended on the stationary curve, the remaiﬁder ended on T*, Each of the
optimal policies consists only of rising temperature curves and or T*.

As for P; > Py the average performance index has been
calculated for each optimal policy. The largest average performance
index was found for To = 855 and the maximum will be for a policy

with an initial temperature in the range of 850 < To < 885.
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Figure 11 shows the behaviour of A, B and ¢ along the
optimal policy for T = 113.89 hours. The behaviour along the stationary
policy has been discussed previously (Figures 5,6,7) and that along

the constraint is very similar to Figure 9.
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4.2.5 Effect of o on Constrained Optimal Policies

Figures 12 and 13 show the effect of the relative value of
the reactant @) on a constrained optimal policy for P; >-Py and
Py < Py respectively. | '

For Py > Py increasing the value of the reactant lengthens
the optimal policy and significantly lowers the optimal temperature
along the stationary curve. Figure 12 shows this'behaviour for
P; = 1.1, P, = 0.9, T, = 850°K and o = 0, .25, .30.

As a is increased the optimal poiicy becomes more sensitive
to the efficient use of A, that is, it tends to reduce the amount of C
produced while trying to maintain the production level of B. For
Py > Py as;& is increased, the optimal policy achieves this goal by
first operating at lower temperatures on the stationary curve and thus
increasing A along this section, and then by operating along T* for a
longer period of time. On T* the ratio of B to C produced is highest
and hence A is being used most efficiently along this section.

For p1<: P, increasing the value of the reactant lengthens
the optimal policy and causes a slight temperature increase along the
stationary curve. Figure 13 shows this behaviour for Py = 1.0, P, = 1.5,
To = 850°K and a = 0, .1, .25, .35, .45.

Tﬁe temperature variation along the stationary curve was
very small in comparison with the case for P; > Py The maximum
temperature deviation observed for Py < P, was -0.5°K between policies
for o = .25 and a = 0, whi;e the maximum deviation for P > Py between

a = .25 and o = 0 was + 8.0°K.
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For P; < Pys decreasing temperature would improve the ratio
of B to C produced. However, decreasing temperature also substantially
decreases the amount of B produced. Hence to counter falling catalyst
activity the stationary policy is one of increasing temperature, despite
the attendant decreasing ratio of B to C produced. As a is increased,
the tendency then is to terminate the ogtimal policy earlier due to
the iﬂcreasingly unfavourable ratio of B to C produced. On T* the ratio
of B to C produced is at its lowest and thus the higher o the less time

*
the policy will operate on T .
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4.2.6 Sensitivity of a Constrained Optimal Policy

The sensitivity of the performance index to variations in
the system parameters was examined for the case of Py = 1.0, P, = 1.5,
and T = 113.89 hours (To = 850°K).

A perturbation of +1%, -1Z on the initial temperature
resulted in a decrease in the performance index of 1.5%, 2.4% respect-
ively, when the optimal policies for these initial temperatures were
terminated at T = 113.89 hours. These percentages may be regarded as
an indication of the sensitivity of the pgrformance index to the
accuracy of the temperature control along the optimal policy. In the
case of -1% perturbation the temperature policy is below the optiﬁal
policy until it reaches T*, hence 2.4% of the performance index would
be lost if the control system kept the temperature slightly below
T+(t) during the period of increasing temperature .

Perturbing the catalyst deéay activation energy + 10%
and - 107 resulted in decreases in the performance index of 12.2% and 76%
respectively. The large percentage decrease in performance index for

a - 107 change in Ec (also changes E., and E2) indicates that the

1
activation energies must be accurately known before a computed optimal
policy can be relied upon.

Perturbing’T* + 1%, - 1% resulted in changes in the
performance index of + 0.7%2 and - 0.7% respectively. Since the
optimal policy is one of increasing temperature, it is necessary that

*
T be as high as possible in order to achieve the best reactor

performance.
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A convenient method of assessing the optimal policy is to
compare it with the'best isothermal policy. For the case chosen,
Figure 14 shows the performance index versus initial temperature for
isothermal policies and policies of constant H (S, T*). The best
isothermal policy is 873°K and realizeg a performance index of
5.947 x 104, 5.2% less than the optimal policy. Hence the optimal

policy is a significant improvement over the best isothermal policy.
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CHAPTER 5

GENERAL CONCLUSIONS AND HYPOTHESES

Conclusions

Erom the theoretical derivations in Chapter 3 the following

conclusions have been made about the optimal control policy:

(1) For Py =Py the optimal stationary policy is
one of constant A and B, and is given by
Equation (3.3.6). ’

(2) For P; 2Py the optimal policy must end

on T* (section 3.3.2).

Hypotheses

From numerical study the results of which are presented and

discussed in Chapter 4 the following hypotheses have been made:

I. In General

- Optimal policies starting as stationary
policies consist only of S and or T%.

IX. For Stationary Sections of Optimal Policies

Only rising temperature policies occur

- For Py > Py A+ always increases with time
- For P; <Py A% always decreases with time
- For Py <Py B+ always decreases with time

JII. For Constrained Optimal Policies

- As To is increased, T decreases
- For Py > py as a is increased T increases

- For Py <P, asa is increased t decreases

Fd-& B Y



NOMENCLATURE

Arrhenius frequency factor

Reactant concentration, also used schematically to represent
the reactant.

Desired product concentration

A constant

The undesired product

Arrhenius activation energy

Activity-dependent -factor in catalyst decay rate
Hamiltonian function

Catalyst decay rate constant, also the decision variable
Reaction rate constant

Ratio of reaction activation energy to catalyst decay activation
energy :

The performance index

Stationary policy

-Time on stream

' Reactor down time between runs

Temperature

Space time through reactor 0 < 2 <0 (6 = 1)

Value, per unit concentration x reactor volume, of A
Value, per unit concentration x reactor volume, of B.
Space time of reactor = 1

Adjoint variable to ¢

Total reaction time

{52)



¢ = Rate of catalyst decay

] - Catalyst activity

Subscripts

c - Catalyst

eq -~ Equilibrium

i ~ inlet, 2 =0

o - t=0

s - Stationary policy

1 - Reaction A to B

2 - Reaction A to C

*® -~ Minimum attainable value
Superscripts

+ - Value along optimal policy

* -  Maximum attainable value

53.
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APPENDIX Al

ANALOGY BETWEEN FIRST ORDER REVERSIBLE AND
- PARALLEL REACTIONS

For the reversible reaction

La

first order in both paths, material balances on A and B, assuming plug

flow give
-g-% + 2 - (A - K,B) ALl
.—2—% + %—é‘— = Y(K,B - K A) Al.2
for %% << %% and g% << %% the above equations may be considered as

ordinary differential equations in space-time. Dividing Al.1l by Al.2

then gives

from which

B-B,=A, - A : Al.3

Substitution of equation Al.3 in Al.1l and subsequent

integration over the reactor length gives an expression for the outlet

concentration of B:
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K K.B, - K.A, -yp6(K, + K,)
1 271 11 1 2
B= (A, +B)) + e Al.4
i i K1 + K2 Kl + K2
For the parallel reaction
5
A—3

first order in both paths, material balances on A and B, assuming plug

oA JA B 3B _—
flow and for 5t < 3% and 3¢ S 3 0 can be written as
B =y KA Al.5
A= - 1];(Kl + K2)A Al.6

Dividing Al.5 by Al.6 gives

from which

The material balance for the reversible reaction (Al.3)

‘can be rewritten as



K K
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K K K
1 2 1 2 2
i K1+K2 i Kl i K1+K2 Kl Kl i i

Recalling that the equilibrium concentration of A is giveﬁ by

I
eq Kl + K2

A (Ai + Bi)
then comparison of equations Al.8 and Al.7 leads to the following

analogy between first-order reversible reactions and first-order

parallel reactions:

REVERSIBLE PARALLEL
K
1
A-A —= A
eq K1+K2
B : B
A A +22 g
i i K i
1
B B
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APPENDIX A2

BEHAVIOUR OF THE HAMILTONIAN WITH TIME ALONG
AN OPTIMAL POLICY

From Equations (2.3), (3.1.8) and (3.2.1) the time

derivative of H along any optimal path is

an _oHdy  sHax, oHdk, om M
dt ~ B3y dt ~ BA dt © Bk dt = 9A_ dt

A2.1

The third term is always zero since on a stationary policy %% = 0,
and on a constrained policy g% = 0. Furthermore, from Equations (2.3),

(3.2.2) and (3.2.1) it can be shown that

dy _ o
dt £

and .
dr _ _°H
dt 3y

Equation A2.1 then reduces to

dH  oH 1
at ~ A, dt A2.2

dA,
: . . 1
For constant inlet concentration of A, el 0 and

Equation A2.2 implies that the Hamiltonian is constant along any

optimal path.
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APPENDIX A3

PROOF THAT THE ADJOINT IS POSITIVE FOR t < T

It is shown in section 3.3 that, except for the case when
BK
i{‘f:lz— - a 1s negative for all admissible temperatures, H > 0 on
1 2

an optimal policy.
For A = 0, Equation (3.2.1) then implies that

BKl

Kl + K2 ‘

a 3 0.

Suppose A(t) = 0 at t < t then from Equation (3.2.2)

.‘.1.&;_- __?.Iil___ .gé..<0
dt K, + K, ¢l By S

BK

Kl + K2

Suppose o = 0 at any time when A = 0, H can then be increased

by changing k. By the Maximum principle this is not permissible for
a point on the optimal policy. .°. A = 0 implies A < 0, unless
Y =0 (for g(¥) = ¢ this is possible only if kt = =),
Since A is continuous, A<OatAr=0 implies that A crosses

zero once and only once. Furthermore since A(1) = O then
A>0 ¥tc<r.

Also from Equation (3.2.1)

BK,

K, + K

- L 0 si 2 ko.
1 2 o * ince %
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APPENDIX B

OPTIMAL. POLICY FOR A PARALLEL REACTION FIRST ORDER IN
BOTH PATHS = (FORTRAN LISTING)

NOTATION
TI INITIAL REACTOR TEMPERATURE DEG. K
TU UPPER TEMPERATURE CONSTRAINT DEGe K
TL LOWER T5MPERATURE CONSTRAINT DEGe. K
EC CATALYST DECAY TEMPERATURE COEFFICIENT DEGe. K
P1 E1/EC »
P2 E2/EC
Al INLET CONCENTRATION OF REACTANT
BI INLET CONCENTRATION OF DESIRED PRODUCT
ALPHA VALUE COEFFICIENT FOR A
BETA VALUE COEFFICIENT FOR B

DIMENSION X(6)sY(6)sPM(6)
COMMON/BLK1/DIRsPSIsPSITsP1sP25A1sA2sBIsAIsBETASALPHA,
1AKK1 s AKK2 s DT IME sHAM S AC
READ(541) P1lsP2 sAl+BI
READ(5s1) ECsTIsTUsTLsALPHAL,BETA
1 FORMAT(7F10.0)
WRITE(6+40) ALPHASBETA
40 FORMAT(15Xs*ALPHA = %3F4e3315Xs*BETA = %*F4e2)
WRITE(65102)
162 FORMAT(//s1E5Xs*¥RATIO OF REACTOR LENGTH TO LINEAR 3,
1*VELOCITY = 1400 SECe*)
WRITE(6s41)
41 FORMAT{(//30Xs*TEMPERATURE CONSTRAINTS (Kel%*/)
WRITE(6s42) TLsTU
42 FORMAT (15X s*LOWER = *sF54055Xs*¥UPPER = %,F5,0//)
WRITE(65103) TI
1C3 FORMAT(10Xs*INITIAL TEMPERATURE =%4F5¢0//)
WRITE(6+43)
43 FORMAT (20X »*FREQUENCY FACTQRS*/)

AC=100,
C
C SET FREQUENCY FACTORS SUCH THAT MAXIMUM CONVERSION OF A
C IS 90 PERC AND THE MAXIMUM CONVERSION TO B IS 45 PERCENT.

Al=1e151296/EXP(=P1*EC/TU)
A2=1e151296/EXP(-P2*EC/TU)

WRITE(6s44) Al

44 FORMAT(20Xs*A TO B = %*,F1540)
WRITE(6s45)A2
45 FORMAT(20Xs*A TO C = *,F1540)
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WRITE(6s46)AC '

FORMAT (12X s*CATALYST DECAY = %*5F15.0//)

WRITE(6547)

FORMAT (15X s *ARRHENIUS ACTIVATION ENERGIES#*/)
WRITE(6+48)EC

FORMAT (20X s #*CATALYST DECAY(EC/R)#sF7.0)

WRITE(6549) P1

FORMAT (20X s*RATIO B TO CATALYST %*sF4.2)

WRITE(6+50)P2

FORMAT (20X s*RATIO C TO CATALYST #*sF&4e2///)
WRITE{6s52)

FORMAT(1Xs*TIME(HR)* 91X 9% TEMPe*s5Xs*HAMILTONIAN* 45X,
1#D2H/DK2% 95X 9 ¥PSI% 94X s% A #*,4Xs% B * 97X s*¥ADJOINT#*55X
2% K#*910Xo#K1¥39Xs%K2%93X 9% PFM INDEX*//)

INITIALIZATION SECTION

AK=AC*EXP(-EC/TI)

DIR=AK

INITIAL TIME INCREMENT.

DTIME=1000.

INITIAL INCREMENT FOR K

DELTAK=4000000002

TOLERANCE FOR CONSTANT HAMILTONIAN.

INITIAL CATALYST ACTIVITY

PSI=1.00

PSIT=1.00

P=0.0

TIME=0.0

L=-1

AKK1=AK%*#P1*A1/AC*%P1

AKK2=AK*%#P2*A2 JAC* %P2

SUMK=AKK1+AKK?2

B = BI+AKK1*#1I%(1e—-EXP(—-PSI*SUMK))/SUMK
A=AI*EXP (=-PSI*SUMK)

CALCULATE VALUE OF STATIONARY HAMILTONIAN
HH2=-BETA*AKK1*AKK2% (P1-P2)%(AI-A)/ (SUMK¥*SUMK)
HH1=(BETA*AKK1/SUMK=ALPHA)*(AI-A)
HAMS=HH1+HH2— (BETA®¥AKK1/SUMK=ALPHA) #PSI % (P1¥AKK1+P2%AKK2)*A
HAM=HAMS

TEST FOR VALID INITIAL TEMPERATURE

IF(HAMS) 94242

WRITE(6+10) TIsHAMSsBsA

FORMAT (5Xs*INITIAL TEMPERATURE OUT OF RANGE FOR A #,
1*STATIONARY POLICY TEMPe=#3sF5e0s% HAMILTONIAN =%,
2F11e7 9% B =#4F8eTs%* A=%y3FB8,7)

sTOP

"TEST=BETA*(B-BI)+ALPHA*(A-AT)

IF(HAMS«GT«TEST) GO TO 9
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BEGIN REPETITIVE SECTION
T=EC/ALOG(AC/AK)
CHECK THAT TEMPERATURE IS BELOW UPPER CONSTRAINT

IF(T«GE-TU) GO TO 106

B=BI+AKK1*¥AI*(1e—EXP(~-PSIT*SUMK) ) /SUMK
A=AI*EXP(-PSIT*SUMK)

P=(BETA¥AKK1/({AKK1+AKK2)=ALPHA)* (AI-A}#DTIME+P
TT=EC/ALOG(AC/DIR) :

ADJUST TIME INCREMENT SUCH THAT TEMPERATURE GAIN EACH

STEP IS «2 TO «5 DEGREES

IF(ABS(T=TT)elLTe0e2) GO TO 100

IF(ABS(T-TT)eLTe0e5)} GO TO 101

DTIME=DTIME/2.

GO TO 101

DTIME=DTIME*2.

PSI=PSIT

TIME=TIME+DTIME

L=L+1

IF(LeLT«10) GO TO 14

L=0

T=EC/ALOG(AC/AK)

PTIME=(TIME-DTIME) /3600

WRITE(6951) PTIMEsT sHAMsDHK2sPSIsAsB sADJsAKsAKK1 sAKK2 4P
FORMAT (1X3F7e232X3F6e192X3E13e¢633X3E13a691XsF5443F7e50
1F76593XeE10a331X9F10e331XsE10e2331X9E10e3s1X9E12e5)
CALL PROCESS(AK) '

LL=0

MN=0

NM=0

N=1

M=1

DIR = AK

IF (ABS(HAM=HAMS)=EPS) 43445

FIND TEMPERATURE SUCH THAT THE HAMILTONIAN IS KEPT CONSTANT

X{(1)=HAM=HAMS
Y(1)=AK
AK=AK+DELTAK

CALL PROCESS(AK)
X(2)=HAM=HAMS
Y(2)=AK

IF(X(1)) 20y 4,21
IF(X(2)=X(1)) 22423424
DELTAK = 2+%*DELTAK
AK=AK+DELTAK

GO 7O 25
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IF(NMeGTe5) GO TO 55
NM=NM+1
AK=AK=-2+#DELTAK
M=2

GO TO 25

IF(X(2)) 2692728
AK=Y(2)

GO TO &4

X(1)=X(2)
Y(1)=Y(2)

GO TO (55+56) M
AK=AK-DELTAK

GO 70 25
AK=AK+DELTAK

GO TO 25

IF(X(1)=X(2)) 32+33,34

DELTAK = DELTAK*2.
AK = AK+DELTAK

GO TO 25

IF(MN+GT.5) GO TO 53
MN=MN+1
AK=AK=-2+#DELTAK

N=2

GO TO 25 |
IF(X(2)) 36237526
AK=Y (2)

GO TO 4

X(1)=X(2)

Y(1)=Y(2)

GO TO (53,54) N
AK=AK-DELTAK

GO TO 25

AK = AK+ DELTAK

GO TO 25

IF(X(1)eLTeX(2)) GO TO 57

X1=X(1)

Yl=Y(1)

X(1)=x(2)
Y(1)=Y(2)

Y(2)=Y1

X(2)=X1
DELT=(Y(2)-Y(1))/100.
AK=Y(2)-DELT
CALL PROCESS (AK)
Y(4)=AK

X (4)=HAM-HAMS
Y(5)=Y(2)
X(5)=X(2) :

IF(X(4)eLTeX(5)) GO TO 81

XX=10e

63.
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86

64,

WRITE(6582)
FORMAT (/72X s *DELTHAM NOT MONOTONICsREGION WILL BE REDUCED*/!
DO 83 J=1,20
Y{4)=Y(4)-DELT*XX

CALL PROCESS(Y(4))
X(4)=HAM~-HAMS

IF{X(4)eGTeX(5)) GO TO 83
IF(X(4)eGEeOs0) GO TO 89
Y(4)=Y(4)+DELT*XX

XX=XX/10e

CONT INUE

WRITE(6+85) X(4)sX(5)
FORMAT (/72X s*DELTHAM STILL NOT MONOTONIC#,E15.84E1548)
STCP

X(5)=X(4)

Y(5)=Y(4)

X(2)=X(5)

Y(2)=Y(5)

GO TO 57

AK=Y(1)+DELT

CALL PROCESS (AK)

Y(2)=AK

X (2)=HAM=HAMS

IF(X(1)eLTeX(2)) GO TO 86
XX=10e

WRITE(6+82)

DO 87 J=1,20
Y(2)=Y(2)+DELT*XX

CALL PROCESS(Y(2))

X (2 )=HAM=-HAMS

IF(X(2)eLTaX(1)) GO TO 87
IF(X(2)eLE«Os0) GO TO 88
Y(2)=Y(2)-DELT*XX

XX=XX/10e

CONT INUE

WRITE(6985) X(1)sX(2)
X(1)=X(2)

Y(1)=Y(2)

X{2)=X(5)

Y(2)=Y(5)

GO TO 57

AK=(Y(1)+Y(5))/2.

CALL PROCESS (AK)

Y (3)=AK

X (3)=HAM=HAMS
SLOPE1l=(Y(2)=Y(1))/(X{(2)~X{(1))
SLOPES=(Y(5)=Y(4))/(X(5)=X(4))
CALL SPLINE(5sXsYsPMsSLOPE1,SLOPES)
CALL INTER(5sXsYsPMs0e0OsYRs0sSLOPE)
CALL PROCESS (YR}

AK=YR
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IF(ABS(HAM=HAMS)~EPS) 434530
LL=LL+1

X6=HAM-HAMS

IF(LL+GT+10) GO TO 72
IF(X6+GT+040) GO TO 80
X(1)=X6

Y (1)=AK

X(2)=X(5)

Y(2)=Y(5)

GO TO 57

X(2)=X6

Y (2)=AK

GO TO 57

WRITE(6531) X6

FORMAT(//5X s*INTERPOLATION FAILED  FINAL DEVIATION =%
14E1548)

STOP

CHECK SECOND DERIVATIVE FOR +LEe«Qe

SUMK =AKK1+AKK?2

PSI=PSIT

H1=EXP(—-PSI*SUMK)

H2=BETA¥AKK1/SUMK-ALPHA

H3=AI#PSI/ (AK*AK)

H4=A1*AKK1*AKK2¥BETA/ (SUMK*%2*#AK*%*2 )% (P1-P2)
Gl=H&4%(1e~H1)* (AKKI*(P2-1e-P1)+AKK2%(P1-14-P21})/SUMK
G2=2 e #H4XPSI# (P1#AKK1+P2%AKK 2 ) %¥H1

G3=H3*H1* (P1*¥AKK1*(P1l=1e ) +P2¥AKK2*(P2=141))%H2
G4=—-H2%H1#H3 % (P1*AKK1+P2*AKK2 ) %2

DHK2=G1+G2+G3+G4

IF(DHK2) 79746

WRITE(698) TIMEsDHK2

FORMAT (5Xs*STATIONARY POLICY IS NOT OPTIMAL TIME =%,
1F6e29% D2H/DK2 =%sF6e3)

STOP

TEST FOR STOPPING CONDITION

A=AT*EXP (~PSI*SUMK)

B=BI+AKK1*AI%(le=EXP(-PSI %#SUMK))/SUMK
ADJ=(~HAMS+ (BETA*AKK1/SUMK=ALPHA)* (AT1-A) ) /(PSI*AK)
IF(ADJ) 11,1243

T=EC/ALOG(AC/AK)

PTIME=(TIME=-DTIME) /3600,

P=(BETA*AKK1/ (AKK1+AKK2)—=ALPHA) *#(AI-A)*DTIME+P
WRITE(6551) PTIMEsT sHAMsDHK2sPSIsAsB sADJsAKsAKK1sAKK2sP
WRITE(6513)

FORMAT (5Xs*END OF OPTIMAL POLICY*)

STOP '

IF(DTIME=10. ) 12512,15
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DTIME=DTIME/2.

TIME = TIME- DTIME

PSI=PSI*EXP (—=(AK+DIR)/2+*DTIME)
GO TO 14

-

CALCULATE CONSTRAINED POLICY

SUMK=AKK1+AKK?2
PSIF==ALOG (1+0-HAMS*SUMK/ (AKK1*AI*BETA-SUMK*ALPHA®AI)) /SUMK
TF=ALOG(PSIT/PSIF) /AK
PTF=TF/3600.
PTIME=TIME/3600. .
WRITE(69105) PTFsPSIFsTsPTIME
FORMAT (/2 Xs*POLICY HAS REACHED UPPER CONSTRAINTe %,
TIME ON CONSTRAINT =%4F842s5Xs*FINAL ACTIVITY =%,F7e6

295X s ¥ TEMPe =%#3F6als2Xs*¥TIME =%,F7e2//)

109
104

111

110

152

151
1

DT=TF/100.
TFF=TF+TIME
D1=(SUMK*ALPHA-BETA%*AKK1) /AK
C4=AKK1/SUMK

Cl=(BETA*C4-ALPHA)
C2=BETA*C4*AKK2¥ (P1=-P2)/ (AK*SUMK)
C3=(P1*AKK1+P2%AKK2) /AK

NI=1

DECAY=EXP (—AK*DT)

PSI=PSIT#*#DECAY :
IF((PSIT-PSI)eGTe«0005) GO TO 111
A=AI*EXP (~-PST%*SUMK)
AD==A%D1+(ADJ+A%¥D1 ) *¥EXP (DT*AK)

HAM=C1%* (AI-A)=AD*PSI*AK
IF{ABS(HAM—-HAMS)—-EPS*10s) 110,110,111
DT=DT/2.

IF(DTeLTele0) STOP

GO TO 109

PSIT=PSI

TIME=TIME+DT

ADJ=AD

P=C1*(AI-A)%DT+P

IF(TIME«GE«T6F) GO TO 152

NI=NI+1

IF(NI.GE«10) GO TO 152

GO TO 104

DHDK=C2# (AI—=A)+C1*¥C3*PSIT*A-ADJ*PSIT
B=BI+C4%(AI-A)

PTIME=TIME/3600

WRITE(69151) PTIME sHAMsDHDK sPSI sAsbs ADJHP
FORMAT(1XsF8e299X9E13e633XsE13e691lXsF5eb49FTe53F765353X
E10e3934XsE12.5)

NI=0

IF((TIME+DT) «GE«TFF) STOP

GO TO 104

END
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SUBROUTINE PROCESS (AK) -

PROCESS CALCULATES THE HAMILTONIAN FOR A GIVEN TEMP.

(AK)

COMMON/BLK1/DIRsPSIsPSITsP1,P25A15A24sBIsAl+BETASALPHA,

1AKK1 s AKK2 s DTIME sHAM, AC
PSIT=PSI*EXP(~({AK+DIR?/2.%DTIME)
AKK1=AK*%P1¥11/AC*%P1

AKK2=AK**P2%¥A2 /AC*%P2

SUMK=AKK1+AKK?2

A=AT*EXP(-PSIT*SUMK)
HH2==BETA#*AKK1*AKK2¥(P1-P2)# (AI-A) / ( SUMK#*SUMK)
HH1=(BETA*AKK1/SUMK=~ALPHA)*(AI-A)

HAM =HH1+HH2—-(BETA*AKK1/SUMK-ALPHA)*PSIT* (P1*AKK1+P2*AKK2) *A

RETURN
END

SUBROUTINES SPLINE AND INTER ARE USED TO FIND THE TEMP.

WHICH WILL KEEP H CONSTANT

SUSROUTINE SPLINE (NPsXsYsPMsSLOPEL»SLOPEN!
DIMENSION Q(51)sU(51)

DIMENSION X(6),Y(6)oPM(6)

N=NP-1

DO 1 I=1,sN

AA=X(I+1)=X(1)

IF(AA.LE«10.E=20) GO TO 7

CONT INUE

H1=X(2)=X(1)
Dl1=3«/H1*{{Y(2)-Y(1))/H1-SLOPE1)
H1=X(NP)=X(N)

DNP=64/H1% (SLOPEN—(Y(NPJ)=Y(N))/H1)
Q(1)=-0e5

Utl1y=D1

DO 4 I=24N
AA=(X(I+1)=X(I))/(X(I+1)=-X(1-1))
D=(6e /(X(I+1)—X(I—1)))*((Y(I+13—Y(I))/(X(I+1)-X(I’)
*¥ =(Y(I)=Y(I=21))/(X(I)=X(I=12))
P=(le=AA)%Q(I-1)+2.

Q(I)==AA/P
UlI)=(D-(1le—-AA)*U(I=-1))/pP

CALCULATION OF THE N MOMENTS BY BACK SUBSTITUTION.
PNP=Q(N)+2.

PM(NP)=(DNP-U(N))/PNP
DO 6 I=1sN
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J=NP-1I
PM(J)=Q(J)*PM(J+1)+U(J)

RETURN
WRITE(698) IsX(I)sIsX(I+1)
FORMAT (10X 9 +++ ERROR IN SUBROUTINE SPLINE +++%//

#1CXs*THE VALUES X(#,129%) = #3E125+% AND X(%*,12,
*¥%4]1) = ¥5E12.59*ARE IN THE WRONG ORDERe)

sToP
END

SUBROUTINE INTER (NPsXsYsPMsXRsYRsKSLOPE,SLOPE)
DIMENSION X(6)sY(6)sPM(6)

LOCALIZATION OF THE INTERPOLATION SEGMENT.

IF(XReLTeX(1)eOReXReGTeX(NP!}} GO TO 1
DO 1 I=1,NP

IF(X(I)eGEXR) GO TO 2

CONTINUE

WRITE(6395) XRsX(1)sX(NP)

sSTOP

J=1-1

IF(X(I)eEQeXR) GO TO 3

CALCULATION OF THE CORRESPONDING YR VALUE.

H=X(J+1)=X(J)
YR=(PM(J) /{6e*¥H) ) ¥ (X(J+1)=XRI*¥(X(J+1)=XR}*(X(J+1)=XR]}

¥ +(PM{J+1)/(6e*H) I #(XR=X(J)I#(XR=X(J) DI ¥ (XR-X(J})
* F(Y(I)=PM(J)*HXH/ 60 V(X (J+1)~XR) /H
* F(Y(J+1)=PM(J+1 ) %H*H/ 64 ) ¥ (XR=X(J) ) /H

"GO TOC 4

3 YR=Y(I)

IF(I1.EQel) JU=1
H=X(J+1)-=X(J)

4 IF(KSLOPEEQ.O) RETURN

SLOPE==(PM(J) /(2 ¥H) )#* (X(J+1)=XR)I*# (X (J+1)=XRI+(PM(J+1)
1/7€2e*H) VX (XR=X(J) ) ¥ (XR=X(J) I+ (Y (I+1)=Y(J})/H=(PM(J+]1)

2-PM(J))#(H/64)

RETURN

5 FORMAT(10Xs*+++ ERROR IN SUBROUTINE INTER +++%//

110X+ %¥THE VALUE OF XR = ¥3E1245/10Xs#1S OQUT OF THE *,

3* INTERPOLATION RANGE X(1) =%#4E12459% TO X(NP) = *,E12.
45) :

END





