PRODUCTS AND FACTORIZATIONS OF GRAPHS

PRODUCTS AND FACTORIZATIONS
 OF
 GRAPHS

By
DONALD J. MILLER, B.Sc.

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

McMaster University
(May) 1967

DOCTOR OF PHILOSOPHY (1967)
McMASTER UNIVERSITY
(Mathematics)
Hamilton, Ontario

TITLE: Products and Factorization of Graphs
AUTHOR: Donald J. Miller, B.Sc. (McMaster University)
SUPERVISOR: Professor G. Sabidussi
NUMBER OF PAGES: (viii), 97
SCOPE AND CONTENTS: It is shown that the cardinal product of graphs does not satisfy unique prime factorization even for a very restrictive class of graphs. It is also proved that every connected graph has a decomposition as a weak cartesian product into indecomposable factors and that this decomposition is unique to within isomorphisms. This latter result is established by considering a certain class of equivalence relations on the edge set of a graph and proving that this collection is a principal filter in the lattice of all equivalences. The least element of this filter is then used to decompose the graph into a weak cartesian product of prime graphs that is unique to within isomorphisms.

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Professor G. Sabidussi for his assistance, valuable suggestions and patience in the preparation of this thesis. The author would also like to express his gratitude to the Government of Ontario for financial support through the Queen Elizabeth II Scholarship Fund.

TABLE OF CONTENTS
Page
Acknowledgements. (iii)
Table of contents (iv)
Introduction. (v)
CHAPTER I
Section I : Preliminaries. 1
Section II : Products and connectedness 7
Section III : The cardinal product 14
Section IV : Decomposability of products with respect to other multiplications. 30
Section V : Products of rooted graphs. 35
CHAPTER II
Section I : ρ-compatible graphs and acyclic equivalence relations. 41
Section II : The binary relations α and β 46
Section III : Construction of ladders. 48
Section IV : Application of ladders 61
Section V : ρ-saturated subgraphs 67
Section VI : The principal filter of all acyclic equivalence relations containing $\alpha \cup \beta$ 69
Section VII : Weak cartesian products and acyclic equivalences 75
Section VIII : Unique prime factorization theorem 83
Section IX : Acyclic completion 89
Section X : Construction of non-acyclic equivalence containing $\alpha \cup \beta$ 92
Bibliography. 97

INTRODUCTION

We consider four products for a family of graphs, where the vertex set of the product is the product of the vertex sets of the factors. They are the cartesian, weak, strong and cardinal products (1.2). The cartesian product is due to Shapiro [7] and Sabidussi [5], [6], the weak and strong products to Sabidussi [5], [6], and the cardinal product to Čulik [1]. The cardinal product is called the Kronecker product by Weichse1 [9], and the conjunction by Hedetniemi [2]. Szamkolowicz [8] poses the question (due to Mycielski) of unique prime factorization for the cartesian and cardinal product. (It is always of general mathematical interest to know if a product defined in any algebraic system satisfies unique prime factorization.) Sabidussi [6] had already established that unique prime factorization holds for connected graphs containing a vertex of finite degree and connected graphs of finite type. He imposed the finiteness conditions on the graphs to ensure that the number of factors in the decomposition was finite, since he was interested in applying the decomposition theorem to prove a result on the automorphism group of a graph. In this same paper he also shows that the strong product does not satisfy unique prime factorization. In fact he shows that there exist complete graphs that do not have a prime factorization and complete graphs that have infinitely many essentially distinct prime factorizations.

In the discussion of unique prime factorization of graphs with respect to any of the above products, it is essential to exclude graphs with isolated vertices, as is seen in the following example: let $\mathrm{X}=$ path of 1 ength 3 together with two isolated vertices,
$\mathrm{Y}=$ complete 2-graph,
$X^{\prime}=$ complete $2-g r a p h$ together with a single isolated vertex, $Y^{\prime}=$ path of length 3 .

Then $X, Y, X^{\prime}, Y^{\prime}$ are indecomposable with respect to cartesian (weak, strong, cardinal) multiplication, and are pair wise non-isomorphic. However

$$
X Y \cong X^{\prime} Y^{\prime}
$$

where juxtaposition denotes cartesian (weak, strong, cardinal) multiplication.

For the class of graphs without isolated vertices, we again have non-unique prime factorization. Let
$A=$ disjoint union of two complete 3-graphs,
$B=$ complete 5-graph,
$A^{\prime}=$ complete 3-graph,
$B^{\prime}=$ disjoint union of two complete 5-graphs.
Then

$$
A B \cong A^{\prime} B^{\prime}
$$

where juxtaposition again denotes cartesian (weak, strong, cardinal) multiplication. Moreover, $A, B, A^{\prime}, B^{\prime}$ are indecomposable, in the class of graphs without isolated vertices, with respect to cartesian (weak, strong, cardinal) multiplication.

Hence, in considering the question of unique prime factorization, we restrict ourselves to the class of connected graphs and are then led to investigate the question of the connectedness of products.

Since the cartesian product of connected graphs is connected if
and only if the number of factors is finite, we introduce the weak cartesian product of a family of rooted graphs (1.26) which ensures that the product of an arbitrary family of connected graphs is always connected. The weak cartesian product of a family of connected graphs is also due to Sabidussi [6]. He introduced this product to show the existence of connected graphs that are idempotent with respect to cartesian multiplication. Our main result is an extension of Sabidussi's theorem ([6], 2.15). We show (2.41) that every connected graph is decomposable as a weak cartesian product and that the decomposition is unique to withinisomorphisms. Roughly speaking, to prove his decomposition theorem, Sabidussi constructs an equivalence relation on the edge set of a graph such that two edges are equivalent if and only if they project to the same factor. Here we consider a particular collection of equivalence relations (the acyclic equivalences (2.6) that contain certain binary relations α and β (2.8)) in the complete lattice of all equivalences on the edge set of a graph and prove that this collection is a principal filter (2.23). We show that each equivalence in this filter gives rise to a weak cartesian decomposition of the graph such that two edges are equivalent if and only if they project to the same factor, moreover if the equivalence is least then the factor are indecomposable. This correspondence between equivalences and decompositions also enables us to prove the conjecture of Sabidussi's ([6], p.449) that an idempotent graph (i.e., $X \times X \cong X$) with respect to cartesian multiplication does not have a cartesian decomposition into indecomposable factors.

Since the weak product of a family of connected graphs is also connected if and only if the number of factors is finite, we introduce
the weak product of a family of rooted graphs (1.28) to get connectedness of the product for an arbitrary family of connected graphs. This product does not however satisfy unique prime factorization.

The cardinal product has the unpleasant property that the product of two connected graphs need not be connected. A necessary and sufficient condition that the cardinal product of two connected graphs be connected is that at least one factor be non-bipartite (1.11). (While preparing this dissertation we discovered that Weichsel [9] had already established this result. Our proof is essentially the same as his; however, we make use of the fact that the cardinal product is categorical whereas he does not.) It is then natural to ask if the cardinal product of a family of nonbipartite graphs is itself non-bipartite. This question is fully answered in 1.13. In particular we have that the product of two connected nonbipartite graphs is again connected and non-bipartite.

Our decomposition theorem (1.20) shows that even by restricting to the class of finite connected non-bipartite graphs unique prime factorization does not hold for the cardinal product. Marica and Bryant [3] prove that finite unary algebras (i.e., functional directed graphs) have unique square roots. It would be of interest to know if a similar result holds for the cardinal product of finite graphs. We have not however attempted this problem.

CHAPTER I

SECTION I: Preliminaries.

1.1. DEFINITIONS: By a graph X we mean an ordered paix $(V(X), E(X))$, Where $V(X)$ is a set end $X(X)$ is a set of unordered pairs of distinct elements of $V(X)$. (We can consider a graph to be a set together with a symmetric, irreflexive relation on the set.) We shall denote an unordered pair by brackets. The elements of $V(X)$ will be called the vertices of X and the elements of $E(X)$ the edges of X. We denote the cardinal of the set $V(X)$ by $|X|$, The empty graph, io e., the graph with empty vertex set, will be denoted by \emptyset.

A subgraph Y of a graph X is a graph whose vertex and edge sets are respectively subsets of the vertex and edge sets of X. A subgraph Y of X is called saturated if and only if $x, y \in V(Y)$, $[x, y] \varepsilon E(X) \quad i m p l y \quad[x, y] \in E(Y) \quad Y$ is called a spanning subgraph of X if $V(Y)=V(X)$. An edge e is said to be incident with a vertex x if and only if $e=[x, y]$ for some vertex y. Two edges $e=[x, y]$ and $e^{\prime}=\left[x^{\prime}, y^{\prime}\right]$ are said to be adjacent if and only if exactly two of the vertices $x, y, x^{\prime}, y^{\prime}$ are equal, i.e., two edges are adjacent if and only if they are distinct and incident with a common vertex. A subset V of the vertex set $V(X)$ is called independent if and only if $x, y \in V$ implies $[x, y] \notin E(X)$.

Let X and Y be graphs. By $X \cup Y$ and $X \cap Y$ we mean the
graphs defined by

$$
\begin{aligned}
& V(X \cup Y)=V(X) \cup V(Y), \\
& E(X \cup Y)=E(X) \cup E(Y), \\
& V(X \cap Y)=V(X) \cap V(Y), \\
& E(X \cap Y)=E(X) \cap E(Y) .
\end{aligned}
$$

and

If $x \in V(X)$ we let (x) denote the subgraph of X for which

$$
V((x))=\{x\} \quad \text { and } \quad E((x))=\emptyset
$$

If $e=[x, y] \varepsilon E(X)$, (e) denotes the subgraph of X for which

$$
V((e))=\{x, y\} \text { and } E((e))=\{e\}
$$

Whenever there is no likelihood of confusion we shall write x for (x) and e for (e).

If Y is a subgraph of X we define the relative complement $X \backslash Y$ of Y in X to be the smallest subgraph with

$$
E(X \backslash Y)=E(X)-E(Y),
$$

Let X and Y be graphs. By a homomorphism of X into Y we mean a function $\phi: V(X) \longrightarrow V(Y)$ such that $[\phi x, \phi y] \varepsilon E(Y)$ whenever $[x, y] \varepsilon E(X)$. For a homomorphism $\phi: V(X) \rightarrow V(Y)$ we shall write $\phi: X \longrightarrow Y$. A monomorphism of X into Y is a one-one homomorphism. If $\phi: X \longrightarrow Y$ is a homomorphism then ϕ induces a function $\phi^{\#}: E(X) \longrightarrow E(Y)$ as follows: for $[x, y] \varepsilon E(X)$ define $\phi^{\#}[x, y]=[\phi x, \phi y]$.

A homomorphism $\phi: X \longrightarrow Y$ is called an epimorphism if and only if ϕ and $\phi^{\#}$ are both onto. By an isomorphism of X onto Y we mean a monomorphism $\phi: X \longrightarrow Y$ such that ϕ and $\phi^{\#}$ are both onto. We shall frequently write
$\phi \mathrm{e}$ for $\phi^{\#}$ e.
Given graphs X and Y let ϕ be a function from $V(X)$ to $V(Y)$. If A is a subgraph of X, we let ϕA denote that subgraph of Y defined by

$$
\begin{aligned}
& V(\phi A)=\phi(V(A)), \\
& E(\phi A)=\left\{\left[\phi x, \phi x^{\prime}\right] \varepsilon E(Y) \mid\left[x, x^{\prime}\right] \varepsilon E(X)\right\} .
\end{aligned}
$$

If ϕ is a homomorphism then $E(\phi A)=\phi^{\#}(E(A))$. The only functions we consider that are not homomorphisms are projections (1.3) .

Let $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{V}(\mathrm{X})$. A path of X joining x and y is a subgraph P of X such that $V(P)$ is the set of elements of a finite sequence $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of distinct vertices of X with $x_{0}=x$ and $x_{n}=y$, and

$$
E(P)=\left\{\left[x_{i}, x_{i+1}\right] \mid 0 \leqq i \leqq n-1\right\} .
$$

We shall denote the path P by $\left[x_{0}, x_{1}, \ldots, x_{n}\right] . n$ is called the length of P. A path P is called proper if the length of P is $\geqq 1$. A graph X is called connected if any two vertices of X are joined by a path in X, otherwise it is called disconnected. A path P joining x and y is called a shortest path if and only if for any path Q joining x and y the length of P does not exceed the length of Q. Let X be connected $x, y \in V(X)$. By the distance $d_{X}(x, y)$ of x and y in, X we mean the length of a shortest path joining x and y in X. When no confusion is likely we shall write $d(x, y)$ for $d_{X}(x, y)$. By the diameter diam X is meant

$$
\operatorname{diam} X=\sup _{x, y \in V(X)}{ }^{d} X(x, y)
$$

A maximal connected subgraph is called a component.

Let $P_{n}=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and $P_{n-2}=\left[y_{0}, y_{1}, \ldots, y_{n-2}\right]$ be paths of length n and $n-2$ respectively, $n \geqq 3$. Then $\phi: P_{n} \longrightarrow P_{n-2}$ defined by

$$
\phi x_{i}= \begin{cases}y_{i}, & i=1,2, \ldots, n-2 \\ y_{n-3}, & i=n-1 \\ y_{n-2}, & i=n,\end{cases}
$$

is an epimorphism with

$$
\phi x_{0}=y_{0} \text { and } \phi x_{n}=y_{n-2}
$$

By a circuit of a graph X we mean a subgraph C of X such that $V(C)$ is the set of elements of a sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of distinct vertices of X, and

$$
E(C)=\left\{\left[x_{i}, x_{i+1}\right] \mid i=1, \ldots, n-1\right\} \cup\left\{\left[x_{0}, x_{n}\right]\right\}, n \geqq 3 .
$$

We shall denote the circuit C by $\left[x_{1}, \ldots, x_{n}\right]$. n is called the order of C and we shall frequently call C an n-circuit. A circuit will be called even or odd according as n is even or odd.

Let $C_{n}=\left[x_{1}, \ldots, x_{n}\right]$ and $C_{n-2}=\left[y_{1}, \ldots, y_{n-2}\right]$ be circuits of order n and $n-2$ respectively, $n \geqq 5$. The mapping $\phi: C_{n} \longrightarrow C_{n-2}$ defined by

$$
\phi x_{i}= \begin{cases}y_{i}, & i=1, \ldots, n-2, \\ y_{1}, & i=n-1, \\ y_{n-2}, & i=n,\end{cases}
$$

is an epimorphism from C_{n} onto C_{n-2}.
A graph X is called acyclic if X contains no circuits. A
tree is a connected acyclic graph.
A graph X is called complete if and only if $x, y \varepsilon V(X), x \neq y$,
implies $[x, y] \varepsilon E(X)$. Let n be any cardinal; a complete n-graph is a complete graph on n vertices. We shall frequently denote a complete n-graph by $C(n)$.

We call a graph X bipartite if and only if $E(X) \neq \emptyset$ and every circuit in X is even. It is well-known (c.f. [4] 7.1.1) that X is bipartite if and only if there exists a epimorphism $\phi: X \longrightarrow C(2)$, i.e., $V(X)$ is the disjoint union of two non-empty independent sets of vertices. If X is a bipartite graph with $V(X)=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, V_{i} independent, $i=1,2$, then X is called a complete bipartite graph if and only if $X_{1} \varepsilon V_{1}, x_{2} \varepsilon V_{2}$ implies $\left[x_{1}, x_{2}\right] \varepsilon E(X)$. If $\left|V_{1}\right|=n,\left|V_{2}\right|=m$ then we denote the complete bipartite graph X by $K_{n, m} \cdot$

If a graph X is non-bipartite we define the odd mesh of X to be min $|C|$, the minimum taken over all circuits C of odd order.

Let X be a graph. For $x \in V(X)$ we let

$$
V(X ; x)=\{y \mid[x, y] \varepsilon E(X)\}
$$

$|V(X ; x)|$ is called the degree of x in X and is denoted by $d(x ; X)$ or simply d_{x} when no confusion is likely. X is said to have bounded degree if and only if

$$
\sup _{x \in V(X)} d(x ; X)<\infty .
$$

Let R be an equivalence relation on the vertex set of a graph X and let $R[x]=\{y \in V(X) \mid x R y\}$. We define the quotient graph X / R as follows:

$$
V(X / R)=\{R[x] \mid x \varepsilon V(X)\} ;
$$

For $R[x], R[y] \varepsilon V(X / R)$,
$[R[x], R[y]] \varepsilon E(X / R)$ if and only if $R[x] \neq R[y]$ and there exist $x^{\prime} \varepsilon R[x], y^{\prime} \varepsilon R[y]$ with $\left[x^{\prime}, y^{\prime}\right] \varepsilon E(X)$.

By a cover of a graph X we mean a collection O of subgraphs
such that
(i) $\bigcup_{a \varepsilon O} A=X$, and
(ii) $E(A) \cap E\left(A^{\prime}\right)=\emptyset$ for $A, A^{\prime} \varepsilon \emptyset$ with $A \neq A^{\prime}$.

SECTION II: Products and connectedness

1.2. DEFINITIONS: Let $\left(X_{a}\right)_{a \varepsilon A}$ be family of graphs. $\prod_{a \in A} V\left(X_{a}\right)$
will denote the usual cartesian product of the sets $\left\{V\left(X_{a}\right): a \varepsilon A\right\}$, and $p r_{b}: \prod_{a \varepsilon A} V\left(X_{a}\right) \longrightarrow V\left(X_{b}\right)$ the projection into the $b^{\text {th }}$ factor. We define
1.2 (I) the cartesian product $X=\prod_{a \varepsilon A} X_{a}$ of the graphs X_{a} by: $V(X)=\prod_{a \varepsilon A} V\left(X_{a}\right)$,
$E(X)=\left\{[x, y]: x, y \in V(X),\left[\operatorname{pr}_{a} x, \operatorname{pr}_{a} y\right] \varepsilon E\left(X_{a}\right)\right.$ for exactly one $a \varepsilon A, \operatorname{pr}_{b} x=\operatorname{pr}_{b} y$ for $a l l$ b $\left.\varepsilon A-\{a\}\right\}$,
1.2(II) the weak product $X^{W}=\prod_{a \varepsilon A}{ }^{w} X_{a}$ of the graphs X_{a} by:

$$
V\left(X^{W}\right)=\prod_{a \varepsilon A} V\left(X_{a}\right) ;
$$

For $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{V}\left(\mathrm{X}^{\mathrm{W}}\right)$,
$[x, y] \varepsilon E\left(X^{W}\right)$ if and only if there exists a non-empty finite subset
BC A such that

$$
\left[\mathrm{pr}_{b} \mathrm{x}, \mathrm{pr}_{\mathrm{b}} \mathrm{y}\right] \varepsilon E\left(\mathrm{X}_{\mathrm{b}}\right) \text {, for } \mathrm{b} \varepsilon B \text {, }
$$

and

$$
\operatorname{pr}_{a} x=\operatorname{pr} y \quad, a \varepsilon A-B
$$

1.2 (III) the strong product $X^{*}=\prod_{a \in A}^{*} X_{a}$ of the graphs X_{a} by: $V\left(X^{*}\right)=\prod_{a \varepsilon A} V\left(X_{a}\right) ;$

For $x, y \in V\left(X^{*}\right)$,
$[x, y] \varepsilon E\left(X^{*}\right)$ if and only if there exists a nonempty subset $B C A$
such that

$$
\left[\mathrm{pr}_{b} x, \mathrm{pr}_{b} y\right] \varepsilon E\left(X_{b}\right) \quad, b \in B
$$

and

$$
\operatorname{pr}_{\mathrm{a}} \mathrm{x}=\operatorname{pr}_{\mathrm{a}} \mathrm{y} \quad, \quad \mathrm{a} \varepsilon A-B
$$

1.2 (IV) the cardinal product $X^{0}=\prod_{a \in A}^{0} X_{a}$ of the graphs X_{a} by: $V\left(x^{0}\right)=\prod_{a \varepsilon A} V\left(X_{a}\right)$,
$E\left(X^{0}\right)=\left\{[x, y]: x, y \in V\left(X^{0}\right),\left[p_{a} x, \operatorname{pr}_{a} y\right] \varepsilon E\left(X_{a}\right)\right.$ for all $\left.a \varepsilon A\right\}$,

If the index set A is finite, it is clear that weak and strong product coincide. For a finite family of graphs $\left(X_{i}\right)$ i=1,...,n n we shall frequently denote the cartesian product by $X_{1} \times x_{2} \times \ldots \times x_{n}$, the strong product by $X_{1} * X_{2} * \ldots * X_{n}$, and the cardinal product by $X_{1} o X_{2} \circ \ldots o X_{n}$.
1.3. REMARK: Observe that $\mathrm{pr}_{b}: \prod_{\mathrm{a} \varepsilon \mathrm{A}}^{\mathrm{o}} \mathrm{X}_{\mathrm{a}} \longrightarrow \mathrm{X}_{\mathrm{b}}$ is a homomorphism; whereas $\mathrm{pr}_{b}: \prod_{a \in A} X_{a} \longrightarrow X_{b}\left(\operatorname{pr}_{b}: \prod_{a \varepsilon A}^{*} X_{a} \longrightarrow X_{b} ; \operatorname{pr}_{b}: \prod_{a \varepsilon A}{ }_{X} X_{a} \longrightarrow X_{b}\right.$) is not a homomorphism provided that one of the factors $X_{a}, a \neq b$, has an edge.

We note here the fact that the cardinal product is categorical, i.e., given a graph Y and a family of homomorphisms $\phi_{b}: Y \longrightarrow X_{b}, b \varepsilon A$, then the mapping $\phi: Y \longrightarrow \prod_{a \in A}{ }^{\circ} X_{a}$ defined by

$$
\operatorname{pr}_{b}(\phi(y))=\phi_{b}(y) \quad, y \varepsilon Y, b \varepsilon A
$$

is a homomorphism (Fig. 1.1) . We will denote ϕ by $\prod_{a \varepsilon A}^{o_{a}} \phi_{a}$.

FIGURE 1.1

Moreover if there exists an $a_{0} \varepsilon A$ such that $\phi_{a_{0}}: Y \longrightarrow X_{a_{0}}$ is a monomorphism then $\phi: Y \longrightarrow \prod_{a \in A}^{o} X_{a}$ is also a monomorphism.

If $\phi_{i}: X_{i} \longrightarrow Y_{i}$ is a homomorphism, $i=0,1$, then $\phi: X_{o} \circ X_{1} \longrightarrow Y_{0} \circ Y_{1}$ defined by

$$
\phi\left(x_{0}, x_{1}\right)=\left(\phi_{0} x_{0}, \phi_{1} x_{1}\right)
$$

is also a homomorphism. Moreover if ϕ_{i}, $i=0,1$, is an epimorphism (monomorphism) then ϕ is an epimorphism (monomorphism).
1.4. DEFINITION: For each $b \varepsilon A$ and each $x \varepsilon \prod_{a \varepsilon A} V\left(X_{a}\right)$ we define the injection mapping $i_{b}^{X}: V\left(X_{b}\right) \longrightarrow \prod_{a \in A} V\left(X_{a}\right)$ as follows: For each $x_{b} \varepsilon V\left(X_{b}\right)$,

$$
p_{a} i_{b}^{x_{b}}=\left\{\begin{array}{ll}
x_{b} & \text { if } b=a \\
p r_{a} & \text { if } b \neq a
\end{array} \quad, a \varepsilon A .\right.
$$

Clearly $i_{b}^{x}: X_{b} \rightarrow \prod_{a \in A} X_{a}\left(i_{b}^{x}: X_{b} \rightarrow \prod_{a \in A}^{*} X_{a} ; i_{b}^{x}: X_{b} \rightarrow \prod_{a \in A}^{w} X_{a}\right)$ is a monomorphism; however $i_{b}^{x}: X_{b} \longrightarrow \prod_{a \in A}^{0} X_{a}$ is not even a homomorphism.

Under the identification of isomorphic graphs cartesian, strong, and cardinal multiplication are commutative and associative. For cartesian and strong multiplication the trivial graph (i.e., the graph consisting of a single vertex and hence an empty set of edges) acts as a unit. Cardinal multiplication does not have a unit. A graph will be called non-trivial if its vertex set is non-empty and it is not the trivial graph.
1.5. DEFINITION: A graph X is called prime (or indecomposable) with respect to cartesian multiplication if and only if X is nontrivial and $\mathrm{X} \cong \mathrm{Y} \times \mathrm{Z}$ implies either Y or Z is trivial. Analogous definitions of indecomposable graphs can be introduced for the cardinal and strong product.
1.6. PROPOSITION: The cartesian (strong, cardinal) product of any graph with a disconnected graph is disconnected.

PROOF. Trivial.
1.7. PROPOSITION: The cartesian product of finitely many connected graphs is connected.

PROOF. Let $X=X_{1} \times X_{2} \times \ldots \times X_{n}$, where X_{i} is a connected graph for $i=1,2, \ldots, n$, and let $x, y \in V(X)$. Since X_{i} is connected there exists a path, P_{i} say, joining $\mathrm{pr}_{i} \mathrm{x}$ and $\mathrm{pr}_{\mathrm{i}} \mathrm{y}$ in X_{i}, $i=1, \ldots, n$. Let $x_{1}=x, x_{2}=i_{1}^{x_{1}} \operatorname{pr}_{1} y, x_{3}=i_{2}^{x_{2}} \operatorname{pr}_{2} y, \ldots$, $x_{n}=i_{n}^{x_{n-1}} p r_{n-1} y$. Then

$$
P=i_{1}^{x_{1}} P_{1} \cup i_{2}^{x_{2}} P_{2} \cup \ldots \cup i_{n}^{x_{n}} p_{n}
$$

is a path joining x and y in X.
1.8. PROPOSITION: The weak product of infinitely many non-
trivial graphs is disconnecked.

PROOF. Let (X_{a}) be an infinite family of non-trivial graphs. For each $a \varepsilon A$, let x_{a} and y_{a} be distinct vertices of X_{a}. Define $x, y \in \prod_{a \varepsilon A}^{w_{X}}=X^{W}$ by $\operatorname{pr}_{a} x=x_{a}$, and $\operatorname{pr}_{a} y=y_{a}$ for $a \varepsilon A$. Suppose x and y are joined in x^{w} by a path $P=\left[x_{0}, \ldots, x_{n}\right]$. Since $\left[x_{i}, x_{i+1}\right] \varepsilon E\left(X^{W}\right), p r a x_{i}$ and $p r a x_{a+1}$ differ for at most a finite number of $a \in A$. Hence x and y differ for at most a finite number of projections, contradicting $\mathrm{pr}_{\mathrm{a}} \mathrm{x} \neq \mathrm{pr}_{\mathrm{a}} \mathrm{y}$ for all a . .
1.9. COROLLARY: The cartesian product of infinitely many nontrivial graphs is disconnected.

PROOF. The proof follows immediately from the fact that $\prod_{a \in A} X_{a}$ is a spanning subgraph of $\prod_{a \in A}^{W_{X}}$.
1.10. PROPOSITION: The strong product of a family ($\left.\mathrm{X}_{\mathrm{a}}\right)_{\mathrm{a} \in A}$ of connected graphs is connected if and only if

$$
B=\left\{b \in A \mid \text { diam } X_{b}=\infty\right\}
$$

is finite and

$$
D=\left\{\operatorname{diam} X_{a} \mid a \varepsilon A-B\right\}
$$

is bounded.
PROOF. Let $X=\prod_{a \varepsilon A}^{*} X_{a}$ and assume that X is connected. If
B is infinite or D is unbounded, then for aعA there exist $x_{a}, y_{a} \varepsilon V\left(X_{a}\right)$ such that
1.10 (1)

$$
\sup _{a \in A} d_{x}\left(x_{a}, y_{a}\right)=\infty
$$

Define $x, y \in V(X)$ by $p r_{a} x=x_{a}, p r_{a} y=y_{a}$, $a \varepsilon A . X$ connected implies there exists a path P joining x and y in $X \cdot p r_{a} P$ is a connected subgraph of X_{a} containing x_{a} and y_{a} and hence contains a path joining x_{a} and y_{a}. Therefore

$$
d_{x}\left(x_{a}, y_{a}\right) \leq\left|p r_{a} P\right| \leq|p| \quad, a \varepsilon A
$$

contradicting 1.10 (1)
Suppose that B is finite and D is bounded. Take any $\mathrm{x}, \mathrm{y} \in \mathrm{V}(\mathrm{X})$. Since X_{a} is connected for each $\mathrm{a} \varepsilon \mathrm{A}, \mathrm{pr}_{\mathrm{a}} \mathrm{x}$ and pr y can be joined in X_{a} by a shortest path

$$
P_{a}=\left[p r_{a} x=x_{o}^{a}, x_{1}^{a}, \ldots, x_{n(a)}^{a}=p r_{a}^{y}\right]
$$

Since B is finite, $k_{1}=\max _{b \in B} n(b)$ exists and since D is bounded $k_{2}=\max _{a \varepsilon A-B} n(a)$ exists. Let $k=\max \left\{k_{1}, k_{2}\right\}$.

$$
\text { For } 0 \leqq i \leqq k \text {, define } x_{i} \varepsilon V(X) \text { as follows: }
$$

$$
\operatorname{pr}_{a} x_{i}=\left\{\begin{array}{ll}
x_{i}^{a} & , 0 \leqq i \leqq n(a) \\
x_{n(a)}^{a} & , n(a)<i \leqq k
\end{array}, a \varepsilon A .\right.
$$

To show that $\left[x_{i}, x_{i+1}\right] \varepsilon E(X), 0 \leqq i \leqq k-1$, we first note that for a\&A either

$$
\left[\operatorname{pr}_{a} x_{i}, \operatorname{pr}_{a} x_{i+1}\right] \varepsilon E\left(X_{a}\right)
$$

or

$$
\operatorname{pr}_{a} x_{i}=\operatorname{pr} x_{i+1} .
$$

Since $k=\max \left\{k_{1}, k_{2}\right\}$ there exists an $a_{0} \varepsilon A$ such that $n\left(a_{0}\right)=k$, i.e.,

$$
\left[\operatorname{pr}_{a_{0}} x_{i}, \operatorname{pr}_{a_{0}} x_{i+1}\right] \varepsilon E\left(X_{a_{0}}\right)
$$

Hence $\left[x_{i}, x_{i+1}\right] \varepsilon E(X)$ and

$$
P=\left[x_{0}, \ldots, x_{n}\right]
$$

is a path joining x and y in x.

SECTION III: The cardinal product.

Let X_{1} and X_{2} be connected graphs. Fix $X_{1} \varepsilon V\left(X_{1}\right)$ and $\mathrm{X}_{2} \varepsilon \mathrm{~V}\left(\mathrm{X}_{2}\right)$ and for each $y \in \mathrm{~V}\left(\mathrm{X}_{1} \circ \mathrm{X}_{2}\right)$ define

$$
n(y)=d_{x_{1}}\left(x_{1}, p r_{1} y\right)+d_{x_{2}}\left(x_{2}, p r_{2} y\right)
$$

For $i=1,2$ let Y_{i} be the saturated subgraph of $X_{1} \circ X_{2}$ with

$$
V\left(Y_{i}\right)=\left\{y \varepsilon X_{1} \circ X_{2} \mid n(y) \equiv i(\bmod 2)\right\} .
$$

Note that $Y_{1} \cup Y_{2}$ is a spanning subgraph of $X_{1} \circ X_{2}$ and that $Y_{1} \cap Y_{2}=\emptyset$. If moreover we have that X_{1} and X_{2} are non-trivial then it is easily seen that Y_{1} and Y_{2} are connected subgraphs of $\mathrm{X}_{1} \circ \mathrm{X}_{2}$.
1.11. PROPOSITION: ($[9]$, p.49) Let X_{1} and X_{2} be connected non-trivial graphs. Then the following statements are equivalent:
(i) $X_{1} \circ X_{2}$ is disconnected (consisting of exactly two components),
(ii) $X_{1} \circ X_{2}=Y_{1} \cup Y_{2}$,
(iii) X_{1} and X_{2} are both bipartite.

PROOF. From the remarks preceding the proposition we immediately have that (i) is equivalent to (ii).

To establish that (ii) implies (iii) we assume that (iii) does not hold, i.e., at least one of X_{1}, X_{2} is non-bipartite. Without loss
of generality suppose that X_{1} contains an odd circuit, say C, and moreover we may take C to have least odd order and let $x_{1} \in V(C)$. C having least odd order implies there exist x^{\prime}, $x^{\prime \prime} \varepsilon V(C)$ such that (a)

$$
\mathrm{d}_{\mathrm{x}_{1}}\left(\mathrm{x}_{1}, \mathrm{x}^{\prime}\right)=\mathrm{d}_{\mathrm{x}_{1}}\left(\mathrm{x}_{1}, x^{\prime \prime}\right)
$$

and
(b)

$$
\left[x^{\prime}, x^{\prime \prime}\right] \varepsilon E(C)
$$

Since X_{2} is non-trivial and conneted there exists $y \varepsilon V\left(X_{2}\right)$ with

$$
\left[x_{2}, y\right] \in E\left(X_{2}\right)
$$

Then

$$
\left[\left(x^{\prime}, x_{2}\right),\left(x^{\prime \prime}, y\right)\right] \varepsilon E\left(X_{1} \circ X_{2}\right)
$$

If $\left(x^{\prime}, x_{2}\right) \varepsilon V\left(Y_{1}\right)\left(\varepsilon V\left(Y_{2}\right)\right)$ then $\left(x^{\prime \prime}, y\right) \varepsilon V\left(Y_{2}\right)\left(\varepsilon V\left(Y_{1}\right)\right)$ and hence $Y_{1} \cup Y_{2} \varsubsetneqq X_{1} \circ X_{2}$. Therefore (ii) implies (iii).

Now we show (iii) implies (i). For $i=1,2, X_{i}$ bipartite implies there exists an epimorphism

$$
\phi_{i}: x_{i} \longrightarrow C(2)
$$

Hence $\phi: X_{1} \circ X_{2} \rightarrow C(2) \circ C(2)$ defined by

$$
\phi\left(x_{1}, x_{2}\right)=\left(\phi_{1} x_{1}, \phi_{2} x_{2}\right)
$$

is also an epimorphism. But $C(2) O C(2)$ is disconnected and therefore $X_{1} \circ X_{2}$ is disconnected. Hence (iii) \Rightarrow (i) . This completes the proof.
1.12. PROPOSITION: Let X_{1} be a bipartite graph and X_{2} any graph with $E\left(X_{2}\right) \neq \emptyset$, then $X_{1} \circ X_{2}$ is bipartite.

PROOF. X_{1} bipartite implies there exists an epimorphism $\phi: X_{1} \longrightarrow C(2)$. Hence $\phi \circ \mathrm{pr}_{1}: \mathrm{X}_{1} \odot \mathrm{X}_{2} \longrightarrow \mathrm{C}(2)$ is an epimorphism and therefore $X_{1} \circ X_{2}$ is bipartite.
1.13. PROPOSITION: For each $a \varepsilon A$, 1et X_{a} be a non-bipartite graph with odd mesh $=n_{a}$. Then the cardinal product $\prod_{a \in A}^{0} X_{a}$ is nonbipartite (with odd mesh $=\sup _{\operatorname{a\varepsilon A}} n_{a}$) if and only if $\sup _{a \in A} n_{a}<\infty$.

PROOF. Let $X=\prod_{a \varepsilon A}^{o} X_{a}$. First assume $\sup _{a \in A} n_{a}=n<\infty$.
For each a\&A let C_{a} be a circuit of odd order n_{a} in X_{a}. Then there exists an $a_{0} \varepsilon A$ with $\left|C_{a_{0}}\right|=n$. For each $a \varepsilon A, n_{a}, n$ odd and $\mathrm{n}_{\mathrm{a}} \leqq \mathrm{n}$ imply that there exists an epimorphism

$$
\phi_{a}: C_{a_{0}} \longrightarrow C_{a}
$$

Since $\phi_{a_{0}}$ is a monomorphism, $\phi=\prod_{a \in A}^{o} \phi_{a}$ is a monomorphism from $C_{a_{0}}$ to $\prod_{a \varepsilon A}{ }^{\circ} X_{a}$. Hence $\phi C_{a_{0}} C X$ is an odd circuit of order n, i.e., X is non-bipartite.

Now let $C \subset X$ be an odd circuit. For $a \varepsilon A, p r a: X \longrightarrow X_{a} a$ homoporphism implies $\operatorname{pr}_{a} C$ is a non-bipartite subgraph of X_{a} and has odd mesh $\leqq\left|\mathrm{pr}_{\mathrm{a}} \mathrm{C}\right|$. Hence

$$
n_{a} \leq\left|p r_{a} c\right| \leqq|c|, \quad \text { for all } a \varepsilon A
$$

This proves the necessity part of the theorem, as well as, in combination with the first part of the proof, that $n=$ odd mesh of $\prod_{a \in A}^{o} X_{a}$.

Let A be an index set and each $a \varepsilon A$ let X_{a} be a graph with
chromatic number $X\left(X_{a}\right)=n_{a}$, i.e., n_{a} is the least cardinal for which there exists a homorphism $\phi_{a}: X_{a} \rightarrow C\left(n_{a}\right)$. Since $p r_{b}: \prod_{a \varepsilon A}^{o} X_{a} \longrightarrow X_{b}$ is a homomorphism for each $b_{\varepsilon A}$, we have that $\phi_{b}{ }^{0} p_{b}: \prod_{a \varepsilon A}^{o} X_{a} \longrightarrow C\left(n_{b}\right)$ is also a homomorphism, i.e.,

$$
x\left(\prod_{a \varepsilon A}^{o} X_{a}\right) \leq \min _{a \varepsilon A} x\left(X_{a}\right)
$$

It has been conjectured ([2], Conj.,1.2) that equality holds for A finite. By 1.13 we have that $\prod_{n>1}{ }^{\circ} C_{2 n+1}$ is bipartite, i.e., $x\left(\prod_{n>1}{ }^{\circ} C_{2 n+1}\right)=2$, where $C_{2 n+1}$ is a circuit of order $2 n+1$, whereas $X\left(C_{2 n+1}\right)=3$, for $n \geq 1$. Hence the above conjecture can not be extended to A countable.

We will describe $\prod_{n \geqslant 1}{ }^{\circ}{ }_{2 n+1}$ in greater detail after 1.15 .
1.14. LEMMA: Let X be a connected non-bipartite graph of
finite diameter $d, x, y \in V(X)$ not necessarily distinct, and $P=\left[p_{0}, \ldots, p_{s}\right]$ a path of even length $\geq 4 \mathrm{~d}$. Then there exists a homomorphism $\phi: P \longrightarrow X$ such that $\phi p_{0}=x$ and $\phi p_{s}=y$.

PROOF. Let $C=\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ be a circuit of least odd order. Note that $n \leqq 2 d$. Let Q_{1} be a shortest path joining x and z_{0} in X of length r_{1}, and Q_{3} a shortest path joining z_{n} and y in X of length r_{3}. Let

$$
Q_{2}=\left\{\begin{array}{lll}
C \backslash\left[z_{0}, z_{n}\right] & , \text { if } & r_{1}+r_{3} \\
{\left[z_{0}, z_{n}\right]} & \text { is even }, & \text { if } \\
r_{1}+r_{3} & \text { is odd }
\end{array}\right.
$$

Then

$$
r=r_{1}+r_{2}+r_{3},
$$

where r_{2} is the length of Q_{2}, is even and $r \leqq 4 d$. Let $P^{\prime}=\left[p_{o}, \ldots, p_{r}\right]$. Clearly there exists a homomorphism $\psi: P^{\prime} \rightarrow Q_{1} \cup Q_{2} \cup Q_{3}$ such that $\psi p_{o}=x$ and $\psi p_{r}=y$. But r, s even and $r \leqq s$ implies there exists a homomorphism $v: P \longrightarrow P^{\prime}$ such that $\nu p_{0}=p_{0}$ and $\quad \nu p_{s}=p_{r}$. Then $\psi 0 \vee: P \longrightarrow X$ is the desired homomorphism.
1.15. PROPOSITION: The cardinal product of a family (X_{a}) $a \in A$ of connected non-bipartite graphs is connected if and only if

$$
B=\left\{b \varepsilon A \mid \operatorname{diam} X_{b}=\infty\right\}
$$

is finite, and

$$
D=\left\{\operatorname{diam} X_{a} \mid a \varepsilon A-B\right\}
$$

is bounded.
PROOF. Let $X=\prod_{a \in A}{ }^{\circ} X_{a}$ and assume that B is finite and D is bounded. Let $X_{1}=\prod_{b \in B}{ }^{\circ} X_{b}$ and $X_{2}=\prod_{a \varepsilon A-B}^{\circ} X_{a}$; then $X \cong X_{1} \circ X_{2}$. B finite implies by 1.11 that X_{1} is connected and by 1.13 that X_{1} is bipartite, and hence to show that X is connected it suffices by 1.11 to show that X_{2} is connected.

Let $x, y \in V\left(X_{2}\right)$ and let

$$
P=\left[p_{0}, \ldots, p_{4 s}\right]
$$

be a path of length $4 s$, where

$$
s=\sup _{a \in A-B} \operatorname{diam} X_{a}
$$

By the lemma preceding the proposition there exists a homomorphism

$$
\phi_{a}: P \longrightarrow X_{a}
$$

such that

$$
\phi_{a} p_{o}=\operatorname{pr}_{a} x \text { and } \phi_{a} p_{4 s}=\operatorname{pr}_{a} y \quad, a \varepsilon A-B
$$

Let $\phi=\prod_{a \in A-B}^{o} \phi_{a}: P \longrightarrow X_{2}$. Then

$$
\phi \mathrm{p}_{\mathrm{o}}=\mathrm{x} \quad \text { and } \quad \phi \mathrm{p}_{4 \mathrm{~s}}=\mathrm{y}
$$

Since ϕP is a connected subgraph of X_{2} and $x, y \varepsilon \phi P$ we have that X_{2} is connected and therefore X is connected.

The proof that X connected implies B is finite and D is bounded is the same as that in 1.10 .
1.16. COROLLARY: Let (X_{a}) a a be a family of connected nonbipartite graphs. If $X=\prod_{a \varepsilon A}^{O} X_{a}$ is connected then X is non-bipartite.

PROOF. X connected implies B is finite and D is bounded. Let n_{a} be the odd mesh of X_{a}. Then $n_{a} \leqq 2$ diam $X_{a}+1$ for all aعA-B . Hence

$$
\sup _{a \in A} n_{a}<\infty
$$

and therefore X is non-bipartite by 1.13. This completes the proof.
It is obvious that the converse of the corollary is not true.
We now investigate $X=\prod_{n \geq 1}^{0} C_{2 n+1}$. The reason for doing so is
that this graph is the simplest of the pathological cardinal products that exist by 1.13 and 1.15 and hence its structure is of general interest. It will be convenient to consider the vertex set of $C_{2 n+1}$ as the additive
group of integers mod $2 n+1$, i.e.,

$$
c_{2 n+1}=[-n,-(n-1), \ldots,-1,0,1, \ldots, n] .
$$

pr_{n} will denote the projection to $\mathrm{C}_{2 \mathrm{n}+1}$ and $\left|\mathrm{pr}_{\mathrm{n}} \mathrm{x}\right|$ will denote the distance of 0 and $\mathrm{pr}_{\mathrm{n}} \mathrm{x}$ in $\mathrm{C}_{2 \mathrm{n}+1}$.

Since the automorphism group of a circuit acts transitively on the vertices we have that the automorphism group of X acts transitively on $V(X)$. This is easily seen as follows: let $x, y \varepsilon V(X)$ and let ϕ_{n} be an automorphism of $C_{2 n+1}$ such that $\phi_{n}\left(p_{n} x\right)=p r_{n} y$. Then ϕ defined by

$$
p r_{n} \phi(z)=\phi_{n}\left(p r_{n} z\right) \quad, z \varepsilon V(X), n \geq 1,
$$

is an automorphism of X such that $\phi(x)=y$. Hence the automorphisms of X act transitively and therefore the components of X are all isomorphic.

Next we show that the number of components of X is $2^{X_{0}}$. For any subset A of the positive integers N define $x_{A} \varepsilon V(X)$ by

$$
\operatorname{pr}_{n} x_{A}= \begin{cases}n & n \varepsilon A \\ 0 & , \quad n \notin A .\end{cases}
$$

Let $\eta_{\text {be an }}$ uncountable subset of the power set of N such that
(i) $A \in O$ implies that A and $N-A$ are infinite,
(ii) $A, A^{\prime} \varepsilon Q, A \neq A^{\prime}$, implies $A \cap A^{\prime}$ is finite.

For $A, B \in Q, A \neq B$ we have x_{A} and x_{B} belong to different components of X since

$$
\sup _{n \geqslant 1} d_{C_{2 n+1}}\left(p r_{n} x_{A}, p r_{n} x_{B}\right)=\infty
$$

Hence the number of components of X is 2°.
Since all components of X are isomorphic we need only consider that component X_{o} that contains x_{o}, where $x_{o} \varepsilon V(X)$ is defined by $\operatorname{pr}_{\mathrm{n}} \mathrm{x}_{\mathrm{o}}=0, \mathrm{n} \geqq 1$. To see that there are uncountably many vertices in X_{o}, let $A \subset N$ and define $y_{A} \varepsilon V(X)$ by

$$
\operatorname{pr}_{n^{\prime}}{ }_{A}=\left\{\begin{array}{rl}
1 & n \in A \\
-1 & , \quad n \notin A .
\end{array}\right.
$$

Then $y_{A} \varepsilon V\left(X_{0}\right)$ in fact $\left[x_{0}, y_{A}\right] \varepsilon E\left(X_{0}\right)$, and hence $\left|x_{0}\right|=2^{\AA_{0}}$.
For $i=0,1$, let

$$
V_{i}=\left\{x \in V(X) \mid d\left(x_{0}, x\right) \equiv i(\bmod 2)\right\} .
$$

For $i=0$, 1 , we have that $x \varepsilon V_{i}$ if and only if there exists some integer $\mathrm{j} \geqq 1$ such that
(i) $\left|\mathrm{pr}_{\mathrm{n}} \mathrm{x}\right| \leqq j$ for all $\mathrm{n} \geqq 1$, and
(ii) $p r_{n} \equiv i(\bmod 2)$ for all $n>j$.

We only consider the case $i=0$. First suppose $x \varepsilon V(X)$ satisfies (i) and (ii) . Let $P=\left[p_{0}, \ldots, p_{2 j}\right]$ be a path of length $2 j$. For each $\mathrm{n} \geqq l$, it is obvious from (i) and (ii) that there exists a homomorphism $\phi_{n}: P \longrightarrow C_{2 n+1}$ such that $\phi_{n} p_{o}=0, \phi_{n} p_{2 j}=p r_{n} x$. Hence $\phi=\prod_{n \geq 1}^{0} \phi_{\mathrm{n}}: \mathrm{P} \longrightarrow \mathrm{X}$ is a homomorphism with $\phi \mathrm{p}_{\mathrm{o}}=\mathrm{x}_{\mathrm{o}}$ and $\phi \mathrm{p}_{2 \mathrm{j}}=\mathrm{x}$. Since X_{o} is bipartite, we have by 1.19 that $d\left(x_{0}, x\right)$ is even. Now suppose $j=d\left(x_{0}, x\right)$ is even, i.e., $x \varepsilon V_{0}$, and let P be a path joining x_{0} and x in X of length j. Since $\operatorname{pr}_{n} P$ is a connected subgraph of $C_{2 n+1}$ containing $p r_{n} x_{0}=0$ and $p r_{n} x$ we have

$$
\left|p_{n} x\right| \leqq\left|p r_{n} p\right|-1 \leqq j \quad, \text { for } n \geqq 1
$$

For $n>j$ we also have that $\mathrm{pr}_{\mathrm{n}} \mathrm{P}$ is a path and since P has even length the distance of $p r_{n} x_{0}=0$ and $p r_{n} x$ in $p r_{n} P$ is even. Hence the distance of $\mathrm{pr}_{n} \mathrm{x}_{0}=0$ and $\mathrm{pr}_{\mathrm{n}} \mathrm{x}$ in $C_{2 n+1}$ is even since $n>j$.
1.17 DEFINITION: Let X, X_{o} be graphs, X will be called X_{o}-admissible if and only if there exists a graph X_{1} such that
(i) $X_{0} \circ X_{1}$ is a spanning subgraph of X;
(ii) $\left[\left(x_{0}, x_{1}\right),\left(x_{0}^{\prime}, x_{1}^{\prime}\right)\right] \varepsilon E(X)$ implies $\left[x_{0}, x_{o}^{\prime}\right] \varepsilon E\left(X_{o}\right)$, and $\left[x_{1}, x_{1}^{\prime}\right] \varepsilon E\left(X_{1}\right)$ or $x_{1}=x_{1}^{\prime}$;
(iii) if $\left[\left(x_{0}, x_{1}\right),\left(x_{o}^{\prime}, x_{1}\right)\right] \varepsilon E(X)$ for some $\left[x_{0}, x_{o}^{\prime}\right] \varepsilon E\left(X_{0}\right)$ then $\left[\left(y_{o}, x_{1}\right),\left(y_{o}^{\prime}, x_{1}\right)\right] \varepsilon E(X)$ for all $\left[y_{o}, y_{o}^{\prime}\right] \varepsilon E\left(X_{o}\right)$.

In view of (iii) we can introduce, for convenience, the following subset $\mathrm{V} \subset \mathrm{V}\left(\mathrm{X}_{1}\right)$:
$\mathrm{x}_{1} \varepsilon \mathrm{~V}$ if and only if $\left[\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right),\left(\mathrm{x}_{\mathrm{o}}^{\prime}, \mathrm{x}_{1}\right)\right] \varepsilon \mathrm{E}(\mathrm{X})$ for some $\left[\mathrm{X}_{\mathrm{o}}, \mathrm{X}_{\mathrm{o}}^{\prime}\right] \varepsilon \mathrm{E}\left(\mathrm{X}_{\mathrm{o}}\right)$. Condition (iii) can then be restated as: for each $\left[\mathrm{x}_{0}, \mathrm{x}_{0}^{\prime}\right] \varepsilon \mathrm{E}\left(\mathrm{X}_{0}\right)$ and each $\mathrm{x}_{1} \varepsilon \mathrm{~V},\left[\left(\mathrm{X}_{0}, \mathrm{x}_{1}\right),\left(\mathrm{X}_{0}^{\prime}, \mathrm{x}_{1}\right)\right] \varepsilon \mathrm{E}(\mathrm{X})$. We shall also apply the term X_{0}-admissible to any graph Y isomorphic to a graph X which is X_{o}-admissible in the sense just defined. X will be called properly X_{0}-admissible if it is X_{0}-admissible and does not have X_{0} as a factor with respect to cardinal multiplication.

Note that condition (ii) implies that if X is X_{0}-admissible then $\mathrm{pr}_{\mathrm{o}}: \mathrm{X} \longrightarrow \mathrm{X}_{\mathrm{o}}$ is a homomorphism.
1.18. REMARK: For $V=V\left(X_{1}\right)$ the definition of admissibility
can be phrased in terms of still another graph multiplication as follows. Let X_{0}, X_{1} be graphs. Define $X_{0} \otimes X_{1}$ by

$$
v\left(X_{0} \otimes x_{1}\right)=v\left(x_{0}\right) \times v\left(x_{1}\right)
$$

$E\left(X_{o} \otimes X_{1}\right)=\left\{[x, y]:\left[p_{o} x, p r_{o} y\right] \varepsilon E\left(X_{o}\right)\right.$, and $\left[p r_{1} x, p r_{1} y\right] \varepsilon E\left(X_{1}\right)$ or $\left.p r_{1} \mathrm{x}=\mathrm{pr} r_{1} \mathrm{y}\right\}$. Then a graph X is X_{o}-admissible if there exists a graph X_{1} such that

$$
x \cong x_{0} \otimes x_{1}
$$

1.19. EXAMPLE: For any non-zero cardinals m, n, r, the complete bipartite graph $K_{m r, n r}$ is properly $K_{m, n}$-admissible. This follows from

$$
\mathrm{K}_{\mathrm{m}, \mathrm{n}} \otimes \mathrm{C}(\mathrm{r}) \cong \mathrm{K}_{\mathrm{mr}, \mathrm{nr}}
$$

and the fact that every complete bipartite graph is indecomposable with respect to cardinal multiplication. This can be seen as follows. If

$$
\mathrm{K}_{\mathrm{m}, \mathrm{n}} \cong \mathrm{X}_{1} \circ \mathrm{X}_{2}
$$

then each factor is a homomorphic image of $K_{m, n}$. But trivially any homomorphic image of $K_{m, n}$ is of the form $K_{r, s}$, with $r \leqq m, s \leqq n$, and hence bipartite. By l. 11 this would imply $K_{m, n}$ is disconnected, a contradiction. Hence $K_{m, n}$ is indecomposable。

We will investigate the existence of further properly X_{o}-admissible graphs after proving the following theorem.
1.20. THEOREM: If X is X-admissible and Y is any graph, then there exists a graph Y_{0} such that

$$
X \circ Y \cong X_{0} \circ Y_{0}
$$

Moreover the graph Y_{0} is Yoadmissible.
PROOF. Since X is X_{0}-admissible there exists a graph X_{1} and a subset $V \subset V\left(X_{1}\right)$ such that 1.17 (i) -(iii) hold. Put $Z=X \circ Y$ Then

$$
V(Z)=V\left(X_{0}\right) \times V\left(X_{1}\right) \times V(Y)
$$

For each $x_{1} \varepsilon V\left(X_{1}\right)$ and each $y \varepsilon V(Y)$ let

$$
\mathrm{W}_{\mathrm{x}_{1}, \mathrm{y}}=\left\{\mathrm{z} \varepsilon \mathrm{~V}(\mathrm{Z}) \mid \mathrm{pr} \mathrm{r}_{1}=\mathrm{x}_{1} \text { and } \mathrm{pr}_{2} \mathrm{z}=\mathrm{y}\right\}
$$

where pr_{2} denotes projection of $\mathrm{V}(\mathrm{Z})$ onto $\mathrm{V}(\mathrm{Y})$.
1.20 (1)

$$
W_{x_{1}, y} \cap W_{x_{1}^{\prime}, y^{\prime}}=\emptyset \text { whenever } x_{1} \neq x_{1}^{\prime} \text { or } y \neq y^{\prime}
$$

and
1.20 (2)

$$
\underbrace{}_{x_{1} \in V\left(X_{1}\right)} W_{x_{1}, y}=V(Z)
$$

This says that the sets $W_{x_{1}}, y$ are equivalence classes on $V(Z)$ with respect to some equivalence relation R. Put $Y_{0}=Z / R$. The vertex set of Y_{o} is the set of all equivalence classes $W_{x_{1}}, y$.

Define $\phi: Z \longrightarrow X_{0} O Y_{0}$ by

$$
\phi\left(x_{0}, x_{1}, y\right)=\left(x_{0}, W_{x_{1}, y}\right)
$$

In view of $1.20(1), 1.20(2), \phi$ is clearly one-one and onto.
To show that ϕ is a homomorphism take any $z=\left(x_{0}, x_{1}, y\right)$,
$z^{\prime}=\left(x_{0}^{\prime}, x_{1}^{\prime}, y^{\prime}\right) \varepsilon V(Z)$ with $\left[z, z^{\prime}\right] \varepsilon E(Z)$. Then $\left[x_{0}, x_{1}\right)$, $\left.\left(x_{o}^{\prime}, x_{1}^{\prime}\right)\right] \varepsilon E(X)$ and $\left[y, y^{\prime}\right] \varepsilon E(Y)$. Since $p r{ }_{o}: X \longrightarrow X_{o}$ is a homomorphism this implies $\left[\mathrm{X}_{0}, \mathrm{X}_{\mathrm{o}}^{\prime}\right] \varepsilon \mathrm{E}\left(\mathrm{X}_{0}\right)$. It remains to show $\left[W_{x_{1}, y}, W_{x_{1}^{\prime}, y^{\prime}}\right] \in E\left(Y_{o}\right)$. Since $y \neq y^{\prime}, W_{x_{1}, y} \neq W_{x_{1}^{\prime}, y}, \quad z \varepsilon W_{x_{1}}, y^{\prime}$ $z^{\prime} \varepsilon W_{X_{1}^{\prime}}, y^{\prime},\left[z, z^{\prime}\right] \varepsilon E(Z)$ then imply $\quad\left[W_{x_{1}, y}, W_{x_{1}^{\prime}, y^{\prime}}\right] \varepsilon E\left(Y_{o}\right)$. To prove that ϕ is an epimorphism let

$$
\left[\left(x_{0}, W_{x_{1}, y}\right),\left(x_{o}^{\prime}, W_{x_{1}^{\prime}, y^{\prime}}\right)\right] \varepsilon E\left(X_{0} \circ Y_{o}\right)
$$

Then $\left[\mathrm{x}_{\mathrm{o}}, \mathrm{x}_{\mathrm{o}}^{\prime}\right] \in \mathrm{E}\left(\mathrm{X}_{\mathrm{o}}\right),\left[\mathrm{W}_{\mathrm{x}_{1}, \mathrm{y}}, \mathrm{W}_{\left.\mathrm{x}_{1}^{\prime}, \mathrm{y}^{\prime}\right]}\right] E\left(\mathrm{Y}_{0}\right)$. This means there exist $s_{o}, s_{o}^{\prime} \varepsilon V\left(X_{o}\right)$ such that

$$
\left[\left(s_{o}, x_{1}^{\prime}, y\right),\left(s_{o}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E(z)
$$

Hence $\left[\left(s_{o}, x_{1}\right),\left(s_{o}^{\prime}, x_{1}^{\prime}\right)\right] \varepsilon E(X)$ and $\left[y, y^{\prime}\right] \varepsilon E(Y)$. Now either $\left[x_{1}, x_{1}^{\prime}\right] \in E\left(X_{1}\right)$ and then

$$
\left[\left(x_{0}, x_{1}, y\right),\left(x_{0}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E\left(X_{0} \circ X_{1} \circ Y\right) \subset E(Z)
$$

or $x_{1}=x_{1}^{\prime} \varepsilon V$ and then by 1.17 (iii) $\left[\left(x_{0}, x_{1}\right),\left(x_{0}^{\prime}, x_{1}^{\prime}\right)\right] \varepsilon E(X)$, so that again

$$
\left[\left(x_{0}, x_{1}, y\right),\left(x_{0}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E(z)
$$

This completes the proof that ϕ is an isomorphism.
In order to show that Y_{0} is Y-admissible define an equivalence relation R_{0} on $V\left(Y_{0}\right)$ by

$$
W_{x_{1}, y} R_{o} W_{x_{1}^{\prime}, y} \text {, if and only if } x_{1}=x_{1}^{\prime}
$$

Denote Y_{0} / R_{0} by Y_{1}. It is clear that the equivalence classes mod R_{0} are in one-one correspondence with the vertices of X_{1}. We shall therefore denote the equivalence class $\mathrm{R}_{\mathrm{o}}\left[\mathrm{W}_{\mathrm{x}_{1}, \mathrm{y}}\right]$ by $\overline{\mathrm{x}}_{1}$. Put

$$
\overline{\mathrm{V}}=\left\{\overline{\mathrm{x}}_{1} \varepsilon \mathrm{Y}_{1} \mid \mathrm{X}_{1} \varepsilon \mathrm{~V}\right\}
$$

and define Z^{\prime} as follows:

$$
\begin{gathered}
V\left(Z^{\prime}\right)=V(Y) \times V\left(Y_{1}\right), \\
E\left(Z^{\prime}\right)=\left\{\left[\left(y, \bar{x}_{1}\right),\left(y^{\prime}, \bar{x}_{1}^{\prime}\right)\right] \mid\left[y, y^{\prime}\right] \varepsilon E(Y),\right. \text { and } \\
\left.\left[\bar{x}_{1}, \bar{x}_{1}^{\prime}\right] \in E\left(Y_{1}\right) \text { or } \bar{x}_{1}=\bar{x}_{1}^{\prime} \in \bar{V}\right\}
\end{gathered}
$$

Clearly Z^{\prime} is Y-admissible. We will show $Z^{\prime} \cong Y_{0}$. Define $\eta: Y_{0} \longrightarrow Z^{\prime}$ by

$$
n W_{x_{1}, y}=\left(y, \bar{x}_{1}\right) .
$$

Clearly η is one-one and onto.
To prove that i is a homomorphism take $\left[W_{x_{1}, y}, W_{x_{1}^{\prime}, y^{\prime}}\right] \in E\left(Y_{0}\right)$ 。 Then there exist $x_{o}, x_{o}^{\prime} \varepsilon V\left(X_{o}\right)$ such that $\left[\left(x_{0}, x_{1}, y\right),\left(x_{o}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E(Z)$. Hence $\left[y, y^{\prime}\right] \in E(Y)$, and $\left[x_{1}, x_{1}^{\prime}\right] \varepsilon E\left(X_{1}\right)$ or $x_{1}=x_{1}^{\prime} \varepsilon V$. If $x_{1}=x_{1}^{\prime} \varepsilon V$ then $\bar{x}_{1}=\bar{x}_{1}^{\prime} \varepsilon \bar{V}$ and hence $\left[\left(y, \bar{x}_{1}\right),\left(y^{\prime}, \bar{x}_{1}^{\prime}\right)\right] \varepsilon E\left(Z^{\prime}\right)$. If $\left[x_{1}, x_{1}^{\prime}\right] \varepsilon E\left(X_{1}\right)$ then $\bar{x}_{1} \neq \bar{x}_{1}^{\prime}$; hence $\left[\bar{x}_{1}, \bar{x}_{1}^{\prime}\right] \varepsilon E\left(Y_{1}\right)$ since $\left[W_{x_{1}}, y, W_{x_{1}^{\prime}}, y_{1}^{\prime}\right] \varepsilon E\left(Y_{o}\right)$, and therefore $\left[\left(y, \bar{x}_{1}\right),\left(y^{\prime}, \bar{x}_{1}^{\prime}\right)\right] \varepsilon E\left(Y_{1}\right)$. This shows that η is a homomorphism.

To show that n is an epimorphism take $\left[\left(y, \bar{x}_{1}^{\prime}\right),\left(y^{\prime}, \bar{x}_{1}^{\prime}\right)\right] \varepsilon E\left(Z^{\prime}\right)$.

Then $\left[y, y^{\prime}\right] \in E(Y)$; and $\left[\bar{x}_{1}, \bar{x}_{1}^{\prime}\right] \varepsilon E\left(Y_{1}\right)$ or $\bar{x}_{1}=\bar{x}_{1}^{\prime} \varepsilon \bar{V}$. In the first case $\left[W_{x_{1}, z}, W_{x_{1}^{\prime}, z^{\prime}}\right] \varepsilon E\left(Y_{o}\right)$ for some $z, z^{\prime} \varepsilon V(Y)$. Hence there exist $x_{0}, x_{0}^{\prime} \varepsilon V\left(X_{0}\right)$ such that $\left[\left(x_{0}, x_{1}, z\right),\left(x_{0}^{\prime}, x_{1}^{\prime}, z^{\prime}\right)\right] \varepsilon E(Z)$. This implies $\left[\left(x_{0}, x_{1}, y\right),\left(x_{o}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E(Z), i . e_{0},\left[W_{x_{1}, y}, W_{x_{1}^{\prime}}, y^{\prime}\right] \varepsilon E\left(Y_{o}\right)$. In the second case where $\bar{x}_{1}=\bar{x}_{1}^{\prime} \varepsilon \overline{\mathrm{V}}$, we argue as follows: if $E\left(X_{0}\right)=\emptyset$ then X being X_{o}-admissible implies $E(X)=\emptyset$ and hence we could take $V=\emptyset$. Then $\overline{\mathrm{V}}=\emptyset$, and hence $\overline{\mathrm{x}}_{1}=\overline{\mathrm{x}}_{1}^{\prime} \varepsilon \overline{\mathrm{V}}$ could not arrise. If $E\left(X_{0}\right) \neq \emptyset$, take any $\left[x_{0}, x_{0}^{\prime}\right] \varepsilon E\left(X_{0}\right)$. Hence again $\left[W_{x_{1}}, y, W_{x_{1}, y},\right] \varepsilon E\left(Y_{o}\right)$.

Although this completes the proof we will finally show that if $E(Y) \neq \emptyset$ and $E\left(X_{0}\right) \neq \emptyset$ then $X_{1} \cong Y_{1}$. Let $\psi: X_{1} \longrightarrow Y_{1}$ be defined by

$$
\psi \mathrm{x}_{1}=\overline{\mathrm{x}}_{1} .
$$

As remarked earlier ψ is one-one and onto. To show that ψ is a homomorphism let $\left[x_{1}, x_{1}^{\prime}\right] \in E\left(X_{1}\right)$. Since $E\left(X_{0}\right) \neq \emptyset$, there exists $\left[s_{o}, s_{o}^{\prime}\right] \varepsilon E\left(X_{o}\right)$ and hence

$$
\left[\left(s_{o}, x_{1}\right),\left(s_{o}^{\prime}, x_{1}^{\prime}\right)\right] \varepsilon E(X) .
$$

Since $E(Y) \neq \emptyset$, there exist $y, y^{\prime} \varepsilon V(Y)$ with

$$
\left[y, y^{\prime}\right] \varepsilon E(Y) .
$$

Therefore

$$
\left[\left(s_{o}, x_{1}, y\right),\left(s_{0}^{\prime}, x_{1}^{\prime}, y^{\prime}\right)\right] \varepsilon E(z),
$$

i.e., $\left[W_{x_{1}, y}, W_{x_{1}^{\prime}, y^{\prime}}\right] \in E\left(Y_{0}\right)$. Now $x_{1} \neq x_{1}^{\prime}$ implies $\bar{x}_{1} \neq \bar{x}_{1}^{\prime}$ and therefore $\left[\bar{x}_{1}, \bar{x}_{1}^{\prime}\right] \in E\left(Y_{1}\right)$.

To show that ψ is an epimorphism is trivial and hence we have that ψ is an isomorphism. In particular if $X \cong X_{0} \otimes X_{1}$ then $Y_{0} \cong Y \otimes X_{1}$.

We now return to the question of the existence of properly X_{0}-admissible graphs. Let X_{0} be a finite graph with $E\left(X_{0}\right) \neq \emptyset, X_{1}$ a graph of odd order. Then $X=X_{0} \otimes X_{1}$ is properly X_{o}-admissible. This follows from

$$
\begin{gathered}
\left|E\left(x_{0} \otimes x_{1}\right)\right|=m_{0}\left(2 m_{1}+n_{1}\right), \\
\left|E\left(x_{0} \circ Z\right)\right|=2 m_{0} k,
\end{gathered}
$$

where $m_{i}=\left|E\left(X_{i}\right)\right|, i=0,1, k=|E(Z)|, n_{1}=\left|X_{1}\right|$. Hence if $X_{0} \otimes X_{1} \cong X_{0} \circ Z$, then

$$
2 \mathrm{~m}_{1}+\mathrm{n}_{1}=2 \mathrm{k},
$$

contrary to n_{1} being odd.
Now take Y to be any finite graph with $\mathrm{E}(\mathrm{Y}) \neq \emptyset$. By 1.20 there exists a Y-admissible graph Y_{o} such that

$$
X \circ Y \cong X_{0} \circ Y_{0}
$$

From the proof of $1.20 \quad Y_{0} \cong Y \otimes X_{1}$ and hence we have that Y_{0} is properly Y-admissible.

This shows that the decomposition of connected graphs into a cardinal product of indecomposable factors is non-unique in a very strong
sense. For if we take Y and X_{o} to be indecomposable and nonisomorphic as well then Y does not occur as a factor in either X_{o} or Y_{0} since Y_{o} is properly Y-admissible, and X_{o} does not appear as a factor in either X or Y, since X is properly X_{o}-admissible.

SECTION IV: Decomposability of products with respect to other multiplications

As a consequence of the following proposition we have that the cardinal product of two non-trivial graphs is in general not a prime graph with respect to cartesian multiplication。
1.21. PROPOSITION: Let X_{1} and X_{2} be connected graphs of bounded degree. Then $X_{1}{ }^{\circ} X_{2} \cong X_{1} \times X_{2}$ if and only if $X_{1} \cong X_{2} \cong C_{n}$, where C_{n} is an n-circuit of odd order.

PROOF. If $X_{1} \circ X_{2}=X_{1} \times X_{2}, X_{i}$ connected $i=1,2$, we have by 1.7 and 1.11 that at least one of the X_{i} 's is non-bipartite, say X_{1}. If X_{2} is bipartite then $X_{1} \circ X_{2}$ is also bipartite by 1.11 , contrary to $X_{1} \times X_{2}$ being non-bipartite. Hence both X_{1} and X_{2} are non-bipartite. Let the odd mesh of X_{1} and X_{2} be k_{1} and k_{2} respectively. Clearly $X_{1} \times X_{2}$ has odd mesh $=\min \left\{k_{1}, k_{2}\right\}$ and by 1.13 the odd mesh of $X_{1} \circ X_{2}=\max \left\{k_{1}, k_{2}\right\}$. Therefore $k_{1}=k_{2}$.

We now use the fact that X_{1} and X_{2} are of bounded degree.
For $i=1,2$ let

$$
d_{i}=\sup _{x \varepsilon X_{i}} d\left(x ; X_{i}\right)
$$

By hypothesis $d_{i}<\infty, i=1,2$. Then

$$
\sup _{x \in X_{1} \circ X_{2}} d\left(x ; X_{1} \circ X_{2}\right)=d_{1} d_{2}
$$

and

$$
\sup _{x \in X_{1} \times X_{2}} d\left(x ; X_{1} \times X_{2}\right)=d_{1}+d_{2}
$$

Since $X_{1} \circ X_{2} \cong X_{1} \times X_{2}$ we have $d_{1} d_{2}=d_{1}+d_{2}$, i.e., $d_{1}=2=d_{2}$. This together with X_{1} and X_{2} being non-bipartite graphs of the same odd mesh implies $X_{1} \cong X_{2} \cong C_{n}$, where C_{n} is an odd circuit.

To prove the converse let $C_{n}=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and define

$$
\phi: C_{n} \times C_{n} \longrightarrow C_{n} \circ C_{n}
$$

as follows: for $0 \leqq i \leqq n-1,0 \leqq j \leqq n-1$, define

$$
\phi\left(x_{i}, x_{j}\right)=\left(x_{j+i}, x_{j-i}\right)
$$

where the subscripts are taken $\bmod n$.
Since n is odd we have that $\phi: V\left(C_{n} \times C_{n}\right) \longrightarrow V\left(C_{n} \circ C_{n}\right)$ is one-one and onto. Moreover it is easily verified that $\phi: C_{n} \times C_{n} \longrightarrow C_{n} \circ C_{n}$ is an isomorphism.
1.22. PROPOSITION: In the class of graphs without isolated
vertices, the cartesian (strong) product of two non-trivial graphs is indecomposable with respect to strong (cartesian) multiplication.

PROOF. Assume the contrary, ioe., there exists an isomorphism $\phi: X_{o} \times X_{1} \longrightarrow Y_{o} * Y_{1}$, where $X_{i}, Y_{i}, i=0,1$, are non-trivial graphs without isolated vertices. Let

$$
\begin{gathered}
E_{i}=\left\{[x, y] \varepsilon E\left(X_{0} \times X_{1}\right) \mid\left[p r_{i} x, p r_{i} y\right] \varepsilon E\left(X_{i}\right)\right\}, i=0,1, \\
F_{i}=\left\{[x, y] \varepsilon E\left(Y_{0} * Y_{1}\right) \mid\left[p r_{i} x, \operatorname{pr}_{i} y\right] \varepsilon E\left(Y_{i}\right),\right. \\
\left.\operatorname{pr}_{1-i} x=\operatorname{pr}_{1-i} y\right\} \quad, i=0,1,
\end{gathered}
$$

and

$$
G=E\left(Y_{0} * Y_{1}\right)-\left(F_{o} \cup F_{1}\right)
$$

Since X_{i} has an edge, $i=0,1$, there exists a saturated 4-circuit $C=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \subset X_{0} \times X_{1}$ with $e_{o}, e_{2} \varepsilon E_{0}$, $e_{1}, e_{3} \in E_{1}$, where $e_{i}=\left[x_{i}, x_{i+1}\right], i=0,1,2$ and $e_{3}=\left[x_{3}, x_{0}\right]$. Denote ϕx_{i} by y_{i} and ϕe_{i} by $e_{i}^{\prime}, i=0, \ldots, 3$. There are three cases to consider;
$\left(1^{o}\right) \quad e_{o}^{\prime}, e_{1}^{\prime} \in G$,
(2°) exactly one of e_{o}^{\prime}, e_{1}^{\prime} is in G,
and
(3^{o}) $e_{o}^{\prime}, e_{1}^{\prime} \notin G$.
Case (1°): $e_{j}^{\prime} \varepsilon G$ implies the subgraph A_{j} generated by $y_{j}, y_{j+1}, i_{o}^{y_{j}} p_{o} y_{j+1}, i_{o}^{y_{j+1}}{ }_{p r} y_{j}$ is a complete 4-graph in $Y_{o} * Y_{1}$, $j=0,1$. Clearly $\phi^{-1} A_{j} C E_{j}, j=0,1$. Let $z_{o}=i_{o}^{y_{1}} p_{o r} y_{o}$ and $z_{1}=i_{o}^{y_{2}} \operatorname{pr}_{o} y_{1} .\left[z_{o}, z_{1}\right] \varepsilon G$ since $\left[p r_{j} z_{o}, p r_{j} z_{1}\right] \varepsilon E\left(Y_{j}\right), j=0,1$. However $\left[\phi^{-1} z_{j}, x_{1}\right] \varepsilon E_{j}$ since $\phi^{-1} A_{j} \subset E_{j}, j=0$, 1 , and hence $\left[\phi^{-1} z_{0}, \phi^{-1} z_{1}\right] \notin E\left(X_{0} \times X_{1}\right)$, a contradiction to ϕ being an isomorphism.

Case (2°): Without loss of generality take $e_{o}^{\prime} \varepsilon F_{o}$ and $e_{1}^{\prime} \varepsilon G \cdot e_{1}^{\prime} \varepsilon G$ implies the subgraph A generated by y_{1}, y_{2}, $i_{0}^{\mathrm{y}_{0}} \mathrm{pr}_{0} \mathrm{y}_{2}, \mathrm{i}_{\mathrm{o}}^{\mathrm{y}_{2}} \mathrm{pr}_{0} \mathrm{y}_{1}$ is a complete 4-graph in $\mathrm{Y}_{\mathrm{o}} * \mathrm{Y}_{1}$. Let $z=i_{0}^{y_{2}}{ }^{p r} r_{0} y_{1}$ and $e^{\prime \prime}=\left[y_{1}, z\right] .\left[y_{0}, z\right] \varepsilon G$. However $\phi^{-1} A \subset E_{1}$ implies $\phi^{-1} e^{\prime \prime} \varepsilon E_{1} ; \phi^{-1} e^{\prime \prime} \varepsilon E_{1}$ and $e_{o} \varepsilon E_{o}$ imply $\left[x_{0}, \phi^{-1} z\right] \notin E\left(X_{1} \times X_{2}\right)$, contrary to ϕ being an isomorphism.

Case (3°): Without loss of generality we need only consider the two cases $e_{o}^{\prime}, e_{1}^{\prime} \varepsilon F_{o}$, or $e_{o}^{\prime} \varepsilon F_{o}$ and $e_{1}^{\prime} \varepsilon F_{1}$. Suppose e_{o}^{\prime}, $e_{1}^{\prime} \varepsilon F_{0}$. Since Y_{1} contains no isolated vertices there exists $z \varepsilon Y_{0} * Y_{1}$ with $e^{\prime}=\left[y_{1}, z\right] \varepsilon F_{1}$ and $\left[z, y_{0}\right],\left[z, y_{2}\right] \varepsilon G$. Without loss of generality let $e=\phi^{-1} e^{\prime} \varepsilon E_{0}, e \varepsilon E_{o}, e_{1} \varepsilon E_{1}$ and e, e_{1} adjacent imply $\left[x_{2}, \phi^{-1} z\right] \notin E\left(X_{0} \times X_{1}\right)$. This is a contradiction since $\left[\phi x_{2}, z\right] \varepsilon E\left(Y_{0} * Y_{1}\right)$. The case $e_{o}^{\prime} \varepsilon F_{o}, e_{1}^{\prime} \varepsilon F_{1}$ immediately yields a contradiciton.
1.23. COROLLARY: The cartesian (strong) product of two nontrivial connected graphs is indecomposable with respect to strong (cartesian) multiplication.
1.24. PROPOSITION: In the class of graphs with at least one edge, the strong (cardinal) product is indecomposable with respect to cardinal (strong) multiplication.

PROOF. Assume instead that there exists an isomorphism $\phi: Y_{0} * Y_{1} \rightarrow X_{o} \circ X_{1}$, where $X_{i}, Y_{i}, i=0,1$ are graphs with at least one edge. There exists a complete 4 -graph $A \subset Y_{0} * Y_{1}$ with vertex set $\left\{y_{o}, y_{1}, y_{2}, y_{3}\right\}$ such that $e_{o}, e_{2} \varepsilon F_{o}, e_{1}, e_{3} \varepsilon F_{1}$ and $\left[y_{0}, y_{2}\right],\left[y_{1}, y_{3}\right] \varepsilon G$, where $e_{i}=\left[y_{i}, y_{i+1}\right], i=0,1,2$, $e_{3}=\left[y_{3}, y_{0}\right]\left(F_{0}, F_{1}\right.$ and G as in 1.22). It is easily verified that $p r_{j} \phi A$ is a complete 4 -graph in $X_{j}, j=0,1$. Set $\phi y_{i}=x_{i}, i=0, \ldots$, 3 and $\operatorname{pr}_{j} \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}^{(\mathrm{j})}, \mathrm{j}=0,1, \quad \mathrm{i}=0, \ldots, 3$. Let $\mathrm{x}_{0}^{\prime}=\left(\mathrm{x}_{2}^{(0)}, \mathrm{x}_{0}^{(1)}\right)$, $\left.x_{1}^{\prime}=x_{3}^{(0)}, x_{1}^{(1)}\right), x_{2}^{\prime}=\left(x_{0}^{(0)}, x_{2}^{(1)}\right), x_{3}^{\prime}=\left(x_{1}^{(0)}, x_{3}^{(1)}\right)$ (Fig. 1.2).

FIGURE 1.2

Now $\left[\mathrm{x}_{1}, \mathrm{x}_{3}^{\prime}\right] \notin \mathrm{X}_{\mathrm{o}} \times \mathrm{X}_{1}$ implies $\left[\mathrm{y}_{1}, \phi^{-1} \mathrm{x}_{3}^{\prime}\right] \notin \mathrm{Y}_{0} * \mathrm{Y}_{1}$ and hence $\left[y_{2}, \phi^{-1} x_{3}^{\prime}\right] \varepsilon F_{1}$, otherwise $\left[y_{1}, y_{2}, \phi^{-1} x_{3}^{\prime}\right]$ would form a triangle contradicting $\left[y_{1}, \phi^{-1} x_{3}^{\prime}\right] \notin Y_{o} * Y_{1}$. But $\left[y_{2}, y_{3}\right] \varepsilon F_{o}$, $\left[y_{2}, \phi^{-1} x_{3}^{\prime}\right] \varepsilon F_{1}$ imply $\left[y_{3}, \phi^{-1} x_{3}^{\prime}\right] \varepsilon Y_{0} * Y_{1}$, contrary to $\left[x_{3}, x_{3}^{\prime}\right] \notin X_{o} \circ x_{1}$.
1.25. COROLLARY: The strong (cardinal) product of two nontrivial connected graphs is indecomposable with respect to cardinal (strong) multiplication.

SECTION V : Products of rooted graphs.

We now turn our attention to the concept of products of rooted graphs. By 1.8 and 1.9 we have that the weak and cartesian product of infinitely many non-trivial connected graphs is disconnected. Since connectedness is essential to the question of unique prime factorization of graphs we introduce the following definitions:
1.26. DEFINITION: Let $\left(X_{a}\right)_{a \varepsilon A}$ be a family of graphs and let $r_{a} \varepsilon V\left(X_{a}\right)$, $a \varepsilon A$. By the weak cartesian product $\prod_{a \varepsilon A}\left(X_{a}, r_{a}\right)$ of the rooted graphs $\left(X_{a}, r_{a}\right)$ we mean the graph X defined by: $V(X)=\left\{x \in \prod_{a \in A} V\left(X_{a}\right) \mid \operatorname{pr} x_{a} \neq r_{a}\right.$ for at most finitely many $\left.a \varepsilon A\right\}$ $E(X)=\left\{[x, y] \mid x, y \varepsilon V(X),\left[p_{a} x, p_{a} y\right] \varepsilon E\left(X_{a}\right)\right.$ for exactly one $a \varepsilon A$, $p r_{b} x=p r_{b} y$ for $\left.b \varepsilon A-\{a\}\right\}$.

For each $b \varepsilon A$ and for each $x \in V\left(\prod_{a \varepsilon A}\left(X_{a}, r_{a}\right)\right.$ we define the injection $i_{b}^{x}: V\left(X_{b}\right) \rightarrow V\left(\prod_{a \in A}\left(X_{a}, r_{a}\right)\right)$ as in 1.4. Here $i_{b}^{X}: X_{b} \rightarrow \prod_{a \varepsilon A}\left(X_{a}, r_{a}\right)$ is also a monomorphism.

If the index set A is finite then the weak cartesian product of the rooted graphs $\left(X_{a}, r_{a}\right)$ does not depend on the roots and is equal to $\prod_{a \in A} X_{a}$.
1.27. PROPOSITION: Let $\left(\left(X_{a}, r_{a}\right)\right)_{a \varepsilon A}$ be a family of rooted graphs. If X_{a} is connected for each $a \varepsilon A$, then $X=\prod_{a \varepsilon A}\left(X_{a}, r_{a}\right)$ is connected.

PROOF. Define $r \in V(X)$ by $p r_{a}=r_{a}$, $a_{\varepsilon} A$. We will show that X is the connected component of $\prod_{a \varepsilon A} X_{a}$ containing r. For $X \varepsilon V(X)$, $\operatorname{pr}_{\mathrm{a}} \mathrm{x} \neq \mathrm{r}_{\mathrm{a}}$ for at most finitely many $\mathrm{a} \in \mathrm{A}$.

Let

$$
X_{a}^{\prime}=\left\{\begin{array}{ll}
X_{a}, & \text { if } \mathrm{pr}_{a} x \neq r_{a} \\
\left(r_{a}\right), & \text { if } \operatorname{pr}_{a} x=r
\end{array}, a \varepsilon A .\right.
$$

Then $X^{\prime}=\prod_{a \varepsilon A}\left(X_{a}^{\prime}, r_{a}\right) \subset \prod_{a \varepsilon A}\left(X_{a}, r_{a}\right)$ is connected (since X_{a}^{\prime} is connected and non-trivial for only finitely many $a \varepsilon A$) and contains r and x. It is easily verified that for $y \in V\left(\prod_{a \in A} X_{a}\right)-V(X)$, there does not exist a path joining y and r (see proof of 1.8).
1.28. DEFINITION: Let $\left(\left(X_{a}, r_{a}\right)\right)_{a \varepsilon A}$ be a family of rooted graphs. By the weak product $\prod_{a \in A}^{W}\left(X_{a}, r_{a}\right)$ of the rooted graphs (X_{a}, r_{a}) we mean the graph X defined by:
$V(X)=\left\{x \& \prod_{a \in A} V\left(X_{a}\right) \mid p r a_{a} \neq r_{a}\right.$ for at most finitely many $\left.a \varepsilon A\right\}$. For $x, y \varepsilon V(X)$,
$[x, y] \varepsilon E(X)$ if and only if there exists a non-empty finite subset BCA such that

$$
\left[\mathrm{pr}_{\mathrm{b}} \mathrm{x}, \mathrm{pr}_{\mathrm{b}} \mathrm{y}\right] \varepsilon \mathrm{E}\left(\mathrm{X}_{\mathrm{b}}\right) \quad, \mathrm{b} \varepsilon \mathrm{~B},
$$

and

$$
\mathrm{pr}_{\mathrm{a}} \mathrm{x}=\mathrm{pr}_{\mathrm{a}} \mathrm{y} \quad, \mathrm{a} \varepsilon \mathrm{~A}-\mathrm{B}
$$

Since $\mathrm{pr}_{\mathrm{b}} \mathrm{x} \neq \mathrm{pr}_{\mathrm{b}} \mathrm{y}$ for only finitely many $\mathrm{b}^{\prime} \mathrm{s}$ the condition that the subset B be finite can be dropped. Hence if we introduce a similar definition of the strong product of the family of rooted graphs this will be identical to the weak product of the family of rooted graphs.

If the index set A is finite then the weak product of the rooted graphs (X_{a}, r_{a}) does not depend on the roots and is equal to $\prod_{a \in A}^{w_{X}}{ }_{a}$.
1.29. PROPOSITION: Let $\left(\left(X_{a}, r_{a}\right)\right)$ aعA be a family of rooted graphs. If X_{a} is connected for each $a \varepsilon A$, then $\prod_{a \in A}^{W}\left(X_{a}, r_{a}\right)$ is connected.

PROOF. Similar to 1.27 .
1.30. PROPOSITION: Let $\left(n_{a}\right)$ a A be a family of cardinals, $C\left(n_{a}\right)$ a complete n_{a}-graph, $r_{a} \varepsilon V\left(C\left(n_{a}\right)\right)$, and 1et $C=\prod_{a \in A}^{w}\left(C\left(n_{a}\right), r_{a}\right)$. Then

$$
C \cong C(n)
$$

where

$$
n= \begin{cases}\prod_{a \in A}^{n_{a}} & , A \text { finite } \\ \sum_{a \varepsilon A}^{n_{a}} & , A \text { infinite }\end{cases}
$$

PROOF. If A is finite then clearly $|C|=\prod_{a \in A} n_{a}$, since here the weak product of the rooted graphs is independent of the roots and equal to the weak product. Suppose A is infinite. Take $x \in V(C)$ and define

$$
B_{x}=\left\{a \varepsilon A \mid p r_{a} x \neq r_{a}\right\}
$$

This set is finite and the mapping

$$
f(x)=\left\{\left(\operatorname{pr}_{a} x, a\right): a \in B_{x}\right\}
$$

is obviously a one-one function from $V(C)$ into the set F of all finite
subsets of $\bigcup_{a \varepsilon A} N_{a}$, where $N_{a}=V\left(C\left(n_{a}\right)\right) \times\{a\}$. Hence

$$
|C| \leqq|F|=\left|\bigcup_{a \varepsilon A} N_{a}\right|=\sum_{a \in A} n_{a},
$$

since A is infinite.

Now define $g: \bigcup_{a \varepsilon A} N_{a} \longrightarrow V(C)$ by

$$
\operatorname{pr}_{b} g(\alpha, a)=\left\{\begin{array}{l}
\alpha \text { if } b=a \\
r_{b} \text { if } b \neq a
\end{array}\right.
$$

 infinite,

$$
|c|=\sum_{a \varepsilon A} n_{a} .
$$

To show that C is complete we argue as follows: for
$\mathrm{x}, \mathrm{y} \varepsilon \mathrm{V}(\mathrm{C}), \mathrm{x} \neq \mathrm{y}$ let

$$
\mathrm{B}=\left\{\mathrm{a} \varepsilon \mathrm{~A} \mid \mathrm{pr}_{\mathrm{a}} \mathrm{x} \neq \mathrm{pr}_{\mathrm{a}} \mathrm{y}\right\}
$$

Since $\operatorname{pr}_{a} x=\operatorname{pr}_{a} y=r_{a}$ for almost all a, B is finite, and since $x \neq y, B \neq \emptyset$. Since $C\left(n_{a}\right)$ is complete, $\operatorname{pr}_{a} x \neq p r_{a} y$ implies $\left[\mathrm{pr}_{a} \mathrm{x}, \mathrm{pr}_{\mathrm{a}} \mathrm{y}\right] \varepsilon \mathrm{E}\left(\mathrm{C}\left(\mathrm{n}_{\mathrm{a}}\right)\right)$, and therefore $[\mathrm{x}, \mathrm{y}] \varepsilon \mathrm{V}(\mathrm{C})$.

We will now use the preceding proposition to show that the weak product of rooted graphs does not satisfy unique prime factorizaLion. First we note that for any integer $n, C(n)$ is indecomposable if and only if n is a prime. $C\left(\lambda_{\alpha}\right)$ can be decomposed in infinite
many distinct ways into prime factors as follows: let A be any index set with $|A|=\lambda_{\alpha}, p$ and q distinct primes. For each a a, let $n_{a}=p, n_{a}^{\prime}=q, r_{a} \varepsilon V\left(C\left(n_{a}\right)\right), r_{a}^{\prime} \varepsilon V\left(C\left(n_{a}^{\prime}\right)\right)$. Since $\mathcal{N}_{\alpha}=\sum_{a \varepsilon A} n_{a}=\sum_{a \varepsilon A} n_{a}^{\prime}$ we have by 1.22 that

$$
C\left(\lambda_{\alpha}\right) \cong \prod_{a \in A}^{w}\left(C\left(n_{a}\right), r_{a}\right) \cong \prod_{a \in A}^{w}\left(C\left(n_{a}^{\prime}\right), r_{a}^{\prime}\right) .
$$

CHAPTER II

DECOMPOSITION OF GRAPHS INTO WEAK CARTESIAN PRODUCTS

This chapter is primarily devoted to showing that every connected graph X has a weak cartesian decomposition into indecomposable factors that is unique to within isomorphisms. Roughly speaking we will exhibit an invariant equivalence relation on $E(X)$ such that two edges are equivalent if and only if they project to the same factor. To be more explicit we will investigate a particular set of equivalence relations (the acyclic equivalences (2.6) which contain $\alpha \cup \beta$ (2.8)) in the lattice of all equivalence relations on $E(X)$ and show that this is a principal filter with the following property: each equivalence in this filter gives rise to a weak cartesian decomposition of X such that two edges are equivalent if and only if they project to the same factor and the least element of the filter decomposes the graph X into prime factors. We will moreover show that to each decomposition of X as a weak cartesain product there corresponds an equivalence relation in this filter with the property that two edges are equivalent if and only if they project to the same factor. The least element will correspond to a prime decomposition.

Unless otherwise stated X, Y, ... will denote arbitrary graphs.

SECTION I: p - compatible graphs and acyclic equivalence relations.
2.1. DEFINITIONS: Let ρ be an equivalence relation on $E(X)$. A subgraph Y of X will be called ρ-compatible if and only if Y has a cover \& such that
(i) every BE\&is a proper path, and
(ii) for $B, B^{\prime} \varepsilon \mathcal{J}, E(B) \times E\left(B^{\prime}\right) \subset \rho$ or $\bar{\rho}$ according as $B=B^{\prime}$ or $B \neq B^{\prime}$.

It will be convenient to apply the term ρ-compatible to the cover \mathcal{L} as well.
2.2. CONVENTION: Let ρ be an equivalence relation on $E(X)$. When a p-compatible path P is written in the form $P=P_{1} \cup \ldots \cup P_{n}$ it is automatically understood that
(i) $\quad P_{i}$ is a proper path, $i=1, \ldots, n$,
(ii) $\quad P_{i} \cap P_{j} \neq \emptyset$ if and only if $|i-j| \leqq 1$, and
(iii) $E\left(P_{i}\right) \times E\left(P_{j}\right) \subset \rho$ or $\bar{\rho}$ according as $i=j$ or $i \neq j$.

Similarly, if a ρ-compatible circuit C is written in the form $C=P_{o} \cup \ldots U P_{n}$ it is understood that
(i) $\quad P_{i}$ is a proper path, $i=0, i, \ldots, n$,
(ii) $\quad P_{i} \cap P_{j} \neq \emptyset$ if and only if either $|i-j| \leqq 1$ or $|i-j|=n$, and
(iii) $E\left(P_{i}\right) \times E\left(P_{j}\right) \subset \rho$ or $\bar{\rho}$ according as $i=j$ or $i \neq j$ 。
2.3. REMARK: Let C be a circuit such that $E(C) \times E(C) \not \subset \rho$, where f is an equivalence on $E(X)$. Then clearly C can be uniquely expressed as the union of proper paths, each path being maximal with respect to its edges belonging to one equivalence class mod ρ, i.e., $C=P_{o} \cup \ldots \cup P_{n}$, where P_{i} is a maximal proper path such that

$$
\begin{equation*}
E\left(P_{i}\right) \times E\left(P_{i}\right) \subset \rho, i=0,1, \ldots, n \tag{1}
\end{equation*}
$$

This decomposition will be called the ρ-decomposition of C or the decomposition of C determined by ρ, and $n+1$ will be called the ρ-degree of C. We will denote the ρ-degree of C by $\operatorname{deg}_{\rho} C$. Whenever the ρ-decomposition of a circuit C is written in the form

$$
\mathrm{C}=\mathrm{P}_{\mathrm{o}} \cup \ldots \cup \mathrm{p}_{\mathrm{n}}
$$

it will automatically be understood

$$
P_{i} \cap P_{j} \neq \emptyset \text { if and on1y if either }|i-j| \leqq 1 \text { or }|i-j|=n
$$

By the maximality of the P_{i} we have

$$
\begin{equation*}
E\left(P_{i}\right) \times E\left(P_{j}\right) \subset \bar{\rho} \text { if }|i-j|=1 \text { or }|i-j|=n \tag{2}
\end{equation*}
$$

If $C=P_{0} \cup \ldots \cup P_{n}$ is not ρ-compatible there exist integers i_{0} and j_{o} with $i_{o}<j_{o}$ such that $E\left(P_{i_{o}}\right) \times E\left(P_{j_{o}}\right) \subset \rho$. If the path $P_{i_{0}+1} \cup P_{i_{0}+2} \cup \ldots \cup P_{j_{0}}$ is not ρ-compatible, there exist i_{1} and j_{1} with $\mathbf{i}_{0}<\mathbf{i}_{1}<j_{1} \leq j_{o}$ such that $E\left(P_{i_{1}}\right) \times E\left(P_{j_{1}}\right) \subset \rho$. If $P_{i_{1}+1} \cup P_{i_{1}+2} \cup \ldots \cup P_{j_{1}}$ is not ρ-compatible we can repeat the above process. Since this
can only be done a finite number of times there exist integers $1<j$ such that
2.3 (3)

$$
E\left(P_{i}\right) \times E\left(P_{j}\right)<p
$$

and

$$
\begin{equation*}
P_{i+1} \cup P_{i+2} \cup \ldots \cup P_{j} \text { is a } p \text {-compatible path. } \tag{4}
\end{equation*}
$$

2.4 PROPOSITION: Let Y be a connected ρ-compatible subgraph
of X. Then given any two distinct vertices $X, y \in Y$ there exists a ρ-compatible path foining x and y in Y.

PROOF: Since Y is connected there is a path $\left[x_{0}, \ldots, x_{m}\right] \subset Y$ such that $x_{0}=x, x_{m}=y$. Let \mathcal{L} be a ρ-compatible cover of Y and let W_{i} be that path belonging to \mathcal{L} which contains the edge $\left[x_{i=1}, x_{i}\right], 1=1$, \ldots, m. This means that W_{1}, \ldots, W_{m} are paths in \mathcal{H} such that $x \in W_{1}$, $y \varepsilon W_{m}$, and $W_{i} \cap W_{i+1} \neq \emptyset, 1=1, \ldots, m-1$. Now let n be the smallest number for which \& contains n paths $P^{(1)}, \ldots, P^{(n)}$ such that

$$
\begin{aligned}
& \text { (i) } x \varepsilon P^{(1)}, y \in P^{(n)}, \text { and } \\
& \text { (ii) } P^{(j)} \cap P^{(j+1)} \neq \emptyset, j=1, \ldots, n-1 .
\end{aligned}
$$

Then $P^{(k)} \cap P^{(j+1)}=\emptyset$ for all $k<j<\cdot n$. For if there exists a $k<j$ with $P^{(k)} \cap P^{(j+1)} \neq \emptyset$, then

$$
P^{(1)}, \ldots, P^{(k)}, P^{(j+1)}, \ldots, P^{(n)}
$$

is set of fewer than n paths in frwith properties (i) and (ii). Now put $y_{0}=x, y_{n}=y$, and for $i=1, \ldots, n-1$ define y_{i} inductively to be a vertex in $P^{(i)} \cap P^{(i+1)}$ such that no other vertex of $Q_{i}=P^{(1)} y_{i-1} y_{i}$
also belongs to $P^{(1+1)}$. Then

$$
P=\bigcup_{i=1}^{n} Q_{i}
$$

is a ρ-compatible path joining x and y in Y.
2.5 PROPOSITION: Let Y be a p-compatible subgraph of X which is not acyclic. Then Y contains a ρ-compatible finite circuit.

PROOF. Since Y is not acylic there exists a finite circuit $C=\left[x_{0}, \ldots, x_{n}\right] \subset Y$. Let \mathcal{L} be a ρ-compatible cover of Y. Let $W^{(0)}$ be that path belonging to $\mathfrak{f o w i c h}$ contains the edge $\left[x_{0}, x_{n}\right]$ and $W^{(i)}$ that path belonging to \mathcal{E} which contains the edge $\left[x_{i-1}, x_{i}\right], i=1, \ldots, n \cdot W^{(0)} \neq W^{(i)}$ for at least one i, $1 \leqq i \leqq n$. Otherwise $C \subset W^{(0)}$, a contradiction to $W^{(0)}$ being a path. Hence there exist $x_{h}, x_{k} \varepsilon W^{(0)} \cap C, 0 \leqq h<k \leqq n$, such that $x_{t} \notin V\left(W^{(0)}\right.$) for $h<t<k$.

$$
Z=\bigcup_{i=h+1}^{k} W^{(i)}
$$

is a connected ρ-compatible subgraph containing X_{h} and x_{k} and hence there exists a ρ-compatible path P joining X_{h} and x_{k} in Z. Either $W_{X_{h} x_{k}}^{(o)} \cup P$ is the desired ρ-compatible circuit or there exists an $x \in W_{X_{h}}^{(0)} \cap P$ such that $W_{X_{h}}^{(0)} \cup P_{x x_{h}}$ is the required circuit.
2.6. DEFINITION: An equivalence relation ρ on $E(X)$ is called acyclic if and only if every ρ-compatible subgraph of X is acyclic.

2.7. PROPOSITION: A necessary and sufficient condition that

ρ be acyclic is that X contain no ρ-compatible finite circuit.

PROOF. Necessity: Assume that ρ is not acyclic. By definition there exists a ρ-compatible subgraph of X which is not acyclic and hence by 2.5, X contains a ρ-compatible finite circuit.

Sufficiency: Trivial.

SECTION II: The binary relations α and β

The following two binary relations α and β on $E(X)$ are of considerable importance in our subsequent considerations.
2.8. DEFINITION: Let X be a graph, e, $e^{\prime} \varepsilon E(X)$.
$e \alpha e^{\prime}$ if and only if
(i) e and e^{\prime} are adjacent, and
(ii) among the saturated subgraphs of X which contain e and e^{\prime} there is no 4-circuit.
e βe^{\prime} if and only if
(i) e and e^{\prime} are not adjacent, and
(ii) among the saturated subgraphs of X which contain e and e^{\prime} there is a 4-circuit.

In general, neither α nor β is an equivalence relation. By ρ_{0} we shall denote the smallest equivalence on $E(X)$ which contains $\alpha \cup \beta$.

Note that if X is connected and contains no 4-circuit, or if X is connected and every 4 -circuit of X has a diagonal, then $\rho_{0}=E(X) \times E(X)$.
2.9. PROPOSITION: Let X be a connected graph and let ρ be an equivalence on $E(X)$ containing $\alpha \cup \beta$. Then given any vertex $x \in X$ and any equivalence class E mod ρ, there is an $e \varepsilon E$ which is incident with x Hence $E(X)$ consists of at most $\min _{x \in X} d$ equivalence classes $\bmod \rho$.

PROOF. Suppose there is no edge in E which is incident with x. Let x_{o} be a vertex of X such that
(i) x_{o} is incident with some $\mathrm{e} \varepsilon \mathrm{E}$, and
(ii) among all vertices having property (i), x_{0} has minimal distance from x .

Let P be a shortest path joining x and x_{0} and let $e_{0}=\left[x_{0}, x_{1}\right]$ be that edge of P which is incident with x_{0}. Note that $e_{o} \notin E$, for otherwise x_{1} would be incident with an edge of E, contrary to (ii). $e_{0} \notin$ implies $e_{o} \overline{p e}$, hence $e_{o} \bar{\alpha} e$. Since e_{o} and e are adjcent, there is a saturated 4-circuit C which contains both e_{0} and e. Let e^{\prime} be the edge of C opposite e. Then $e^{\prime} \beta e$, hence $e^{\prime} \varepsilon E$. But e^{\prime} is incident with x_{1}, a contradiction against (ii).

SECTION III: Construction of ladders.
2.10. CONSTRUCTION: By a ladder is meant a graph which is iscmorphic to the cartesian product of an edge with a proper path.

Let p be an equivalence on $E(X)$ which contains $\alpha \cup \beta$. Let x, y, x^{\prime} be distinct vertices of $x, e=\left[x, x^{\prime}\right] \varepsilon E(X)$, and let P be a path joining x and y with $E(P) \times\{e\}<\bar{\rho}$. We will now give a method for constructing a ladder in X from e and P provided that one of the following conditions holds:
(i) P is a shortest path joining x and y,
(ii) p is acyclic and $P=P_{1} \cup \ldots \cup P_{n}$ is a ρ-compatible path joining x and y (here P need not be a shortest path joining x and y).

Denote the consecutive vertices of P by $x_{0}=x, x_{1}, \ldots$, $x_{s-1}, x_{s}=y$ and let $e_{i}=\left[x_{i-1}, x_{i}\right], i=1, \ldots, s, e \bar{\rho} e_{1}$ implies $e \bar{\alpha} e_{1}$. Since e and e_{1} are adjacent X contains a saturated 4-circuit

$$
C_{1}=\left[x_{0}, x_{1}, x_{1}^{\prime}, x_{o}^{\prime}=x^{\prime}\right]
$$

such that $e, e_{1} \varepsilon E\left(C_{1}\right)$. Let

$$
e^{(o)}=e, e^{(1)}=\left[x_{1}, x_{1}^{\prime}\right] \text { and } e_{1}^{\prime}=\left[x^{\prime}, x_{1}^{\prime}\right] .
$$

Then $e_{1} \beta e_{1}^{\prime}$, and $e \beta e^{(1)}$, so that $e^{(1)-e_{2}}$ (otherwise e $\beta e^{(1)}{ }_{\rho e_{2}}$, contrary to $\left.\bar{e} \bar{p} e_{2}\right)$. This implies $e^{(1)-\bar{\alpha} e_{2}^{\prime}}$, hence again X contains a
saturated 4-circuit

$$
c_{2}=\left[x_{1}, x_{2}, x_{2}^{\prime}, x_{1}^{\prime}\right]
$$

such that $e^{(1)}, e_{2} \varepsilon E\left(C_{2}\right)$. Thus we obtain two new edges

$$
e^{(2)}=\left[x_{2}, x_{2}^{\prime}\right] \text { and } e_{2}^{\prime}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]
$$

such that $e_{2} \beta e_{2}^{\prime}$ and $e^{(1)} \beta e^{(2)}$. Proceeding in this manner we produce two new sequences,

$$
e_{1}^{\prime}, \ldots, e_{s}^{\prime} \text { and } e^{(0)}, \ldots, e^{(s)}
$$

of edges of X such that
2.10 (1) e_{i}^{\prime} and e_{i+1}^{\prime} are either equal or adjacent, $i=1, \ldots, s-1$,
2.10
(2) $e_{i} \beta e_{i}^{\prime}, i=1, \ldots, s$,
$2.10 \quad(3) e^{(0)} \beta e^{(1)} \beta \ldots \beta e^{(s)}$.
Let $Q=e_{1}{ }^{\prime} \cup e_{2}^{\prime} \cup \ldots \cup e_{s}^{\prime}$.

Now if we assume that P is a shortest path joining x and y we can show the above construction yields a ladder. We first prove that $P \cap Q=\emptyset . \quad$ Assume instead that there exist

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{i}} \varepsilon P, \quad 0 \leqq i \leqq s, \\
& \mathbf{x}_{j}^{\prime} \varepsilon Q, \quad 0 \leqq j \leqq s,
\end{aligned}
$$

with

$$
x_{i}=x_{j}^{\prime}
$$

and without loss of generality we may take $i<j . j \neq i+1$ since
$C_{i}=\left[x_{i}, x_{i+1}, x_{i+1}^{\prime}, x_{i}^{\prime}\right]$ was a saturated 4 -circuit and hence $x_{i} \neq x_{i+1}^{\prime}$ 。 Therefore $j-i \geqq 2$ and hence

$$
\left[x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}=x_{j}^{\prime}, x_{j}, \ldots, x_{s}=y\right]
$$

is a path joining x and y of length less than s. This is a contradiction to the minimality of the length of P. Hence $P \cap Q=\emptyset$. Next we show Q is a path of length s. Assume the contrary, i.e., there exist

$$
x_{i}^{\prime}, x_{j}^{\prime} \varepsilon Q, 0 \leqq i \leqq s, 0 \leqq j \leqq s \text { with } x_{i}^{\prime}=x_{j}^{\prime},
$$

and take $i<j$. If $i+2<j$ then

$$
\left[x=x_{0}, x_{1}, \ldots, x_{i}, x_{i}^{\prime}=x_{j}^{\prime}, \ldots, x_{s}=y\right]
$$

is a path of length less than s joining x and y, contradicting the minimality of the length of P. If $i+2=j$ then

$$
C=\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+2}^{\prime}=x_{i}^{\prime}\right]
$$

is a 4-circuit containing $e^{(i)}$ and e_{i+1} (Fig. 2.1) $\cdot e^{(1)-\bar{p} e_{i+1}}$ implies $e^{(i)} \bar{\alpha}_{i+1}$ and hence C has at least one diagonal.
$\left[x_{i}^{\prime}, x_{i+1}\right] \notin E(X)$ since $C_{i}=\left[x_{i}, x_{i+1}, x_{i+1}^{\prime}, x_{i}^{\prime}\right]$ was a saturated 4circuit. Therefore $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+2}\right] \varepsilon \mathrm{E}(\mathrm{X})$. Hence

$$
\left[\underline{x}=x_{0}, x_{1}, \ldots, x_{i}, x_{i+2}, \ldots, x_{s}=y\right]
$$

is a path of length $s-1$ joining x and y, contradicting the minimality of the length of P.

Therefore Q is a path of length s and $P \cup Q \cup e^{(0)} \cup \ldots \cup e^{(s)}$ is isomorphic to $P \times\{e\}$.

FIGURE 2.1

Now assume instead that ρ is acyclic and that $P=P_{0} \cup \ldots \cup P_{n}$ is a ρ-compatible path joining x and y 。 (Here P need not be a shortest path.) We shall only consider the case $n=1$. The reader will have no difficulty in extending the argument to $n \geqq 2$. Suppose there exist vertices $x_{i}{ }^{\prime}, x_{j}{ }^{\prime} \varepsilon Q$ with $x_{i}^{\prime}=x_{j}{ }^{\prime}$ and $i<j$. Since $\alpha \cup B \subset \rho, 2.10$ (3) implies $e^{(i)} \rho e^{(j)}$. Hence

$$
e_{i+1} \cup \ldots v e_{j}, e^{(j)} \cup e^{(i)}
$$

would form a ρ-compatible circuit contradicting the acyclicity of ρ (Fig. 2.2). Therefore Q is again a path length s.

If $P \cap Q \neq \emptyset$, then there exist $x_{i} \varepsilon P, x_{j}^{\prime} \varepsilon Q, \circ \leqq i \leqq s$, $0 \leqq j \leqq \mathrm{~s}$ with $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}{ }^{\prime}$. Again we may assume without loss of generality that $i<j . P \times\{e\} \subset \bar{\rho}$ and $e \rho e^{(j)}$ imply $P \times\left\{e^{(j)}\right\} \subset \bar{\rho}$. Hence

$$
e^{(i)}, e_{i+1} \cup \ldots \cup e_{j}, e^{(j)}
$$

form a ρ-compatible circuit contradicting the acyclicity of ρ. Thus condition (ii) also insures that the construction yields a ladder.

In the above construction we will refer to Q as the path opposite P and to $e^{(i)}$ as the ith rung of the ladder.
2.11. PROPOSITION: Let ρ be an equivalence on $E(X)$ containing $\alpha \cup \beta$. Let x, y, x^{\prime} be distinct vertices of $x, e=\left[x, x^{\prime}\right] \varepsilon E(X)$, and 1et P be a path foining x and y such that $E(P) \times\{e\}<\bar{\rho}$. If
(i) Pue is a shortest path joining x and y
(ii) ρ is acyclic and P is a shortest path joining x and y
(iii) ρ is acyclic and P is a saturated ρ-compatible path joining x and y
then a saturated ladder can be constructed in X from P and e.
REMARK: If ρ is an acyclic equivalence on $E(X)$ containing $\alpha \cup \beta$ with the further condition that every circuit has a ρ-decomposition then one can show that every ρ-compatible path is saturated.

PROOF. Condition (ii) or (iii) immediately implies that a ladder can be constructed. If $P \cup e$ is a shortest path joining x^{\prime} and y then P must be a shortest path joining x and y. Therefore in any of the three cases a ladder can be constructed. Again denote the consecutive vertices of P by $x=x_{0}, x_{1}, \ldots, x_{s}=y$, let $e_{i}=\left[x_{i-1}, x_{i}\right], i=1, \ldots, s$ and let

$$
P \cup Q \cup e \cup e^{(1)} \cup \ldots \cup e^{(s)}
$$

be the ladder constructed in 2.10 where

$$
Q=\left[x^{\prime}=x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right],
$$

and

$$
e_{i}^{\prime}=\left[x_{i-1}^{\prime}, x_{i}^{\prime}\right], i=1, \ldots, s
$$

We first show if (i) holds the ladder is saturated. P being a shortest path joining x and y immediately implies $\left[x_{i}, x_{j}\right] \notin E(X)$ for $x_{i}, x_{j} \varepsilon P$ with $|i-j|>1$. Suppose $\left[x_{i}, x_{j}{ }^{\prime}\right] \varepsilon E(X), x_{i} \in P, x_{j}{ }^{\prime} \varepsilon Q$, ($i \neq j$) and without loss of generality we may take $j-i \geqq 1$. Then

$$
\left[x=x_{0}, x_{1}, \ldots, x_{i}, x_{j}^{\prime}, x_{j}, \ldots, x_{s}=y\right]
$$

is a path joining x and y of length $s+2-(j-1)$, and by the minimality of the length of P this implies either $j=i+1$ or
$j=i+2$. But by the construction of the ladder $C_{i}=\left[x_{i}, x_{i+1}, x_{i+1}^{\prime}, x_{i}{ }^{\prime}\right]$ is a saturated 4 -circuit and therefore $\left[x_{i}, x_{i+1}^{1}\right] \notin E(X)$. Hence $\mathrm{j} \neq \mathrm{i}+1$. If $\mathrm{j}=\mathrm{i}+2$ then

$$
c=\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+2}^{\prime}\right]
$$

is a 4 -circuit containing e_{i+1} and $e^{(i+2)} \cdot e_{i+1} \bar{\rho} e^{(i+2)}$ implies $e_{i+1} \bar{\beta} e^{(i+2)}$, hence C must contain a diagonal. This is a contradiction since we have already shown $\left[x_{i+1}, x_{i+2}^{\prime}\right] \notin E(X)$ and $\left[x_{i}, x_{i+2}\right] \notin E(X)$. (Note - we have not used the fact that PUe is a shortest path joining x^{\prime} and y so far, only that P is a shortest path.) The minimality of the length of $P \cup e$ immediately implies $\left[x_{i}^{\prime}, x_{j}^{\prime}\right] \notin E(X)$ for $x_{i}{ }^{\prime}, x_{j}{ }^{\prime} \varepsilon Q$ with $|j-i|>1$. Hence if (i) holds the ladder is saturated. Now assume ρ is acyclic and P is a shortest path joining x and y (here Pue need not be a shortest path). From the paragraph above we already have $\left[x_{i}, x_{j}\right] \notin E(X)$ for $x_{i}, x_{j} \in P$ with $|j-i|>1$ and $\left[x_{i}, x_{j}{ }^{\prime}\right] \notin E(X)$ for $x_{i} \varepsilon P$ and $x_{j}{ }^{\prime} \varepsilon Q, i \neq j$. Suppose there exist $x_{i}{ }^{\prime}, x_{j}{ }^{\prime} \varepsilon Q$ with

$$
e_{o}=\left[x_{i}^{\prime}, x_{j}^{\prime}\right] \varepsilon E(X)
$$

and take $j-i>1$. Then

$$
\left[x=x_{0}, x_{1}, \ldots, x_{i}, x_{i}^{\prime}, x_{j}^{\prime}, x_{j}, \ldots, x_{s}=y\right]
$$

is a path joining x and y of length $s+3-(j-i)$, and by the minimality of the length of P this implies either $j=i+2$ or $j=i+3$.

Suppose $j=i+2$. Since $e_{o}, e_{i+1}^{\prime}, e_{i+2}^{\prime}$ are the edges of a triangle the acyclicity of ρ implies $e_{o} \rho e_{i+1}^{\prime} \rho e_{i+2}^{\prime}$ 。 Recall that $e_{i} B e_{i}{ }^{\prime}$. Hence $e_{o} \rho e_{i+1} \rho e_{i+2}$ so that $e_{o} \bar{\rho}^{(i)}$. This implies X contains a saturated 4-circuit

$$
c=\left[x_{i}, x_{i}^{\prime}, x_{i+2}^{\prime}, z\right]
$$

(Fig. 2.3). Clearly $z \neq x_{i+1}, x_{i+2} \cdot e^{(i)} \beta\left[x_{i+2}^{\prime}, z\right], e_{o} \beta\left[x_{i}, z\right]$, respectively, imply $e^{(i)} \rho\left[x_{i+2}^{\prime}, z\right]$ and $e_{o} \rho\left[x_{i}, z\right] \cdot e^{(i+2)} \rho\left[x_{i+2}^{\prime}, z\right]$ and $e_{i+1}{ }^{p e}{ }_{i+2} \rho\left[x_{i}, z\right]$ imply $\left[x_{i+2}, x_{i+2}^{\prime}, z, x_{i}, x_{i+1}\right]$ is a ρ-compatible circuit contradicting the acyclicity of ρ.

FIGURE 2.3

If $j=i+3$, then

$$
c=\left[x_{i}^{\prime}, x_{i+1}^{\prime}, x_{i+2}^{\prime}, x_{i+3}^{\prime}\right]
$$

is a 4-circuit. Since we have already shown that $\left[x_{i}^{\prime}, x_{i+2}^{\prime}\right] \notin E(X)$ and $\left[x_{i+1}^{\prime}, x_{i+3}^{\prime}\right] \in E(X), C$ is a saturated 4 -circuit. Therefore $e_{0} \beta e_{i+2}^{\prime}$ and $e_{i+1}^{\prime} \beta e_{i+3}^{\prime}$ and hence $e_{0} \beta e_{i+2}^{i}$ and $e_{i+1}^{\prime} \rho e_{i+3}^{\prime}$. $e_{0} \overline{p e}^{(i)}$ implies that there exists a saturated 4-circuit

$$
C^{\prime}=\left[x_{i}, x_{i}^{\prime}, x_{i+3}^{\prime}, z\right] .
$$

It is easy to verify that $z^{\neq x_{i+k}}, k=1,2,3 . e^{(i)} p e^{(i+3)}$ and $e^{(i)} p\left[x_{i+3}^{\prime}, z^{-}\right]$implies $e^{(i+3)} p\left[x_{i+3}^{\prime}, z\right]$. If $e_{o p} p e_{i+1}^{\prime}$ then

$$
e_{i+3^{p}} e_{i+2^{p}} e_{i+1^{p}}^{p}\left[x_{i}, z\right] .
$$

Hence

$$
\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+3}, x_{i+3}^{\prime}, z\right]
$$

is a ρ-compatible circuit, contradicting the acyclicity of ρ. If $e_{o} \overline{p e}_{i+1}^{\prime}$ then $e_{i+1} \overline{p e}_{i+2}$ (since $e_{i+1}^{\prime p e_{i+1}}$ and $e_{o} p e_{i+2}^{\prime} p e_{i+2}$), and hence X contains a saturated 4 -circuit

$$
\left[x_{i}, x_{i+1}, x_{i+2}, z^{\prime}\right]
$$

(Fig. 2.4). Clearly $z^{\prime} \neq x_{i+3}$. Hence $\left[z, x_{i}, z^{\prime}, x_{i+2}, x_{i+3}, x_{i+3}^{\prime}\right]$ or $\left[z, x_{i+2}, x_{i+3}, x_{i+3}^{\prime}\right]$ is a p-compatible circuit, according as $z \neq z^{\prime}$ or $z=z^{\prime}$, a contradiction to the acyclicity of p. Hence if (ii) holds the ladder is saturated.

FIGURE 2.4

Finally we show that if ρ is acyclic and $P=P_{o} \cup \ldots \cup P_{n}$ is a saturated ρ-compatible path joining x and y, the ladder is saturated. Suppose

$$
e_{o}=\left[x_{i}, x_{j}^{\prime}\right] \varepsilon E(X)
$$

for $x_{i} \varepsilon P, x_{j}^{\prime} \varepsilon Q$, $i \neq j$. Without loss of generality take $i<j$. Since P is a p-compatible saturated path with $E(P) \times\{e\} \subset \bar{\rho}, P_{x_{i}} x_{j}$ is also a ρ-compatible, saturated path with $E\left(P_{x_{i} x_{j}}\right) \times\left\{e^{(i)}\right\} \subset \bar{\rho}$, and the ladder which can be constructed from $P_{x_{i} X_{j}}$ and $e^{(i)}$ can be taken as a subgraph of the ladder constructed from P and e. Therefore we need only consider the case $i=0, j=s . \quad$ If

$$
E(P) \times\left\{e_{0}\right\} \subset \bar{p}
$$

then either

$$
P_{0}, \ldots, P_{n}, e^{(s)}, e_{0} \text { or } P_{0}, \ldots, P_{n}, e^{(s)} \cup e_{0}
$$

form a ρ-compatible circuit according as

$$
e_{0} \bar{p}^{(s)} \text { or } e_{0} p e^{(s)}
$$

a contradiction to the acyclicity of ρ. Suppose

$$
E\left(P_{k}\right) \times\left\{e_{o}\right\} \subset \rho \text { for some } k, 0 \leqq k \triangleq n
$$

We may assume that $0<k \leqq n$, for if $k=0$, then

$$
e_{0} \cup P_{o}, P_{1}, \ldots, P_{n}, e^{(s)}
$$

form a ρ-compatible circuit contradicting the acyclicity of ρ. We may, moreover, assume that k is the smallest subscript with $E\left(P_{k}\right) \times\left\{e_{o}\right\} \subset \rho$. Let

$$
P^{\prime}=P_{o} \cup \ldots \cup P_{k-1}
$$

Then $E\left(P^{\prime}\right) \times\left\{e_{0}\right\} \subset \bar{\rho}$ and hence a ladder can be constructed from P^{\prime} and e_{o}. Let

$$
Q^{\prime}=Q_{0}{ }^{\prime} \cup \ldots \cup Q_{k-1}^{\prime}
$$

be the path opposite P^{\prime} and $e_{o}^{(m)}$ the final rung of the ladder. Let z be the common vertex of Q^{\prime} and $e_{0}^{(m)}$, and let z^{\prime} be the end-vertex of P_{k} not incident with $e_{o}^{(m)}$. $\left\{e_{o}\right\} \times E\left(P_{k}\right) \subset \rho$ and $e_{o} \rho e_{o}^{(m)}$

Luply $\left\{e_{o}^{(m)}\right\} \times E\left(P_{k}\right)<f 。 z$ and z^{\prime} can be joined by a path $P_{k}{ }^{\prime \prime}$ in $e_{0}^{(m)} \cup P_{k}$ with $E\left(P_{k}^{\prime \prime}{ }^{\prime \prime}\right) \times E\left(P_{k}\right) C \rho . \quad$ Then

$$
Q_{0}^{\prime}, \ldots Q_{k-1}^{\prime}, P_{k}^{\prime \prime}, P_{k+1}, \ldots P_{n}, e^{(s)}
$$

form a p-compatible subgraph which is not acyclic, contradicting the acyclicity of 0 . Hence $\left[x_{i}, x_{j}{ }^{\prime}\right] \notin E(X)$ for $i \neq j$. Now we show that Q is saturated. Suppose $e_{0}=\left[x_{i}^{\prime}, x_{j}^{\prime}\right] \in E(X)$ for $x_{i}^{\prime} \varepsilon Q, x_{j}^{\prime} Q$ and take $i<j$. Without loss of generality we need only consider the case $i=0, j=s$ 。 If

$$
\begin{aligned}
& E(Q) \times\left\{e_{0}\right\} \subset \bar{\rho} \text { then } \\
& e_{0}, Q_{0}, \ldots, Q_{n}
\end{aligned}
$$

form a p-compatible circuit contradicting the acyclicity of ρ. Suppose

$$
E\left(Q_{k}\right) \times\left\{e_{o}\right\} \subset \rho, \text { for some } k, 0 \leq k \leqq n
$$

If $n \geq 1$ an argument similar to the one above showing that

$$
\left[x_{i}, x_{j}^{\prime}\right] \notin E(X) \text { for } i \neq j
$$

will yield a contradiction here. Suppose $n=0$. Then $e_{0} \bar{p} e$ (otherwise $e \rho e_{0} \rho e_{1}^{\prime} \beta e_{1}$, contradicting $e_{\rho} e_{1}$) implies that X contains a saturated 4-circuit $\left[\mathrm{x}_{\mathrm{s}}{ }^{\prime}, \mathrm{x}_{\mathrm{o}}{ }^{\prime}, \mathrm{x}_{\mathrm{o}}, \mathrm{z}\right]$ (Fig. 2.5). Clearly $\mathrm{z} \& \mathrm{~V}(\mathrm{P})$. Hence $e^{(s)} \cup\left[x_{s}^{\prime}, z\right],\left[z, x_{0}\right] \cup P_{0}$ form a ρ-compatible circuit contradicting the acyclicity of ρ. Thus we again have a saturated ladder.

FIGURE 2.5

Proposition 2.12 below will be proved by a straight forward application of 2.10. This proposition will be used later to show among other things that the collection of all acyclic equivalences on $E(X)$ which contain $\alpha \cup \beta$ is a filter.
2.12. PROPOSITION: Let c be an equivalence on $\mathrm{E}(\mathrm{X})$ containing $\alpha \cup B, P=P_{1} \cup \ldots U P_{n}$ a p-compatible path joining x and y. If ρ is acyclic, or if P is a shortest path joining x and y (here o need not be acyclic) then there exists a ρ-compatible path $Q=Q_{1} \cup \ldots \cup Q_{n}$ joining x and y such that
(i) $\quad\left|p_{i}\right|=\left|Q_{i+1}\right|, i=1, \ldots, n-1$
(ii) $\left|P_{n}\right|=\left|Q_{1}\right|$
(iii) $E\left(P_{i}\right) \times E\left(Q_{i+1}\right) \subset \rho, i=1, \ldots, n-1$
(iv) $E\left(P_{n}\right) \times E\left(Q_{1}\right) \subset \rho$.

REMARK: (i) and (ii) imply $|\mathrm{P}|=|\mathrm{Q}|$.

FIGURE 2.6

PROOF. We shall only consider the case $n=2$, the reader will have no difficulty in extending the argument to $n \geq 3$. Denote the consecutive vertices of P_{2} by

$$
x_{0}, x_{1}, \ldots, x_{r}=y
$$

and let

$$
e_{i}=\left[x_{i-1}, x_{i}\right], i=1, \ldots, r .
$$

If P is a shortest path joining x and y then $P_{1} \cup e_{1}$ is a shortest path joining x and x_{1}. Hence if p is acyclic or P is a shortest path joining x and $y, 2,10$ implies that a ladder can be constructed from e_{1} and P_{1}. Let

$$
e_{1}^{\prime}=\left[x, x_{1}^{\prime}\right]
$$

be the final rung of the ladder and

$$
P_{1}{ }^{(1)} \text { the path opposite } P_{1}
$$

Again it is clear that a ladder can be constructed from e_{2} and $P_{1}{ }^{(1)}$. Let

$$
e_{2}^{\prime}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]
$$

be the final rung of the ladder and

$$
P_{1}^{(2)} \text { the path opposite } P_{1}^{(1)} \text {. }
$$

Continuing in this manner we get a path $P_{1}{ }^{(r)}$, which we shall denote Q_{2}, such that

$$
E\left(Q_{2}\right) \times E\left(P_{1}\right) \subset \rho,
$$

and

$$
\left|\mathrm{Q}_{2}\right|=\left|\mathrm{p}_{1}\right|
$$

and a sequence

$$
e_{1}^{\prime}, \cdots, e_{r}^{\prime}
$$

of edges of X such that

$$
\begin{aligned}
& \text { (a) } e_{i}^{\prime} \text { and } e_{i+1}^{\prime} \text { are either equal or adjacent for } \\
& i=1, \ldots, r-1 \text {, }
\end{aligned}
$$

and
(b) $e_{i} \subset e_{i}^{\prime}, i=1, \ldots, r$.

Let

$$
Q_{1}=e_{1}^{\prime} v e_{2}^{\prime} \cup \ldots v e_{r}^{\prime}
$$

Then (b) implies

$$
\begin{aligned}
& E\left(Q_{1}\right) \times E\left(P_{2}\right) \subset \rho \\
& \text { If } \rho \text { is acyclic and } x_{i}^{\prime}=x_{j}^{\prime}, i \neq j \text {, then } P_{1}^{(i)} \cup P_{1}{ }^{(j)} \text { and }
\end{aligned}
$$ the segment of P_{2} determined by x_{i} and x_{j} form a ρ-compatible circult contradicting the acyclicity of ρ. Hence Q_{1} is a path with

$$
\left|Q_{1}\right|=\left|P_{2}\right|
$$

Also it is clear that $Q=Q_{1} \cup Q_{2}$ is a path joining x and y (otherwise we again get a contradiction to the acyclicity of ρ).

Now we assume that P is a shortest path joining x and y. By (a), $Q=Q_{1} \cup Q_{2}$ is a connected subgraph of X joining x and y; hence Q is a path and

$$
\left|Q_{1}\right|=\left|P_{2}\right|
$$

otherwise P is not a shortest path joining x and y.
2.13 DEFINITION: Let ρ be any equivalence on $E(X)$ and let C be a circuit with ρ-decomposition $C=P_{o} \cup \ldots U P_{n} . C$ is called weakly p-compatible if and only if there exists an $i, 0 \leq i \leq n$, such that $E\left(P_{i}\right) \times E\left(P_{j}\right) \subset \bar{\rho}$ for all $j, i \neq j, 0 \leqq j \leqq n$.
2.14 PROPOSITION: Let ρ be an acyclic equivalence on $E(X)$
containing $\alpha \cup \beta$. Then X does not contain any weakly ρ-compatible circuits.

PROOF. Assume the contrary. Among all weakly ρ-compatible circuits choose one, $C=P_{0} \cup \ldots \cup P_{n}$ say, whose ρ-degree is minimal, and let the notation be so chosen that $E\left(P_{0}\right) \times E\left(P_{j}\right) \subset \bar{\rho}, 1 \leqq j \leqq n$. Since ρ is acyclic, 2.3 implies that there exist $P_{i}, P_{j}, i<j$, such that 2.14 (1)

$$
E\left(P_{i}\right) \times E\left(P_{j}\right) C \rho
$$

and
2.14

$$
\begin{equation*}
Y=P_{i+1} \cup P_{i+2} \cup \ldots \cup P_{j} \tag{2}
\end{equation*}
$$

is a ρ-compatible path. Let the end vertices of Y be X and y.
2.12 implies that there exists a ρ-compatible path

$$
Y^{\prime}=P_{i+1}^{\prime} \cup \ldots \cup P_{j}^{\prime}
$$

such that
2.14

$$
\begin{equation*}
E\left(P_{i+k}\right) \times E\left(P_{i+k+1}^{\prime}\right) \subset \rho, k=1, \ldots, j-i-1 \tag{3}
\end{equation*}
$$

and
2.14 (4)

$$
E\left(P_{j}\right) \times E\left(P_{i+1}^{\prime}\right) \subset \rho
$$

Let

$$
C^{\prime}=P_{0} \cup \ldots \cup P_{i} \cup P_{i+1}^{\prime} \cup \ldots \cup P_{j}^{\prime} \cup P_{j+1} \cup \ldots \cup P_{n} .
$$

If C^{\prime} is a circuit then it is weakly ρ-compatible (since $E\left(P_{0}\right) \times E\left(P_{k}\right) \subset \bar{\rho}, k=1, \ldots, i, j+1, \ldots, n$, and $E\left(P_{o}\right) \times E\left(P_{k}^{\prime}\right) \subset \bar{\rho}$, $k=i+1, \ldots, j)$ and $d e g{ }_{\rho} C^{\prime}=n-1$ (since $E\left(P_{i}\right) \times E\left(P_{i+1}^{\prime}\right) \subset \rho$ by 2.14 (1) and 2.14 (4)), a contradiction to the minimality of n. Suppose C^{\prime} is not a circuit. Set $Y^{\prime \prime}=C \backslash Y^{\prime}$, then $C^{\prime}=Y^{\prime \prime} U Y^{\prime}$. Choose z, $\mathrm{w} \equiv \mathrm{V}\left(\mathrm{Y}^{\prime \prime}\right)$ such that
(i) $E\left(Y^{\prime \prime}{ }_{z W} \cap P_{0}\right) \neq \emptyset$,
and

$$
\text { (ii) } V\left(Y^{\prime \prime}{ }_{2 W}\right) \cap V\left(Y^{\prime}\right)=\{z, w\}
$$

Then $C^{\prime \prime}=Y_{Z W}^{\prime \prime} U Y^{\prime}{ }_{W Z}$ is weakly ρ-compatible circuit with $\operatorname{deg}{ }_{\rho} \mathrm{C}^{\prime \prime} \leqq \mathrm{n}-1$, again a contradiction to the minimality of n.
2.15. PROPOSITION: Let ρ be an equivalence on $E(X)$ containing $\alpha \cup \beta$ and let $x, y \varepsilon V(X)$ Let $P=P_{1} \cup \ldots \cup P_{n}$ and $Q=Q_{1} \cup \ldots \cup Q_{m}$ be two ρ-compatible paths foining x and y. Then $n=m$ and for each P_{i} there exists a $Q_{j}(i)$ such that $E\left(P_{i}\right) \times E\left(Q_{f(i)}\right) \subset \rho, i=1, \ldots, n$. Moreover if P and Q are shortest paths foining x and y then $\left|P_{i}\right|=\left|Q_{j(i)}\right|, i=1, \ldots, n$.

PROOF. Without loss of generality we may assume that $P \cup Q$ is a circuit. Since P and Q are both ρ-compatible, we have that $m=n$ (otherwise $P \cup Q$ is weakly ρ-compatible) and that for each P_{i} there exists a $Q_{j(i)}$ such that

$$
E\left(P_{i}\right) \times E\left(Q_{j(i)}\right) \subset p
$$

Now let us also assume that P and Q are shortest paths joining x and y and suppose that $\left|P_{i}\right| \neq\left|Q_{j(i)}\right|$ for some i,
$0 \leqq i \leqq n .2 .12$ implies that we may, without loss of generality, take $1=1$ and $f(i)=1$. However we can not assume here that PUQ is a circuit. Let $z_{1}=P_{1} \cap P_{2}$ and $z_{2}=Q_{1} \cap Q_{2},\left|P_{1}\right| \neq\left|Q_{1}\right|$ implies $z_{1} \neq z_{2}$, otherwise we get a contradiction to either P or Q being a shortest path joining x and y. Let W be a path contained in $P_{1} \cup Q_{1}$ joining z_{1} and $z_{2} . E(W) \times E(W) \subset \rho$ since $E\left(P_{1}\right) \times E\left(Q_{1}\right) \subset \rho$. $E(W) \times E\left(P_{k}\right) \subset \bar{\rho}, 2 \leq k \leq n$, and $E(W) \times E\left(Q_{k}\right) \subset \bar{\rho}, 2 \leq k \leq n$. Hence

$$
C=W \cup P_{2} \cup \ldots \cup P_{n} \cup Q_{n} \cup \ldots \cup Q_{2}
$$

is a weakly ρ-compatible circuit or contains a weakly ρ-compatible circuit, contradicting 2.14.

SECTION V: ρ-saturated subgraphs.
2.16. DEFINITION: Let ρ be any equivalence on $E(X)$. A subgraph Y of X will be called ρ-saturated if and only if
(i) Y is connected,
and

> (ii) epe' for $e \varepsilon E(X), e^{\prime} \varepsilon E(Y)$ implies $Y \cup(e)$ is disconnected or $e \varepsilon E(Y)$.

This is equivalent to saying that there exists a set $Q_{\text {of }}$ equivalence classes mod ρ such that Y is a maximal connected subgraph of X with $E(Y) \subset \cup Q$.
2.17. PROPOSITION: Let ρ be any equivalence on $E(X)$ containing $\alpha \cup \beta$, Y a ρ-saturated subgraph of X. Then any two distinct vertices of Y can be joined by a shortest path in Y which is ρ-compatible.

PROOF. We fix $x \in Y$ and use induction of $d(x, y)$, the distance of x and y in Y. For $k=1,2, \ldots$ put

$$
A_{k}=\{y \in Y: d(x, y)=k\}
$$

If $y \in A_{1}$ then $e=[x, y] \varepsilon Y$, hence $P=(e)$ trivially is a ρ-compatible path joining x and y. Assume the proposition true for all $z \varepsilon A_{k}$, and let $y \in A_{k+1}$. Then there is a $z \varepsilon A_{k}$ with $e=[y, z] \varepsilon Y$. By the induction hypothesis there is a p-compatible path
$P=P_{1} \cup \ldots \cup P_{n}$ such that P is a shortest path joining z and x in Y. If

$$
\{e\} \times E\left(P_{i}\right) \subset \bar{\rho} \text { for } i=1, \ldots, n,
$$

we are finished, because then

$$
P_{1}, \ldots, P_{n} \text { and } P_{n+1}=e
$$

form the required ρ-compatible path from x to y. We may therefore assume that

$$
\{e\} \times E\left(P_{m}\right) C \rho \text { for some } m, 1 \leq m \leq n
$$

We may then assume that $2 \leqq m \leqq n$, for if $m=1$, then $e \cup P_{1}, P_{2}$, \ldots, P_{n} form a ρ-compatible shortest path from x to y. By 2.10 there exist paths $Q_{1}, Q_{2}, \ldots, Q_{m-1}$ and an edge e^{\prime} such that

$$
Q_{1}, \ldots, Q_{m-1}, e^{\prime} \cup P_{m}, P_{m+1}, \ldots, P_{n}
$$

form a ρ-compatible shortest path from x to y. (By the maximality of $Y, Q_{1}, \ldots, Q_{m-1}$ and e^{\prime} belong to Y).
2.18. COROLLARY: If ρ is acyclic and contains $\alpha \cup \beta$, then any ρ-saturated subgraph of X is saturated.

PROOF. Let Y be a ρ-saturated subgraph of X. Suppose there exist two distinct vertices $x, y \in Y$ such that $e=[x, y] \varepsilon E(X)-E(Y)$. By the maximality of Y, e is not equivalent to any edge of Y, By 2.17 there is a ρ-compatible path P joining x and y in Y. Hence RUe is a ρ-compatible circuit, contrary to the acyclicity of ρ.

> SECTION VI: The principal filter of all acyclic equivalence relations containing $\alpha \cup \beta$.

We shall denote by $\mathcal{E}_{\alpha: \beta}$（more precisely $\mathcal{E}_{\alpha \cup \beta}(X)$ ）the collection of all acyclic equivalence relations on $E(X)$ which contain $\alpha \cup \beta \cdot \xi_{\alpha \cup \beta}(X)$ is non－empty，since $E(X) \times E(X) \varepsilon \xi_{\alpha \cup \beta}(X)$ ．

If $\phi: X \longrightarrow Y$ is an isomorphism and $\rho \varepsilon \mathcal{E}_{\alpha \cup \beta}(X)$ then $\rho_{\phi} \varepsilon \mathcal{E}_{\alpha \cup \beta}(Y)$ ，where $e \rho_{\phi} e^{\prime}\left(e, e^{\prime} \varepsilon E(Y)\right)$ if and only if $\left(\phi^{-1} e\right) \rho\left(\phi^{-1} e^{\prime}\right)$ 。 This follows from the fact that both acyclicity and the relations α ， β are defined in invariant terms．

2．19．PROPOSITION： $\mathbb{E}_{\alpha \cup \beta \text { is closed under intersection of }}$ chains，and hence contains a minimal element．

PROOF．Let \mathcal{L} be a chain in $\mathcal{E}_{\alpha \cup \beta}, \rho=\bigcap_{\sigma \varepsilon \mathcal{L}}$ ．Clearly o con－ tains $\alpha \cup \beta$ ．It remains to show that ρ is acyclic．Suppose there exists a ρ－compatible circuit $C=P_{o} \cup \ldots \cup P_{n}$ ．Let $E_{i j}=E\left(P_{i}\right) \times E\left(P_{j}\right)$ 。 $E_{i i} \subset \rho$ implies $E_{i i} C \sigma$ for every $\sigma \varepsilon \mathcal{L} 。 E_{i j} \subset \bar{\rho}$（for $i \neq j$ ）implies that there is a $\sigma_{i j} \varepsilon \tilde{\sim}$ with $E_{i j} \subset \bar{\sigma}_{i j}$ ．Let

$$
\sigma_{0}=0 \leqq i \leqq j \leqq n^{\sigma_{i j}}
$$

Then $\sigma_{0} \varepsilon \mathcal{L}$, and $E_{i j} \subset \bar{\sigma}_{0}$ whenever $i \neq j$ ．Also $E_{i i} \subset \sigma_{0}, i=0$ ，,\ldots ， n so that σ_{0} is not acyclic，a contradiction．

2．20．PROPOSITION：Let $\rho \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ and let σ be any equivalence with $\alpha \cup \beta \subset \sigma \subset \rho$ ．If C is a σ－compatible circuit then $E(C) \times E(C) \subset \rho$ ．

PROOF. Assume the contrary, i.e e_{0} there exist σ-compatible circuits that have a ρ-decomposition. Among all σ-compatible circuits of minimal σ-degree, choose one, $C=P_{0} \cup \ldots \cup P_{n}$ say, whose 0 -degree is minimal. Let $C=Q_{O} \cup \ldots \cup Q_{r}$ be the decomposition of C determined by p and let the notation be so chosen that $P_{o} \subset Q_{0}$. Note that $\sigma C O$ imp1ies

$$
Q_{i}=\bigcup\left\{P_{j}: E\left(P_{j}\right) \cap E\left(Q_{i}\right) \neq \emptyset\right\}, i=0, \ldots, r .
$$

\hat{p} is acyclic. Hence 2.3 implies without loss of generality that there exists an integer $s, 0<s<r$, such that

$$
\begin{equation*}
E\left(Q_{0}\right) \times E\left(Q_{s}\right) C_{p} \tag{2}
\end{equation*}
$$

and
2.20 (3)

$$
Y=Q_{1} \cup Q_{2} \cup \ldots \cup Q_{s} \text { is a } p \text {-compatible path } .
$$

Let the end vertices of Y be x and y. By 2.12, there exists a ρ-compatible path

$$
Y^{\prime}=Q_{1}{ }^{\prime} \cup \ldots \cup Q_{s}^{\prime}
$$

joining x and y such that

$$
E\left(Q_{i}\right) \times E\left(Q_{i+1}^{\prime}\right) C_{\rho}, i=1, \ldots, s-1
$$

and

$$
E\left(Q_{s}\right) \times E\left(Q_{1}{ }^{\prime}\right) \subset \rho
$$

Let

$$
C^{\prime}=Q_{o} \cup Q_{1} \cup Q_{2}^{\prime} \cup \ldots \cup Q_{s}^{\prime} \cup Q_{s+1} \cup \ldots \cup Q_{r} .
$$

We now show that C^{\prime} is a o-compatible circuit. Since the nota-
tion was chosen so that $P_{0} \subset Q_{0}, 2.20$ (1) implies that

$$
Y=P_{k} \cup P_{k+1} \cup \ldots \cup P_{m}, 0<k<m<n
$$

$C=P_{0} \cup \ldots \cup P_{n}$ is a σ-compatible circuit and hence $Y=P_{k} \cup P_{k+1} \cup \ldots \cup P_{m}$ is a o-compatible path. By the construction of Y^{\prime} we have that Y^{\prime} is also a σ-compatible path with $E\left(Y^{\prime}\right)$ belonging to the same set of equivalence classes modulo as $E(Y)$. Hence C^{\prime} is a σ-compatible subgraph with a σ-compatible cover of cardinality $n+1$. Again by 2.20 (1) and the fact that $C=P_{o} U \ldots U P_{n}$ is a σ-compatible circuit we have

$$
E\left(Q_{0}\right) \times E\left(Q_{S}\right) \subset \bar{\sigma}
$$

By the construction of $Q_{1}{ }^{\prime}$ we have $E\left(Q_{1}{ }^{\prime}\right)$ is contained in the same set of equivalence classes mod σ as $E\left(Q_{s}\right)$. Hence

$$
E\left(Q_{0}\right) \times E\left(Q_{1}^{\prime}\right) \subset \bar{\sigma}
$$

Therefore $E\left(Q_{0}\right) \cap E\left(Q_{1}{ }^{\prime}\right)=\emptyset$ and C^{\prime} is not acyclic. If C^{\prime} is not a circuit then by $2.5, C^{\prime}$ contains a σ-compatible circuit which can be covered by less than $n+1$ paths. A contradiction to the minimality of n . Hence C^{\prime} is a σ-compatible circuit with a σ-compatible cover of cardinality $n+1$. But $E\left(Q_{0}\right) \times E\left(Q_{1}{ }^{\prime}\right) \subset \rho$ 。 Hence the p-decomposition of C^{\prime} has less than $r+1$ paths. This is a contradiction to our choice of r 。
2.21. PROPOSITION: $\varepsilon_{\alpha \cup \beta \text { is closed under finite intersections. }}$

PROOF. Assume that there exist $\rho_{1}, \rho_{2} \quad \varepsilon_{\alpha} \mathcal{E}_{\alpha \beta}$ such that $\rho=\rho_{1} \cap \rho_{2} \notin \xi_{\alpha \cup \beta}$. Since $\alpha \cup \beta C \rho$ this implies that ρ is not acyclic.

Let $C=P_{0} \cup P_{1} \cup \ldots \cup P_{n}$ be a ρ-compatible circuit. By the previous proposition $E(C) \times E(C) \subset \rho_{i}$ for $i=1,2$ and hence $\mathrm{E}(\mathrm{C}) \times \mathrm{E}(\mathrm{C}) \subset \rho_{1} \cap \rho_{2}=\rho, \quad$ a contradiction.
2.22. PROPOSITION: Let $\rho \varepsilon \mathcal{E}_{\alpha \cup \beta \text { and let } \sigma \text { be any equivalence }}$ containing $\rho \cdot$ Then $\sigma \varepsilon \varepsilon_{\alpha \cup \beta}$.

PROOF. Suppose $\sigma \notin E_{\alpha \cup \beta}$. Then $\alpha \cup \beta \subset \rho \subset \sigma$ implies σ is not acyclic. Let C be any σ-compatible circuit. $E(C) \times E(C) \not \subset \sigma$ and $\rho \subset \sigma$ imply $E(C) \times E(C) \not \subset \rho$. Hence every σ-compatible circuit has a ρ-decomposition. Among all σ-compatible circuits of minimal order choose one, say C, whose ρ-decomposition is minimal. Let $C=P_{o} \cup \ldots \cup P_{m}$ be the σ-decomposition of C and let $C=Q_{0} \cup \ldots \cup Q_{r}$ be the ρ-decomposition of C. Note that $\rho \subset \sigma$ implies that

$$
P_{i}=\bigcup\left\{Q_{j}: E\left(P_{i}\right) \cap E\left(Q_{j}\right) \neq \emptyset\right\}, i=1, \ldots, m
$$

Since ρ is acyclic, 2.3 implies there exist $Q_{i}, Q_{j}, i<j$, such that 2.22 (1)

$$
E\left(Q_{i}\right) \times E\left(Q_{j}\right) \subset \rho
$$

and

$$
\begin{equation*}
Y=Q_{i+1} \cup Q_{i+2} \cup \ldots \cup Q_{j} \quad \text { is a } \rho \text {-compatible path } . \tag{2}
\end{equation*}
$$

$\rho \subset \sigma$ and 2.22.(1) imply $Y \subset P_{k}$ for some $k, 0 \leq k \leq m$. Let the end vertices of Y be x and y. By 2.12, there exists a ρ-compatible path
such that

$$
Y^{\prime}=Q_{i+1}^{\prime} \cup Q_{i+2}^{\prime} \cup \ldots \cup Q_{j}^{\prime}
$$

$$
E\left(Q_{i+k}\right) \times E\left(Q_{i+k+1}\right) \subset \rho, k=1, \ldots, j-i-1,
$$

$$
E\left(Q_{j}\right) \times E\left(Q_{i+1}^{\prime}\right) \subset \rho .
$$

Let

$$
C^{\prime}=Q_{o} \cup \ldots \cup Q_{i} \cup Q_{i+1}^{\prime} \cup \ldots \cup Q_{j}^{\prime} \cup Q_{j+1} \cup \ldots \cup Q_{r} .
$$

By the construction of Y^{\prime} we have $E\left(Y^{\prime}\right) \times E\left(P_{k}\right) C \sigma$. Hence it is clear that C^{\prime} is a σ-compatible circuit of minimal order. Since $E\left(Q_{i}\right) \times E\left(Q_{i+1}^{\prime}\right) \subset \rho$ the ρ-decomposition of C^{\prime} has less than $r+1$ paths - a contradiction to the minimality of r.
2.23. THEOREM: $\mathcal{E}_{\alpha \cup \beta}$ is a principal filter in the lattice of all equivalence relations on $E(X)$.

PROOF. 2.21 and 2.22 imply that $\mathcal{E}_{\alpha \cup \beta}$ is a filter. 2.19 implies that it is a principal filter.
2.24. PROPOSITION: Let ρ be the least element of $\mathcal{E}_{\alpha \cup \beta^{(X)}}$ and let E_{a}, a εA, denote the equivalence classes of $E(X)$ mod p. Then $\mathcal{E}_{\alpha \cup \beta}{ }^{(X)}$ is isomorphic to the lattice of all equivalence relations on A.

PROOF. The proposition is readily established even if we replace $\varepsilon_{\alpha \cup \beta}(X)$ by an arbitrary principal filter。
2.25. COROLLARY: Let ρ be the least element of $\mathcal{E}_{\alpha \cup \beta}(\mathrm{X})$. $\varepsilon_{\alpha \cup \beta^{\prime}}(X)$ is finite if and only if $E(X)$ consists of a finite number of equivalence classes mod $\rho \cdot$ If $E(X)$ has $n \geqq S_{0}$ equivalence classes mod ρ then $\left|\xi_{\alpha \cup \beta}(x)\right|=2^{n}$.
2.26. PROPOSITION: Let ρ be the least element of $\mathcal{E}_{\alpha \cup \beta}$. Then epe'. implies that e and e^{\prime} belong to the same component of X.

PROOF. Define σ by eae' if and only if e and e belong to the same component of X and e e e^{\prime}. Since circuits are connected, σ is acyclic. If eae', then e and e^{\prime} are adjacent, and hence belong to the same component of X; similarly, if $e ß e^{\prime}$, the two edges belong to a 4-circuit, and hence again to the same component. That is, $\sigma \supset \alpha \cup \beta$. By the minimality of $\rho, \sigma=\rho$.

SECTION VII: Weak cartesian products and acyclic equivalences.

We now turn our investigations to the relationships between weak cartesian products on the one hand and acyclic equivalences on the other.

Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$ be the weak cartesian product of the rooted graphs $\left(X_{a}, X_{a}\right)$. Then for each $e=[x, y] \varepsilon E(X)$ there exists exactly one $a \in A$ such that $\left[p r_{a} x, p r_{a} y\right] \in E\left(X_{a}\right)$. We will denote this unique member of A by $a(e)$.
2.27. PROPOSITION: Let $X=\prod_{a \varepsilon A}\left(X_{a}, x_{a}\right)$. Then $e \rho_{o} e^{\prime}$ implies $a(e)=a\left(e^{\prime}\right)$, where ρ_{0} is the smallest equivalence on $E(X)$ containing $\alpha \cup B$.

PROOF. Assume first that ede' Let $e=[x, y]$, and let $e^{\prime}=\left[x, y^{\prime}\right]$. Abbreviate $a(e)$ by a, and $a\left(e^{\prime}\right)$ by a^{\prime}, and suppose $a \neq a^{\prime}$. Define $z \varepsilon V(X)$ by $p r_{a} z=p r_{a} y, p r_{b} z=p r_{b} y^{\prime}, b \neq a$. $\left[z, y^{\prime}\right] \in E(X)$ since $\left[p r_{a} z, p r_{a} y^{\prime}\right]=\left[\operatorname{pr}_{a} y, \operatorname{pr}_{a} x\right] \in E\left(X_{a}\right)$ and $p r_{b} z=p r_{b} y^{\prime}, b \neq a .[y, z] \varepsilon E(X)$ since $\left[p r_{a}, z, p r_{a}, y\right]=$ $\left[p r_{a}, y^{\prime}, p r_{a}, x\right] \in E\left(X_{a}\right)$ and $p r_{b} z=p r_{b} y^{\prime}=p r_{b} x=p r_{b} y, b \neq a$, $a^{\prime}, \operatorname{pr}_{a} z \neq \mathrm{pr}_{\mathrm{a}} \mathrm{y}$. Hence $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{y}^{\prime}$ form a 4-circuit $\mathrm{pr}_{\mathrm{a}} \mathrm{y}^{\prime}=$ $p r_{a} \neq p r_{a} y, p r_{a^{\prime}} y^{\prime} \neq p r_{a} x=p r_{a^{\prime}} y$, i.e., y differs from y^{\prime} in more than one coordinate, hence $\left[y, y^{\prime}\right] \notin E(X)$. Similarly $[x, z] \notin E(X)$, a contradiction.

Now assume that $e e^{\prime}$. Let $e=[x, y]$ and let $e^{\prime}=\left[x^{\prime}, y^{\prime}\right]$. Then $x, y, y^{\prime}, x^{\prime}$ form a 4-circuit of X. Let $a(e)=a, a\left(e^{\prime}\right)=a^{\prime}$, $a\left(\left[x, x^{\prime}\right]\right)=b$, and $a\left(\left[y, y^{\prime}\right]\right)=b^{\prime}$. It follows that
2.27 (1)

$$
\operatorname{pr}_{c} x=\operatorname{pr}_{c} y \Leftrightarrow c \neq a
$$

$$
\begin{equation*}
\mathrm{pr}_{c} \mathrm{y}^{\prime}=\operatorname{pr}_{c} \mathrm{x}^{\prime} \Leftrightarrow \mathrm{c} \neq \mathrm{a}^{\prime} \tag{2}
\end{equation*}
$$

2.27

$$
\begin{equation*}
\operatorname{pr}_{c} x^{\prime}=\operatorname{pr}_{c} x \Leftrightarrow c \neq b \tag{3}
\end{equation*}
$$

2.27

$$
\begin{equation*}
\mathrm{pr}_{\mathrm{c}} \mathrm{y}=\mathrm{pr}_{\mathrm{c}} \mathrm{y}^{\prime} \Leftrightarrow \mathrm{c} \neq \mathrm{b}^{\prime} \tag{4}
\end{equation*}
$$

By 2.27 (1), 2.27 (3) $\mathrm{pr}_{c} \mathrm{x}^{\prime}=\mathrm{pr}_{c} \mathrm{y} \Leftrightarrow \mathrm{c} \neq \mathrm{a}, \mathrm{b} ;$ by 2.27 (2) and 2.27
$\operatorname{pr}_{c} x^{\prime}=\operatorname{pr}_{c} y \ll>c \neq a^{\prime}, b^{\prime}$. Hence there are two possiblities: either (i) $a=a^{\prime}, b=b^{\prime}$ or (ii) $a=b^{\prime}, a^{\prime}=b$. We show that (ii) can not occur. Suppose $a=b^{\prime}$ and $a^{\prime}=b$. By 2.27 (1) and 2.27 (4) $\mathrm{pr}_{\mathrm{a}} \mathrm{a}^{\mathrm{x}}=$ $\mathrm{pr}_{\mathrm{a}}{ }^{\prime} \mathrm{y}^{\prime}$; by 2.27 (2) and 2.27 (3) $\mathrm{pr}_{\mathrm{c}} \mathrm{x}=\mathrm{pr}_{\mathrm{c}} \mathrm{y}^{\prime}, \mathrm{c} \neq \mathrm{a}^{\prime}$. Hence $\mathrm{x}=\mathrm{y}^{\prime}$, a contradiction.
2.28. DEFINITION: Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$. For each $a \in A$ define $E_{a}=\{e \varepsilon E(X): a(e)=a\}$. Let ρ_{a} be the equivalence determined by the partition $\left\{E_{a}, E(X)-E_{a}\right\}$, i.e., $e \rho_{a} e^{\prime}$ if and only if either (i) $a(e)=a=a\left(e^{\prime}\right)$ or (ii) $a(e) \neq a \neq a\left(e^{\prime}\right)$.
2.29. PROPOSITION: Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$ For each $a \varepsilon A$, $\rho_{a} \varepsilon \xi_{\alpha \cup \beta}(X)$.

PROOF. We first show that ρ_{a} is acyclic. Assume the contrary. Since $E(X)$ consists of at most two equivalence classes modulo ρ there exists a ρ_{a}-compatible circuit $C=P_{o} \cup P_{1}$; without loss of generality $E\left(P_{o}\right) \subset E_{a}$. Let $\{x, y\}=P_{o} \cap P_{1} \cdot x, y \in P_{o}$ and $E\left(P_{o}\right) \subset E_{a}$ imply $\operatorname{pr}_{a} \mathrm{x} \neq \mathrm{pr}_{\mathrm{a}} \mathrm{y} \cdot$ But $\mathrm{x}, \mathrm{y} \in \mathrm{P}_{1}$ and $\mathrm{E}\left(\mathrm{P}_{1}\right) \subset E(\mathrm{X})-\mathrm{E}_{\mathrm{a}}$ imply $\mathrm{pr} \mathrm{x}=\mathrm{pr} \mathrm{a}-$ a contradiction, hence ρ_{a} is acyclic.

From 2.27 we immediately have that $\alpha \cup \beta \subset \rho_{a}$.
2.30. REMARK: Let $\rho=\bigcap_{a \varepsilon A} \rho \rho_{a}$. Then $\rho \varepsilon \mathcal{E}_{\alpha \cup \beta}(X)$ and e ρe^{\prime} if and only if $a(e)=a\left(e^{\prime}\right)$. Hence $E(X)$ consists of exactly $|A|$ equivalence classes mod ρ.
2.31. THEOREM: Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$ and let ρ be the least alemint in $E_{\alpha \cup \beta}(X)$. Then eoe' implies $a(e)=a\left(e^{\prime}\right)$.

PROOF. ρ being the least element in $\xi_{\alpha \cup \beta}(X)$ and $\rho_{a} \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ for each a $a \in$ imply $\rho \subset \rho_{a}$ for each $a \varepsilon A$. In particular $\rho \subset \rho_{a(e)}$, hence $a(e)=a\left(e^{\prime}\right)$.
2.32. PROPOSITION: Let $x \in X, e=\left[x_{0}, y_{0}\right] \varepsilon E(X), a(e)=a$. If x and x_{o} belong to the same component of X then ($\left.i_{a}{ }^{x}{ }^{p r} a\right) \rho_{o} e$.

PROOF. Since x and x_{o} belong to the same component of x it suffices to assume x and x_{o} are adjacent, i.e., $e_{o}=\left[x_{0}, x\right] \varepsilon E(X)$. Let $a\left(e_{o}\right)=a_{o}$. If $a_{o}=a$, then $i_{a}{ }_{p r} e_{a}=e$. If $a_{o} \neq a$ let y be given by $p r_{a} y=p r_{a} y_{0}, p a_{0} y=p r_{0} x, p r_{b} y=p r_{b} x_{0}$ for $b \neq a, a_{0}$. Then $C=\left[x_{0}, y_{0}, y, x\right]$ is a 4-circuit without diagonals, and $[x, y]=$ $i_{a}{ }^{\mathrm{x}}{ }^{\mathrm{pr}} \mathrm{a}$. Thus e and $\mathrm{i}_{\mathrm{a}}{ }^{\mathrm{p}}{ }_{a}{ }^{e}$ are opposite edges of C , so that $\left(i_{a}{ }^{x} r_{a}\right) \beta e$.
2.33. DEFINITION: Let $X=\prod_{a \varepsilon A}\left(X_{a}, x_{a}\right)$ and let σ be an equivalence relation on $E\left(X_{a}\right)$ for some $a \varepsilon A$. Then σ can be extended to an equivalence relation $\tilde{\sigma}$ on $E(X)$ as follows: for $e, e^{\prime} \varepsilon E(X)$ define eõe' if and only if either
(i) $a(e)=a=a\left(e^{\prime}\right)$ and $p r_{a} e \sigma p r_{a} e^{\prime}$
or

$$
\text { (ii) } a(e) \neq a \neq a\left(e^{\prime}\right) \text {. }
$$

Note that by taking $\sigma=E\left(X_{a}\right) \times E\left(X_{a}\right)$ we get 2.28 as a special case of this definition. Similarly 2.29 is a special case of the following proposition.
2.34. PROPOSITION: Let $X=\prod_{a \varepsilon A}\left(X_{a}, x_{a}\right)$ and let $\sigma \varepsilon \varepsilon_{\alpha \cup \beta}\left(X_{a}\right)$ for some $a \varepsilon A$. Then $\tilde{o} \varepsilon \varepsilon_{\alpha \cup \beta}(X)$.

PROOF. To show that $\tilde{\sigma}$ is acyclic assume the contrary, i.e., there exists a σ-compatible circuit $C=P_{o} \cup \ldots \cup P_{n}$ in X. Without loss of generality we may assume that $e \varepsilon E\left(P_{0}\right)$ implies $a(e) \neq a$ (otherwise $\mathrm{pr}_{\mathrm{a}} \mathrm{C}=\mathrm{pr}_{\mathrm{a}} \mathrm{P}_{\mathrm{o}} \cup \ldots \cup \mathrm{pr}_{\mathrm{a}} \mathrm{P}_{\mathrm{n}}$ is a σ-compatible circuit). Let $\{\mathrm{x}, \mathrm{y}\}=$ $V\left(P_{o}\right) \cap V\left(P_{1} \cup \ldots \cup P_{n}\right) \quad x, y \in V\left(P_{o}\right)$ implies $p_{a} x=p_{a} y \cdot$ But $x, y \in V\left(P_{1} \cup \ldots \cup P_{n}\right)$ implies $p r a x_{a} \neq \mathrm{pr}_{\mathrm{a}} y$, a contradiction. Hence $\tilde{\sigma}$ is acyclic.

To show that $\alpha \cup \beta \subset \tilde{\sigma}$ we first show that $\alpha \subset \tilde{\sigma}$. Let $e, e^{\prime} \varepsilon E(X)$ and eae'. By 2.27 we have $a(e)=a\left(e^{\prime}\right)$. If $a(e) \neq a$ then eõe'.
 Hence in either case we have eae' implies eõe' . A similar argument shows that $\beta \subset \tilde{\sigma}$.
2.35. PROPOSITION: Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$ If $\rho \varepsilon \mathcal{E}_{\alpha \cup \beta}(X)$ then for each $x \varepsilon X, \rho \mid i_{a} X_{a} \varepsilon \mathcal{E}_{\alpha \cup \beta}\left(X_{a}\right)$, and if moreover ρ is least then $\rho \mid i_{a}^{X_{a}} \quad$ is least.

PROOF. If $\rho \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ then $\rho \mid i_{a}^{X_{X}}$ is acyc1ic (in fact ρ restricted to any subgraph is acyclic if ρ is acyclic). Hence we need to show that $\rho \mid i_{a}^{X_{X}}$ contains $\alpha \cup \beta$ on $i_{a} X_{a}$ to establish that $\rho \mid i_{a} X_{a} \varepsilon_{a} \varepsilon_{\alpha \cup \beta}\left(X_{a}\right)$.

Let $e, e^{\prime} \varepsilon E\left(i_{a} X_{a}\right)$ with e ae' on $i_{a} X_{a}$, i.e., e and e^{\prime} are adjacent and among the saturated subgraphs of $i_{a} X_{a}$ there does not exist a
 adjacent then implies that e, e^{\prime} are contained in a saturated 4-circuit say C. Since $e, e^{\prime} \varepsilon E\left(i_{a} X_{a}\right)$ it is easily verified that $C \subset i_{a}^{x_{a}}$, a contradiction. Hence $e_{\rho} \mid i_{a} X_{a} e^{\prime}$, i.e., $\rho \mid i_{a} X_{a}$ contains α on $i_{a} X_{a}$. If $e \beta e^{\prime}$ on $i_{a} x_{a}$ then $e \beta e^{\prime}$ on X and hence ep e'. But $e, e^{\prime} \varepsilon E\left(i_{a} x_{a}\right)$ implies ep /i ${ }_{a} X_{a} e^{\prime}$. Hence we have that $\rho / i_{a} X_{a}$ contains $\alpha \cup \beta$ on $i_{a} X_{a}$.

Finally we assume that ρ is the least element of $\varepsilon_{\alpha \cup \beta}$ (X) and suppose there exists $\sigma \varepsilon \mathcal{E}_{\alpha \cup \beta}\left(i_{a}^{x_{a}} X_{a}\right)$ with $\sigma_{\neq \rho} i_{a}{ }_{a} X_{a}$. By 2.34, $\tilde{\sigma} \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ and hence $\tilde{\sigma} \cap \rho \varepsilon \mathcal{E}_{\alpha \cup \beta}(X)$. $\tilde{\sigma} \cap \rho \neq \rho$ contradicts the minimality of ρ. Hence $\rho \mid i_{a} X_{a}$ is the least element of $\mathcal{E}_{\alpha \cup \beta}\left(i_{a} X_{a}\right)$.
2.36. COROLLARY: Let $X=\prod_{a \in A}\left(X_{a}, x_{a}\right)$ be connected, and for each $a \varepsilon A$ let ρ_{a} be the least element of X_{a}. Then $\bigcap_{a \varepsilon A} \tilde{\rho}_{a}$ is the least element of $\mathcal{E}_{\alpha \cup \beta^{(X)}}$.

PROOF. $\tilde{\rho}_{a} \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ and $\mathcal{E}_{\alpha \cup \beta}(X)$ a principal filter implies $\bigcap_{a \in A} \tilde{\rho}_{a} \varepsilon \mathcal{E}_{\alpha \cup B}(X)$. Let $\rho=\bigcap_{a \in A} \tilde{\rho}_{a}$ and let σ be the least element of $\mathcal{E}_{\alpha \cup \beta}(X)$. Let $e, e^{\prime} \varepsilon E(X)$ with ep e'. Now ep e' implies $a(e)=$ $a\left(e^{\prime}\right)=a$ and $p r_{a}{ }^{e \rho}{ }_{a} p r_{a} e^{\prime}$. By $2.35 \sigma \mid i_{a} X_{a}$ is the least element of $\mathcal{E}_{\alpha \cup \beta}\left(i_{a} X_{a}\right)$. This together with ρ_{a} the least element of X_{a} and

Therefore e eq', i.e., $\rho \subset \sigma$, but σ least implies $\rho=\sigma$.
2.37. EXAMPLE: The connectedness of X is actually needed in the previous corollary as is seen in the following example:

Take $X_{1}=C(2), X_{2}=C(2)$ together with an isolated vertex, then $X_{1} \times X_{2}$ is as in figure 2.7.

FIGURE 2.7

Now ρ_{i} the least element of $\mathcal{E}_{\alpha \cup \beta}\left(X_{i}\right), i=1,2$, implies $\tilde{\rho}_{1} \cap \tilde{\rho}_{2}$ partitions $E\left(X_{1} \times X_{2}\right)$ into the two classes $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{4}, e_{5}\right\}$. However the least element of $\varepsilon_{\alpha \cup \beta}\left(X_{1} \times X_{2}\right)$ partitions $E\left(X_{1} \times X_{2}\right)$ into the three classes $\left\{e_{1}\right\},\left\{e_{2}, e_{3}\right\}$ and $\left\{e_{4}, e_{5}\right\}$.

We conclude this section with a summary of $\mathcal{E}_{\alpha \cup B^{(X)}}$.
Let $\varepsilon(X)$ denote the complete lattice of all equivalence relations on $E(X)$. Then $\mathcal{E}_{\alpha \cup \beta}(X)$ is a principal filter in $\varepsilon^{(X)}$. If

$$
\phi: X \longrightarrow Y
$$

is a graph isomorphism, then ϕ induces a lattice isomorphism from
$\mathcal{E}(\mathrm{X}) \longrightarrow \mathcal{E}(\mathrm{Y})$ by $\rho \longrightarrow \rho_{\phi}$ (where $e \rho_{\phi} e^{\prime}\left(e, e^{\prime} \varepsilon E(Y)\right.$ if and only if $\left.\left(\phi^{-1} e\right) \rho\left(\phi^{-1} e^{\prime}\right)\right)$ such that the restriction of this function to $\varepsilon_{\alpha \cup \beta}(X)$ is an isomorphism onto $\mathcal{E}_{\alpha \cup \beta}(\mathrm{Y})$.

$$
\text { Now let } x=\prod_{a \in A}\left(X_{a}, x_{a}\right), x \varepsilon V(X) \text {. If } \rho_{a} \varepsilon \varepsilon_{\alpha \cup \beta}\left(X_{a}\right) a \varepsilon A \text {, }
$$

then ρ_{a} extends to an equivalence $\tilde{\rho}_{a} \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ and if $\sigma \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ then σ restricts to an equivalence $\left.\sigma\right|_{i} X_{a} \varepsilon_{a} \varepsilon_{\alpha \cup \beta}\left(i_{a} X_{a}\right)$ such that the following statements hold:
(1) If we denote $\bigcap_{a \in A} \tilde{\rho}_{a}$ by ρ then $\rho \mid i_{a} X_{a}=\left(\rho_{a}\right)_{i} X_{a}$.

(2) If we let σ_{a} denote that equivalence in $\varepsilon_{\alpha \cup \beta}\left(X_{a}\right)$ such that $\left(\sigma_{a}\right) i_{a}^{x}=\sigma \mid i_{a}^{x_{a}}$ then $\bigcap_{a \varepsilon A} \tilde{\sigma}_{a} \subset \sigma$ if X is connected.

(3) If ρ_{a} is the least element of $\varepsilon_{\alpha \cup \beta}\left(X_{a}\right)$, for each $a \varepsilon A$, then $\bigcap_{a \varepsilon A} \tilde{\rho}_{a}$ is least.
(4) If X is connected and $\stackrel{i}{\sigma}$ is the least element of $\varepsilon_{\alpha \cup \beta}(X)$ then $\sigma \mid i_{a}{ }_{a}{ }_{a}$ is least.
(5) By taking $\rho_{a}=E\left(X_{a}\right) \times E\left(X_{a}\right)$ we have that the weak cartesian decomposition of X determines an equivalence in $\varepsilon_{\alpha \cup \beta}(X)$, namely $\rho=\bigcap_{a \in A} \tilde{\rho}_{a}$, such that epe' if and if $a(e)=a\left(e^{\prime}\right)$

In the next section we will show that for X connected every equivalence $\rho \varepsilon \varepsilon_{\alpha \cup \beta}(X)$ gives rise to a weak cartesian decomposition and if ρ is least the factors are indecomposable.

SECTION VIII: Unique Prime Factorization Theorem.

Let X be a connected graph and let $\rho \varepsilon \mathcal{E}_{\alpha \cup \beta}$. Denote the collection of equivalence classes of $E(X) \bmod \rho$ by E_{V}, $0 \leqq \nu<\nu_{0}, \nu_{0}$ an ordinal. For any vertex $z \varepsilon X$ and any ordinal $v, 0<v<v_{0}$, let Y_{v}^{2} be the largest connected subgraph of X such that $z \in Y_{v}^{z}$ and $E\left(Y_{v}^{z}\right) \subset E_{v}$. For any vertex $z \varepsilon X$ and any ordinal $v, 0<v \leqq v_{0}$, let X_{ν}^{z} be the largest connected subgraph of X such that $z \in X_{\nu}^{z}$ and $E\left(X_{\nu}^{z}\right) \subset \bigcup_{\mu<\nu} E_{\mu}$.

Note that $Y_{\mu}^{Z} \subset X_{\nu}^{Z}$ and $X_{\mu}^{Z} \subset X_{\nu}^{Z}$ for $0 \leqq \mu<\nu \leqq \nu_{0}$. By 2.9, $E\left(X_{\nu}^{z}\right) \cap E_{\mu} \neq \emptyset$, for $0 \leqq \mu<\nu \leqq \nu_{0}$.

In our succeeding considerations we will let r be an arbitrary but fixed vertex of X, and for convenience we will denote Y_{V} by Y_{v} and X_{v} by X_{v}.
2.38. PROPOSITION: Let x and y bedistinct vertices of $X_{v+1}, 0 \leq v<v_{0}$ Then X_{v}^{y} and Y_{v}^{X} have exactly one vertex in common.

PROOF. We first show $X_{V}^{\mathrm{y}} \cap \mathrm{Y}_{V}^{\mathrm{X}} \neq \emptyset$. Assume the contrary, and let x_{o} and y_{o} be chosen such that
(i) $X_{o} \varepsilon X_{V}^{y}, y_{o} \varepsilon Y_{V}^{X}$, and
(ii) among all parts of vertices having property (i), $d\left(x_{0}, y_{0}\right)$ is minimal, where $d\left(x_{0}, y_{0}\right)$ is the distance of x_{0} and y_{0} in X_{v+1}.

Let $P=P_{o} \cup \ldots \cup P_{n}$ be a shortest path joining x_{0} and y_{o} in $X_{\nu+1}$ which is ρ-compatible (By 2.17 such a path exists since X_{v+1} is a ρ-saturated subgraph of $X) . E\left(P_{0}\right) \subset E_{V}$ and $n \geqq 1$; otherwise we get a contradiction to (ii). Denote the consecutive vertices of P_{0} by $x_{0}, x_{1}, \ldots, x_{m}$ and let $e=\left[x_{m-1}, x_{m}\right]$.

FIGURE 2.8

By 2.10 we can construct a ladder in X_{v+1} from e and $P^{\prime}=$ $P_{1} \cup \ldots \cup P_{n}$. Let $Q=Q_{1} \cup \ldots \cup Q_{n}$ denote the path of the ladder opposite P^{\prime} and let $e^{\prime}=\left[y_{0}, y_{1}\right]$ denote the path of the ladder opposite e. Clearly $y_{1} \varepsilon Y_{V}^{x}$, and $d\left(x_{0}, y_{1}\right)<d\left(x_{0}, y_{0}\right)$. A contradiction against (ii).

Now suppose there exists at least two distinct vertices z_{1} and z_{2} in $X_{V}^{y} \cap Y_{V}^{X}$. By 2.17 there exist a p-compatible path P^{\prime} joining z_{1} and z_{2} in X_{ν}^{y} and a ρ-compatible path Q^{\prime} joining z_{1} and z_{2} in Y_{V}^{X}. Clearly $P^{\prime}\left(J Q^{\prime}\right.$ is a connected, ρ-compatible subgraph of X which
is not acyclic, and hence by 2.5 contains a finite ρ-compatible circuit. This contradicts the acyclicity of ρ.
2.39. THEOREM: Let X be a connected graph, $r \varepsilon X$, $p \varepsilon \varepsilon_{\alpha \cup \beta}$. Then $X \cong \prod_{v<v_{0}}\left(Y_{v}, r_{v}\right)$ where $r_{v}=r$ for $0 \leqq v<v_{0}$. Moreover if ρ is the least element of $\varepsilon_{\alpha \cup \beta}$ then each Y_{v}, $0 \leqq \nu<\nu_{0}$ is indecomposable.

PROOF. The proof is by transfinite induction. First we show that for non-limit ordinals $v+1,0<v \cdots \leq \nu_{0}$,

$$
X_{v+1} \cong X_{v} \times Y_{v}
$$

Let $\mathrm{X} \varepsilon \mathrm{X}_{V}, \mathrm{y} \varepsilon \mathrm{Y}_{\nu}$. By 2.38 there exists a unique vertex in $X_{V}^{\mathrm{y}} \cap \mathrm{Y}_{V}^{\mathrm{X}}$ which we denote by $z_{x y}$. Define $\phi_{\nu}: X_{V} \times Y_{\nu} \longrightarrow X_{V+1}$ by

$$
\phi_{V}(x, y)=z_{x y} .
$$

Let z be an arbitrary vertex in $X_{V+1} . B y 2.38 Y_{V}$ and X_{V} have exactly one vertex in common, say x, and X_{v}^{z} and Y_{v} have exactly one vertex in common, say y, clearly $Y_{V}^{Z}=Y_{V}^{X}$ and $X_{V}^{Z}=X_{V}^{y}$. Hence $z=z_{x y}$. Thus every vertex of X_{v+1} has a unique gre image with respect to ϕ_{ν} and hence ϕ_{ν} is one-one and onto.

To prove that ϕ_{ν} is a homomorphism take $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \varepsilon X_{\nu} \times Y_{\nu}$. Then either $\left[x, x^{\prime}\right] \varepsilon X_{\nu}$ and $y=y^{\prime}$, or $\left[y, y^{\prime}\right] \varepsilon Y_{\nu}$ and $x=x^{\prime}$. Suppose $\left[x, x^{\prime}\right] \varepsilon X_{v}$ and $y=y^{\prime}$. Let P be a shortest path joining x and $z_{x y}$ in Y_{V}^{x}. Construct a ladder from $\left[x, x^{\prime}\right]$ and P, and let e be the final edge opposite [$\left.x, x^{\prime}\right]$. Then e is
incident with $z_{x y}$, $e \varepsilon X_{V}^{Y}$ and hence clearly $e=\left[z_{x y}, z_{x ' y}^{\prime}\right] \varepsilon X_{v+1}$. Similarly, if $\left[y, y^{\prime}\right] \varepsilon Y_{v}$ and $x=x^{\prime}$, then $\left[z_{x y}, z_{x} y^{\prime}\right] \varepsilon X_{v+1}$. Hence $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \varepsilon X_{v} \times Y_{v}$ implies $\left[z_{x y}, z_{x ' y^{\prime}}\right] \varepsilon X_{v+1}$.

To prove that ϕ_{V} is an epimorphism let $e=\left[z_{x y}, z_{x} y^{\prime}\right]^{\prime} X_{v+1}$. Then e $\varepsilon \underset{\mu \leq \nu}{C} E_{\mu}$ and hence either $e \varepsilon E_{\nu}$ or $e \varepsilon \underset{\mu<\nu}{\bigcup_{\mu}} E_{\mu}$. If e εE_{ν} then $e \varepsilon Y_{V}^{\bar{X}}$ and $e \varepsilon Y_{V}{ }_{V}^{\prime}$ by the maximality of $Y_{V}^{X}, Y_{V}{ }_{V}^{\prime}$. Hence $x=x^{\prime}$. Moreover it is easy to verify that $\left[y, y^{\dagger}\right] \varepsilon Y_{\nu}$. If $e \varepsilon \bigcup_{\mu<v} E_{\mu}$ then $e \varepsilon X_{V}^{y}$ and $e \varepsilon X_{V}^{y^{\prime}}$, and hence $y=y^{\prime}$. Again it is easy to show that $\left[x, x^{\prime}\right] \varepsilon X_{V}$. Hence ϕ_{ν} is an isomorphism.

Let $Z=\prod_{V<v_{o}}\left(Y_{v}, r_{v}\right)$ and for each ordinal $v \leq v_{o}$ let. $Z_{\nu}=\prod_{\mu<\rho_{0}}\left(Y_{\mu}^{\prime}, r_{\mu}^{\prime}\right)$ where $\left(Y_{\mu}^{\prime}, r_{\mu}^{\prime}\right)=\left(Y_{\mu}, r_{\mu}\right)$ for $\mu<\nu$ and $\left(Y_{\mu}^{\prime}, r_{\mu}^{\prime}\right)=$ ($(r), r)$ for $v \leq \mu<\nu_{0}$. Note that $Z=\bigcup_{v \leq v_{0}} Z_{v}$.

Suppose there exists a monomorphism $\psi_{\nu}: X_{\nu} \longrightarrow Z$ with
$\psi_{v}\left(X_{v}\right)=Z_{v}$. Then we can construct a monomorphism $\psi_{v+1}: X_{v+1} \longrightarrow Z$ with $\psi_{v+1}\left(X_{v+1}\right)=Z_{v+1}$ and such that $\left.\psi_{v+1}\right|_{v}=\psi_{v}$. We already have an isomorphism

$$
\phi_{v}: X_{v} \times Y_{v} \longrightarrow X_{v+1}
$$

Define $\eta_{v}: X_{v} \times Y_{v} \longrightarrow Z$ by

$$
\operatorname{pr}_{\lambda} n_{\nu}(x, y)= \begin{cases}\operatorname{pr}_{\lambda} \psi_{\nu}(x) & , \lambda<\nu \\ y & , \lambda=\nu \\ \mathrm{r} & , \nu<\lambda<\nu_{0}\end{cases}
$$

Set $\quad \psi_{v+1}=\eta_{v} \circ \phi_{v}^{-1}$
Clearly $\psi_{\nu+1}: X_{v+1} \longrightarrow Z$ is a monomorphism with

$$
\psi_{v+1}\left(X_{v+1}\right)=Z_{v+1} \text { and } \psi_{v+1} \mid X_{v}=\psi_{v} .
$$

Next let v be a limit ordinal and assume that for each ordinal $\mu<v$ there exists a monomorphism $\psi_{\mu}: X_{\mu} \longrightarrow Z$ with $\psi_{\mu}\left(X_{\mu}\right)=Z_{\mu}$ and such that $\psi_{\mu} \mid X_{\lambda}=\psi_{\lambda}$ for $\lambda<\mu \quad X_{\nu}=\underbrace{}_{\mu<\nu} X_{\mu}$ and hence $x \in X_{\nu}$ implies $x \varepsilon X_{\mu}$ for some $\mu<\nu$. Set $\psi_{\nu}(x)=\psi_{\mu}(x)$. Then clearly $\psi_{v}: X_{v} \longrightarrow Z$ is a monomorphism and $\psi_{v}\left(X_{v}\right)=Z_{v}$. Hence $X_{\nu}=\prod_{\mu<\nu}\left(Y_{\mu}, r_{\mu}\right)$. Since $X=X_{\nu_{0}}$ we have $X \cong \prod_{\mu<\nu_{0}}\left(Y_{\mu}, r_{\mu}\right)$.

Finally if we assume that ρ is the least element of $\mathcal{E}_{\alpha \cup \beta^{\prime}}(X)$ then by 2.35 we have that $\rho \mid Y_{\nu}$ is the least element of $\varepsilon_{\alpha \cup \beta}\left(Y_{\nu}\right)$. Since $E\left(Y_{V}\right)$ consists of exactly one equivalence class modulo $\rho \mid Y_{V}$ we have that Y_{v} is indecomposable.
2.40. PROPOSITION: Let $X=\prod_{a \varepsilon A}\left(X_{a}, x_{a}\right)$ be connected, and for each $a \varepsilon A$ let X_{a} be indecomposable. Let ρ be the least element of $E_{\alpha \cup B}(X) \cdot$ Then for $e, e^{\prime} \varepsilon E(X)$ epe' if and only if $a(e)=a\left(e^{\prime}\right)$.

PROOF. Since X_{a} is indecomposable for each aعA, we have that $\rho_{a}=E\left(X_{a}\right) \times E\left(X_{a}\right)$ is the least element of $E_{\alpha \cup \beta}\left(X_{a}\right)$. Hence by 2.30 and 2.35 we have the desired result.

We are now in a position to prove the following theorem which is our main result.
2.41. THEOREM: If X is a connected graph then X has a weak cartesian decomposition into indecomposable factors which is unique to within isomorphisms.

FROOF. From 2.39 we have that the least element ρ of $\mathcal{E}_{\alpha \cup \beta}(X)$ determines a weak cartesian decomposition of X into indecomposable factors, where the factors are taken to be ρ-saturated subgraphs with respect to the individual equivalence classes of $E(X) \bmod \rho$. If we take any other decomposition of X into prime factors, we have by 2.40 that the number of factors in each decomposition is the same. Since the injection mappings are monomorphisms, and the injections of these latter prime factors are p-saturated subgraphs with respect to the individual equivalence classes of $E(X)$ mod ρ we have that the decomposition is unique to within isomorphisms.
2.42 PROPOSITION: Let X be connected. $\bigodot_{\alpha \cup \beta}(X)$ is finite if and only if X has a cartesian decomposition into indecomposable factors.

PROOF, Follows from 2.25 and 2.39.
2.43. COROLLARY: If X is a connected indempotent graph then X does not have a cartesian decomposition into indecomposable factors.

PROOF. Let $f_{n}: X \longrightarrow \prod_{i=1}^{n} x_{i}$ be an isomorphism, where
$X_{i}=x, i=1, \ldots, n$. For $e=[x, y], e^{\prime}=\left[x^{\prime}, y^{\prime}\right] \varepsilon E(X)$ define $e \rho^{n} e^{\prime}$ if and only if $\left[\mathrm{pr}_{i} f_{n}(x), \operatorname{pr}_{i} f_{n}(y)\right]=\left[p r_{i} f_{n}\left(x^{\prime}\right), p r_{i} f_{n}\left(y^{\prime}\right)\right] \varepsilon E\left(X_{i}\right)$ for some i. $\rho^{n} \in \mathcal{E}_{\alpha \cup \beta}(X)$ and by $2.30, \rho^{n}$ has exactly n equivalences classes. Hence $n \neq m$ implies $\rho^{n} \neq \rho^{m}$. Therefore $\mathcal{E}_{\alpha \cup \beta^{(X)}}$ is infinite and hence by 2.42 X does not have a cartesian decomposition.

SECTION IX: Acyclic completion.

2.44. DEFINITION: Let ρ be any equivalence on $E(X)$. We define the acyclic completion of ρ, which we denote by ρ^{*}, as follows: Put $\rho^{(0)}=\rho \ldots$ Assume that $\rho^{(n)}, n \geq 0$ has already been defined. For $e, e^{\prime} \varepsilon E(X)$, we define a binary relation $\tau^{(n)}$ by: $e f^{(n)} e^{\prime}$ if and only if there exists a $\rho^{(n)}$-compatible circuit C with $e, e^{\prime} \in E(C)$ Let $\rho^{(n+1)}$ be the smallest equivalence on $E(X)$ containing $\rho^{(n)} \cup \pi^{(n)}$. Finally we take $\rho^{*}=\bigcup_{n=0}^{\infty} \rho^{(n)}$.
2.45. PROPOSITION: Let ρ be any equivalence on $E(X)$ and ρ^{*} the acyclic completion of ρ. Then
(i) $\rho \subset \rho^{*}$
(ii) ρ^{*} is acyclic
(iii) $\rho=\rho^{*}$ if ρ is acyclic

PROOF. (i) and (iii) are trivial. To prove (ii) assume the contrary, i.e., that there is a ρ^{*}-compatible circuit $\mathrm{C}=\mathrm{P}_{\mathrm{o}} \cup \ldots \cup \mathrm{P}_{\mathrm{m}}$. Since C is finite and the $\rho^{(n)}$'s form an increasing sequence there exists an n such that $C=P_{0} \cup \ldots \cup P_{m}$ is $a \rho^{(n)}$-compatible circuit. Let $E_{i j}=E\left(P_{i}\right) \times E\left(P_{j}\right), 0 \leqq i \leqq m, 0 \leqq j \leqq m \cdot E_{i j} C_{\rho^{(n)}}$ for $i \neq j$ implies $E_{i j} \subset \tau^{(n)}$. Hence $E_{i j} \subset \rho^{*}$ for $i \neq j$, a contradiction to $C=P_{o} \cup \ldots \cup P_{m}$ being a ρ^{*}-compatible circuit.
2.46. PROPOSITION: Let ρ be any equivalence on $E(X)$ containing $\alpha \cup B$. Then $\rho^{*}=\rho^{(1)}$ is the smallest acyclic equivalence contain-
ing ρ.
PROOF. To show that $\rho^{*}=\rho^{(1)}$ it suffices to show that $\rho^{(1)}$ is acyclic. Assume the contrary. The proof is almost identical to that in 2.22 by replacing oby $p^{(1)}$. There is only one change required. To establish that $C=Q_{0} \cup \ldots \cup Q_{r}$ is not ρ-compatible in 2.22 we used the acyclicity of p. Here we argue as follows: $C=Q_{o} \cup \ldots U Q_{r}$ is not p-compatible since otherwise $E(C) \times E(C) \subset \rho^{(1)}$, a contradiction to $C=Q_{o} U \ldots \cup Q_{r}$ being $\rho^{(1)}$-compatible.

Now let σ be any acyclic equivalence relation on $E(X)$ containing p. We will show $0^{*} \subset \sigma$. Let $e, e^{\prime} \varepsilon E(X)$ with $e_{\rho}{ }^{*} e^{\prime}$. Then there exists a sequence e_{1}, \ldots, e_{r} of edges of X with $e_{1}=e$, $e_{r}=e^{\prime}$ and for each $k, 1 \leqq k \leqq r-1$, either $e_{k} \rho e_{k+1}$ or $e_{k}{ }^{(0)} e_{k+1}$. $e_{k} \rho e_{k+1}$ implies $e_{k} \sigma e_{k+1}$. $e_{k}{ }^{\tau}{ }^{(0)} e_{k+1}$ implies there exists a ρ-compatible circuit C with $e_{k}, e_{k+1} \varepsilon E(C) \cdot \alpha \cup \beta C \rho C \sigma$, and acyclic imply $E(C) \times E(C)=\sigma$ (otherwise there exist ρ-compatible circuits with a σ-decomposition; by choosing one with minimal σ-degree and applying 2.12 we get a contradiction to the acyclicity of σ) and hence $e_{k} \sigma e_{k+1}$. Therefore eje', i.e., $\rho^{*} \subset \sigma$. Hence if $\alpha \cup B C \rho$, then ρ^{*} is the smallest equivalence relation on $E(X)$ containing ρ.

For a given equivalence p let ε_{ρ} denote the collection of all acyclic equivalence relations on $E(X)$ which contain ρ. Then 2.46 implies that if $\rho \supset \alpha \cup \beta, E_{\rho}$ is a principal filter in the lattice of all equivalences on $E(X)$ with ρ^{*} as its least element. In general \mathcal{E}_{ρ} does not have a least element as is seen in the following example:
2.47. EXAMPLE: Let X be a circuit of order $n \geqq 4$, $E(X)=\left\{e_{1}, \ldots, e_{n}\right\}$ and δ the identity relation on $E(X)$. Let e_{i}, e_{j} be two distinct non-adjacent edges of X

Put

$$
p_{i j}=\delta \cup\left\{\left(e_{i}, e_{j}\right),\left(e_{j}, e_{i}\right)\right\}
$$

$i_{i j}$ is a minimal acyclic equivalence on $E(X)$. Hence there are $\frac{1}{2} n(n-3)$ distinct minimal acyclic equivalences on $E(X)$. (This shows that for a given equivalence relation ρ there need not exist a smallest acylic equivalence containing ρ. Here $\rho=\delta$). X is an δ-compatible circuit. Hence $\delta^{*}=\delta^{(1)}=E(X) \times E(X)$, i.e., δ^{*} is not a minimal acyclic equivalence.

Let \mathscr{D} denote the set of all equivalence relations ρ on $E(X)$ for which \mathcal{E}_{p} has a least element. $\rho_{o} \varepsilon \mathscr{D}$ and $\sigma \varepsilon \mathscr{Y}$ for all $\sigma \nu \rho_{o}$ 。 In general θ is not a filter in the lattice of all equivalence relations. Consider X and $\rho_{i j}$ as in the previous example. Here $\rho_{i j} \varepsilon \mathscr{D}$ since $\mathscr{E}_{f_{i j}}$ has a least element for each $\rho_{i j} \cdot \rho_{i j} \cap \rho_{k h}=\delta$ for $\rho_{i j} \neq \rho_{k h}$; however $\delta \notin \mathscr{D}$. Hence \mathcal{S} is not closed under intersections, i.e., is not a filter. The following example shows that even if \mathscr{D} is a principal filter the least element of \mathcal{D} need not be ρ_{0}.
2.48. EXAMPLE: Let X be a tree. Here every equivalence is acyclic and hence \mathcal{D} is the set of all equivalence relations on $E(X)$. The least element of \mathcal{Q} is the identity relation but $\rho_{0}=E(X) \times E(X)$.

SECTION X: Construction of a non-acyclic equivalence containing $\alpha \cup \beta$.

We conclude this chapter with an example of a connected graph Y and an equivalence σ on $E(Y)$, containing $\alpha \cup \beta$, with the property that for every integer $n \geqq 2$ there exists a σ-compatible circuit C in Y with $\operatorname{deg}_{\sigma} \mathrm{C}=\mathrm{n}$. We proceed by first proving a lemma based on the following definition.
2.49. DEFINITION: Let X be a graph, E a subset of $E(X)$.

Let X_{1} be defined by $V\left(X_{1}\right)=V(X), E\left(X_{1}\right)=E(X)-E$. Set $Y=X_{1} \times X_{2}$, where X_{2} is a complete graph on two vertices say 0 and 1 . We define the interchange X_{E} of X relative to E by:

$$
\begin{gathered}
V\left(X_{E}\right)=V(Y) \\
E\left(X_{E}\right)=E(Y) \cup D
\end{gathered}
$$

where

$$
\begin{gathered}
\mathrm{D}=\left\{[\mathrm{x}, \mathrm{y}]: \mathrm{x}, \mathrm{y} \varepsilon \mathrm{~V}(\mathrm{Y}),\left[\mathrm{pr}_{1} \mathrm{x}, \mathrm{pr}_{1} \mathrm{y}\right] \varepsilon \mathrm{E},\right. \\
\left.\left[\mathrm{pr}_{2} \mathrm{x}, \mathrm{pr}_{2} \mathrm{y}\right] \varepsilon \mathrm{E}\left(\mathrm{X}_{2}\right)\right\}
\end{gathered}
$$

For each $e=[x, y] \varepsilon E,[(x, 0),(y, 0),(y, 1),(y, 0)]$ is a saturated 4-circuit in $X \times X_{2} . X_{E}$ is obtained from $X \times X_{2}$ by delfting the edges $[(x, 0),(y, 0)],[(x, 1),(y, 1)]$ and adjoining the diagonais $[(x, 0),(y, 1)],[(x, 1),(y, 0)]$.

If ρ is an equivalence on $E(X)$ then ρ induces an equivalence ρ_{E} on $E\left(X_{E}\right)$ as follows:

For $e=[x, y], e^{\prime}=\left[x^{\prime}, y^{\prime}\right] \varepsilon E\left(X_{E}\right)$
e $\rho_{E} e^{\prime}$ if and only if either
(i) $\operatorname{pr}_{1} \mathrm{x}=\mathrm{pr} r_{1} \mathrm{y}$ and $\mathrm{pr}_{1} \mathrm{x}^{\prime}=\mathrm{pr} \mathrm{I}_{1} \mathrm{y}^{\prime}$, or
(ii) $\left[\mathrm{pr}_{1} \mathrm{x}, \mathrm{pr}_{1} \mathrm{y}\right],\left[\mathrm{pr}_{1} \mathrm{x}^{\prime}, \mathrm{pr}_{1} \mathrm{y}^{\top}\right] \varepsilon \mathrm{E}(\mathrm{X})$ and $\left[\mathrm{pr}_{1} \mathrm{x}, \mathrm{pr}_{1} \mathrm{y}\right] \rho\left[\mathrm{pr}_{1} \mathrm{x}^{\prime}, \mathrm{pr}_{1} \mathrm{y}^{7}\right]$

REMARK: $\rho_{E} \mid X_{1} \times X_{2}=\left(\rho \mid X_{1}\right)^{\sim}$
2.50. PROPOSITION: Let ρ be an equivalence on $E(X)$ containing $\alpha \cup \beta$, E an equivalence class of $E(X)$ mod ρ. Then the induced equivalence ρ_{E} on the interchange graph X_{E} of X relative to E contains $\alpha \cup \beta$.

PROOF. $\rho \perp \alpha \cup \beta$ and E an equivalence class of $E(X) \bmod \rho$ mmply $\rho \mid X_{1}$ contains $\alpha \cup \beta$. (X_{1}, X_{2}, D as in 2.49. Hence $\left(\rho \mid X_{1}\right)^{\sim}$ conthins $\alpha \cup \beta$ on $X_{1} \times X_{2}$. Since $\rho_{E} \mid X_{1} \times X_{2}=\left(\rho \mid X_{1}\right)$ we have that $\rho_{E} \mid X_{1} \times X_{2} \supset \alpha \cup \beta$. $E \times E \subset \rho$ implies $D \times D \subset \rho_{E}$. Therefore to show that ρ_{E} contains $\alpha \cup \beta$ we need only show that e $\varepsilon E\left(X_{1} \times X_{2}\right)$, $e^{\prime} \varepsilon E\left(X_{E}\right)$, $\rho_{\rho} e^{\prime}$ imply $e^{\prime} \varepsilon E\left(X_{1} \times X_{2}\right)$. Assume the contrary, ie., $e^{\prime} \varepsilon D$. Let $e=[\underline{x}, y], e^{\prime}=\left[x^{\prime}, y^{\prime}\right]$ and without loss of generality take $\mathrm{pr}_{2} \mathrm{x}^{\prime}=\mathrm{pr}_{2} \mathrm{x}$.

We first assume that $\mathrm{e} \beta \mathrm{e}^{\prime}$. Then without loss of generality $C=\left[x, y, x^{\prime}, y^{\prime}\right]$ is a saturated 4-circuit in X_{E}, i.e. [y, $\left.x^{\prime}\right]$, $\left[y^{\prime}, x\right] \varepsilon E\left(X_{E}\right),\left[x, x^{\prime}\right],\left[y, y^{\prime}\right] \notin E\left(X_{E}\right)$. Let $\operatorname{pr}_{1} x=x_{1}, p r_{2} x=x_{2}$, $\mathrm{pr}_{1} \mathrm{x}^{\prime}=\mathrm{x}_{1}$, etc. There are two cases to consider (i) $\left[\mathrm{x}_{1}, \mathrm{y}_{1}\right] \in \mathrm{E}\left(\mathrm{X}_{1}\right)$, $x_{2}=y_{2}$ or (ii) $\left[x_{2}, y_{2}\right] \& E\left(X_{2}\right)$ and $x_{1}=y_{1}$. If (i) holds then $x_{2}^{\prime}=x_{2}=y_{2}$ and $x_{2} \neq y_{2}^{\prime}$. It is easy to verify that $y_{1}^{\prime} \neq y_{1}, x_{1}^{\prime}$.

To show that $y_{1}^{\prime} \neq x_{1}$ assume the contrary. Then $\left[y_{1}^{\prime}=x_{1}, x_{1}^{\prime}, y_{1}\right]$ is a triangle in x. Let $e_{1}^{\prime}=\left[x_{1}^{\prime}, y_{1}^{\prime}\right]$ and $e_{1}^{\prime}=\left[x_{1}, y_{1}\right]$. Since $\rho \supset \alpha \cup \beta$ we then have that $e_{1}^{\prime} \rho e_{1}$ (otherwise $e_{1}^{\prime} \overline{\alpha e}_{1}$ contradicting $\left.\left[x_{1}^{\prime}, y_{1}\right] \varepsilon E(X)\right) \cdot e_{I}^{\prime} \in E$ and E an equivalence class of $E(X) \bmod \rho$ then imply $e_{1} \varepsilon E$, a contradiction to $[x, y] \in E\left(X_{1} \times X_{2}\right)$: Therefore $y_{1}^{\prime} \neq x_{1}$. Hence $C_{1}=\left[x_{1}, y_{1}, x_{1}^{\prime}, y_{1}^{\dagger}\right]$ is a 4 -circuit in X. It is easily verified that C_{1} is saturated, and therefore $e_{1}^{\prime} \bar{\rho}\left[y_{1}^{\prime}, x_{1}\right]$ This is a contradiction since $\left[x^{\prime}, y^{\prime}\right] \varepsilon D,[x, y] \varepsilon D$ (since $x_{1} \neq y_{1}$, $x_{2} \neq y_{2}^{\prime}$) respectively imply $\left[x_{1}^{\prime}, y_{1}^{\prime}\right],\left[x_{1}, y_{i}^{\prime}\right] \varepsilon E$ and hence $\left[x_{1}^{\prime}, y_{1}^{\prime}\right] \rho\left[y_{1}^{\prime}, x_{1}\right]$. Therefore ere' implies $e^{\prime} \varepsilon E\left(X_{1} \times x_{2}\right)$.

Now assume that ede' . Then e and e^{\prime} are adjacent and $x=x^{\prime} \quad$ (since we assumed $x_{2}^{\prime}=x_{2}$). Again there are two cases to consider (i) $\left[x_{1}, y_{1}\right] \in E\left(X_{1}\right), x_{2}=y_{2}$, or (ii) $\left[x_{2}, y_{2}\right] \varepsilon E\left(X_{2}\right)$ and $x_{1}=y_{1}$. Suppose (i) holds let $e_{1}=\left[x_{1}, y_{1}\right]$ and $e_{1}^{i}=\left[x_{1}^{\prime}, y_{1}^{\prime}\right]$. $e_{1} \varepsilon E(X)-E, e_{1}^{\prime} \varepsilon E$, and E an equivalence class of $E(X)$ mod ρ imply $e_{1} \bar{\rho} e_{1}$. Hence $e_{1} \alpha e_{1}^{\prime}$ and therefore X contains a saturated 4 -circuit $\left[y_{1}^{\prime}, x_{1}=x_{1}^{\prime}, y_{1}, w\right]$. Define $z \varepsilon V\left(X_{E}\right)$ by

$$
\mathrm{pr}_{1} \mathrm{z}=\mathrm{w}, \mathrm{pr}_{2} \mathrm{z}=\mathrm{y}_{2}^{\prime}
$$

Then clearly $\left[y^{\prime}, x=x^{\prime}, y, z\right]$ is a saturated 4-circuit in X_{E} contradicting ede'. If (ii) holds define $v \varepsilon V\left(X_{E}\right)$ by

$$
\mathrm{pr}_{1} \mathrm{v}=\mathrm{y}_{1}^{\prime}, \mathrm{pr}_{2} \mathrm{v}=\mathrm{x}_{2}\left(=\mathrm{x}_{2}^{\prime}\right)
$$

Then $\left[y^{\prime}, x=x^{\prime}, y, v\right]$ is clearly a saturated 4-circuit in X_{E}, contradicting ewe' . Hence ede' implies $e^{\prime} \varepsilon E\left(X_{1} \times X_{2}\right)$.
2.51. EXAMPLE: Let X be a 4-circuit, e $\varepsilon E(X), \rho=E(X) \times E(X)$. Let X_{2} be the interchange of X relative to e and ρ_{2} be the equivalence on $E\left(X_{2}\right)$ induced by ρ (Fig. 2.9).

FIGURE 2.9

It is easily verified that ρ_{2} contains $\alpha \cup \beta$ on X_{2} and that $C_{2}=$ $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ is a ρ_{2}-compatible circuit. Take $E_{2}=$ $\left\{[\mathrm{x}, \mathrm{y}] \in \mathrm{X}_{2}: \mathrm{pr}_{1} \mathrm{x}=\mathrm{pr}_{1} \mathrm{y}\right\}$.

Let X_{3} be the interchange of X_{2} relative to E_{2} and ρ_{3} the equivalence induced on $\mathrm{E}\left(\mathrm{X}_{3}\right)$ by ρ_{2} (Fig. 2.10). Since E_{2} is an equivalence class of $E\left(X_{2}\right) \bmod \rho_{2} 2.44$ implies that $\rho_{3} \supset \alpha \cup \beta$.

$$
c_{3}=\left[\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right),\left(x_{1}, 1\right)\right] \text { is a }
$$

ρ_{3}-compatible circuit with deg $\rho_{3} C_{3}=3$.
Continuing this process we can construct for each integer
$n, n \geq 2$, a connected graph X_{n}, an equivalence ρ_{n} on $E\left(X_{n}\right)$, and a ρ_{n}-compatible circuit C_{n} with deg $\rho_{n} C_{n}=n$.

Take $Y=\prod_{n=2}^{\infty}\left(X_{n}, x_{n}\right), \quad \sigma=\bigcap_{n=2}^{\infty} \rho_{n}$, where $x_{n} \in V\left(X_{n}\right)$. Then Y is connected, $\sigma \nu \alpha \cup \beta$, and for each integer $n \geqslant 2$, there exists a σ-compatible circuit C in Y with deg $C=n$.

FIGURE 2.10

BIBLIOGRAPHY

[1] K. Culik, Zur Theorie der Graphen, Časopis Pro Pěstováni Matematiky 83 (1958), pp. 133-155.
[2] Stephen T. Hedetniemi, Homorphisms of graphs and automata, University of Michigan Technical Report, Project 03105 44-T, July, 1966.
[3] J. G. Marica and S. J. Bryant, Unary algebras, Pacific J. Math. 10 (1960), pp. 1347-1359.
[4] O. Ore, Theory of graphs, American Mathematical Society Colloquium Publications 37 (1962).
[5] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canadian Journal of Mathematics 9 (1957), pp. 515-525.
[6] G. Sabidussi, Graph multiplication, Mathematische Zeitschrift 72 (1960), pp. 446-457.
[7] H. S. Shapiro, The embedding of graphs in cubes and the design of sequential relay circuits, Unpublished Bell Telephone Laboratories Memorandum, July, 1953.
[8] L. Szamkolowicz, Remarks on the Cartesian product of two graphs, Colloquium Mathematicum 9 (1962), pp. 43-47.
[9] P. M. Weichse1, The Kronecker product of graphs, Proceedings of the American Mathematical Society 13 (1962), pp. 47-52.

