Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19666
Title: Products and Factorizations of Graphs
Authors: Miller, Donald J.
Advisor: Sabidussi, G.
Department: Mathematics
Keywords: products, factorizations, graphs, prime, isomorphisms
Publication Date: May-1967
Abstract: It is shown that the cardinal product of graphs does not satisfy unique prime factorization even for a very restrictive class of graphs. It is also proved that every connected graph has a decomposition as a weak cartesian product into indecomposable factors and that this decomposition is unique to within isomorphisms. This latter result is established by considering a certain class of equivalence relations on the edge set of a graph and proving that this collection is a principal filter in the lattice of all equivalences. The least element of this filter is then used to decompose the graph into a weak cartesian product of prime graphs that is unique to within isomorphisms.
URI: http://hdl.handle.net/11375/19666
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Miller_Donald_J._1967May_Ph.D..pdf
Open Access
2.3 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue