Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19432
Title: Design, Fabrication & Characterization of Organic Photovoltaic Devices
Authors: Yuen, Avery
Advisor: Loutfy, Rafik 0.
Preston, John S.
Department: Engineering Physics
Keywords: Design;Fabrication;Organic Photovoltaic;material integration
Publication Date: 2010
Abstract: <P> In this thesis, several methods of material integration into organic photovoltaic devices are investigated by fabricating solution processed and vacuum coated devices. Each of these methods is aimed at examining and improving one or more of the four critical factors that determine solar cell efficiency: (1) photovoltage, (2) light absorption, (3) exciton separation, and ( 4) charge collection. To investigate and improve photovoltage, the photovoltaic properties of different M-Phthalocyanine/Fullerene (M-Pc/C60 ) blends are measured and demonstrate an improved open circuit voltage (Voc) using trivalent-metal phthalocyanine. Rubrene is also added to the tl-Pc/C60 cells and shown to systematically increase the Voc. To improve light absorption, two new device structures are developed: the parallel tandem cell and the heteromorphic cell. The parallel tandem cell is demonstrated using both all-vacuum coated materials as well as a combination of vacuum and solution processed materials. Results show definitive and significant current contribution from the near-infrared (NIR) wavelengths, and concomitant increase in photocurrent and power conversion efficiency (PCE). The heteromorphic cell demonstrates the integration of two polymorphs of the same M-Pc, yielding a broader external quantum efficiency (EQE) spectrum in the IR region and an increase in the overall PCE. To investigate exciton separation and charge collection, time of flight photoconductivity studies are performed on varying compositions of solution processed polymer/fullerene films as well as pristine and blended M-Pc:C60 films. Results verify the necessity for balanced carrier transport in blended systems, and t he importance of carrier mobility for achieving high fill factors. Finally, the stability of a relatively new polythiophene (PQT-12) in an organic solar cell is investigated , and shown to significantly increase the device lifetime as compared to the standard P3HT polymer. </p>
URI: http://hdl.handle.net/11375/19432
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Yuen_Avery_P_2010_Phd.pdf
Open Access
20.49 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue