Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19135
Title: Numerical Study of The Dynamical Casimir Effect and its Classical Analogue in a Double Cavity
Authors: Hasan, Faiyaz
Advisor: O'Dell, Duncan H J
Department: Physics and Astronomy
Keywords: Dynamical Casimir Effect, Double Cavity
Publication Date: 2016
Abstract: We study the time evolution of light fields inside a double cavity which is comprised of two perfect end mirrors and a parametrically driven, partially transmissive central mirror in both a classical and a quantum mechanical framework. It is common practise in the field of optomechanics to take a Hamiltonian approach \cite{aspelmeyer2014cavity} ignoring non-linear coupling terms between the light field and the moving mechanical element. By contrast, we start from the Maxwell wave equation which is second order in time and find that a first order in time Schr\"{o}dinger-type wave equation (equivalent to neglecting the non-linear coupling) is a valid approximation for low enough mirror reflectivity and speed and for large light frequencies. We also study adiabatic dynamics for the Maxwell wave equation and find it differs from the more familiar adiabaticity in the Schr\"{o}dinger equation. Next, we numerically simulate the dynamical Casimir effect (DCE) in the double cavity with a sinusoidally driven central mirror following earlier numerical work on the perfect single cavity \cite{Ruser2006NumericalDCE,ruser2005vibrating,naylor2009dynamical}. Because our central mirror is partially transmissive it is physically more realistic and circumvents fundamental problems associated with having perfectly reflecting moving mirrors \cite{Moore1970DCESingleCavity,barton1993quantum}. The corresponding photon creation rates are drastically lower when compared to the perfectly reflective mirror case. Furthermore, if we make one of the cavities much longer than the other we can simulate the DCE for a single open cavity coupled to an environment without having to make the Markov approximation. The resultant asymmetric double cavity (ADC) model is valid for times short enough that only a negligible number of the photons that has leaked out of the open cavity has sloshed back in again. As for the symmetric case, one advantage of the ADC is that driven mirror is partially transmissive rather than perfectly reflecting.
URI: http://hdl.handle.net/11375/19135
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis.pdf
Open Access
1.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue