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INTRODUCTION 

We consider four products for a family of graphs, where the ver-

tex set of the product is the product of the vertex sets of the factors. 

They are the cartesian, weak, strong and cardinal products (1.2). The 

cartesian product is due to Shapiro [7] and Sabidussi [5], [6], the 

weak and strong products to Sabidussi [5], [6], and the cardinal product 

v 
to Culik [1]. The cardinal product is called the Kronecker product by 

Weichsel [9], and the conjunction by Hedetniemi [2]. Szamkolowicz [8) 

poses the question (due to Mycielski) of unique prime factorization for 

the cartesian and cardinal product. (It is always of general mathemati-

cal interest to know if a product defined in any algebraic system satisfies 

unique prime factorization.) Sabidussi [6] had already established that 

unique prime factorization holds for connected graphs containing a vertex 

of finite degree and connected graphs of finite type. He imposed the 

finiteness conditions on the graphs to ensure that the number of factors 

in the decomposition was finite, since he was interested in applying the 

decomposition theorem to prove a result on the automorphism group of 

a graph. In this same paper he also shows that the strong product does 

not satisfy unique prime factorization. In fact he shows that there exist 

complete graphs that do not have a prime factorization and complete graphs 

that have infinitely many essentially distinct prime factorizations. 

In the discussion of unique prime factorization of graphs with 

respect to any of the above products, it is essential to exclude graphs 

with isolated vertices, as is seen in the following example: let 

X = path of length 3 together with two isolated vertices, 
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Y = complete 2-graph, 

X' = complete 2-graph together with a single isolated vertex, 

Y' = path of length 3 

Then X, Y, X', Y' are indecomposable with respect to cartesian (weak, 

strong, cardinal) multiplication, and are pair wise non-isomorphic. 

However 

XY = X'Y' , 

where juxtaposition denotes cartesian (weak, strong, cardinal) multiplica

tion. 

For the class of graphs without isolated vertices, we again have 

non-unique prime factorization. Let 

Then 

A = disjoint union of two complete 3-graphs, 

B = complete 5-graph, 

A' = complete 3-graph, 

B' = disjoint union of two complete 5-graphs. 

AB- A'B' 

where juxtaposition again denotes cartesian (weak, strong, cardinal) multi

plication. Moreover, A, B, A', B' are indecomposable, in the class of 

graphs without isolated vertices, with respect to cartesian (weak, strong, 

cardinal) multiplication. 

Hence, in considering the question of unique prime factorization, 

we restrict ourselves to the class of connected graphs and are then led to 

investigate the question of the connectedness of products. 

Since the cartesian product of connected graphs is connected if 
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and only if the number of factors is finite, we introduce the weak car-

tesian product of a family of rooted graphs (1.26) which ensures that the 

product of an arbitrary family of connected graphs is always connected. 

The weak cartesian product of a family of connected graphs is also due to 

Sabidussi [6]. He introduced this product to show the existence of con-

nected graphs that are idempotent with respect to cartesian multiplication. 

Our main result is an extension of Sabidussi's theorem ([6], 2.15). We 

show (2.41) that every connected graph is decomposable as a weak cartesian 

product and that the decomposition is unique to withinisomorphisms. Rough-

ly speaking, to prove his decomposition theorem, Sabidussi constructs an 

equivalence relation on the edge set of a graph such that two edges are 

equivalent if and only if they project to the same factor. Here we consi-

der a particular collection of equivalence relations (the acyclic equiva-

lences (2.6) that contain certain binary relations a and 6 (2.8)) in 

the complete lattice of all equivalences on the edge set of a graph and 

prove that this collection is a principal filter (2.23). We ~how that 

each equivalence in this filter gives rise to a weak cartesian decomposi-

tion of the graph such that two edges are equivalent if and o~ly if they 

project to the same factor, moreover if the equivalence i~ least then the 

factor are indecomposable. This correspondence between equivalences and 
. 

decompositions also enables us to prove the conjecture of Sabidussi's 

([6], p.449) that an idempotent graph (i.e., X x X= X) with respect to 

cartesian multiplication does not have a cartesian decomposition into in-

decomposable factors. 

Since the weak product of a family of connected graphs is also 

connected if and only if the number of factors is finite, we introduce 

(vii) 



the weak product of a family of rooted graphs (1.28) to get connectedness 

of the product for an arbitrary family of connected graphs. This product 

does not however satisfy unique prime factorization. 

The cardinal product has the unpleasant property that the product 

of two connected graphs need not be connected. A necessary and sufficient 

condition that the cardinal product of two connected graphs be connected 

is that at least one factor be non-bipartite (1.11). (While preparing this 

dissertation we discovered that Weichsel [9] had already established this 

result. Our proof is essentially the same as his; however, we make use of 

the fact that the cardinal product is categorical whereas he does not.) 

It is then natural to ask if the cardinal product of a family of non

bipartite graphs is itself non-bipartite. This question is fully answered 

in 1.13. In particular we have that the product of two connected non

bipartite graphs is again connected and non-bipartite. 

Our decomposition theorem (1.20) shows that even by restricting 

to the class of finite connected non-bipartite graphs unique prime factor

ization does not hold for the cardinal product. Marica and Bryant [3] 

prove that finite unary algebras (i.e., functional directed graphs) have 

unique square roots. It would be of interest to know if a similar result 

holds for the cardinal product of finite graphs. We have not however 

attempted this problem. 
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CHAPTER I 

SECTION I: Preliminaries. 

1.1. DEFINITIONS: By a graph X we mean an ordered pc:iir 

CVCO, E('C)), '.Jlk:ce V(X) is a set 2 ~~. Ic(X~ .is a set of unordered pairs of 

distinct elements of V(X). (We can consider a graph to be a set together 

with a symmetric, irreflexive relation on the set.) We shall denote an 

unordered pair by brackets. The elements of V(X) will be called the 

vertices of X and the elements of E(X) the edges of X We denote 

the cardinal of the set V (X) by i Xi . The empty graph, i .. 2, , the graph 

with empty vertex set, will be denoted by 0 . 

A subgraph Y of a graph X is a graph whose vertex and edge 

sets are respectively subsets of the vertex and edge sets of X . A sub

graph Y of X is called saturated if and only if x, y 2 V(Y) 

[x,y] s E(X) imply [x,y] c E(Y) Y is called a spanning subgraph of 

X if V(Y) = V(X) An edge e is said to be incident with a vertex 

x if and only if e "" [x,y] for some vertex y , Two edges e = [x,y] 

and e' = [x',y'] are said to be adjacent if and only if exactly two of 

the vertices x,y,x' ,y' are equal, i.e., two edges are adjacent if and 

only if they are distinct and incident with a common vertex. A subset 

V of the vertex set V(X) is called independent if and only if x,y E V 

implies [x,y] t E(X) 

Let X and Y be graphs. By XU Y and X(\ Y we mean the 
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graphs defined by 

V(X U Y) = V(X) V V(y) 

E(X U Y) = E(X) U E(Y) 

and V(X f1 Y) V(X) n V(Y) = 

E(X () Y) = E(X) (I E(Y) 

If x E V(X) we let (x) denote the subgraph of X for which 

V((x)) = {x} and E((x)) = 0 

If e = [x,y] E E(X), (e) denotes the subgraph of X for which 

V((e)) = {x,y} and E((e)) = {e} • 

Whenever there is no likelihood of confusion we shall write x for (x) 

and e for (e) . 
If y is a subgraph of X we define the relative comElement 

X\Y of y in X to be the smallest subgraph with 

E(X\Y) = E(X) - E(Y) ' 
Let X and y be graphs. By a homomorEhism of X into y 

mean a function ~: V(X)~V(Y) such that [~x,~y] E E(Y) whenever 

[x,y] E E(X). For a homomorphism ~ : V(X)~v(Y) we shall write 

~ : x~Y • A monomorEhism of X into Y is a one-one homomorphism. 

If ~ : X~Y is a homomorphism then ~ induces a function 

~# : E(X)--~E(Y) as follows: for [x,y] E E(X) define 

11 
~ [x,y] = [~x,~y] . 

we 

A homomorphism ~ : ~--~y is called an eEimorEhism if and only if ~ and 

2 

~# are both onto. By an isomorEhism of X onto Y we mean a monomorphism 

~ : ~--~y such that ~ and ~# are both onto. We shall frequently write 



Given graphs X and Y let ~ be a function from V(X) to 

V(Y) . If A is a subgraph of X , we let ~A denote that subgraph of 

Y defined by 

V(~A) = ~(V(A)) , 

E(~A) = {[~x,~x 1 ] E E(Y) [x,x'] E E(X)} . 

If ¢ is a homomorphism then E(~A) = ~#(E(A)) . The only functions we 

consider that are not homomorphisms are projections (1.3) . 

Let x, y E V(X) • A path of X joining x and y is a sub-

graph P of X such that V(P) is the set of elements of a finite 

sequence (x ,x
1

, ... ,x) o n 

and 

of distinct vertices of X with x = x and 
0 

We shall denote the path P by [x ,x
1

, .. ,,x] . n is called the o n 

length of P . A path P is called proper if the length of P is 

~ 1. A graph X is called connected if any two vertices of X are 

joined by a path in X , otherwise it is called discon.nected. A path P 
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joining x and y is called a shortest path if and only if for any path 

Q joining x and y thQ length of P does not exceed the length of Q . 

Let X be connected x, y E V(X) • By the distance dX(x,y) of x and 

y in X we mean the length of a shortest path joining x and y in X 

When no confusion is likely we shall write d(x,y) for dX(x,y) By the 

diameter diam X is meant 

diam X = sup . dx(x,y) 
x,y E V(X) 

A maximal connected subgraph is called a component. 



Let P = [x ,x1 , ... ,x] and P 2 = [y ,y
1

, ... ,y 
2

] be paths 
n o n n- o n-

of length n and n-2 respectively, n ~ 3 • Then ¢ : p ->P . 
n n-2 

defined by 

yi i 1,2, ... ,n-2 

<j>x. Yn-3 i = n-1 
1 

Yn-2 i = n ' 

is an epimorphism with 

By a circuit of a graph X we mean a subgraph C of X such 

that V(C) is the set of elements of a sequence (x1 ,x
2

, •.. ,xn) of dis-

tinct vertices of X , and 

We shall denote the circuit C by [x1 , ... ,xn] . n is called the order 

of C and we shall frequently call C an n-circuit. A circuit will be 

called even or odd according as n is even or odd. 

Let C = [x
1

, ••• , x ] 
n n 

and c n-2 be circuits of 

order n and n-2 respectively, n > 5 • The mapping <P : Cn->Cn_2 

defined by 

is an epimorphism from c 
n 

onto c 2 . n-

i = 1, ••• , n-2 

i n-1 

i n , 

A graph X is called acyclic if X contains no circuits. A 

tree is a connected acyclic graph. 

4 

A graph X is called complete if and only if x, y E V(X), x ~ y, 



implies [x,y] s E(X) • Let n be any cardinal; a complete n-graph is 

a complete graph on n vertices. We shall frequently denote a complete 

n-graph by C(n) 

We call a graph X bipartite if and only if E(X) ~ 0 and 

every circuit in X is even. It is well-known (c. f. [ 4] 7 .1.1 ) that 

X is bipartite if and only if there exists a epimorphism ¢ : x~c(2), 

i.e., V(X) is the disjoint union of two non-empty independent sets of 

vertices. If X is a bipartite graph w·ith V (X) = V 
1 

U V 
2

, V 
1 

(\ V 
2 

= 0 

V. independent, i = 1, 2, then X is called a complete bipartite graph 
~ 

if and only if x1 s v1 , x2 s v 2 implies [x1 ,x2] s E(X) . If 

lv1 1 = n, iv2 1 = m then we denote the complete bipartite graph X by 

K n,m 

If a graph X is non-bipartite we define the odd m.esh of X to 

be min lei , the minimum taken over all circuits C of odd order. 

Let X be a graph. For x s V(X) we let 

V(X;x) = {y [x,y] s E(X)} • 

IV(X;x)i is called the degree of x in X and is denoted by d(x;X) 

or simply d when no confusion is likely. 
X 

X is said to have bounded 

degree if and only if 

sup d(x;X) < oo • 

xsV(X) 

Let R be an equivalence relation on the vertex set of a graph 

X and let R[x] = {y s V(X) I xRy }. We define the quotient graph X/R 

as follows: 

V(X/R) = {R[x] I xsV(X)} 
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For R[x), R[y) E V(X/R), 

[R[x], R[y)] E E(X/R) if and only if R[x] # R[y] and there exist 

X
1 E R[x] , y 1 E R[y] with [x 1 ,y 1

] E E(X) , 

By a cover of a graph X we mean a collection (9(. of subgraphs 

such that 

(i) U A = X , and 
aEel 

(ii) E (A) n E (A I) 0 for A, A 1 E CJl with A # A 1 
• 
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SECTION II: Products and connectedness 

1.2. DEFINITIONS: Let (X ) be a family of graphs. "TiV(X ) 
a aEA aEA a 

will denote the usual cartesian product of the sets {V(X):aEA}, 
a 

prb: TT V(Xa)->V (Xb) 
aEA 

th the projection into the b factor. We define 

1. 2 (I) the cartesian product 

V(X) = TT V(X ) ' 
aEA a 

X = TT X of the graphs 
aEA a 

X by: 
a 

E(X) = {[x,y] : x,y E V(X), [pr x, pry] E E(X) a a a for exactly one 

aEA, prbx = prby for all bEA- {a}} , 

1. 2 (II) the weak product Xw = Tl wX of the graphs 
aEA a 

X by: 
a 

V(Xw) = TT V(X ); 
aEA a 

w For x,y E V(X ) , 

[x,y] E E(Xw) if and only if there exists a non-empty finite subset 

B C A such that 

and 

1.2 (III) the strong product 

V(X*) = n V(X ) 
aEA a 

For x,y E V(X*) , 

* 

* n*x X = 
aEA a 

, for bEB , 

, aEA-B, 

of the graphs X by: 
a 

[x,y] E E(X ) if and only if there exists a non-empty subset B ~A 

7 
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such that 

and 

1. 2 (IV) the cardinal product 

V(X0
) = TT V(X ) , 

ae:A a 

0 x,y e: V(X ) 

be:B , 

ae:A-B . 

of the graphs X by: 
a 

[pr x, pr y] e: E(X ) for all ae:A} , a a a 

If the index set A is finite, it is clear that weak and strong 

8 

product coincide. For a finite family of graphs (X.). 1 we shall 
1 1= , ••• ,n 

frequently denote the Cartesian prodUCt by X1 X X2 
X ••• X X 

n 
the 

strong product by x1*x2* ••• *Xn, and the cardinal product by x1ox2o ••• oXn . 

1.3. REMARK: Observe that prb : n°xa-:>~ is a homomorphism; 
* ae:A : n X ->X (pr : IT X ->X. ; pr : n wx ->X_ ) is not a 

-A a b b A a --b b -A a -o aefi ae: a~ 

whereas 

homomorphism provided that one of the factors X , a ~ b , has an edge. 
a 

We note here the fact that the cardinal product is categorical, 

i.e., given a graph Y and a family of homomorphisms ¢b : Y-~xb, be:A, 

then the mapping ¢ Y-> 1T 0 X defined by 
ae:A a 

is a homomorphism (Fig. 1.1) • We will denote ¢ 

, ye:Y, be:A , 



TTO<P = <P 
ae:A a 

y.~--------------~xb 

<Pb 

FIGURE 1.1 

Moreover if there exists an a e:A such that ~ o ~a 

monomorphism then <P 

0 

Y.--> n °X is also a monomorphism. 
ae:A a 

Y.->X is a 
a 

0 

If <Pi : Xi-->Yi is a homomorphism, i 0, 1, then 

is also a homomorphism. Moreover if <Pi' i = 0, 1, is an epimorphism 

(monomorphism) then <P is an epimorphism (monomorphism). 

9 

1.4. DEFINITION: For each be:A and each x e: -rf V(X ) we define 
ae:A a 

the injection mapping V(Xb)--> n V(Xa) 
ae:A 

as follows: For each 

Clearly 

if b = a 

if b:fa 

X 'IT ( X n* ,X i : X_·-> I 1 X ib : Xb-> Xa ; 1b 
b -0 ae:A a ae:A 

, ae:A . 

morphism; however Xb-->llr
0

Xa is not even a homomorphism. 
ae:A 

is a mono-
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Under the identification of isomorphic graphs cartesian, strong, 

and cardinal multiplication are commui!ative and associative. For carte-

sian and strong multiplication the trivial graph (i.e., the graph consis-

ting of a single vertex and hence an empty set of edges) acts as a unit. 

Cardinal multiplication does not have a uni-t. A graph will be called 

non-trivial if its vertex set is non-empty and it is not the trivial 

graph. 

1.5. DEFINITION: A graph X is called prime (or indecomposa-

ble) with respect to cartesian multiplication if and only if X is non-

trivial and X = Y x Z implies either Y or Z is trivial. Analogous 

definitions- of indecomposable graphs can be introduced for the cardinal 

and strong product. 

1. 6. PROPOSITION: The cartesian· (strong, cardinal) product of 

any graph with a dis.connected graph: is disconnected~ 

PROOF. Trivial. 

1.7. PROPOSITION.: The ca'l!tesian product of finitely many con-

nected graphs is connected. 

PROOF. Let X= xl X x2 X ••• X xn 'where X. 
l. 

is a connected 

graph for i = 1, 2, ••• , n, and let x,y E V(X) • Since Xi is con-

nected there exists 

i 

X 
n 

= 1, ... ' 
X . n-1 = l. 
n 

n Let 

pr 1y • n-

a path, P. say,- joining pr.x 
l. l. 

.x1 x2 
X = x, x2 

,. 
1.1 pr1y' x3 = i2 1 

Then 

x1 x2 x 
P · P U · P U U1.' np 

= 1 1 1 1 2 2 • ' • n n 

and in X. 
l. 
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is a path joining x and y in X • 

1.8. PROPOSITION: The weak preduet of infinitely many non-

trivial graphs is. disconnected. 

PROOF. Let (Xa)aeA be an infinite family of non-trivial graphs. 

For each aeA , let X 
a and ya ·be distinct vertices of X a 

Define 

and for aeA • Suppose 

X and y are joined in Xw by a path · P = [x , ••• ,x ] • 
o n Since 

w 
[xi' xi+l] e E(X ) , praxi and praxi+l differ for at most a finite 

number of aeA • Hence x and · y differ for at most a finite number 

of projections, contradicting, pr~x -+·pray for all aeA • 

1.9. COROLLARY: The cartesian product of infinitely many non-

trivial graphs is disconnected. 

PROOF. The proof follows immediately from the fact that nx 
aeA a 

. . b h f 'nwx 1s a spann1ng su grap o 
aeA a 

1.10. PROPOSITION:· 'l'he strong product of a family (X a) aeA of 

connected graphs· i:s' connected!.±£ .and· only if 

B :=;. {beA 'I diam ~ = co } 

is finite and 

D: = { diam X ·I aeA - B } . a 

is bounded. 

* PROOF. Let X = IT X · and assume that X is connected. If 
aeA a 

B is infinite or D is unbounded, ,then for aeA there exist 

y e V(X ) 
a a such that 



1.10 (1) sup dx (x ,y ) = ro • 

aE:A a a a 

12 

Define x,y E: V(X) by pr X =X ' pr Y = Ya ' aE:A. X connected implies 
a a a 

there exists a path p joining X and y in X . pr P is a connected 
a 

subgraph of X containing X and Ya and hence contains a path join-
a a 

ing x and y • a a 
Therefore 

dx (xa,ya) ~ IPraPI < !PI , aE:A , 
a 

contradicting 1.10 (1) 

Suppose that B is finite and D is bounded. Take any 

x,y E: V(X) . Since X is connected for each aE:A ' pr x and pray a a 

can be joined in X by a shortest path 
a 

p [pr x a a a 
pray]. = = X o' xl' ... ' X n(a) = 

a a 

Since B is finite, k1 = max n(b) exists and since D is bounded 
bE:B 

max n(a) exists. Let k 
aE:A-B 

For 0 < i ~ k , define x. E: V(X) 
l. 

as follows: 

t x~ , 0 ~ i ~ n(a) 
1 

, aE:A. 
xa , n(a) < i ~ k 
n(a) 

To show that [xi, xi+l] E: E(X) , 0 < i ~ k-1 , we first note that for 

aE:A either 

[pr x., pr x.+l] E: E(X) a 1. a 1. a 

or 
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there exists an a EA such that n(a ) 
0 0 

k, i.e., 

Hence [xi' xi+l] E E(X) and 

P = [x, ... , x] o n 

is a path joining x and y in X • 



SECTION III: The cardinal product. 

Let x1 and x2 be connected· graphs. Fix x1 e: V(X
1

) and 

x2 e: V(X2) and for each y e: V(X1 o x2) define 

For i = 1, 2 let Yi be the saturated subgraptt of x1 o x2 with 

V(Yi) = {y e: xl 0 x2 I n(y) - i(mod 2)} . 

Note that Y1 U Y2 is a spanning subgraph of x
1 o x

2 
and that 

Y1 ~ Y2 = 0 . If moreover we have that x1 and x2 are non-trivial 

thEm it is easily seen that Y1 and Y2 are connected subgraphs of 

1.11. PROPOSITION: ([ 9 ], p.4·9) Let x
1 

and x2 be connected 

non-trivial graphs. Then' the· foil.lowfng statements are equivalent: 

(i) x1 o x2 is··disconnec.ted"'(consisting of exactly two 

components~, 

PROOF. From the remarks preceding the proposition we immediately 

have that (i) is equivalent to (ii). 

To establish that (ii) implies (iii) we assume that (iii) does 

not: hold, i.e., at least one of x1 , x2 is non-bipartite. Without loss 
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of generality suppos-e that x
1 

' contains· an odd circuit, say C , and 

moreover we may take C ·to have .. least oddorder and let x 1 t:: V(C) • 

c having least odd· order imp:lie3 there-exist· x' 
' x" t:: V(C) such that 

(a) 

and 

(b) [x', x"] t:: E(C). 

Since x 2 is non-trivial and eonne~ted'· t-here exists y t:: V(X2) with 

Then 

If (x', x2) t:: V(Y1) ( t:: V(Y2)) then (xM, y) t:: V(Y2) (t:: V(Y
1
)) and 

hence Y1 U Y2 ): X1 o x2 • Therefore (ii) implies (iii). 

Now we show (iii:) implies (i). For i = 1, 2, X. bipartite 
~ 

implies there exists an epimorphism 

~i : Xi->C(2) • 

Hence ~ x1 o x2->c (2) o c (2) defined by 

15 

is also an epimorphism. But C(2) o C(2) is disconnected and therefore 

x1 o x2 is disconnected• Hence (iii) => (i) • This completes the proof. 

1.12. PROPOSITION: Let x1 be a bipartite graph and x2 any 

graph with E (X ) ..J. · t;\• · then X o X 2T'P,_ 1 2 is bipartite. 



PROOF. x1 bipart:itre implies t:here exists an epimorphism 

¢ : x1-->C(2) • Hence ¢ 0 pr1 : x1 e x2-->C(2) is an epimorphism and 

therefore xl 0 x2 is· bipartite. 

16 

1.13. PROPOSITION,: . For each aEA let X be a non-bipartite 
'-- a -

graph with odd mesh = n 
a 

Then· the ca:tdirtal product n °X is non
aEA a 

bipartite (with odd· mesh "" sup n ) · H 8!\d···ortly if 
aEA a 

< 00 • 

PROOF. Let X = TI 0 X 
aEA a 

First assume sup n = n < oo, 

aEA a 

For each aEA let C be a circuit of odd order n in X Then a a a 

there exists an a EA with lc I = n . For each aEA , n , n odd and 
o a a 

0 

na ~ n imply that there exists an epimorphism 

¢ : C ->C a a a 
0 

Since ¢a is a monomorphism, 
0 

¢ = n ° 9 is a monomorphism from 
aEA a 

c 
a 

0 

to TT 0
X 

aEA a 
Hence ¢ C C. X is an odd circuit of order n , i.e., 

a 
0 

X is non-bipartite. 

Now let C C X be an odd circuit. For aEA , pr : X-->X a 
a a 

homo~orphism implies pr C 
a 

is a non-bipartite subgraph of X and has 
a 

odd mesh ~ lpraC I • Hence 

for all aEA • 

This proves the necessity part ef· the theorem, as well as, in combination 

with the first part of the proof, that n = odd mesh of n °X • 
aEA a 

Let A be an index set and each aEA let X be a graph with 
a 
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chromatic number X (X ) • n , i.e,, n. is ·the least cardinal for which a a a 

there exists a homomorphism X ->C(n ) . 
a a Since -o : II X ->X 

A a b a£ 

is a homomorphism for each b£A , we have that 11 °X ->C(nb) 
a€A a 

is also a homomorphism, i.e., 

< min 
a£A 

It has been conjectured ([2], Conj.,l.2) that equality holds for A finite. 

By 1.13 we have that TI
1

°CZn+l · is bipartite, i.e., 
n~ 

where c2n+l is a circuit of order 2n+l , whereas X(CZn+l) = 3 , for 

n ~ 1 . Hence the above·eonjeeture can not be extended to A countable. 

We will describe TT 0
GZn+l in greater detail after 1.15. 

n~l 

1.14. LEMMA: Let X ·be·a·eennected·non-bipartite graph·of 

finite diameter d, x,y £ VOO ·not· necessarily distinct, and 

P = [p , ••• ,p] a path of even length ~4d. Then there exists· a homomor-o s 

phism ~ : P-->X such that <PP =x· and ~ps = y. 
0 --

PROOF. Let ., •• , z] 
n 

be a circuit of least odd 

order·. Note that n < 2d . Let Q be a shortest path joining X and = 1 

z in X of length r ' and Q3 a shortest path joining z and y 
0 1 n 

in X of length r3 . Let 

Then 



where r 2 is the length of Q
2 

, is even and r ~ 4d • Let 

P' = [po' ••• ' p ] • r 
Clearly there exists a homomorphism 
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But r, s 

even and r ~ s implies there exists a homomorphism v P-~P' such that 

vp = p and 
0 0 

vp = p • Then tjJ e v: F-->X is the desired homomors r 

phi sm. 

1.15. PROPOSITieN: · The cardinal product of a family (X ) a at.A 

of connected· ·non-.bipa:rtite graphs :is connect.ed. if and only if 

is finite, and. 

is bounded. 

PROOF. Let X 

is bounded. Let xl = 

B = {bt.A· I diam xb = 00 } 

D = {diam X I at.A-B} a 

= nox and assume that 
at.A a 

no and x2 = no xa bEB ~ at.A-B 

B 

; 

is finite 

then x= xl 

and 

0 

B finite implies by 1.11 that xl is connected and by 1.13 that 

is bipartite, and hence to show that 

to show that x2 is connected. 

Let x,y E V(X2) and let 

be a path of length 4s , where 

s == sup 
at.A-B 

X is connected it suffices 

diam X 
a 

D 

x2 . 

xl 

by 1.11 



By the lemma preceding the proposition there exists a homomorphism 

such that 

Let <P = 

cp : F--->X 
a a 

cp p = pr x 
a o a 

and pr y 
a 

Then 

,~,p = x and ,~,p 
'~" o '~" 4s 

, aE:A-B . 

y • 

Since cpp is a connected subgraph of x2 and x, y E: <PP we have that 

x
2 

is connected and therefore X is connected. 

The proof that X connected implies B is finite and D is 

bounded is the same as that in 1.10. 

1.16. COROLLARY: k,t (X ) be a family of connected non-a aE:A -

19 

bipartite graphs. If X = TT0 X. is connected then X is ·non-bipartite. 
a£A a 

PROOF. X connected implies B is finite and D is bounded. 

Let n be the odd mesh of X 
a a 

aE:A-B • Hence 

Then n < 2 diam X + 1 for all 
a a 

sup n < oo 

aE:A a 

and therefore X is non-bipartite by 1.13. This completes the proof. 

It is obvious that the converse of the corollary is not true. 

We now investigate X = l[f°CZn+l . The reason for doing so is 
n~l 

that this graph is the simplest of the pathological cardinal products 

that exist by 1.13 and 1.15 and hence its structure is of general interest. 

It will be convenient to consider the vertex set of c2n+l as the additive 



group of integers mod 2n+l, i.e., 

c2n+l = [-n, -(n-1)' .•• ' -1, 0, 1, ••• ' n] • 

prn will denote the projection to c 2n+l and lprnxl will denote the 

distance of 0 and prnx in c2n+l • 

Since the automorphism group of a circuit acts transitively on 
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the vertices we have that the automorphism group of X acts transitively 

on V(X) • This is easily seen as follows: let x, y e: V(X) and let 

"' be "'n an automorphism of c2n+l 

cp defined by 

such that cp (pr x) = pr y • n n n Then 

, z e: V(X), n ~ 1 , 

is ~n automorphism of X such that cp(x) = y • Hence the automorphisms 

of X act transitively and therefore the components of X are all 

isomorphic. 

Next we show that the number of components of X is ~0 
2 • 

any subset A of the positive integers N define xA e: V(X) by 

n e: A 

n i A • 

Let C1L be an uncountable subset of the power set of N such that 

(i) A e: ~implies that A and N-A are infinite, 

(ii) A, A' e: d(., A~ ~' implies A(') A' is finite. 

For 

For A, B e: <X , A ~ B we have and belong to different components 

of X since 
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~ 
Hence the number of components of X is 2 

0 

Since all components of X are isomorphic we need only consider 

that component X 
0 

that contains where X E: V(X) 
o. 

is defined by 

pr x = 0 , n ~ 1 . To see that there are uncountably many vertices in 
n o 

X , let 
0 

Then 

AC.N and define YA e: 

prnyA = 

in fact 

For i = 0, 1, let 

V(X) by 

t _: n 

n 

e: A 

i A 

~ 
lx I = 2 o 

0 

V. = {x e: V(X) I d(x, x) = i(mod 2)}. 
1 0 

For i 0, 1, we have that x e: Vi if and only if there exists some 

integer j ~ 1 such that 

(i) 

(ii) 

lpr xI ~ j for all n ~ 1 , and 
n 

pr x = i (mod 2) 
n 

for all n > j 

We only consider the case i = 0 . First suppose x e: V(X) satisfies 

(i) and (ii) Let p = [p 
o' be a path of length 2j For 

each n ~ 1 , it is obvious from (i) and (ii) that there exists a homo-

Since X is 
0 

suppose j 

joining X 
0 

subgraph of 

is a homomorphism w~th <j>p = X 
0 0 

and X • 

bipartite, we have by 1.19 that d(x ,x) is even. Now 
0 

d (x ,x) is even, i.e.' X E V and let p be a path 
0 0 

and X in X of length j . Since pr P is a connected n 

c2n+l containing pr x = 0 and pr x we have n o n 



22 

for n > 1 

For n > j we also have that pr P is a path and since p has even n 

length the distance of pr x = 0 and pr x in pr p is even . Hence n o n n 

the distance of pr x = 0 and pr x in c2n+l is even since n > j n o n 

1.17 DEFINITION: Let X,X be graphs. X will be called 
0 

X
0
-admissible if and only if there exists a graph x1 such that 

(i) is a spanning subgraph of X • 
' 

(ii) [(xo,xl)' (x' o' x')] 
1 

€ E(X) implies [x ,x'] 
0 0 

t: E(X ), 
0 

and [x1 ,x]_] € E(X
1

) or X = 1 
x' . 

1 ' 

(iii) if [(xo,xl)' (x~,x1 )] € E(X) for some [X , X 1 
] € E(X ) 

0 0 0 

then [(yo,xl), (y~,xl)] s E(X) for all [yo,y~] s E(X ) 
0 

. 

In view of (iii) we can introduce, for convenience, the following subset 

V C. V(X1) : 

x
1 

E V if and only if [(x
0

,x1), (x~,x1 )] s E(X) for some 

[x ,x'] s E(X) . Condition (iii) can then be restated as: for each 
0 0 0 

also apply the term X -admissible to any graph 
0 

y isomorphic to a graph 

X which is X -admissible in the sense just defined. X will be called 
0 

properly X -admissible if it is X -admissible and does' .not have X as 
0 0 0 

a factor with respect to cardinal multiplication. 

Note that condition (ii) implies that if 

then pr : ~-->X is a homomorphism. 
0 0 

X is X -admissible 
0 

1.18. REMARK: For V V(X1) the definition of admissibility 
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can be phrased in terms of still another graph multiplication as follows. 

Let X
0

, x
1 

be graphs. Define X
0 

® x1 by 

or pr
1

x = pr
1

y} • Then a graph X is X -admissible if there exists 
0 

a graph x
1 

such that 

1.19. EXAMPLE: For any non-zero cardinals m,n,r, the complete 

bipartite graph K mr,nr is properly K -admissible. m,n 

K 10\ C(r) :!: K 
m n ~ mr nr 

' ' 

This follows from 

and the fact that every complete bipartite graph is indecomposable with 

respect to cardinal multiplication. This can be seen as follows. 

If 

then each factor is a homomorphic image of K m,n But trivially any 

homomorphic image of K m,n is of the form K , with r ~ m, s ~ n , r,s 

and hence bipartite. By 1.11 this would imply 

contradiction. Hence K is indecomposable. 
m,n 

K 
m,n 

is disconnected, a 

We will investigate the existence of further properly X -admissi
o 

ble graphs after proving the following theorem. 

1. 20. THEOREM: · If X· ·is X --admissible and Y is any graph, 
0 ---------------

then there exists a graph y 
0 

such that 



X·o Y- X o Y 
0 0 

Moreover the graph Y is y..;.admisSible. 
0 

PROOF. Since X is X
0
-admissible there exists a graph x1 

and a subset V C. V(X
1

) such that L17 ·(i)-(iii) hold. Put Z = X o Y 

Then 

For each x1 E V(X1) and each y E V(Y) let 

W = {z E V(Z) I pr1z = x1 and pr2z = y} , 
xl'y 

where denotes projec-tion of V(Z) onto V(Y) . 

1. 20 (1) W (I W 1 1 = 0 Whenever x
1 

:/: x1
1 Or Y :/: Y I ' 

xl'y xl'y 

and 

1. 20 (2) l_) W V(Z) 
x

1 
E V(X

1
) xl,y 

y E V(Y) 

This says that the sets are equivalence classes on V(Z) with 
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respect to some equivalence relation R . Put Y 
0 

Z/R The vertex set 

of y 
0 

is the set of all equivalence classes 

Define ¢ Z->X o Y by 
0 0 

¢(x
0

,x1 ,y) = (x ,W ) • 
o x

1
,y 

In view of 1. 20 (1), 1. 20 (2), ¢ is clearly one-one and onto. 

To show that cp is a homomorphism take any z = (x
0

,x
1

,y) , 



z 1 = (x 1 
, x 1 

, y 1
) t: V (Z) with [ z, z 1 ] E E (Z). 

0 1 

(x 1 x 1
)] £: E(X) and [y,y'] E E(Y) 

o' 1 
Since pr : x~x is a homo-

o 0 

morphism this implies [X ' X I ] £: E (X ) 
0 0 0 

It remains to show 

z I £: 

Since y 1: y' , W 1: W 1 , • 

xl,y xl,y 

w xl yl 
1' 

, [z,z 1
] t: E(Z) then imply 

To prove that ¢ is an epimorphism let 

[ (X t W ) ' (X I , W I I ) ] E o x
1

,y o x
1

,y 
E(X o Y ) . 

0 0 
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Then [x ,x 1
] E: E(X ), [Wx y' wxl yl] E: E(Y ) . This means there exist 

0 0 0 
1' 1' 0 

s o' 
sl E: V (X ) such that 

0 0 

[ (s ' 
I y), (sl xi' y')] E(Z) xl' € . 

0 o' 

Hence [(s
0

, x
1
), (s~,xi)] E: E(X) and [y,y'] E E(Y) . Now either 

[x
1
,xi] E: E(X

1
) and then 

or x = x 1 
E: V 

1 1 
and then by 1.17 (iii) 

so that again 

This completes the proof that ¢ is an isomorphism. 

In order to show that Y is Y-admissible define an equivalence 
0 

relation R on V(Y ) by 
0 0 

R 
0 

w xl yl 
1' 

if and only if 
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Denote Y /R by Y1 . It is clear that the equivalence classes mod R 
0 0 0 

are in one-one correspondence with the vertices of x
1 

We shall there-

fore denote the equivalence class R [W ] 
o x

1
,y Put 

and define Z' as follows: 

V(Z') = V(Y) X V(Yl) ' 

E(Z') = { [ (y,~1), (y' ,xp] I [y,y'] e: E(Y), and 

or 

Clearly Z' is Y-admissible. We will show Z' - Y 
0 

n Y ~Z' by 
0 

Clearly n is one-one and onto. 

nW = (y,~1 ) 
xl'y 

To prove that n is a homomorphism take 

Define 

Then there exist x x' e: V(X ) o' o o such that [ (x
0

,x
1

,y), (x' x' y')] s E(Z) 
o' 1' 

Hence [y,y'] e: E(Y) ' and [x1 ,xi1 e: E(X1) or xl = xi e: V . If 

x = x' 1 1 E: v then xl = ~' 1 E V and hence [(y,xl)' (y',xi)] t: E(Z'). If 

[x1 ,xil E E(X
1

) then xl "I ~' 1 
; hence (xl ,"Xi l E E(Y

1
) since 

[Wx y' w ' '] e: E(Y ), and therefore [(y,"Xl), (y' ,"Xp] e: E(Y
1

) . This 
1' xl,yl 0 

shows that n is a homomorphism. 

To show that n is an epimorphism take [(y,xi), (y',xi)] E E(Z') . 
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In the first 

case [W W ] E E(Y ) 
x z' x' z' o 

for some z, z' s V(Y) • Hence there 
1' 1' 

[w w ] s E (Y ) • x y' x' y' o 
1' 1' 

In the second case where x
1 

= xl s V , we argue as follows: if 

E(X ) = 0 
0 

then X being X -admissible implies 
0 

E(X) = 0 and hence we 

could take V = 0 . Then V = 0 , and hence x1 xl s V could not ar-

rise. If E(X) # 0 , take any [x ,x'] s E(X) 
0 0 0 0 

Hence again 

Although this completes the proof we will finally show that if 

E(Y) # 0 

by 

and E(X ) # 0 
0 

Let ¢ : x1-->Y1 be defined 

As remarked earlier ¢ is one-one and onto. To show that ¢ is a homomor-

phism let [x1 ,xl] s E(X1) 

[s ,s'] s E(X) and hence 
0 0 0 

Since E(X ) # 0 , there exists 
0 

Since E(Y) # 0 , there exist y,y' E: V(Y) with 

[y,y'] E E(Y) . 

Therefore 



i.e., [Wxl,y' wxi,y'] E E(Yo) 

therefore [~1 ,~i1 E E(Y1) . 

Now implies and 

To show that ~ is an epimorphism is trivial and hence we have 

that ~ is an isomorphism. In particular if X = X
0 

® x1 then 

Yo - Y ® xl · 

We now return to the question of the existence of properly 

X
0
-admissible graphs. Let X

0 
be a finite graph with E(X

0
) :f. 0 , x1 

a graph of odd order. Then 

This follows from 

X= X @X 
0 1 

is properly 

IE(X o Z) I = 2m k , 
0 0 

X -admissible. 
0 

where mi = IE(Xi) I , i = O, 1, k = IECZ) I , n1 = Jx1 J • Hence if 

X ® X = X o Z , then 
0 1 0 

contrary to n1 being odd. 

Now take Y to be any finite graph with E(Y) :f. 0 . By 1.20 

there exists a Y-admissible graph y 
0 

such that 

X o Y :: X o Y 
0 0 

From the proof of 1.20 Y
0 

- Y ~ X
1 

properly Y-admissible. 

and hence we have that Y 
0 

is 

This shows that the decomposition of connected graphs into a 

28 

cardinal product of indecomposable factors is non-unique in a very strong 



sense. For if we take Y and X to be indecomposable and non
o 

isomorphic as well then Y does not occur as a factor in either X 
0 

Y since Y is properly Y-admissible, and X does not appear as a 
0 0 0 

factor in either X or Y since X is properly X -admissible. 
0 
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SECTION IV: Decomposability of products with respect 

to other multiplications 

As a consequence of the following proposition we have that the 

cardinal product of two non-trivial graphs is in general not a prime 

graph with respect to cartesian multiplication, 

1.21. PROPOSITION: Let x1 and x2 be connected graphs of 

bounded degree. Then x1 ° x 2 
; x1 ~ x2 if and only if 

c 
n 

is an n-circuit of odd order. 

PROOF. If xl 0 x2 ; xl X x2 ' xi connected i = 1, 2, we have 

by 1.7 and 1.11 that at least one of the Xi's is non-bipartite, say x1 . 

If x2 is bipartite then x1 o x2 is also bipartite by 1.11, contrary 

to xl X x2 being non~bipartite, Hence both xl and x2 are non-bipar

tite. Let the odd mesh of x
1 

and x2 be k
1 

and k
2 

respectively. 

Clearly x1 x x2 has odd mesh = min {k1 , k2} and by 1.13 the odd mesh 

of x1 ° x2 =max {k1 , k2} . Therefore k1 = k2 . 

We now use the fact that x1 and x 2 are of bounded degree. 

For i = 1, 2 let 

By hypothesis 

and 

d. = 
1 

d. < 00 ' i = 1, 2 
1 

sup d(x;Xo) 
1 

X E X. 
1 

Then 
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Since xl 0 x2 = xl X x2 we have dld2 = dl + d2' i.e., dl = 2 = d2 • 

This together with x
1 

and x
2 

being non-bipartite graphs of the same 

odd mesh implies xl - x2 = en ' where c 
n 

is an odd circuit. 

c X c --->C 0 c 
n n n n 

as follows: for 0 < i ~ n-1 0 ~ j ~ n-1 , define 

where the subscripts are taken mod n , 

Since n is odd we have that ~ : V(C x C )-->V(C o C ) is 
n n n n 

one-one and onto. Moreover it is easily verified that 

~ : C x C -->C o C is an isomorphism. 
n n n n 

1.22. PROPOSITION: In the class of graphs without isolated 

vertices, the cartesian (strong) product of two non-trivial graphs is 

indecomposable with respect to strong (cartesian) multiplication. 

PROOF. Assume the contrary, i,e,, there exists an isomorphism 

¢ : xo X xl-->Yo * yl ' where xi ' yi ' i = o, 1, are non-trivial 

graphs without isolated vertices. Let 

E. 
l. 

F. 
l. 

{ [x,y] E E(X 
0 

{ [x, y) E E (Y 
0 

I [pr.x, 
l. 

I [pcx, 
l. 

E E(X.)}, i = 
l. 

0, 1, 

E E(Y.) 
l. 

i o, 1, 
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and 

Since X. has an edge, i 
1 

0, 1, there exists a saturated 

4-circuit c [x ' xl' x2' x
3

] C X
0 

x xl with e o' e2 t: E 0 0 

el' e3 t: El' where e. [x.' xi+l]' i = o, 1, 2 and e = [x3,xo] 
1 1 3 

Denote <j>x. by yi and <j>e. by e' i <= o, ... ' 3 . There are 
1 1 1 

three cases to consider; 

(10) e' o' e' t: G 
1 ' 

(20) exactly one of e' o' e' 
1 is in G ' 

and 

(30) e' o' 
e' 

1 i G . 

Case (10): e! t: G 
J 

implies the subgraph A. generated by 
J 

y. y,+l 
yj+l' 

. J i J pry, is a complete 4-graph in y * yl' yj, 1 pr y.+l' 0 0 J 0 0 J 0 

j o, 1 Clearly ¢-1A. C E.' j o, 1 Let 
.Yl 

and . . z = 1 o proyo J J 0 

.Yz 
[zo,zl] G since [pr,z , prj z1 ] E(Y.), j = 0, 1 z = 1 o proyl . E: E: 1 J 0 J 

-1 
xl] 

-1 o, 1, and hence However [<I> z j' t: E, since ¢ A,C.E,, j 
J J J 

. 

-1 -1 i E(X X Xl)' a contradiction to being an isomorphism. [¢ z , <I> zl] <I> 0 0 

Without loss of generality take e' E: F 
0 0 

and 

e' E: G 
1 

e' E: G 
1 

implies the subgraph A generated by y1 , y2 , 

.Yl .Yz 
1 0 pr0y2 , 1 0 pr0y1 is a complete 4-graph in Y0 * Y1 • Let 

Yz 1 
z = i

0 
pr

0
y

1 
and e" = [y1 ,z] . [y0 ,z] E: G , However ¢-A C:. E1 

-1 
implies ¢ e" E: E 

1 
-1 

[x
0

, ¢ z] i E(X
1 

x 

-1 
¢ e" E: E and e s E imply 

1 0 0 

x2), contrary to¢ being an isomorphism. 

32 
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0 Case (3 ): Without loss of generality we need only consider the 

two cases e ' e' c F o' 1 c.. o' 

e' 
1 t: F . Since yl contains no isolated 

0 

z € y * y 
0 1 

with e' [yl,z] t: Fl and 

-1 
loss of generality let e = ¢ e' t: E 

0 

vertices 

Suppose e' 
0 

there exists 

[z,yo]' [z,y2] € G . Without 

e t: E o' el t: El and e, el 

adjacent imply This is a contradiction since 

[¢x2 , z] s E(Y
0 

* Y1) • The case e~ s F
0

, ei s F1 immediately yields 

a contradiciton. 

1.23. COROLLARY: The cartesian (strong) product of two non-

trivial connected graphs is indecomposable with respect to strong 

(cartesian) multiplication. 

1.24. PROPOSITION: In the class of graphs with at least one 

edge. the strong (cardinal) product is indecomposable with respect to 

cardinal (strong) multiplication. 

PROOF. Assume instead that there exists an isomorphism 

q, : y * y -->x o x
1

, 
0 1 0 

i = 0, 1 are graphs with at 

least one edge. There exists a complete 4-graph A c:Y
0 

* Y
1 

with 

vertex set {y
0

,y
1

,y2 ,y
3

} such that e
0

, e 2 s F
0

, e1 , e
3 

E F
1 

and 

[y
0

,y2], [y1 ,y3] s G, where ei = [yi' yi+l]' i = 0, 1, 2, 

e3 = [y
3

,y
0

] (F
0

, F
1 

and G as in 1.22). It is easily verified that 

pr. <PA 
J 

3 and 

is a complete 4-graph in X., j = 0, 1 • 
J 

i = 0, ••• ' 3 • 

(1)) x' = ( (o) 
x2 ' 3 xl ' 

Set ¢yi =xi, i = 0, 

Let x~ = (x~o), x~l)), 

xjl)) (Fig. 1. 2) . 

... , 
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FIGURE 1.2 

Now [x1 , xjl t X x x
1 implies [y1' <P-

1
xjl t y * y1 and hence 

0 0 

[y2' <P-1xj] E: Fl ' otherwise [yl, y2' cj>-1xj] would form a triangle 

contradicting [yl, cJ>-1xjl i yo * yl ' But [y2, y3] E: F 
0 ' 

[y2' <P-1xj] E: F1 imply [y3' <l>-1xjl E: y * y ' contrary to 
0 1 

1.25. COROLLARY: The strong (cardinal) product of two non-

trivial connected graphs is indecomposable with respect to cardinal 

(strong) multiplication. 



SECTION V: Products of rooted graphs. 

We now turn our attention to the concept of products of rooted 

graphs. By 1.8 and 1.9 we have that the weak and cartesian product of 

infinitely many non-trivial connected graphs is disconnected. Since 

connectedness is essential to the question of unique prime factorization 

of graphs we introduce the following definitions: 

1.26. DEFINITION: Let (X ) be a family of graphs and let 
a at.A 

r t.V(X ) , at.A a a By the weak cartesian product fT (X , r ) 
A 

a a 
at. 

rooted graphs (X ,r ) we mean the graph X defined by: a a 

of the 

V(X) {x E TTV(X) I pr x ~ r for at most finitely many at.A} 
at.A a a a 

E(X) = {[x,y] I x,yt.V(X), [pr x, pry] E E(X) for exactly one at.A , 
a a a 

prbx = prby for bt.A- {a}}. 

For each bt.A and for each XEV ( T\ (X , r ) we define the injection 
A a a at. 

.x 
v(xb)->vcn-cx ,r )) as in 1.4. Here .x xb-> TI (X ,r ) is l.b 

A a a 
l.b A a a at. at. 

also a monomorphism. 

If the index set A is finite then the weak cartesian product 

of the rooted graphs 

equal to nx . 
at.A a 

(X ,r ) does not depend on the roots and is a a 

1.27. PROPOSITION: Let ((Xa,ra))at.A be a family of rooted 

graphs. If 

connected. 

X 
a 

is connected for each 
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at.A , then X = TT (X , r ) 
at.A a a 

is 
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PROOF. Define rc:V(X) by pr r ~ r , ac:A • We will show that a a 

X is the connected component of 11 X containing r • For xc:V(X) , 
a ac:A 

prax # ra for at most finitely many ac:A • 

Let 

if 

X' 
a if 

, ac:A • 

X' = TT (X' r ) c n (X ,r ) a' a a a ac:A ac:A 
Then is connected (since X' 

a 
is con-

nected and non-trivial for only finitely many asA ) and contains r and 

X. It is easily verified that for y E vcTTx)- V(X) ' there does not 
ac:A a 

exist a path joining y and r (see proof of 1.8). 

1.28. DEFINITION: Let ((Xa,ra))ac:A be a family of rooted 

w graphs. By the weak product Tf (X , r ) of the rooted graphs 
ac:A a a 

(X ,r ) 
a a 

we mean the graph X defined by: 

V(X) = {x E: TTv(X) I pr x :f. r for at most finitely many ac:A}. 
ac:A a a a 

For x,y E V(X) , 

[x,y] c: E(X) if and only if there exists a non-empty finite subset 

B C A such that 

[prbx' prby] E E(Xb) , bc:B , 

and 
pr x pray ac:A-B a 

Since prbx :f. prby for only finitely many b's the condition 

that the subset B be finite can be dropped. Hence if we introduce a 

similar definition of the strong product of the family of rooted graphs 

this will be identical to the weak product of the family of rooted graphs. 



If the index set A is finite then the weak product of the rooted 

graphs 

graphs. 

(X ,r ) does not depend on the roots and is equal to 
a a 

1.29. PROPOSITION: Let ((Xa,ra))aEA be a family of rooted 

If X 
a 

is connected for each is 

connected. 

PROOF. Similar to 1.27. 

1.30. PROPOSITION: Let (n ) be a family of cardinals, ·· a aEA - · 
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a complete n -graph, r E V(C(n )), a a a and let C = Tiw(C(n ),r ). 
aEA a a 

Then 

C = C(n) 

where 
\ nn. 

A finite, 
aEA 

n = 
E n A infinite. 

aEA a 

PROOF. If A is finite then clearly I C I = 1Tn , since here 
aEA a 

the weak product of the rooted graphs is independent of the roots and 

equal to the weak product. Suppose A is infinite. 

Take x E V(C) and define 

B = {aEA I pr x # r } 
x a a 

This set is finite and the mapping 

f(x) = {(pr x, a) 
a 

aEB } 
X 

is obviously a one-one function from V(C) into the set F of all finite 



subsets of UN , where N "= V.(C{n ) ) x {a} • Hence 
at:.A a a .-, a 

since A is infinite. 

Now define g U Na->V(C) by 
at.A 

= a 

b :f 

L: n 
at.A a 

a • 

Clearly, g is one-one, and hence L: n < lei . 
at.A a 

infinite, 

lei = L: n 
at.A a 

Therefore 

To show that C is complete we argue as follows: for 

x,y E V(C), X :f y let 

B = {at.A I pr x :f pr y} . a a 

if A 

Since pr x 
a 

pr y = r for almost all a, B is finite, and since 
a a 

X :f y , B :/: f/J • Since C(n ) 
a 

is complete, pr x :/: pr y a a implies 

[pr x, pr y] E E(C(n )) , and therefore a a a 
[x,y] E V(C) • 

We will now use the preceding proposition to show that the 

is 

weak product of rooted graphs does not satisfy unique prime factoriza-

tion. First we note that for any integer n , C(n) is indecomposable 

if and only if n is a prime. C( ',?t) 
a. 

can be decomposed in infinite 
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many distinct ways into prime factors as follows: let A be any index 

set with !AI = {Ca, p and q distinct primes. For each aEA , let 

n = p , n' = q r E V(C(n )), r' E V(C(n')) • Since 
a a ' a a a a 

~a= l: n 
aEA a 

= l: n' 
aEA a 

we have by 1.22 that 

C(7{:) 
a 

= T1 w(C(n'), r') • 
aEA a a 
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CHAPTER II 

DECOMPOSITION OF GRAPHS INTO WEAK CARTESIAN PRODUCTS 

This chapter is primarily devoted to showing that every connected 

graph X has a weak cartesian decomposition into indecomposable factors 

that is unique to within isomorphisms. Roughly speaking we will exhibit 

an invariant equivalence relation on E(X) such that two edges are 

equivalent if and only if they project to the same factor. To be more 

explicit we will investigate a particular set of equivalence relations 

(the acyclic equivalences (2.6) which contain avB (2.8)) in the lattice 

of all equivalence relations on E(X) and show that this is a principal 

filter with the following property: each equivalence in this filter 

gives rise to a weak cartesian decomposition of X such that two edges 

are equivalent if and only if they project to the same factor and the 

least element of the filter decomposes the graph X into prime factors. 

We will moreover show that to each decomposition of X as a weak carte

sain product there corresponds an equivalence relation in this filter 

with the property that two edges are equivalent if and only if they 

project to the same factor. The least element will correspond to a 

prime decomposition. 

Unless otherwise stated X, Y, ••. will denote arbitrary graphs. 

40 
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SECTION I: ~- compatible graphs and acyclic equivalence relations. 

2,1, DEFINITIONS: Let p be an equivalence relation on E(X). A 

subgraph Y of X will be called p-compatible if and only if Y has 

a cover ~such that 

(i) every BE: s;-is a proper path, and 

(ii) for B, B' s~ E(B) x E(B') c c or p according as 

B B' or B ~ B' 

It will be convenient to apply the term p-compatible to the 

cover .b- as well, 

2, 2. CONVENTION: Let p be an equivalence relation on E (X) . When 

a P -compatible path p is written in the form 

automatically understood that 

(i) P. is a proper path, i 1, 
• 0 • ' 

l. 

(ii) p J''l p .; 0 if and only if I i-j I 
l. j 

(iii) E(P.) X E(P.) c p or p according 
l. J 

n, 

< 1 ' 
as i 

••• up 
n 

and 

= j or 

Similarly, if a p-compatible circuit C is written in the form 

C = P u o • o UP it is understood that 
o n 

(i) P. is a proper path, i = 0, i, o o e ' n, 
l. 

(ii) PJ'\P, :f 0 if and only if either I i-j I < 1 or 
l. J 

I i-j I n, and 

(iii) E(P.) X E(P.) C p or p according as i j or 
l. J 

it is 

i :f j . 

i :f j 
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2.3. REMARK: Let C be a circuit such that E(C) x E(C) ¢. p , 

where r is an equivalence on E(X) . Then clearly C can be uniquely ex-

pressed as the union of proper paths, each path being maximal with respect to 

its edges belonging to one equivalence class mod p, i.e., C = P U ••• UP , 
o n 

where P. is a maximal proper path such that 
l 

2. 3 (1) E (P.) x E (P.) c p , i = 0, 1, ••• , n . 
l l 

This decomposition will be called the p-decomposition of C or the 

decOI!!I?.Q~it_io_g of C .Q_g_t_~~ by p , and n + 1 will be called the 

p-degree of c . We will denote the p-degree of C by deg C . Whenever 
p 

the p-decomposition of a circuit C is written in the form 

C=PV .•• VP o n 

it will automatically be understood 

P.nP. 
l J f: 0 if and only if either I i-j 1~1 or I i-j I = n . 

By the maximality of the P. we have 
l 

2. 3 (2) E(P.) x E(P.) C p if li-j I = 1 or li-j I 
l J 

n • 

If C = P l) ••• UP is not p-compatib1e there exist integers i and 
o n o 

j
0 

with i
0

<j
0 

suchthat E(P.)xE(P.)C.p. Ifthepath 
1 o Jo 

Pi +l V Pi +
2 

V .•• UP. is not p-compatib1e, there exist i 1 and j 1 with 
o o Jo 

such that E (P . ) X E (P . ) c p • 
1 1 J 1 

If 

is not p-compatible we can repeat the above process. Since this 
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can only be done a finite number of times there exist integers i < j 

such that 

2.3 (3) 

and 

2.3 (4) P i+l UP !+2 LJ ••• UPj is a p-compatible path. 

2.4 PROPOSITION: ~ Y be a connected p-compatible subgraph 

of X . Then given any two distinct vertices x,y £ Y there exists a 

p -compatible path joining x and y .!.!1. Y. 

PROOF: Since Y is connected there is a path [x , ... , x ] c. Y o m 

such that x = x, x = y • Let J¥be a p-compatible cover of Y and let o m 

Wi be that path belonging to !rwhich contains the edge [xi=l, xi}, i··= 1, 

... , m. This means that w1, ... , Wm are paths in frsuch that X£W1, 

y£Wm' and Wi~Wi+l ~ 0, i = 1, ... , m- 1 . Now let n be the smallest 

number for which fr contains n paths P (l), ..• , P (n) such that 

(i) x£P(l), y£P(n), and 

(ii) P(j)~ P(j+l) ~ 0, j = 1, ... , n- 1 • 

Then P(k)n P(j+l) = 0 for all k < j <-n • For if there exists a 

k < j with P(k)~ P(j+l) # 0 , then 

(1) 
p ' ••• ' ••• ' p 

(n) 

is set of fewer than n paths in ~with properties (i) and (ii) • Now 

put y
0 

= x, yn = y, and for i = 1, .•• , n- 1 define yi inductively 

to be a vertex in P (i)(\ P (i+l) such that no other vertex of Q =P(i) 
i Yi .. lyi 



also belongs to P(i+l) • Then 

n 
p = u Qi 

i=l 

is a p-compatible path joining x and y in Y • 

2.5 PROPOSITION: ~ Y ~ p-compatible subgraph of X 

which is not acyclic. Then Y contains a p-compatible finite circuit. 

PROOF. Since y is not acylic there exists a finite circuit 

c = [x ' ... ' X] C Y • Let ~be a p-compatible cover of Y. Let 
0 n 

w<o) be that path belonging to ~ which contains the edge [x ,x] o n 

and W(i) that path belonging to ~which contains the edge 

[xi-l' xi], i = 1, ••. , n. W(o) ~ W(i) for at least one i , 
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1 < i < n • Otherwise = = 

Hence there exist 

C G W(o) , a contradiction to W(o) being a path. 

xk £ w<o>nc, o ~ h < k ~ n, such that xttV(W(o)) 

for h < t < k • 

k 
z = u w(i) 

i=h+l 

is a connected p-compatible subgraph containing xh and and hence 

there exists a p-compatible path P joining xh and xk in Z • 

Either W(o) V P is the desired p-compatible circuit or there exists 
xhxk 

is the required circuit. 

2.6. DEFINITION: An equivalence relation p on E(X) is called 

acyclic if and only if every p-compatible subgraph of X is acyclic. 



2.7. PROPOSITION: A necessary and sufficient condition that 

p be acyclic is that X contain no p-compatible finite circuit. 
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PROOF. Necessity: Assume that p is not acyclic. By definition 

there exists a p-compatible subgraph of X which is not acyclic and 

hence by 2.5, X contains a p-compatible finite circuit. 

Sufficiency: Trivial. 



SECTION II: The binary relations a and S 

The following two binary relations a and S on E(X) are of 

considerable importance in our subsequent considerations. 

2.8. DEFINITION: Let X be a graph, e, e'E E(X). 

e a e' if and only if 

(i) e and e' are adjacent, and 

(ii) among the saturated subgraphs of X which contain 

e and e' there is no 4-circuit. 

e S e' if and only if 

(i) e and e' are not adjacent, and 

(ii) among the saturated subgraphs of X which contain 

e and e' there is a 4-circuit. 

In general, neither a nor S is an equivalence relation. By 

p
0 

we shall denote the smallest equivalence on E(X) which contains 

a v S • 

Note that if X is connected and contains no 4-circuit, or if 

X is connected and every 4-circuit of X has a diagonal, then 

p 0 = E (X) X E (X) • 

2.9. PROPOSITION: Let X be a connected graph and let p be an 

equivalence on E(X) containing a v i3. Then given any vertex x E X 

and any equivalence class E mod p, there is an e E E which is incident 

with X • Hence E(X) 

mod p • 

consists of at most 
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min 
X E X 

d 
X 

equivalence classes 



PROOF. Suppose there is no edge in E which is incident with 

x Let x be a vertex of X such that 
0 

(i) 

(ii) 

x is incident with some eEE, and 
0 

among all vertices having property (i), 

has minimal distance from x • 

X 
0 

Let P be a shortest path joining x and x 
0 

and let 

be that edge of P which is incident with x 
0 

Note that e iE , 
0 

for otherwise x
1 

would be incident with an edge of E , contrary to 

(H). Since e and e are adja
o 
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cent, there is a saturated 4-circuit C which contains both e and e • 
0 

Let e' be the edge of C opposite e , Then e' S e, hence e'EE . 

But e' is incident with x
1 

, a contradiction against (ii). 



SECTION III: Construction of ladders. 

2.10, CONSTRUCTION: By a ladder is meant a graph which is 

isomorphic to the cartesian product of an edge with a proper path. 

Let p be an equivalence on E(X) which contains a V 8 . Let 

x, y, x' be distinct vertices of X, e = [x, x'] EE(X), and let P 

be a path joining x and y with E(P) x {e} c. p • We will now give a 

method for constructing a ladder in X from e and P provided that 

one of the following conditions holds: 

(i) p is a shortest path joining X and y ' 
(ii) p is acyclic and p = P1U,,UPn is a p-compatible 

path joining X and y (here p need not be a 

shortest path joining X and 

Denote the consecutive vertices of 

and let e , = [x . 1 , x . J , 
l l- l 

i 

y ), 

p by X 
0 

x,x
1

, ... , 

implies 

e ae1 . Since e and e
1 

are adjacent X contains a saturated 4-circuit 

(o) 
e = e, 

x'] 

e (l) = rx ,x ,.] and 
- 1 1 -

Then e
1 

8 e
1
', and e 8 e(l), so that 

(1)-
e pe

2 
(otherwise 

(1) 
e 8 e p e

2
, 

contrary to epe
2
). This implies e(l);e ' hence again X contains a 

2 ' 

48 
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saturated 4-circuit 

such that Thus we obtain two new edges 

(2) r: J e = Lx2,x2 I and e I = rX I X I] 
2 1.: 1 ' 2 

h th t a 1 and e(l) a e(2) • P d' i th' sue a e2 ~ e2 ~ rocee ~ng n ~s manner we pro-

duce two new sequences, 

... ' 

of edges of X such that 

e I 

s 
and 

2.10 (1) I and I are either equal e. ei+l ~ 

2.10 (2) ei s ei 
I i = 1, s ' ... , 

2ol0 (3) (o) S e (l) s ... s (s) e e . 

e 
(s) 

or adjacent, i = 1' ... ' s - 1 

Now if we assume that P is a shortest path joining x and y 

we can show the above construction· yields a ladder. We first prove that 

P (""'Q = ~ • Assume instead that there exist 

with 

X.EP 
~ 

X' I t:Q ' 
J 

X = X 
1 

i j 

0 < i < s = = 

and without loss of generality we may take i < j . j ~ i + 1 since 

' 
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Therefore j - i > 2 and hence 

is a path joining x and y of length less than s • This is a contra-

diction to the minimality of the length of P , Hence P ~ Q = 0 . Next 

we show Q is a path of length s , Assume the contrary, i.e., there 

exist 

X, 
1

, X 
1 

E Q,o < i < s, 0 
l. j 

and take i < j . If i + 2 < j then 

X , x
1

, , , , , X. , X, 1 = 
0 l. l. 

j ~ s with X I = X, I' 
i J 

= Y] 

is a path of length less than s joining x and y , contradicting the 

minimality of the length of P • If i + 2 = j then 

is a 4-circuit containing e 
(i) 

and (Fig. 2.1). 
(1)-

e pei+l im-

plies 
(i)-

e aei+l and hence c has at least one diagonal. 

~i 1 ,xi+l] ¢ E(X) since Ci = &i,xi+l'xi~l,xi '] was a saturated 4-

circuit. Therefore [2Ci,xi+ 2] s E(X) • Hence 

is a path of length s - 1 joining x and y , contradicting the mini-

mality of the length of P • 

MILLS MEMORIAL LIBRAR't 
McMASTER UNIVERSITY 
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Therefore Q is a path of length s and PvQVe(o)U ••• ue(s) 

is isomorphic to P x {e} • 

X ' = i 

e 
(i) 

FIGURE 2.1 

Now assume instead that p is acyclic and that P = P v ... vP o n 

is a p-compatible path joining x and y • (Here P need not be a 

shortest path.) We shall only consider the case n = 1 • The reader 

will have no difficulty in extending the argument to 

there exist vertices xi',xj'EQ with xi' 

au8Cp, 2.10 (3) implies e(i) p e(j). 

= X ' 
j 

Hence 

e V ·•e e(j)Ve(i) 
i+l •••V' j' 

and 

n > 2 • = Suppose 

i < j . Since 

would form a p-compatible circuit contradicting the acyclicity of p 

(Fig. 2.2). Therefore Q is again a path length s • 



X. I 
l. 

e 
(i) 

--------··· x. 
l. 

e. x. 
J J 

FIGURE 2.2 

If Pf'\Q ::f 0, then there exist xie:P, xj'e:Q, o ~ i ~ s, 
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o ~ j ~ s with xi= xj' • Again we may assume without loss of general

ity that i < j. P x {e} c.p and e p e(j) imply P x {e(j)} c p. 

Hence 

(i) U U e(j) 
e , ei+l • • • ej, 

form a p-compatible circuit contradicting the acyclicity of p. Thus 

condition (ii) also insures that the construction yields a ladder. 

In the above construction we will refer to Q as the path op-

posite P and to e 
(i) as the ith rung of the ladder. 

2.11. PROPOSITION: Let p be an equivalence on E(X) containing 

a v S • Let x,y,x' · be distinct vertices of X, e = [x,x'] e: E(X), and 

let P be a path joining x and y· such that E(P) x {e} c. p • If 

(i) Pve is a shortest . path .joining x' and y 

(ii) p is acyclic and p is a shortest path joining X ~y 

(iii) p is acyclic and p is a saturated p-compatible path 

joining X and y 



53 

then a saturated ladder can be constructed in X ~ P and e. 

REMARK: If p is an acyclic equivalence on E(X) containing 

au 8 with the further condition that every circuit has a p-decomposi-

tion then one can show that every p-compatible path is saturated. 

PROOF. Condition (ii) or (iii) immediately implies that a 

ladder can be constructed. If Pue is a shortest path joining x' 

and y then P must be a shortest path joining x and y • Therefore 

in any of the three cases a ladder can be constructed. Again denote the 

consecutive vertices of P by x = x
0

,x1 , ••• ,xs = y, let 

ei = [x1_1,x1] , i = 1, ••• , s and let 

P u Q v e u e (l) v ... \J e (s) 

be the ladder constructed in 2.10 where 

Q = [x' = x
0
',x1 ', ••• ,xs'] 

and 

We first show if (i) holds the ladder is saturated. P being a shortest 

path joining x and y innnediately implies [xi ,xj] t E(X) for 

xi ,xj £ P with I i-j I > 1 • Suppose [xi ,xj '] £ E(X), xi eP, xj 'eQ, 

(i ; j) and without loss of generality we may take j-i ~ 1 • Then 

is a path joining x and y of length s + 2- (j-i), and by the 

minimality of the length of P this implies either j = i + 1 or 
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j=i+2. But by the construction of the ladder C ' = rx • 'X • +1 'X • +I 1 'X ' ! l 1 1,;1 1 1 1-· 

is a saturated 4-circuit and therefore [xi ,xi~l] l E (X) o Hence 

j ::/: i + 1 . If j = i + 2 then 

is a 4-circuit containing and 
(i+2) 

e , 
- (i+2) 

ei+l pe implies 

- (i+2) ei+l Se , hence C must contain a diagonal. This is a contradiction 

since we have already shown [lci+l'xi~2] i E(X) and [xi,xi+ZJ t E(X) • 

(Note - we have not used the fact that Pu e is a shortest path joining 

x 1 and y so far, only that P is a shortest path.) The minimality of 

the length of P U e immediately implies [xi 1 , xj 1
] i E(X) for 

x. 1 ,x. 1 sQ with Jj-il > 1. Hence if (i) holds the ladder is saturated. 
1 J 

Now assume p is acyclic and P is a shortest path joining x 

and y (here P v e need not be a shortest path). From the paragraph 

above we already have [x.,x,] t E(X) for xi,xjsP with Jj-i I 1 and 
1 J 

[x. ,x. 1
] t E(X) for X. t:P and X, I £Q, i ::/: j . Suppose there exist 

1 J 1 J 

X. I ,X, I t:Q with 
1 J 

e = [xi I ,xj IJ t: E(X) 
0 

and take j - i > 1 0 Then 

[x I I x ,x1 , ..• ,x.,x. ,x, ,xj, .•• ,x 
0 1 1 J s 

y] 

is a path joining x and y of length s + 3- (j-i), and by the mini-

mality of the length of P this implies either j = i + 2 or j = i + 3. 



Suppose j i + 2 • Since e0 ,ei~l,ei~2 are the edges of a triangle 

the acyclicity of p implies Recall that 

Hence eopei+lpei+2 

saturated 4-circuit 

so that This implies X contains a 

(Fig. 2.3). Clearly z # xi+l'xi+2 • ( i) ! 1 ;-J r: J e SLx.+2,zJ, e BLx.,z, res-
1 0 . 1 

(i+2) r: ' J and e P l2\+2'z 

contradicting the acyclicity of p • 

X I 

i 

e 
(i) 

If j = i + 3, then 

e 
(i+l) 

e 
0 

e 
(i+2) 

----e-=i~+-=2~--- • xi +2 

FIGURE 2.3 

C =r:x 1 x 1 x 1 x 1 J ~i ' i+l' i+2' i+3 

z 
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is a 4-circuit, Since we have already shown that [xi' ,xi~2] ¢ E(X) 

and [lci~1 ,x 1~3] i E(X), C is a saturated 4-circuit, Therefore 

and I Q I d h e1+1 ..,e1+3 an ence and 

implies that there exists a saturated 4-circuit 

It is easy to verify that z ~ xi+k' k = 1,2,3 , 

(i) 1- ' J e P:i+3'z 

eo . 3oe .. 2pe 0 lp rx., z..Jl , 1+ l.+ l.+ 1.: l. 

Hence 

e I ne I 
i+l,.; i+3 ' 

(i) (i+3) 
e pe 

e fje(i) 
0 

and 

is a p-compatible circuit, contradicting the acyclicity of p , If 

then (since and 

hence X contains a saturated 4-circuit 

(Fig. 2.4). Clearly z' # xi+3 • Hence ~,xi,z',xi+Z'xi+3 ,xi~3] or 

~'xi+Z'xi+3 'xi~3] is a p-compatible circuit, according as z # z' or 
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z = z' , a contradiction to the acyclicity of p • Hence if (ii) holds the 

ladder is saturated. 



e 
(i) 

x. 
1. 

. (i+l) 
e 

e 
0 

e 
(i+2) 

FIGURE 2,4 

(i+3) 
e 
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Finally we show that if p is acyclic and P=Pu ... uP o n 
is 

a saturated p-compatible path joining x and y , the ladder is satura-

ted. Suppose 

for x.EP, x,'EQ, i # j • Without loss of generality take i < j . Since 
1. J 

P is a p-compatible saturated path with E(P) x {e}cp, P is also x.x, 
1. J 

a p-compatible, saturated path with E(P ) x {e(i)} c p , and the lad-x.x, 
l. J 

der which can be constructed from P and e 
(i) 

can be taken as a sub-x.x. 
l. J 

graph of the ladder constructed from P and e • Therefore we need only 

consider the case i = 0, j = s • If 



then either 

E(P) x {e } c p 
0 

(s) 
P , •• a,P ,e ,e o n o or 

(s) 
P , ••• ,P ,e u e 

o n o 

form a p-compatible circuit according as 

or e e (s) 
op 

a contradiction to the acyclicity of p , Suppose 

We may assume that 0 < k ~ n for if k = 0 , then 

(s) 
e uP , P

1
, ••• , P , e 

o o n 

form a p-compatible circuit contradicting the acyclicity of p . We 

may, moreover, assume that k is the smallest subscript with 

Then E(P') x {e } c p and hence a ladder can be constructed from P' 
0 

and e Let 
0 

be the path opposite P' and (m) the final rung of the ladder. Let e 
0 
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z be the common vertex of Q' and (m) and let z' be the end-ver-e ' 0 

tex of pk not incident with (m) {e } X E(Pk) c p and e pe (m) e . 
0 0 0 0 



imply 

in e(m)VP with 
0 k 

z and zl can be joined by a path 

Then 

Q I Q I p I I p p (s) 
o , ••• k-1' k ' k+l'''' n'e 

p I I 

k 

form a p-compatible subgraph which is not acyclic, contradicting the 

acyclicity of c c Hence ~1 ,xj 1
] i E(X) for i ::} j . Now we show 

that Q is saturated, Suppose e = 
0 

[xi 1 ,xj 1
] £ E(X) for 

xi 1 t.:Q, xj' ;Q and take i < j o Without loss of generality we need 

only consider the case i = o, j = s , If 

E(Q) x {e } c. p then 
0 

form a P-compatible circuit contradicting the acyclicity of p • Sup-

pose 

If n > 1 an argument = similar to the one above showing that 

[x. ,x, 1
] ¢ E(X) for i "" j ]. J 

will yield a contradiction here. Suppose n = o . Then e pe (other-
0 

wise epe
0

oe1
1 Se1 , contradicting epe1) implies that X contains a 

saturated 4-circuit [x 1 ,x 1 ,x ,z] (Fig. 2.5). Clearly z i V(P) • s 0 0 

Hence e (s)u rx ', z], [z x J uP form a p-compatible circuit contradic-
L' s . - ' 0 0 

ting the acyclicity of p , Thus we again have a saturated ladder. 
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SECTION IV: Application of ladders, 

Proposition 2,12 below will be proved by a straight forward ap-

plication of 2ol0, This proposition will be used later to show among 

other things that the collection of all acyclic equivalences on E(X) 

which contain o. u B is a filter, 

2.12, PROPOSITION: Let c be an equivalence on E(X) contain-

ing a,.)S, P = P
1

UoooUPn ~ p-compatible path joining x and y • 

.ll p is acyclic, or if P is a shortest path joining x and y (here 

p need not be acyclic:) then there exists a p-compatible path 

Q Q1 U o, o U Qn joining X and y such that 

(i) IP i :=, I I 
IQi+ll' i = 1, 

• 0 s ' n-1 

(ii) IP I n JqlJ 

(iii) E(P.) " E(Qi+l) C. p ' i = 1, • ~ e ' n-1 
1 

(iv) E(P ) X E(Ql) c. p . n 

REMARK: (i) and (ii) imply IPI lql 0 

X 

FIGURE 2,6 
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PROOF. We shall only consider the case n = 2 the reader will 

have no difficulty in extending the argument to n > 3 • Denote the = 
consecutive vertices of P2 by 

x ,x1 , ••• ,x = y o r 

and let 

i = 1, ... , r . 

If p is a shortest path joining X and y then Pl vel 

path joining X and xl . Hence if ;:l is acyclic or 

path joining X and y ' 2,10 implies that a ladder 

from el and pl ' Let 

e'=rxx'] 
1 11 ' 1 

be the final rung of the ladder and 

p (1) 
1 

the path opposite P1 • 

p is 

can be 

Again it is clear that a ladder can be constructed from e2 

Let 

e'=rx'x'] 
2 1..:1'2 

be the final rung of the ladder and 

p (2) 
1 

the path opposite P (1) 
1 . 

is a shortest 

a shortest 

constructed 

and P 
(1) 

1 . 

Continuing in this manner we get a path P
1 

(r) , which we shall denote 

Q2 , such that 

and 



and a sequence 

of edges of X such that 

e ' · · · e ' 1 ' ' r 

(a) e, v 
l. 

and are either equal or adjacent for 

and 

(b) 

Let 

i = 1, , . , , r-1 , 

e,ce.', i ~ l, ... ,r. 
1. 1 

Then (b) implies 

If pis acyclic and x. = 
1 

the segment of p2 determined by 

cuit contradicting the acyclicity 

X, I i :f j then P (i)UP (j) 
J ' 1 1 

x. and X, form a p-compatible 
1 J 

of p . Hence Ql is a path with 
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and 

cir-

Also it is clear that Q = Q
1

UQ2 is a path joining x and y (other

wise we again get a contradiction to the acyclicity of p ). 

Now we assume that P is a shortest path joining x and y. By 

(a)' Q Q1 UQ2 is a connected subgraph of X joining x and y 

hence Q is a path and 
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otherwise P is not a shortest path joining x and y • 

2.13 DEFINITION: Let p be any equivalence on E{X) and let C 

be a circuit with p-decomposition C=P v ... UP 
o n 

c is called weakly 

p-compatible if and only if there exists an i , 0 ~ i ~ n , such that 

for all j,i~j,O~j < n • = 

2.14 PROPOSITION: ~ p be an acyclic equivalence on E(X) 

containing a V 8 • Then X does not contain any weakly p-compatible cir-

cuits. 

PROOF. Assume the contrary. Among all weakly p-compatible cir-

cuits choose one, C = P lJ ••• V P say, whose p-degree is minimal, and 
o n 

let the notation be so chosen that < n • = Since E(P
0

) x E(Pj) C. p, 1 ~ j 

p is acyclic, 2.3 implies that there exist Pi, Pj, i < j , such that 

2.14 (1) 

and 

2.14 (2) 

is a p-compatible path. Let the end vertices of Y be x and y • 

2.12 implies that there exists a p-compatible path 

such that 

2.14 (3) E(Pi+k) X E(Pf+k+l) c p, k = 1, .•. , j-i-1 

and 

2.14 (4) 

Let 
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If C1 is a circuit then it is weakly p-compatible (since 
I 

E(P
0

) x E(Pk) c. p, k = 1, ... , i, j + 1, ... , n, and E(P
0

) x E(Pk) c p , 

k = i + 1, ..• ' j ) and 

2,14 (1) and 2.14 (4)), a contradiction to the minima1ity of n • Suppose 

C1 is not a circuit. Set Y" = C\Y', then C' = Y"UY 1 
• Choose z, 

w s V(Y") such that 

and 

Then 

(i) 

(ii) 

E (Y" f"\ P ) .J. 4 
ZW 0 T V ' 

v (Y" ) ('\ v (Y I ) • { z 'w} 
zw 

C" = Y" UY 1 

zw wz is weakly P-compatib1e circuit with 

again a contradiction to the minimality of n . 

deg 
p 

C" < n-1 = ' 

2.15. PROPOSITION: Let p be an equivalence on E(X) containing 

a VS and let x, y e: V(X) . Let P = P1v ... UPn. and Q = Ql V ... VQm be 

two o-compatible paths joinins x and y • Then n = m and for each 

Pi there exists a Qj (i) such that E(P i) x E(Qj (i)) c p i = 1, ••• , n • 

Moreover if P and Q are shortest paths joirtins· x and y then 

' i = 1, . . . ' n • 

PROOF. Without loss of generality we may assume that P VQ is 

a circuit. Since P and Q are both ~-compatible, we have that m = n 

(otherwise P 1.) Q is weakly p-compatible) and that for each Pi there 

exists a Qj (i) such that 

Now let us also assume that P and Q are shortest paths join

ing x and y and suppose that IP1 1 ~ IQj(i)l for some i, 



0 ~ i ~ n • 2.12 implies that we may, without loss of generality, take 

i = 1 and j (i) = 1 • However we can not assume here that P UQ is a 

circuit. Let z1 = P/1P2 and z2 = Q1f"''Q 2 • IP1 1 ~ IQ1 1 implies 

z1 + z2 , otherwise we get a contradiction to either P or Q being a 

shortest path joining x and y , Let W be a path contained in 

P1uq1 joining z1 and z2 • E(W) x E(W)c. p since E(P1) x E(Q1)c.p. 

E (W) x E (P k) c. p , 2 ~ k ,;.. n , and E (W) x E ( Qk) c:. p , 2 ~ k ~ n • 

Hence 

C • W lJ P 2 U , •• v P n u Qn U ••• u Q 2 

is a weakly p-compatible circuit or contains a weakly p-compatible cir

cuit, contradicti-ng 2.14. 
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SECTION V: p-saturated.subgraphs. 

2.16. DEFINITION: Let p be any equivalence on E(X) • A sub

graph Y of X will be called .. p-saturated if and only if 

and 

(i) Y is connected, 

(ii) epe' for e e: E(X), e' e: E(Y) implies YU(e) is dis

connected or e e: E(Y) • 

This is equivalent to saying that there exists a set ~of equivalence 

classes mod p such that Y is a maximal connected subgraph of X with 

E (Y) C. U c:{. 

2.17. PROPOSITION: Let p be any eguivalence on E(X) contain

ing aUS , Y A p-saturated subgraph of X. Then any two distinct 

vertices of Y can be joined by a shortest path in Y which is p~compa-

tible. 

PROOF. We fix x e: Y and use induction of d(x,y), the distance 

of x and y in Y . For k = 1, 2, put 

-~ = {y e: Y: d(x,y) = k} • 

If y e: A1 then e = [x,y] e: Y, hence P • (e) trivially is a 

p-compatible path joining x and y • Assume the proposition true for 

all z e: ~ , and let y e: ~+l • Then there is a z e: ~ with 

e = [y, z] e: Y • By the induction hypothesis there is a p-compatible path 
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P = P 1 U ••• UP n such that P is a shortest path joining z and x in 

Y. If 

{e} x E(Pi) c p for i = 1, ••• , n, 

we are finished, because then 

form the required p-compatible path from x to y • We may therefore 

assume that 

{e} x E(P ) c p for some m, 1 ~ m ~ n , 
m 

We may then assume that 2 ~ m ~ n , for if m = 1 , then euP1 , P2, 

••• , P form a p-compatible shortest path from x to y. By 2.10 
n 

there exist paths Q1 , Q2, ••• , ~-l and an edge e' such that 

0 0.' p n 

form a p-compatible shortest path from x to y , (By the maximality 

of Y, Q1 , ••• , ~-l and e' belong to Y ), 

2.18. COROLLARY: 11. p is acyclic and contains a u 8 , then any 

p-saturated subgraph of X is saturated. 

PROOF. Let Y be a p-saturated subgraph of X , Suppose there 

exist two distinct vertices x,y £ Y such that e = ~,y] E E(X) - E(Y) . 

By the maximality of Y, e is not equivalent to any edge of Y , By 

2.17 there is a p-compatible path P joining x and y in Y • Hence 

P U e is a p-compatible circuit, contrary to the acyclicity of p • 



SECTION VI: The principal filter of all acyclic 

equivalence relations containing aU B , 

We shall denote by G a u S (more precisely t a v S (X)) the 

collection of all acyclic equivalence relations on E(X) which contain 

is non-empty, since E (X) x E (X) E: ~ Q (X) , 
au~-> 

If ¢ : ~-->Y is an isomorphism and ps~ S(X) 
au 

p ¢ E:~a u S (Y), where ep e'(e,e' E E(Y)) 
¢ 

if and only if 

then 

This follows from the fact that both acyclicity and the relations a , 

S are defined in invariant terms. 

2.19. PROPOSITION: ~ is closed under intersection of 
a uS 

chains, and hence contains a minimal element. 

PROOF. Let ~ be a chain in 1i, Q , p = (\ cr • 
a v ~-> crss:, 

Clearly o con-

tains au S • It remains to show that p is acyclic. Suppose there 

exists a p,...compatible circuit C = P V ••• uP Let E .. 
o n 1J 

Eii C. p implies Eii C o for every cr s ~. Eij C p (for i ::J j) implies 

that there is a o .. E: C with E .. co.. • Let 
1J 1J 1J 

0 = 
0 

Then o cS:::, and Ei.C o whenever i ::f j . Also E .. C cr , i 
0 J 0 11 0 

n so that o is not acyclic, a contradiction. 
0 

2.20. PROPOSITION: Let pc~ Q(X) ·and let o be any equivalence 
au~-> 

with auScoc.p • .ll.. C is a a-compatible circuit then E(C) x E(C)C.p. 
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PROOF. Assume the contrary, i.e., there exist a-compatible cir-

cuits that have a p-decomposition. Among all a-compatible circuits of 

minimal a-degree, choose one, C = P U.,, V P say, whose r;-degree .is 
o n 

minimaL Let C = Q U,., U Q be the decomposition of C determined 
o r 

by p and let the notation be so chosen that p c. Q ' 
0 0 

Note that 

implies 

Q. = U { P, : E (P,) n E ( Q,) :f ~1} , i = o, , . , , r . 
l. J J l. 

c is acyclic. Hence 2.3 implies without loss of generality that there 

exists an integer s , 0 < s < r , such that 

2.20 (2) E(Q) X E(Q )Cp 
0 s 

and 

Y = Q1 U Q2 U ... VQs is a p-compatible path , 

Let the end vertices of Y be x and y • By 2.12, there exists a 

p-compatible path 

joining x and y such that 

and 

Let 

We now show that C' is a a-compatible circuit, Since the nota-



tion was chosen so that P C Q . , 2. 20 (l) impli.es that 
0 0 

Y = P k U P k+ 1 v o •• l.J P m , 0 < k < m < n . 
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C = P
0

LJ ••• uPn is a a-compatible circuit and hence Y = PkVPk+lu •.• vPm 

is a cr-compatible path. By the construction of Y' we have that Y' i.s 

also a a-compatible path with E(Y') belonging to the same set of.equiva-

lence classes modulo 0 as E ( Y) • Hence C' is a a-compatible sub graph 

with a a-compatible cover of cardinality n + 1 . Again by 2.20 (1) and 

the fact that C = P V o •• UP is a a-compatible circuit we have 
o n 

E(Q ) X E(Q ) c a • 
0 s 

By the construction of Q1 ' we have E(Q1 ') is contained in the same set 

of equivalence classes mod o as E(Q ) . Hence 
s 

Therefore E(Q0)~E(Q1 ') = 0 and C' is not acyclic. If C' is not a 

circuit then by 2.5, C' contains a a-compatible circuit which can be 

covered by less than n + 1 paths. A contradiction to the minimality of 

n • Hence C' is a a-compatible circuit with a a-compatible cover of 

cardinality n + 1 • But E(Q
0

) x E(Q1 ') C p • Hence the p-decomposition 

of C' has less than r + 1 paths. This is a contradiction to our choice 

of r o 

2.21. PROPOSITION: .e .. 6 • is closed under finite intersections. 
a Up 

PROOF. Assume that there exist such that 

o = P 1 n P 2 ¢ S au f3. Since a v f3 C. p this implies that p is not acyclic. 



Let C = P V P
1 

V ••. V P be a p-compatible circuit. By the previous o n 

proposition E(C) X E(C)C p. 
l. 

for i = 1, 2 and hence 

E(C) x E(C) c pl" p
2 

= p , a contradiction. 

2. 22. PROPOSITION: Let p E ffi, au 
8 

and let a be any equivalence 

containing p • 

PROOF. 

Then 

Suppose a i@ cau8 Then a u 8 c::. p c. a implies a is not 

acyclic. Let C be any a.,...compatible circuit. E(C) x E(C) </:.a and 

p C a imply E (C) x E (C) (/:. p • Hence every a-compatible circuit has a 

p-decomposition. Among all a-compatible circuits of minimal order choose 

one, say C , whose p-decomposition is minimal. Let C = P v . , . U P be 
o m 

the.a~decomposition of C and let C = Q U •.• UQ be the p-decomposition o r 

of C • Note that p c a implies that 

Since p is acyclic, 2.3 implies there exist Qi' Qj, i < j , such that 

2.22 (1) 

and 

2.22 (2) is.a p-compatible path • 

p c. a and 2.22. (1) imply YC Pk for some k , 0 < k < m • Let the end = = 

vertices of Y be x and y • By 2.12, there exists a p-compatible path 

such that 

E(Qi+k) X E(Qi+k+l) c p, k = 1, ••• ' j-i-1, 

r .•. 



Let 

c I = Q U • o o LJ Q . lJ Q . +I' 1 lJ • • • V Q , I U Q •'+' 1 U • • • U Q • o 1. 1. J J r 

By the construction of Y' we have E(Y') x E(Pk) C 0 • Hence it is 

clear that C' is a a~compatible.cireuit of minimal order. Since 

E(Qi) x E(Qi~l) C p the p-decomposition of C' has less than r + 1 

paths - a contradiction to the minimality of r 

2.23. THEOREM: ~ 
a v (3 

is a principal filter in the lattice 

of all equivalence relations on E(X) • 

PROOF. 2.21 and 2.22 imply that ~ is a filter. 2.19 a v (3 

implies that it is a principal filter. 

2.24. PROPOSITION: Let p be the .least element of S (3 (X) 
av 

and let E , a E: A, 
a 

denote the equivalence classes of E(X) mod p • 

Then 5 au (3 (X) is isomorphic to the lattice of all equivalence rela

tions on A • 
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PROOF. The proposition is readily established even if we replace 

C (3(X) by an arbitrary principal filter. au 

2. 25. COROLLARY: b.!U, p be the .. least element of ~ (3 (X) • 
au 

e au S (X) .is finite if and .only if E(X) consists of a finite number of 

equivalence classes mod p • lf E(X.) has n > ~ 
-- = 0 

equivalence classes 

mod p then I e ci v (3 (X) I = 2n . 

2.26. PROPOSITION: .~ p be the least element of S, (3 • av 

Then epe' implies that e and. e' .belong to the same component of X. 
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PROOF. Define a by eae' if and only if e and e' belong to 

the same component of X and epe' . Since circuits are connected, a 

is acyclic. If eae', then e and e' are adjacent, and hence belong 

to the same component of X; similarly, if eSe', the two edges belong 

to a 4-circuit, and hence again to the same component. That is, a ::>a v S. 

By the minimality of p , a = p . 



SECTION VII: Weak cartesian products and acyclic equivalences. 

We now turn our investigations to the relationships between weak 

cartesian products on the one hand and acyclic equivalences on the other. 

Let X • TT (X ,x ) be the weak cartesian product of the rooted 
aEA a a 

graphs (Xa,xa) • Then for each e = [x,y] E E(X) there exists exactly 

one sEA such that ~r x, pr Y.J E E(X ) • We will denote this unique LP a a a 

member of A by a(e) • 

2.27. PROPOSITION: X • n (X ,x ) • 
aEA a 8 

ep e' 
0 

implies 

a(e) = a(e'), where p
0 

is the smallest equivalence on E(X) containing 

au S • 

PROOF. Assume first that eae' • Let e • !Jc,y] , and let 

e' = (!c,yi] . Abbreviate a(e) by a, and a(e') by a', and suppose 

a f: a' . Define Z E V(X) by pr z • pr y, prbz • pr y' ' 
b , a • a a b 

[z,y'] E E(X) since [praz' pray'] • (j>r aY' pr. x] e: E(X ) and .a a 

prbz = ' prby ' b , a • &,z] E E(X) since (i>ra, z, pra,y] • 

[pra,y'' pr ,x] e: E(X ) and prbz • prby' • pr x • prby, b , a, a a b 

a', pr z t: pr Y • Hence x,y,z,y' form a 4-circuit pr y' = a a a 

pr x f: pry, pr ,y' t: pr ,x • pr ,y, i.e., y differs from y' in a a a a a 

more than one coordinate, hence [Y, y '] t E (X) • Similarly [x, z] i E (X), 

a contradiction. 

Now assume that eSe' • Let e • [x,y] and let e' = [x' ,y'] • 

Then x,y,y',x' form a 4-circuit of X. Let a(e) =a, a(e') =a' , 

a([lc,x']) • b, and a([y,y']) • b' . It follows that 
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2,27 (1) pr x = pr y <=> c :f a 
c c 

2,27 (2) pr y' pr x' <=> c :f a' 
c c 

2.27 (3) pr x' = pr x <=> c :f b 
c c 

2.27 (4) prey = pr y' <=> c :f b' 
c 

By 2.27 (1), 2.27 (3) pr x' = pr y <=> c :f a,b; 
c c 

by 2.27 (2) and 2.27 (4) 

pr x' =pry <=>c:fa',b'. Hence there are two possiblities: either (i) 
c c 

a= a', b = b' or (ii) a= b', a'= b . We show that (ii) can not oc-

cur. Suppose a= b' and a' = b By 2.27 (1) and 2.27 (4) pra,x 

pra,y' ; by 2.27 (2) and 2.27 (3) prcx = prey', c :f a' • Hence x = y' , 

a contradiction. 

2.28. DEFINITION: Let X = lf1 (X ,x ) . For each aEA define 
aEA a a 

E = {e E E(X) : a(e) = a} 
a 

Let pa be the equivalence determined by 

the partition {E , E(X)- E} , i.e., 
a a 

ep e' 
a 

if and only if either (i) 

a(e) =a= a(e') or (ii) a(e) :f a :f a(e') . 

2.29. PROPOSITION: 

p E ~ 0 (X) • 
a a v f.> 

Let X = n (X ,x ) 
A a a aE 

For each 

PROOF. We first show that pa is acyclic. Assume the contrary. 

Since E(X) consists of at most two equivalence classes modulo p there 

exists a pa-compatible circuit C = P
0
UP1 ; without loss of generality 

E(P ) C E . 
o a 

x,y E P and E(P )C.E imply 
o o a 

pr x :f pr y 
a a 

a contradiction, hence pa is acyclic. 

From 2.27 we immediately have that avSC.p • 
a 
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2.30. REMARK: Let p = np • Then 
aE:A a 

PE '!i 0 (X) 
O.V~-J 

and epe' 

if and only if a(e) = a(e') . Hence E(X) consists of exactly IAI 

equivalence classes mod p . 

2. 31. THEOREM:· Let 

C: 0 (X) • Then 
O.V~-J 

X = l1 (X ,x ) · and let p be the least ele
aEA a a 

ment in epe' implies a(e) = a(e') 

PROOF. p being the least element in -e (X) and p E ~ 
0 

(X) 
c;;avS a av~-0 

for each aEA imply p c. pa for each aEA • In particular p c. pa(e) , 

hence a(e) = a(e') • 

2.32. PROPOSITION: Let XEX, e = [xo,y J E E(X), a(e) = a . 
If X and X belong to the same component of X then (ixpr e)p e . 

0 a a o 

PROOF. Since X and X belong to the same component of X .it 
0 

suffices to assume x and x are adjacent, i.e., e = ~ ,x] E E(X) • 
0 0 0 

Let a(e ) = a 
0 0 

If a = a 
0 

then .x 
1 pr e = e 

a a If 

be given by pray = pray
0

, pra y = pra x, prby = prbxo 
0 0 

a :f a 
0 

let y 

for b :f a, a 
0 

Then C = [x ,y ,y,x] is a 4-circuit without diagonals, and [x,y] 
0 0 

Thus e and are opposite edges of C , so that 

2.33. DEFINITION: Let X = TT (X ,x ) and let a be an equiva-
A a a aE: 

lence relation on E(X ) for some aEA . Then a can be extended to an 
a 

equivalence relation a on E(X) as follows: for e, e' E E(X) define 

ecre' if and only if either 

(i) a(e) =a= a(e') and pr e a pr e' 
a a 

or 

(ii) a(e) :f a :f a(e') • 
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Note that by taking cr = E(X ) x E(X ) 
a a we get 2.28 as a special 

case of this definition. Similarly 2.29 is a special case of the following 

proposition. 

2.34. PROPOSITION: Let X = TI (X ,x ) 
A 

a a a£ 
and let cr £ ~ 

0 
(X ) 

a.uiJ a 

for some a£A. ~ a £ e 0 (X) • 
(l u IJ 

PROOF. To show that a is acyclic assume the contrary, i.e., there 

exists a a-compatible circuit C = P V ••• UP in X • Without loss of o n 

generality we may assume that e £ E(P ) 
0 

implies a(e) # a (otherwise 

pr C = pr P V ••• V pr P is a a-compatible circuit). Let {x,y} = a a o a n 

V (P ) (') V (P
1 

U ... U P ) • 
o n 

x,y £ V(P ) 
0 

implies Pr x = pr y 
a a • 

But 

x,y £ V(P1 V ••• U Pn) implies prax :/: pray , a contradiction. Hence a is 

acyclic. 

To show that (l v 13 c a we first show that (l c. a • Let e, e I £ E (X) 

and eae 1 
• By 2.27 we have a(e) = a(e 1

) • If a(e) # a then ecre 1 
• 

If a(e) = a(e 1
) = a , then pr e a .pr e' on 

a a 
X 

a 
and therefore pr ecrpr e 1 

• 
a a 

Hence in either case we have eae 1 implies ecre 1 
• A similar argument 

shows that s c. a . 

2.35. PROPOSITION: Let X = TT (X ,x ) • 
a£A a a 

If p £ ~ D (X) 
ClLIJ.J 

for each x£X, plixX £ E 0 (X) , and if moreover p is least then 
a a CllJJ.J a 

PROOF. If p £ t 13 (X) then lixX is acyclic (in fact 
ClV P a a 

tricted to any subgraph is acyclic if p is acyclic). Hence we need 

then 

p res-

to show 

that lixX contains (l v 13 on ixX to establish that p I i XX £ ~ s (X ) • P a a a a aa a.u a 
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Let e,e 1 E: E(ixX ) with eae 1 on ixX , i.e., e and el are adja-a a a a 

cent and among the saturated subgraphs of ixX there does not exist a a a 

4-circuit. If eplixX e 1 then epe 1 and hence e-;;e 1 on X . But e,e 1 

a a 

adjacent then implies that e,e 1 are contained in a saturated 4-circuit 

say c . Since e,e 1 it is easily verified that a 

contradiction. Hence 

eSe 1 on eSe 1 on X and hence epe 1 
• But e,e 1 

Hence we have that contains ct vs on 

Finally we assume that p is the least element of c 
0 

(X) and 
CI.UiJ 

suppose there exists cr E: ~ 
0 

(ixX ) with 
au~-' aa 

If 

a E: € 0 (X) and hence a 1i p E: g 0 (X) • 
CI.UiJ CI.VIJ 

an p,.p contradicts the mini-

mality of p • Hence is the least element of ~ 
0

(ixX ) . 
au~-' aa 

2.36. COROLLARY: Let X = n (X ,x ) 
aE:A a a 

be connected, and for 

each aE:A let pa be the least element of Xa Then (\ p a is the 
aE:A 

least element of S au 
13 

(X) • 

PROOF. p a E: ~a uS (X) and ~ a v S (X) a principal filter implies 

n p E: ~ 
13 

ex> . 
aE:A a a v 

Let p = ~P and let cr be the least element of 
aE:A a 

C ct u S (X) Let 

a(e 1
) = a and 

~au S (i:xa) • 

ix : X -> ixX 
a a a a 

ep (ixpr e) and 
o a a 

e,e 1 E: E(X) with epe 1 
• Now epe 1 implies a(e) 

pr ep pr e 1 
• a a a By 2.35 

This together with Pa 

an isomorphism imply 

e 1 p (ixpr e 1 ) and o a a 

is the least element of 

the least element of X and 
a 

X ' X 2.32 i pr ecri pr e 1 . By a a a a 

hence ecr(ixpr e) and e 1 cr(ixpr e 1
). 

a a a a 



Therefore eoe 1 , i.e., p c. a , but a least implies p = a • 

2.37. EXAMPLE: The connectedness of X is actually needed in 

the previous corollary as is seen in the following example: 

Take x1 = C(2), x2 = C(2) together with an isolated vertex, 

then x
1 

X x2 iS as in figure 2.7. 

Now 

FIGURE 2.7 

the least element of E 0 (X.) , i = 1,2, 
au'"' 1 

implies 
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partitions E(X1 x x2) into the two classes {e1 ,e2,e3} and {e4,e5} • 

However the least element of ~ avs<xl X X2) partitions E(Xl X X2) 

into the three classes {e1}, {e2,e3 } and {e4 ,e
5

} • 

We conclude this section with a summary of C 0 (X) • 
au'"' 

Let ~ (X) denote the complete lattice of all equivalence rela

tions on E (X) • Then ~ a \J S (X) is a principal filter in ~ (X) • If 

~ : X-> y 

is a graph isomorphism, then ~ induces a lattice isomorphism from 



p -> p (where 
<P 

ep<Pe'(e,e' E E(Y) 
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if and only if e ex) -> e<Y) by 

(<P-le) P (<P-le')) such that the restriction of this function to ~ 0 (X) 
CllJi-> 

is an isomorphism onto ~ 0 (Y) . 
au~-> 

then 

Now let X= n (X
8

,x
8
), x E V(X). If p

8
EE:au S(X

8
) aEA, 

aEA 

extends to an equivalence p E e 0 (X) and if a E t 0 (X) 
a au~-> au~-> 

then a restricts to an equivalence such that the 

following statements hold: 

(1) 

(2) 

(3) 

If we denote by p then lixx 
P a a = 

p E E_ 
0 

(X ) 
a av~-> a 

If we let a denote that equivalence in ~ (X ) a cavS a such 

that then n a c. a ·a if X is connected. 
aEA 

a E ~ 0 (X) 
av~-> 

If is the least element of ~ 0 (X ) , for each aEA , 
aU~-> a 

then n i5 is least 0 

aEA a 
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(4) If X is connected and cr is the least element of ~ (X) c.., au S 

(5) 

then crlixX is least. 
a a 

By taking pa = E(X ) x E(X ) a a 
' 

we have that the weak carte-

sian decomposition of X determines an equivalence in 

~ a(X) , namely au.., 
P = (\ 15 , such that .. ~pel 

a£A a 
if and 

if a(e) = a(e') 

In the next section we will show that for X connected every 

equivalence p £~a v S (X) gives rise to a weak cartesian decomposition 

and if p is least the factors are indecomposable. 



SECTION VIII: Unique Prime''FaetorizationTheorem. 

Let X be a connected graph. and let p E:t: Q. 
av~ 

Denote the 

collection of equivalence classes of E(X) mod p by El 
.\! 

o,;;, \) < \) \) an ordinal. For. any vertex z € x· and any· ordinal 
0 0 

yz I 

v, 0 < \) < \) let be the largest connected ·subgraph of X such 
0 \) 

that z € yZ and E(Yz) C: E . For any vertex z € X and any ordinal 
\) \) \) 

v, 0 < \) < \) 

' 
let xz be the largest connected subgraph of X such = 0 \) 

that z € xz and E(Xz) C U E 
\) \! ].!<V ].1 

Note that Yz C. Xz 
].1 \) 

for By 

2.9, E(Xz){\E f 0 , for 0,;;, ll < v,;;, V
0 \) ].1 

In our succeeding considerations we will let r be an arbitrary 

but fixed vertex of X , and for convenienc·e we will denote by ' 

y 
\) 

and 

let x 
0 

by X 
\) 

2. 38. PROPOSITION: Let x and· ·y be distinct vertices of 

Then xY and Yx have exactly· one vertex in common. 
\) \) 

PROOF. We first show xY (\ Yx fn Ill • Assume ·the contrary, and 
\) \) 

and be chosen such that 

(i) x
0 

€ X~ , y
0 

E: Y~ , and 

(ii) among all parts of vertices having·· property (i), 

d(x ,y ) 
0 0 

X 
0 

and 

is minimal, where d(x y·) · o' o is the distance of 

83 

.~ 
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Let P = P u ... l)P be a shortest path joining x 
o n o 

and 

in XV+l which is p-compatible (By 2.17 such a path exists since Xv+l 

is a p-saturated subgraph of X ) . E (P ) C E and n ~ 1 
0 v 

otherwise 

we get a contradiction to (ii). Denote the consecutive vertices of P 
0 

by 

X 
0 

X 
m 

X 
m 

and let 

Ql 

pl 

e = [x 1 , x J . 
m- m 

Q2 Qn 
.Yl . 

I 
e' 

yo 
p2 p 

n 

FIGURE 2.8 

By 2.10 we can construct a ladder in Xv+l from e and P' = 

P 1 V ••• UP n . Let Q Q1 V ••• U Qn denote the path of the ladder oppo

site P' and let e' = G
0

, y1) denote the path of the ladder opposite 

e . Clearly X 
y1 E: Y v , and d(x , y

1
) < d(x ,y ) . 

0 0 0 
A contradiction 

against (ii). 

Now suppose there exists at least two distinct vertices and 

and in xY 
v 

By 2.17 there exist a p-compatible path P' 

and a p-compatible path Q' joining 

joining 

and in 

Yx . Clearly P't,)Q' is a connected, p-compatible subgraph of X which v 



is not acyclic, and hence by 2.5 contains a finite p-compatible circuit. 

This contradicts the acyclicity of p • 

2.39. THEOREM: Let X be a connected graph, r € X 

p t: ~ B • av Then X ;;, TI (Y , r ) 
\) \) 

V<\i 

where for 0 < \) < \) 
0 

0 

Moreover if p is the least element of 

0 < \) < \) 
0 

is indecomposable. 

then each Y 
\) 

PROOF. The proof is by transfinite induction. First we show 

that for non-limit ordinals v+l , 0 < v < \) 
0 

Let X E: X , y E: y • 
\) \) 

By 2.38 there exists a unique vertex in 

which we denote by z xy Define X X y -->X 
\) \) v+l 

z xy 

Let z be an arbitrary vertex in Xv+l • By 2.38 

by 

and X 
\) 

have 

exactly one vertex in common, say x , and and Yv have exactly 

one vertex in common, say y , clearly and Hence 
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z = z xy Thus every vertex of Xv+l has a unique pre image with respect 

to ~v and hence ~v is one-one and onto. 

To prove that ~ is a homomorphism take 
't'\) j(x,y), (x',y')lE X xy. 

~- - \) \) 

Then either [x,x'] E: X and y = y', or [y,y'] E Y and x = x' . 
\) \) 

Suppose [x,x'] E: X 
\) 

and y = y' Let P be a shortest path join-

ing x and z in Yx • Construct a ladder from xy v [x,x'] and 

P , and let e be the final edge opposite [x,x'] Then e is 
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incident with z 
xy' 

e t: xY 
'V 

and hence clearly e = . J3: ' z ' ,] E xv+l xy x y 

Similarly, if [Y,y'] t: y 
\.: and x = x' , then [zxy' zx'y'J E Xv+l 

Hence rcx,y), (x',y')] EXvxYV, implies rz z J EX L ~xy' x'y' v+l · 

To prove that cp\) is an epimorphism let e = [zxy' zx'y'J E: xv+l' 

Then e E U E and hence either e E E v or e E: u E If e E: ·~ 
jJ:::.. "' 

jJ ].l<\! ].l \) 

then yx and 
x' 

by the maximality of y~ x' 
Hence e E e E: y y 

\) v \) \) 

X x' . Moreover it is easy to verify that [Y,y'] E: y If 
\) 

u E then xY and y' and hence y = y' Again it is e € e E e E: X 
' . ]J<V ]J v \) 

easy to show that [x,x '] E X Hence cpv is an isomorphism. 
v 

Let z TT (Y ' r ) and for each ordinal \)~\) 
\) v 0 

v<v 
0 

z = -, r (Y' r') where (Y' 
' 

r') = (Y ' r ) for ].l<V 
v ].l ll \.1 ].l ].l ].l 

'fl<'.) 
0 

( (r), r) for v .:::_ 11 < v 
0 

Note that Z u zv . v<v 
- 0 

'IJ!\) : x--> 
\) 

Suppose there exists a monomorphism 

Then we can construct a monomorphism ~v+l 

let 

and (Y' 
' 

r') 
].l ].l 

z with 

xv+l--->Z 

with ''' (X )- Z and such that 
'~'v+l v+l - v+l We already have 

an isomorphism 

A, : X X y --->Xv+l . "'·v v v 

Define \; X X y >Z by 
\) \) 

{ :r, ~ (x) 
' 

A < v 
\) 

prAnV(x,y) = A = \) 

' 
\) < A < \) 

0 

Set lpv+l = nv o 
-1 

cp\) 

Clearly 1)!v+l X 
v+l 

>Z is a monomorphism with 



87 

1/! ·,;+ 1 (Xv+ 1) = 2v+l and 1/Jv+llxv = 1/J 
\) 

Next let v be a limit ordinal and assume that for each ordinal 

]l < there exists a monomorphism l/J X >Z with 1/J (X ) z 
]l ]l ]l ]l ]l 

and such that 1Jl lx 1/!A. for A < ]l X = LJ X and hence X E X 
J1 A 

implies X ( X 
]1 

l/J x-~z 
') \) 

for some J1 < v . Set 

is a monomorphism and 

\) ]l<V ]l 

1p (x) = 
·v 

l/J (X ) 
\) \) 

l/J (x) Then clearly 
]l 

Z Hence 
\) 

X - Tf (Y r ) . Since 
V ]l<V l1' ]l 

X= X we have X ,; TI (Y ,r ) 
lJ<V ]l ]l 

0 

v 
0 

Finally if we assume that p is the least element of 8, au S (X) 

then by 2.35 we have that is the least element of E 
6

<Y ) . av v 

Since E(Y ) 
\) 

consists of exactly one equivalence class modulo 

we have that Y is indecomposable. 
\) 

each 

2.40. PROPOSITION: Let X = ~~ I (X ,x ) be connected, and for 
--- a a -

a E A let X 
a 

be indecomposable. 

aEA 

Let p be the least element of 

t; 
13

(x) . Then for e, e' E E(X) epe' if and only if a(e) = a(e'). au 

PROOF. Since X is indecomposable for each aEA , we have 
a 

that p = E(X ) X E(X ) is the least element of ~ s<x ) • Hence a a a au a 

by 2.30 and 2.35 we have the desired result. 

We are now in a position to prove the following theorem which is 

our main result. 

2.41. THEOREM: If X is a connected graph then X has a weak 

cartesian decomposition into indecomposable factors which is unique to 

within isomorphisms, 

\) 
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PROOF. From 2. 3 9 we have that the least element p of ~ a v S (X) 

determines a weak cartesian decomposition of X into indecomposable fac-

tors, where the factors are taken to be p-saturated subgraphs with res-

pect to the individual equivalence classes of E(X) mod p . If we take 

any other decomposition of X into prime factors, we have by 2.40 that 

the number of factors in each decomposition is the same. Since the in-

jection mappings are monomorphisms, and the .injections of these latter 

prime factors are ~saturated subgraphs with respect to the individual 

equivalence classes of E(X) mod p we have that the decomposition is 

unique to within isomorphisms. 

2.42 PROPOSITION: Let X be connected. e (X) <Z>avS is finite 

if and only if X has a cartesian decomposition into indecomposable 

factors. 

PROOF. Follows from 2.25 and 2.39. 

2,43. COROLLARY: If X is a connected indempotent graph then 

X does not have a cartesian decomposition into indecomposable factors. 
n 

PROOF. Let f : :x;--> IT X. be an isomorphism, where 
n i=l 1 

X. = X, i = 1, , • e, n For e = ~,y]' el = [xl ,y~J t: E(X) define 
]. 

n only if [pr. f (x) , pr. f (y )] [Pr. f (x 1 ) , pr. f (y 1 
)] t:E (X.) ep e 1 if and = 

1 n 1 n 1 n 1 n 1 

for some i . pn £ g S (X) and by 2.30, n has exactly equiva-p n au 

lences classes, Hence n :f m implies n :f p 
m Therefore s au S (X) p 

is infinite and hence by 2.42 X does not have a cartesian decomposition. 



SECTION IX: Acyclic completion. 

2.44. DEFINITION: Let p be any equivalence on E(X) • We 

* define the acyclic completion ofp , which we denote by p , as 

follows: Put 

defined. For 

(o) 
p = p 0 Assume that 

(n) 
p , n ~ o has already been 

e, e' t: E(X) , we define a binary relation T 
(n) 

by: 

e ·~ (n) e ~ if and only if there. exists a p (n) -compatib:l.e circuit C 

with e, e' t: E(C) • Let 
(n+l) 

p be the smallest equivalence on E(X) 
()() 

* containing P (n)u (n) 
T , Finally we take p = u (n) 

p 

n=o 

2.45. PROPOSITION: Let p be anyeguivalence on E(X) and 

* o the acyclic.completion of p. Then 

* (i) PC.P 

(ii) p * is .acyclic 

* (iii) p = p if p is· acyclic 

PROOF. (i) and (iii) are trivial. To prove (ii) assume the 

* contrary, i.e., that there is a p -compatible circuit C = P U .. • UP o m 

Since C is finite and the p(n),s form an increasing sequence there 

exists an n such that c = P v ... UP o m 
is a 

Let E,. 
l.J 

E (P.) x E (P.), o .::._ i ~ m, o ~ j ~ m 
l. J - - - -

p(n)_compatible 

E C. p (n) for 
ij 

circuit. 

i -1 j 

implies (n) * E .. C. r Hence E. , C p for i :!· j 
l.J l.J 

, a contradiction to 

* C = P U , • o UP being a p -compatible circuit. 
o m 

2,46. PROPOSITION: Let p be any equivalence on E(X) contain-

* (1) Then p = p is the smallest acyclic equivalence contain~ 

89 



ing P , 

PROOF. * (1) To show that p = o it suffices to show that (1) 
p 
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is acyclic. Assume the contrary. The proof is almost identical to that 

in 2o 22 by replacing a by 
(1) 

p There is only one change required. To 

establish that C = Q U,,, UQ is not p-compatible in 2. 22 we used the 
o r 

acyclicity of p. Here we argue as follows: C = Q LJ ... l) Q is not o r 

p-compatible since otherwise E (C) x E (C) C p (l) , a contradiction to 

C = Q lJ,,,lJQ being p(l)_compatible. 
o r 

Now let a be any acyclic equivalence relation on E(X) contain-

* ing P We will show o C a Let e, e' e E(X) * with ep e' Then 

there exists a seque.nce e
1

, •• , , er of edges of X with e
1 

= e , 

e = e' 
r 

and for each k, 1 ~ k ~ r-1, either or 

(o) 
ekT ek+l implies there exists a p-compati-

• ble circuit C with ek' ek+l E: E(C) . auSc.pC.cr, and r1 acyclic imply 

E(C) x E(C) = cr (otherwise there exist p-compatible circuits with a 

a-decomposition; by choosing one with minimal a-degree and applying 2.12 

we get a contradiction to the acyclicity of cr) and hence ekcrek+l . 

Therefore eae' , * Le.,pccr. * Hence if a. u B C. p , then p is the smallest 

equivalence relation on E(X) containing p • 

For a given equivalence p let E; P denote the collection of all 

acyclic equivalence relations on E(X) which contain p . Then 2.46 

implies that if p:>.a.u B, ~ is a principal filter in the lattice of 
p 

* all equivalences on E(X) with p as its least element. In general~ 
p 

does not have a least element as is seen in the following example: 
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2.47, EXAMPLE: Let X be a circuit of order n ~4, 

and o the identity relation on E(X) . Let 

be two distinct non-adjacent edges of X 

Put 

~ ij is a minimal acyclic equivalence on E(X). Hence there are 

~n(n-3) distinct minimal acyclic equivalences on E(X) • (This shows 

that for a given equivalence relation p there need not exist a smallest 

acylic equivalence containing p , Here p = o ). X is an a-compatible 

circuit, Hence a* = o(l) = E (X) X. E (X)' i.e.' o* is not a minimal 

acyclic equivalence. 

Let!) denote the set of all equivalence relations p on E(X) 

for which ~ ., has a least element. p <: f) and cr £ f) for all cr.::> p • 
1-• 0 0 

In general £J is not a filter in the lattice of all equivalence relations. 

Consider X and as in the previous example. Here 

has a least element for each 

however o i ~ . Hence £1 is not closed· under intersections, i.e., 

is not a filter, The following example· shows that· even if B is a princi

pal filter the least element of-ij need not be p • 
0 

2.48. EXAMPLE: Let X be a tree. Here every equivalence is 

acyclic and hence 

The least element 

SJ. is 

of~ 

the set of all equivalence rela~ions on E(X) • 

is the identity relation but p = E(X) X E(X) • 
0 



SECTION X: Construction of a non-acyclic equivalence containing aus. 

We conclude this chapter with an example of a connected graph Y 

and an equivalence cr on E(Y) , containing av 8 , with the property that 

for every integer n ~ 2 there exists a a-compatible circuit C in Y 

with deg C = n , We proceed by first proving a lemma based on the fol
cr 

lowing definition. 

2.49. DEFINITION: Let X be a graph, E a subset of E(X) . 

Let x1 be defined by V(X1) = V(X), E(X1) = E(X) - E • Set Y = x1 x x2, 

where x2 is a complete graph on two vertices say o and 1 • We define 

the interchange XE of X relative to E by: 

where 

For each e = [x,y] e: E, [(x,o), (y,o), (y,l), (y,o)] is a 

saturated 4-circuit in X X x2 • ~ is obtained from X X x2 by delet

ing the edges [Cx,o), (y,o)] , [(x,l), (y,l)] and adjoining the diagon

als [<x, o), (y, 1)] , l]x, 1), (y, o)] • 

If p is an equivalence on E(X) then p induces an equivalence 

PE on E(XE) as follows: 
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For e = [x,y]' e' = [x' ,y'J E: E(XE) 

e p e' 
E if and only if either 

(i) pr1x = prly and pr x' 
1 

= pr y' 
1 ' or 

(ii) [pr
1
x, pr

1
y], [pr

1
x', pr

1
yi] E E(X) and 

[j>r1x, pr
1

y] p [pr
1
x', pr

1
y'] 
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2.50. PROPOSITION: Let p be an eguiyalence on E(X) containin~ 

a. US , E an equivalence class of E (X) mod p • Then the induced egui-

valence on the interchange graph XE of X relative to E contains 

a. us . 

PROOF. p :J a. u S and E an equivalence class of E (X) mod p im-

ply p !x
1 

contains a.U S • (X
1
,x2, D as in 2.49. Hence (p lx

1
)- con-

we have that 

PEIXl x x2 .::> a. us. E X E c p implies D X D c PE , Therefore to show 

that PE contains a.LJS we need only show that e E E(X
1 

?< x2), 

e' E E(XE)' ep e 1 imply e' E: E(Xl X X2). Assume the contrary, i.e., 
0 

e' E D • Let e = [2C,y], e 1 = [x' ,y 1
] and without loss of generality 

take pr2x 1 = pr2x . 

We first assume that eSe 1 
• Then without loss of generality 

c = [?c,y,xl ,y~ is a saturated 4-circuit in XE' i.e. [Y,x~J, 

CYI ,x] E E(XE)' Gc,x']' [Y,yl] i E(~) . Let pr1x = x1
, pr2x = x2' 

pr
1
x 1 = I 

xl ' etc. There are two cases to consider (i) [xl'yl] E E(X
1
), 

or (ii) and If (i) holds then 
I I 

y2 • It is easy to verify that y1 ~ y1 , x
1 



To show that assume the contrary. 

a triangle in X Let 

p .:::> au S we then have that (otherwise 

Then 

el = 
1 

IY{ = xl, x{, Yl] 

12c1 , y 1] . Since 

contradicting 
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is 

[x{, y 
1
] e: E (X)) • e{ e: E and E an equivalence class of E (X) mod p 

then imply e
1 

e: E , a contradiction to [x,y] e: E(X
1 

x x2) • Therefore 

Y{ f: x1 . Hence c1 = [?{1 , yl' x{, y{J is a 4-circuit in X It is 

easily verified that cl is saturated, and therefore I -r I el P Yl' xl] This 

is a contradiction since lX',y~ e: D [x,y J e: D (since xl f: Yi 

xz f: yp respectively imply [xi, Yi]' [xl'yiJ e: E and hence 

Gci' YiJ p rYi, xl] 0 Therefore eSe 1 implies e' e: E(Xl X X2) 0 

Now assume that eae' 0 Then e and el are adjacent and 

x = x' (since we assumed x' = x2) 0 Again there are two cases to con-2 

sider (i) [xl,yl] e: E(X
1
), xz = Yz' or (ii) [xz,yJ e: E(X2) and 

xl yl 0 Suppose (i) holds let e = 1 01' yl] and e' = 1 [x]_, y]_] 

e
1 

e: E(X) - E , ei e: E, and E an equivalence class of E(X) mod p imply 

e
1
pel ~ Hence e

1
ael and therefore X contains a saturated 4-circuit 

l)rl, x1 = x~, yl' w] • Define z e: V(Xg) by 

Th 1 1 r:. I ' I :-J en c ear y u x = x , y, z~ is a saturated 4-circuit in XE con-

tradicting eae' • If (ii) holds define v e: V(XE) by 

Then (Y 1
, x = x 1

, y, v] is clearly a saturated 4-circuit in XE , 

contradicting eae 1 
• Hence eae 1 implies e' e: E(X1 x x2) • 
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2.51. EXAMPLE: Let X be a 4-circuit, e e E(X), p = E(X) x E(X). 

Let x2 be the interchange of X relative to e and p2 be the equi

valence on E(X2) induced by p (Fig. 2.9). 

FIGURE 2.9 

It is easily verified that P2 contains a.VS on x2 and that c2 

GCl' x2' x3' x4' x51 is a p2-compatible circuit. Take E = 2 

{ [x,y] e x2 pr1x = prly} 

Let x
3 

be the interchange of relative to E2 and 

the equivalence induced on E(X3) by p2 (Fig. 2.10) • Since E2 is 

an equivalence class of mod 2.44 implies that 

c3 = [Cxl'o), Cx2,o), cx3,o), cx4,o), Cx5 ,o), Cx1 ,1)] is a 

p3-compatible circuit with deg p3 c3 = 3 • 

Continuing this process we can construct for each integer 

n ' 
n > 2 

' 
a connected graph X 

n ' 
an equivalence Pn on E(X ), = n 

a p -compatible circuit c with deg c = n . n n Pn n 

and 



00 

Take Y = n (X ,x ) , 
n=2 n n 

00 

CJ = n p wher~ x e V(X ) • Then 
n=l n , n n 

Y is connected, CJ::J av S , and ·for each integer· n ~ 2 , there exists 

a cr-compatible.circuit C in Y with deg . C = n • 
p 

----------;i 
;I I i 

I I I I 

~/ 
lA 
i/ \ I 

~--~~--~----~--T-+-~~· \ . 

II \ I 
(x4,o)•~l 

FIGURE 2.10 
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