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Abstract

We study the time evolution of light fields inside a double cavity which is com-
prised of two perfect end mirrors and a parametrically driven, partially trans-
missive central mirror in both a classical and a quantum mechanical frame-
work. It is common practise in the field of optomechanics to take a Hamil-
tonian approach [1] ignoring non-linear coupling terms between the light field
and the moving mechanical element. By contrast, we start from the Maxwell
wave equation which is second order in time and find that a first order in time
Schrödinger-type wave equation (equivalent to neglecting the non-linear cou-
pling) is a valid approximation for low enough mirror reflectivity and speed and
for large light frequencies. We also study adiabatic dynamics for the Maxwell
wave equation and find it differs from the more familiar adiabaticity in the
Schrödinger equation.

Next, we numerically simulate the dynamical Casimir effect (DCE) in the
double cavity with a sinusoidally driven central mirror following earlier nu-
merical work on the perfect single cavity [2, 3, 4]. Because our central mirror
is partially transmissive it is physically more realistic and circumvents fun-
damental problems associated with having perfectly reflecting moving mirrors
[5, 6]. The corresponding photon creation rates are drastically lower when
compared to the perfectly reflective mirror case. Furthermore, if we make one
of the cavities much longer than the other we can simulate the DCE for a single
open cavity coupled to an environment without having to make the Markov
approximation. The resultant asymmetric double cavity (ADC) model is valid
for times short enough that only a negligible number of the photons that has
leaked out of the open cavity has sloshed back in again. As for the symmetric
case, one advantage of the ADC is that driven mirror is partially transmissive
rather than perfectly reflecting.
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Chapter 1
Overview

The thriving field of optomechanics studies systems with interacting optical

and mechanical degrees of freedom [1]. Optomechanical systems have many

physically realizable implementations with one of them being the membrane-

in-middle setup [7, 8] which is the focus of this thesis. Theoreticallly, both

cooling effects [8] and photon shuttling amongst the cavity halves [9] have

been studied in this system. In this thesis, we theoretically study the double

cavity with a parametrically driven central mirror and perfectly reflecting end

mirrors which is an idealization of the membrane-in-middle setups.

In chapter 2, we study the properties of the static double cavity such as

the allowed eigenfrequencies and corresponding electric field eigenmodes for

arbitrary central mirror position and reflectivity. We treat the partially trans-

missive central mirror using a δ-function model [10] due to mathematical con-

venience. In practise, the central mirror has a non-zero width and finite index

of refraction [11]. We show that as long as the light frequency is not resonant

inside the central mirror, i.e. the light field in the cavity is not localized in

the central mirror, then the δ-function model is a good approximation. The
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classical dynamics for the optical degree of freedom can be described using the

Maxwell wave equation for time dependent boundary conditions [12, 13, 14].

The resulting equations of motion are non-unitary and second order in time

with an exact first order in time reduction possible only for a cavity with static

boundary conditions. Neverthless, in the literature [8, 9], a unitary and first

order in time dynamics approximation is used even for cavities with moving

boundaries since it is an adequate approximation in the parameter regimes of

the corresponding experiments. In chapter 3, we study the validity of such an

approximation in relation to the mirror velocity, reflectivity and light frequency

in the double cavity. Furthermore, the light field inside the cavity exerts a ra-

diation pressure on the central mirror. In order for the central cavity to be

driven at a constant speed which is the scenario we study in chapter 3, the

external source pushing the mirror has to do work to overcome the radiation

pressure. This results in energy being pumped into/out of the light field. We

find the validity condition of the first order in time dynamics to be intimately

related to the extent of this energy non-conservation. In chapter 4, we confirm

that the change of energy in the light field generated from the Maxwell wave

equation is equivalent to the work done by the external source to counteract

the radiation pressure on the mirror derived using the Maxwell stress tensor.

The last topic of our classical study is the adiabatic theorem in the context of

the Maxwell wave equation for the double cavity with the parametric mirror in

Sec. 4.4. The adiabatic theorem for the Schrödinger equation (non-relativistic

quantum mechanics) states that if a physical system starts out in an initial

eigenstate of the Hamiltonian and the system is changed slowly enough and

there is a gap between the eigenvalue and the rest of the Hamiltonian’s spec-

trum, then the system will continue to remain in an instantaneous eigenstate
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of the Hamiltonian [15]. We find that in the context of the double cavity, mov-

ing the central mirror slowly enough ensures that the system will continue to

remain in an instantaneous eigenstate, but in contrast to the Schrödinger case

the amplitude of the eigenmode experiences a finite change while the changes

in all the others vanish (the sum of the squares of all the amplitudes is not

conserved). The external driving source counteracting the radiation pressure

of the light field on the mirror necessarily has to do work on the light field and

this manifests itself in a lack of conservation in the latter sum over squares

of the amplitude. The eigenstate amplitudes of the Schrödinger equation field

variable, on the other hand, are conserved because they represent probability.

Quantized Hamiltonians for the double cavity type setups have been writ-

ten down in references [16, 17] which contain both photon scattering terms

along with photon number non-conserving terms. These terms contribute to

the dynamical Casimir effect (DCE). The static Casimir effect was first pro-

posed by Hendrik B. G. Casimir [18] leading to a force due to the vacuum

modes in the presence of boundaries creating an imbalance in the density of

modes. Despite the vanishing of the average electric and magnetic fields of the

vacuum state, the quadratic powers of the field variables are finite and leads to

a non-zero radiation pressure. Later on, G. T. Moore studied the dynamical

equivalent of the static Casimir effect, where photons are created in a single

perfect cavity due to the motion of one boundary starting out with the light

field in the vacuum state [5] and this work was later expanded on in reference

[19]. Since then, numerous theoretical investigations have been conducted in

the field of DCE [20, 21, 22, 23, 24, 6, 25, 26, 27, 28, 29, 30, 31]. In particu-

lar, analytical results for short enough times in the perfect single cavity with

a sinusoidally driven end mirror have been derived in references [22, 28, 30]
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and were checked numerically in references [3, 2]. Even though the DCE was

initially described for moving mirrors, the smallness of the effect combined

with the requirement of very large mirror speeds has made it difficult to de-

tect [32]. Experimental detection in the context of semiconductor slabs with

rapidly changing conductivity to mimic moving metallic mirrors was suggested

in references [33, 34]. Since then, the DCE has been observed experimentally

in a superconducting circuit [35] with the resultant radiated photons exhibit-

ing two mode squeezing which is a signature of the quantum nature of the

generated photons [23]. In chapter 5, we review the reformulation due to ref-

erence [24] of the Heisenberg equations of motion for light in the presence of

boundaries. The reformulated equations of motion used in references [3, 2, 4]

are a very convenient form for numerical simulation of the dynamical propa-

gator. Furthermore, motivated by the latter numerical study of the DCE in a

perfect single cavity, we study the DCE in a double cavity in chapter 6. There

is an important qualitative difference in our numerical simulations since we are

dealing with a partially transmissive central mirror instead of all mirrors being

perfect. We find that this can drastically alter the photon growth rate inside

the cavity as suspected by the authors in references [5, 6]. Moreover, this

forms an intermediate step to studying an open cavity coupled to an infinite

environment. Theoretical work on the DCE in a parametrically driven open

cavity has been conducted [36] using the master equation approach [37, 38],

scattering approach [25, 39, 40] and in reference [26] using cavity quasi-modes.

Furthermore, open cavity DCE treating the mirror as a dynamical variable has

been tackled in reference [41]. Defining a single semi-open cavity to be a cavity

with one perfect and one partially transmissive mirror, the double cavity can

be thought of as two semi-open cavities coupled to one another. We can model
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a semi-open cavity coupled to an infinite environment by using a highly asym-

metric double cavity where one cavity length is much longer than the other

and is used to mimic the environment. Modelling the infinite environment

by a finite but large cavity ensures that the eigenmode structure is discrete

and it is much easier to deal with a discrete set of modes than a continuum.

This amounts to a modes of the universe approach to describing the finite

transmission of one of the end mirrors employed in references [10, 42, 43, 44].

The beauty of our numerical approach is that it is not reliant on simplifying

assumptions other than treating the environment as being finite which is a

very good approximation for short enough times. In chapter 7, we summarize

the main results of our thesis and future directions for this work.
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Chapter 2
Properties of the Stationary Double

Cavity

2.1 Introduction

In this chapter, we study the properties of light inside a static double cav-

ity as shown in Fig. 2.1. The end mirrors of the double cavity are taken

to be perfectly reflective and we assume that there is no pumping/decay of

light into/outside the cavity. For a partially transmissive central mirror fixed

at an arbitrary position, we investigate the allowed wavenumbers of light in-

side the cavity and the corresponding eigenmodes. Our starting point is the

Maxwell wave equation with stationary boundary conditions and in Sec. 2.2

we derive the corresponding Sturm-Liouville problem. In Sec. 2.3 we derive

the eigenvalue equation for the allowed wavenumbers inside the double cavity

for arbitrary positions of the partially transmissive central mirror. We find

that the wavenumber structure is composed of a net of avoided crossings and

present analytical approximations near an avoided crossing valid in the regime
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x=0 x=q(t) x=l

Figure 2.1: Schematic of amplitude of light in a double cavity with perfectly
reflective end mirrors and a partially transmissive, moveable central mirror.

of highy reflective central mirror and large wavenumbers. In Sec. 2.4, we study

the form of the eigenmodes corresponding to the wavenumbers. For a perfectly

centered mirror, the eigenmodes are equally localized in both cavity halves.

However, as the mirror is displaced, the light field becomes localized in the

left and right sides of the cavity. An understanding of such properties pro-

vides intuition into the dynamics of light transfer amongst cavity halves for an

adiabatically moving central mirror and could potentially be useful in devices

requiring on demand photon transfer with high fidelity in quantum networks

[45, 46, 47, 48]. In this thesis, we model the central mirror using a δ-function,

i.e. having zero width and infinite index of refraction due to the mathemat-

ical and numerical tractablity this model offers. In Sec. 2.5, we compare the

validity of this model to a more realistic model of the mirror with a non-zero

width and finite index of refraction.
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2.2 Maxwell Equations, Boundary Conditions and

Sturm-Liouville Problem

In this section, starting from the Maxwell wave equation for a static double

cavity, i.e. with time independent boundary conditions, we derive the eigen-

value equation for allowed wavenumbers of the light field inside the cavity. We

consider the convention where the cavity mirrors are situated parallel to the

y-z plane and move along the x axis. Furthermore, we assume that the electric

field is polarized along the z axis and the magnetic field along the y axis, i.e.

~A = A(x, t)~ez, ~E = −∂tA~ez, and ~B = −∂xA~ey. The dielectric function of the

double cavity is given by

ε(x,∆L) =


ε0[1 + αδ(x)], −L1 < x < L2

∞, x > L2, x < −L1

, (2.1)

where

L1/2 =
L±∆L

2
. (2.2)

In the absence of a central mirror, α = 0. Hence, the δ function term is used

to model the partially transmissive central mirror following the approach in

reference [10]. This is an idealization and in Sec. 2.5 we discuss a more realistic

model with a non-zero mirror width and finite index of refraction. We note

that in the case of the static double cavity, changing the central mirror position

and keeping the end mirrors fixed is mathematically equivalent to keeping the

central mirror fixed and changing the end mirror positions. Physically, we

assume that it is the central mirror that moves in order to avoid issues that

reference [5] shows are associated with driving a perfect mirror as opposed to

9
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a partially transmissive one. For the sake of convenience, we opt for the latter

convention. The central mirror is placed at the origin, while the end mirrors

are placed at positions x = −L1 and L2. The total length of the double cavity

is fixed and given by L = L1 +L2 and the displacement of the moveable mirror

from the center is given by ∆L/2, where, ∆L = L1 − L2. For a stationary

mirror, the Maxwell wave equation is given by

∂2E(x, t)

∂x2
− µ0ε(x,∆L)

∂2E(x, t)

∂t2
= 0. (2.3)

Eqn. (2.3) is a second order in time differential equation that has a first order in

time reduction. We separate the temporal and spatial variables of the electric

field by letting

E(x, t) = e−iωm(∆L)tUm(x,∆L) (2.4)

where the frequencies ωm and mode functions Um depend on ∆L. Substituting

this ansatz into Eqn. (2.3) we find the Helmholtz equation

∂2Um(x,∆L)

∂x2
+ k2

m(∆L)
ε(x,∆L)

ε0
Um(x,∆L) = 0, (2.5)

where km(∆L) = ωm(∆L)/c. Since the end mirrors are perfect, we have the

boundary condition Um(x = −L1,∆L) = Um(x = L2,∆L) = 0. This implies

that the light eigenmodes inside the cavity take the form

Um(x,∆L) =


Am(∆L) sin[km(∆L)(x+ L1(∆L))], −L1 ≤ x ≤ 0

Bm(∆L) sin[km(∆L)(x− L2(∆L))], 0 ≤ x ≤ L2

, (2.6)
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where Am and Bm are the amplitudes of the electric field eigenmodes cor-

responding to the left and right halves of the double cavity. There exists a

unique set of eigenmodes and eigenfrequencies to Eqn. (2.3) for each fixed

mirror position. To clearly show this dependence, we have expressed Um and

km as functions of ∆L. From here onwards we refer to these stationary cavity

eigenmodes as the adiabatic modes. For a double cavity with a moving central

mirror, we can imagine for each fixed time, that the mirrors are all instanta-

neously at rest. Corresponding to each arbitrary central mirror position, we

have a set of instantaneous eigenmodes parametrized by ∆L. These instan-

taneous eigenmodes form a complete basis that is very natural for describing

the light dynamics and also intuitively explains light transfer amongst cav-

ity halves for adiabatic mirror motion. For the sake of convenience in future

analysis and numerical simulations, we impose the normalization condition

1

ε0

∫ L2

−L1

ε(x,∆L)Ul(x,∆L)Um(x,∆L)dx = δlm. (2.7)

Furthermore, by integrating Eqn. (2.5) in a small region surrounding the

central mirror and taking the limit of the integration range to approach 0, we

find another boundary condition given by

U ′m(x = 0+,∆L)− U ′m(x = 0−,∆L) = −αk2
m(∆L)Um(x = 0,∆L). (2.8)

Here, ′ denotes spatial derivative and the boundary condition expresses the fact

that despite the continuity of the adiabatic modes, the first spatial derivative

is discontinuous at the central mirror. Substituting Eqn. (2.6) into the two
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boundary conditions and combining them, we find the eigenvalue equation

cos(2km∆L)− cos(kmL) = 2
sin(kmL)

αkm
. (2.9)

2.3 Eigenvalue Structure and Analytical Approx-

imations

In this section we numerically generate the allowed wavenumbers of the light

field inside a double cavity from the eigenvalue equation in Eqn. (2.9) and

compare them to analytical approximations derived in reference [12]. To gain

an intuitive understanding of the double cavity eigenvalue structure, let us

imagine dialing the reflectivity of the central mirror up to 100%. In this

perfect central mirror limit, the double cavity is comprised of two perfectly

reflective single cavities. When the central mirror is equidistant from the two

end mirrors, the allowed wavenumbers are given by kn = 2πn/L, where n ∈ N.

In general, for an arbitrary mirror position, the wavenumber pairs in the two

perfect cavities are given by

kn(∆L) = 2nπ/(L±∆L). (2.10)

From here onwards, we denote these wavenumbers as the diabatic wavenum-

bers. These network of wavenumbers which correspond to the diabatic light

modes, i.e. modes localized in the left or right cavity halves, criss cross each

other as can be seen in Fig. 2.2. Wherever the set of eigenvalues intersect, we

have a degeneracy in the wavenumber structure corresponding to the uncou-

pled double cavity. In analogy with perturbation theory in quantum mechan-
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Figure 2.2: The wave numbers allowed inside the double cavity as a function
of the mirror displacement from the center forms a network of avoided cross-
ings. The red, dashed lines correspond to a perfectly reflective central mirror.
The green, solid lines correspond to a mirror of reflectivity 98% , the magenta,
small dotted lines correspond to a mirror reflectivity of 91%, the blue, dashed
dotted lines correspond to 61% and the larger, black dotted lines correspond
to a mirror reflectivity of 28%. All curves except the red curve have avoided
crossings. The size of the avoided crossing (2∆) goes down as the reflectivity
is increased. The wavenumbers were generated using Eqn. (2.9).
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ics, the wavenumber degeneracy will be broken as the two single cavities are

coupled by making the central mirror partially transmissive. The splitting of

the wavenumbers give us an avoided crossing structure shown in Fig. 2.2. Tak-

ing inspiration from the avoided crossing structure in the quantum mechanical

two level system Hamiltonian with an off-diagonal perturbation, we write the

wavenumbers near an avoided crossing in the form

k2/1(∆L) = kav ±
1

c

√
∆2 + Γ(∆L)2 (2.11)

and the corresponding frequencies are then given by

ω2/1(∆L) = ωav ±
√

∆2 + Γ(∆L)2 (2.12)

where ∆/c is half the separation of the wavenumbers at the center of the

avoided crossing as in Fig. 2.2 and kav is the average wavenumber. Here, the

mode corresponding to the the lower branch of the avoided crossing has sub-

script 1, while the mode corresponding to the higher eigenmode has subscript

2. Near an avoided crossing, we can apply a multidimensional Taylor expan-

sion to Eqn. (2.9) around the diabatic modes (kn = 2nπ/L) for the centered

mirror and for small central mirror displacements (∆L/2) and solve to find

analytic approximations for the wavenumbers

k1(∆L) =
2πn

L
+

∆

c
− 1

c

√
∆2 + γ∆L2 (2.13)

k2(∆L) =
2πn

L
+

∆

c
+

1

c

√
∆2 + γ∆L2,
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where

γ = 2∆c
2π3n3α

L4
(2.14)

∆ =
c

L

nπ

1 + n2π2α/L
.

In Fig. 2.3, we compare the approximate analytic wavenumber formulae

in Eqn. (2.13) to the numerically generated wavenumbers from Eqn. (2.9).

Moreover, we plot the diabatic wavenumbers corresponding to the localized

left/right case of a perfectly reflective central mirror. We find that the analytic

wavenumber formulae is a good approximation close to the avoided crossing.

We can see in Fig. 2.3 that the diabatic wavenumbers when the central mirror

is symmetrically placed intersects with the lower adiabatic wavenumber curve.

The corresponding adiabatic eigenmode is an odd function vanishing at the

mirror and hence does not "see" the coupling strength of the cavity halves.

This leads to an agreement in the diabatic and lower adiabatic wavenumber

values when the mirror is centered. Let us note in the context of the double

cavity that in general the eigenfunctions corresponding to the lower (upper)

wavenumber branch at the center of the avoided crossing is an odd (even) func-

tion. In the symmetric double-well potential case in quantum mechanics, the

situation is reversed and the eigenmode corresponding to the lower eigenvalue

branch is an even (symmetric) function. This difference occurs because the

mirror dielectric function corresponds to a dip potential in the "equivalent"

Schrödinger equation.

The reflectivity of the delta mirror is given by

R =
α2k2

4 + α2k2
. (2.15)
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Figure 2.3: Wavenumber structure versus mirror displacement from the cen-
ter near an avoided crossing. In this plot we look at the avoided crossing close
to the wavenumbers corresponding to n = 10, α = 2.5 m. We can see that
the analytic formulae in Eqn. (2.13) are a good approximation to the numeri-
cally generated wavenumbers from Eqn. (2.9). The two sets of curves will be
called Analytic Approximation and Adiabatic Modes respectively. We have
also plotted the diabatic modes, i.e. wavenumbers when the two cavity halves
are completely uncoupled due to a perfectly reflective central mirror. For a
perfectly centered mirror, the diabatic modes cross and hence the wavenumbers
are degenerate. Coupling the left and right halves of the cavity via a partially
transmissive mirror, the degeneracy of the allowed wavenumbers (Adiabatic
modes) is broken as one of the wavenumbers moves upwards from the diabatic
wavenumber. The lower (odd) adiabatic mode vanishes at the mirror when
it is perfectly centered and therefore does not "see" the mirror. As a result,
the odd adiabatic eigenmode is also a diabatic eigenmode of the cavity when
the mirror is perfectly centered leading to an intersection between the lower
adiabatic and the diabatic wavenumber structure. The diabatic wavenumbers
were generated using Eqn. (2.10).
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Figure 2.4: Mirror reflectivity curves versus light wavenumber. For a fixed
wavenumer, increasing the reflectivity paramater, α (as in Eqn. (2.1)), leads
to increasing central mirror reflectivity. The reflectivity curves were generated
using Eqn. (2.15).

As α→∞, the reflectivityR→ 100%. Fig. 2.4 shows a set of reflection curves.

Since ∆ → 0 as α → ∞, we can conclude that for increasing reflectivity, the

gap at the avoided crossing becomes smaller. This can be seen in Fig. 2.2.

2.4 Adiabatic versus Diabatic Modes

Let us begin with a review of our definition of adiabatic and diabatic modes.

Consider a double cavity with a stationary, partially transmissive mirror. The

adiabatic state refers to the eigenstate of the light mode corresponding to the

allowed wavenumbers in the static cavity. As we will see later, the adiabatic

17



McMaster University F. Hasan – Ph.D. Thesis

state is in general finite on both sides of the cavity. In fact, when the mirror

is perfectly centered, the adiabatic states are symmetric or anti-symmetric

in nature and hence have equal amplitude in both halves of the cavity. The

usefulness of the diabatic modes lies both in the perfectly reflective case and the

fact that the Landau-Zener formulation is in terms of them (See Sec. 3.4). For

a perfectly reflective central mirror, the double cavity becomes two uncoupled

single cavities. The eigenmodes of these single cavities, which are localized

either in the left or right half of the double cavity, form the diabatic basis. This

begs the question, whether analogous modes exist for a partially transmissive

central mirror and how could they be defined. The adiabatic and the diabatic

modes are related to each other via a linear change of basis. Consider the

similarity transform between the two matrices

Madiab =

ω2(∆L) 0

0 ω1(∆L)

 (2.16)

and

Mdiab =

ωav + Γ(∆L) ∆

∆ ωav − Γ(∆L)

 (2.17)

written as Madiab = S−1MdiabS. The diagonal terms of Mdiab give the diabatic

energies for the perfect central mirror case while the off diagonal terms give

the coupling between the two halves of the double cavity. Then, writing S in

the form

S =

 cos θ sin θ

− sin θ cos θ

 (2.18)
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we find that

sin θ =

√
1

2
− Γ(∆L)

2
√

∆2 + Γ(∆L)2
(2.19)

and

cos θ =

√
1

2
+

Γ(∆L)

2
√

∆2 + Γ(∆L)2
. (2.20)

Since the adiabatic modes are given to use by solving Eqn. (2.5), we can now

define the diabatic modes {φL, φR} by

φL(x,∆L) = U2(x,∆L) cos θ + U1(x,∆L) sin θ

φR(x,∆L) = −U2(x,∆L) sin θ + U1(x,∆L) cos θ
. (2.21)

In Fig. 2.5, we plot the eigenmodes corresponding to the parameters and

wavenumber curves in Fig. 2.3. From the middle row in Fig. 2.5, we can see

that the modes are either symmetric or anti-symmetric when the mirror is per-

fectly centered. The anti-symmetric mode corresponds to the lower wavenum-

ber curve, while the symmetric mode corresponds to the higher wavenumber

curve of the avoided crossing in Fig. 2.3. As the mirror is displaced to the left

and the right, in the first, second, fourth and fifth row of Fig. 2.5, we see that

the adiabatic modes become strongly localized in the left and right halves of

the cavity. The amplitudes for the mode functions are derived using

An(∆L)

Bn(∆L)
= −sin [kn(∆L)L2(∆L)]

sin [kn(∆L)L1(∆L)]
(2.22)

for the "even" mode and

An(∆L)

Bn(∆L)
=

cos [kn(∆L)L2(∆L)]

cos [kn(∆L)L1(∆L)]− αkn(∆L)
(2.23)
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Figure 2.5: Electric field eigenmode structure and its dependence on mirror
position. First row corresponds to mirror displacement of −0.01, second row
−0.001, third row when the mirror is centered and ∆L/2 = 0, fourth row 0.001
and fifth row 0.01. α = 2.5. n = 10. Corresponding wavenumber structure
is plotted in Fig. 2.3. The even amplitudes are generated using Eqns. (2.24)
and (2.22). Meanwhile, the odd amplitudes are generated using Eqns. (2.24)
and Eqn. (2.23). The spatial variations of the mode function are generated
using Eqn. (2.6).
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Figure 2.6: Diabatic mode structure and its dependence on mirror position.
First row corresponds to mirror displacement of −0.01, second row −0.001,
third row when the mirror is centered and ∆L/2 = 0, fourth row 0.001 and
fifth row 0.01. α = 2.5 m. n = 10. Corresponding wavenumber structure
is plotted in Fig. 2.3. The localized diabatic left/right modes were generated
using Eqn. (2.21).

21



McMaster University F. Hasan – Ph.D. Thesis

−0.1 −0.05 0 0.05 0.1
0

10

20

30

40

50

60

70

80

90

Mirror Displacement ∆ L/2 (Units of L/2)

A
m

p
li

tu
d
e 

R
at

io
 B

n
/A

n

 

 

Odd Mode
Even Mode

Figure 2.7: Electric field mode localization and its dependence on mirror po-
sition. This figure shows the ratio Bn/An for the adiabatic wavenumbers pairs
near 10π corresponding to Fig. 2.3 where α = 2.5 m. When mirror is displaced
to the left side, the odd adiabatic mode becomes localized in the right side of
the cavity, i.e. An/Bn � 1. Meanwhile, when the mirror is displaced to the left
side of the cavity, the even adiabatic mode becomes localized in the left side of
the cavity, i.e. An/Bn � 1. The wavelength corresponding to the wavenum-
ber is λn = 2π/kn = 0.2 in units of 2/L. Hence, in this plot we see that we
need displace the central mirror a fraction of the wavelength to achieve light
transfer. The mode amplitude ratios are derived using Eqns. (2.22) and (2.23).
We also see that the localization of the adiabatic modes alternates between
the two cavity halves as the mirror is being displaced.
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for the "odd" mode, which come from substituting Eqn. (2.6) into the bound-

ary conditions of the adiabatic mode at the mirror. The adiabatic modes are

labelled "even"/"odd" based on the property satisfied when the mirror is cen-

tered. For arbitrary mirror positions, i.e. when symmetry is lacking, the states

are not even or odd. Furthermore, from the normalization condition we find

the relation

A2
n

4kn
[− sin (2knL1) + 2knL1]+

B2
n

4kn
[− sin (2knL2) + 2knL2]+αB2

n sin2 (knL2) = 1

(2.24)

which is also satisfied by the mode functions. In Fig. 2.7, we can see that as

the central mirror is displaced, the mode alternates between which half of the

cavity it is localized in.

Meanwhile, Fig. 2.6 depicts the diabatic local modes derived from Eqn. (2.21),

corresponding to the adiabatic modes shown in Fig. 2.5. We can see that the

diabatic modes remain localized for all mirror displacements. This localization

is not perfect but still quite good even for modest values of reflectivity and

improves as the central mirror reflectivity is increased. Since the change in

the diabatic modes is very small, as we will see in Chapter 2, writing the light

field in this basis allows us to ignore the time dependence of the diabatic mode

functions and consider only the time dependence of their amplitudes, greatly

simplifying the dynamical equations. We also have that

1

ε0

∫ L2

−L1

ε(x,∆L)φL(x,∆L)φR(x,∆L)dx = δLR (2.25)

implying that the diabatic basis derived from the superposition of the or-

thonormal adiabatic basis is also an orthonormal basis.
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2.5 Delta versus Finite Barrier Mirror

Previously, we modelled the partially transmissive central mirror in the double

cavity by a δ function. This is an idealization of a real mirror which has a finite

index of refraction and non-zero width. In this section we model such a mirror,

physically realized as a 50nm thick SiN membranes in references [11, 8], by a

uniform slab of dielectric and characterized by the dielectric function

ε(x,∆L) =


ε0n

2
r −M ≤ x ≤M

ε0 −L1 < x < −M and M < x < L2

∞ elsewhere

(2.26)

where 2M is the mirror width and nr is the index of refraction of the central

mirror. We refer to this as the Finite Barrier (FB) mirror model. We wish

to compare the validity of the δ mirror model by comparing the wavenumber

structures to those of the more realistic FB mirror model. Due to the per-

fect end mirrors, the FB model adiabatic modes satisfy Un(x = −L1,∆L) =

Un(x = L2,∆L) = 0 and the eigenmodes can then be written as

Um(x,∆L) =


Am(∆L) sin [km(∆L)(x+ L1)] −L1 < x < −M

Bm(∆L) sin [nrkm(∆L)x+ φ1] −M < x < M

Cm(∆L) sin [km(∆L)(x− L2)] M < x < L2

. (2.27)

In addition, we have the boundary conditions that the FB adiabatic modes

and their first derivatives are continuous at the dielectric interfaces, which
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gives us the eigenvalue equation

− n2
r sin (2nrkM) sin

[
k

(
L

2
−M +

∆L

2

)]
sin

[
k

(
L

2
−M − ∆L

2

)]
+

nr cos (2nrkM) sin [k(L− 2M)] +

sin (2nrkM) cos

[
k

(
L

2
−M +

∆L

2

)]
cos

[
k

(
L

2
−M − ∆L

2

)]
= 0. (2.28)

This equation would be the same as the δ mirror eigenvalue equation given

by Eqn. (2.9) if it weren’t for the terms due to the resonance of light in the

central mirror given by the wavenumbers kresonance = lπ/2Mnr for l ∈ N. In

order to find the condition for the convergence of the two models, we briefly

look at the transmission functions respective to the δ and FB mirror given by

Tδ =
1

1 + k2α2/4
(2.29)

and

TFB =
1

1 + (n2
r−1)2

4n2
r

sin2(2Mknr)
. (2.30)

We find, as shown in Fig. 2.8, away from the resonance condition inside the

central mirror, letting M → 0 and nr → ∞ while satisfying, 2Mn2
r = α, the

finite mirror transmission function approaches the delta mirror transmission

function. Using this as a clue, if we take a similar limit in the FB eigenvalue

equation given by Eqn. (2.28), we get back the δ mirror eigenvalue equation.

In Fig. 2.9, we see the set of wavenumbers in the FB model converging to the δ

model wavenumbers showing the validity of the δ mirror model away from the

resonance condition for thin enough mirrors. In Fig. 2.8, we see thatM = 1e−2

and M = 5e − 3 are resonant near the wavenumbers generated. Meanwhile,
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Figure 2.8: Comparison of mirror transmission functions for the δ and FB
model of the mirror. In this figure we compare the transmission function
of light for the δ mirror model given by Eqn. (2.29) and the finite barrier
model given by Eqn. (2.28). We find that the finite mirror model has extra
features not present in the δ mirror model due to the non-zero width of the cen-
tral mirror which has resonances associated with the mirror width (2M). At
the central mirror resonant wavenumbers, the transmission function exhibits
Lorentzian type peaks. Decreasing the mirror width while increasing the mir-
ror index of refraction while 2Mn2

r = α leads to the resonant wavenumbers
moving out further and a convergence of TFB to Tδ. Here, the reflectivity
parameter α = 2.5 m.
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Figure 2.9: Comparison of wavenumber structures for the δ and FB model of
the mirror. We compare the avoided crossing structure of wavenumber pairs
around 10π numerically generated using Eqn. (2.28) to the corresponding δ
model wavenumber structure with α = 2.5 m. For wavenumbers away from
the central mirror resonance condition, the FB eigenvalue structure converges
to the δ model eigenvalues.
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from the M = 1e − 3 transmission plot we see that the wavenumber curves

generated in Fig. 2.9 are away from any central mirror resonance. Therefore,

we see a close agreement to the δ mirror wavenumbers for the corresponding

mirror thickness. And as the mirror thickness is reduced, this agreement would

get better. Therefore, we can model the central mirror as a δ-function if we

are dealing with wavenumbers away from the resonance condition of a thin

central mirror.
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Chapter 3
Classical Dynamics of Light in the

Non-Stationary Double Cavity

3.1 Introduction

In Chapter 2, we studied the properties of the light field inside the double

cavity with a stationary, partially transmissive central mirror at an arbitrary

position. We found that the allowed wavenumber structure of the light field

inside the cavity forms a net of avoided crossings. Moreover, we defined an

orthonormal basis in terms of the eigenmodes corresponding to each fixed cen-

tral mirror position ({Um(x,∆L)}). Knowledge of the wavenumber structure

and the corresponding orthonormal basis completely determines how the light

field will evolve in time inside a stationary double cavity. The initial optical

electric field can be written as a superposition of the orthornomal basis. Re-

placing each Um(x,∆L) term by Um(x,∆L) exp {−iωm(∆L)(t− t0)}, we can

determine the electric field at later times.

In this chapter, we study the time evolution of a light field for a double
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cavity with a central mirror driven at a constant speed, or in other words, with

time dependent boundary conditions. It is important to emphasize that in this

thesis the time dependence is due to the parametric driven central mirror whose

dynamics is therefore a prescribed function of time [49] as opposed to a time

dependence of the mirror caused by a combination of the radiation pressure

plus the mirror being coupled to some conservative potential like a spring, as

in the case of optomechanics [50]. The time dependence of the boundary con-

ditions make the dynamics of the light field much more complex and no general

analytical results exist. The Maxwell wave equation, which once again forms

the starting point of our investigation of the light field dynamics in Sec. 3.2 is

second order in time. An exact first order in time reduction of the dynamics

exists only for stationary cavities. We show in Sec. 3.4 that in the case of the

double cavity with a linearly moving mirror, an approximate reduction of the

second order dynamics to a first order in time Landau-Zener (L-Z) dynamics

exists. We will find that the diabatic modes we defined earlier in analogy

with the L-Z problem plays a central role in the approximation scheme. This

approximate L-Z dynamical treatment in optomechanical systems has been in

use in the literature [8] and has exact solutions. Experimentally, both L-Z

[51, 52] and Landau-Zener-Stueckelberg [9] dynamics has been studied in the

context of photon shuttling. Moreover, cooling of the central membrane in a

double cavity via radiation pressure due to the light field using a first order

in time description has also been studied [8]. Furthermore, the Landau-Zener

formula gives us the condition required for adiabatic dynamics. We provide a

more refined understanding of the parameter regimes when such an approxi-

mation is valid. A key point is that first order time dynamics conserves energy

while second order in time dynamics does not. Hence, the validity of the first
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order approximation is connected to the issue of energy non-conservation in

the double cavity with the driven central mirror. We will study the connection

between the energy of the light field and the work done by the parametrically

moving mirror on it in greater detail in Chapter 4. In chapters 3 and 4, for

all numerical simulations, we set the total cavity length to be L = 100 µm

and consider wavenumber pairs corresponding to the avoided crossing near

8.0425× 10−6 m−1 as the electromagnetic field inside the cavity. We consider

central mirror speeds as high as 2× 104 ms−1 which can be realized by mod-

ulating the refractive indices of a double cavity filled with some background

dielectric material via the electro-opto effect and discussed in Appendix A.2

[53, 12].

3.2 Maxwell Wave Equation with Time-Dependent

Boundary Conditions

We derive the equations of motion describing the time evolution of light in a

double cavity starting from the Maxwell wave equation. We write the electric

field in the adiabatic basis and find a differential equation that is second order

in time for the corresponding amplitudes. These equations of motion are

exact and from here onwards will be referred to as the adiabatic second order

equations (ASOE). They provide us with the most accurate description of light

dynamics in this chapter. ASOE are also the equations of motion by which

we compare validity of all approximate dynamics in Chapters 2 and 3.

In the previous chapter, we considered the case where the central mirror

inside the double cavity was stationary. Under such circumstances, the evolu-
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tion of light was described by Eqn. (2.3). As the speed of the central mirror is

slowly increased, we can expect that relativistic corrections will become rele-

vant to the Maxwell wave equation. The Maxwell wave equation in free space is

relativistically invariant, but inside a medium there are additional relativistic

corrections that need to be considered if the medium is moving very fast [54].

In Appendix A.1, we find that the order of magnitude of relativistic corrections

to Eqn. (3.1) corresponding to relavant experimental parameters are negligi-

ble. The electric field inside the cavity for a mirror moving at non-relativistic

speed is described by

∂2E(x, t)

∂x2
− µ0ε(x, t)

∂2E(x, t)

∂t2
= 0. (3.1)

Eqn. (3.1) describes the dynamics of light regardless of whether the central

mirror is being moved parametrically or is part of a dynamical system due

to being coupled to a spring potential. Since we consider the electromagnetic

field to be linearly polarized, the vector Maxwell wave equation reduces to a

scalar Maxwell wave equation. The adiabatic modes form a complete basis

and we can write the electric field as (the real part of)

E(x, t) =
∑
n

cn(t) exp

{
−i
∫ t

t0

ωn(t′)dt′
}
Un(x, t) (3.2)

where Un(x, t) is described in Eq. (2.6). Substituting equation (3.2) into (3.1),
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one finds [42]

∑
n

−2iωn
∂

∂t
(cn(t)Un(x, t))︸ ︷︷ ︸

1

+
∂2

∂t2
(cn(t)Un(x, t))︸ ︷︷ ︸

2

−i∂ωn(t)

∂t
cn(t)Un(x, t)︸ ︷︷ ︸
3

×
exp

[
−i
∫ t

t0

ωn(t′)dt′
]

= 0. (3.3)

In Eq. (3.3), term 1 is by far the most dominant term due to the very large

optical frequency prefactor. In the slow mirror limit, term 2 is small while

term 3 is much smaller still because the adiabatic mode can change more

significantly in comparison to the rate of change of the optical frequency near

an avoided crossing. At the center of the avoided crossing, the frequencies

are at a maximum or minimum and hence, the rate of change of frequencies

is strictly zero at that point. The relative magnitude of all these terms is

analyzed in greater detail in reference [42]. For faster mirror speeds, terms 2

and 3 can start interacting on an equal footing. From Eqn. (3.3), we find that

the amplitudes corresponding to the adiabatic basis satisfy

c̈m(t)− iω̇m(t)cm(t)− 2iωm(t)ċm(t) +
∑
n

{[2ċn(t)− 2iωn(t)cn(t)]Pmn(t)+

cn(t)Qmn(t)} = 0 (3.4)

where

θmn(t) =

∫ t

t0

[ωm(t′)− ωn(t′)] dt′ (3.5)

Pmn(t) =
1

ε0

∫ L2

−L1

ε(x, t)Um(x, t)
∂Un(x, t)

∂t
eiθmn(t) dx (3.6)
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and

Qmn(t) =
1

ε0

∫ L2

−L1

ε(x, t)Um(x, t)
∂2Un(x, t)

∂t2
eiθmn(t) dx. (3.7)

In order to solve the differential equations, we need to specify the initial con-

ditions. Since Eqn. (3.4) is a set of second order in time differential equations,

we need to specify both cm(t0) and ċm(t0). However, the initial conditions

are not independent and we find that once cm(t0) has been specified that

ċm(t0) = −
∑
n

Pmn(t0)cn(t0). Despite this, we still have two independent initial

conditions since the real parts as well as the complex parts of cm(t0) need to be

specified. The terms Pmn(t) and Qmn(t) depend on the motion of the mirror.

If the mirror is stationary, then the dielectric function, ε(x, t), is constant in

time and the adiabatic modes Un(x, t) are constant in time. The terms Pmn

and Qmn, which depend on the rates of change of the adiabatic modes, then

become zero. Hence, the essence of mirror motion which leads to time depen-

dent boundary conditions are captured in the terms, Pmn(t) and Qmn(t). We

simulate the dynamics of light in this chapter using three different equations of

motion: adiabatic second order equations (ASOE), diabatic second order equa-

tions (DSOE) and diabatic first order equations (DFOE). The most accurate of

these, ASOE, uses Eqn. (3.4) and as shown in Appendix A.1 can be a good ap-

proximation even for mirror speeds as high as 20, 000 ms−1 in a cavity contain-

ing light with wavenumber 8.0425 × 106m−1. Furthermore, the mirror reflec-

tivites used in the simulations in chapters 3 and 4 of R = 28%, 61%, 91%, 98%

are given by α = 1.5× 10−7, 3.1× 10−7, 7.7× 10−7, 1.5× 10−6 m.
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3.3 Energy of Light Field in The Cavity

We briefly derive the expression for the energy inside the cavity since it is

relavant to the results in the next section. The energy of the light field inside

the cavity is given by

E =
1

2

∫
V

[
ε(x)|E(x, t)|2 + µ0|H(x, t)|2

]
dV

=
A
2

∫ [
ε(x)|E(x, t)|2 + µ0|H(x, t)|2

]
dx (3.8)

where H(x, t) is the magnetizing field related to the magnetic field by H =

B/µ0 and A is he transverse area of the mirror. For a dichromatic wave inside

a cavity, comprised of frequencies ω1/2, i.e. two neighbouring adiabatic modes,

the electric field can be written as (the real part of)

E(x, t) = a1(t) exp[−iθ1(t)]U1(x, t) + a2(t) exp[−iθ2(t)]U2(x, t) (3.9)

where Um(x, t) is defined in Eqn. (2.6) and

θm(t) =

∫ t

t0

ωm(t′)dt′.

Hence, the energy per unit area becomes

E
A

=
ε0
2

{
|a1(t)|2 + |a2(t)|2

}
+
µ0

2

∫ L2

−L1

|H(x, t)|2dx.

In the stationary central mirror limit, the magnetic field term in the inte-

grand gives a contribution equal to that of the electric field term. However, a

non-stationary mirror implies corrections to the energy and force formula via
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additional terms in the magnetizing field. Considering that we work in the

non-relativistic central mirror speed regime, we ignore the additional correc-

tions. The energy is then given by

E
A

= ε0
{
|a1(t)|2 + |a2(t)|2

}
(3.10)

i.e. the instantaneous stationary cavity energy.

3.4 Approximate Dynamics of Light

In Zener’s paper [55], he points out that the time dependence of the diabatic

modes should be small compared to the time dependence of the corresponding

amplitudes. In Sec. 3.2, we derived the dynamics of light in the double cavity

by writing the electric field in the adiabatic basis. We mentioned in that section

that close to the avoided crossing, the adiabatic modes change drastically

compared to the corresponding amplitudes as can be seen in Fig. 2.5. In this

section, we derive the dynamics of light by writing the electric field in terms of

the diabatic mode basis. Contrary to the adiabatic basis, the diabatic modes

change insignificantly compared to their amplitudes near an avoided crossing

as can be seen in Fig. 2.6. This allows us to ignore the time dependence of the

diabatic mode functions ultimately leading us to deriving the DSOE and the

analytically more convenient DFOE as in reference [12]. Assuming that the

mirror motion is restricted near an avoided crossing of wavenumbers, we can

employ the two level approximation and write

E(x, t) = aL(t)φL(x, t) + aR(t)φR(x, t). (3.11)

36



CHAPTER 3. CLASSICAL DYNAMICS OF LIGHT IN THE NON- . . .

From E ′′ = µ0ε(x, t)Ë, ignoring φ̇L/R and φ̈L/R we find that

aL(t)φ′′L + aR(t)φ′′R = µ0ε(x, t)[äL(t)φL + äR(t)φR]. (3.12)

As the mirror is swept through the avoided crossing, the left and right ampli-

tudes swap populations as shown in Fig. 3.1 and light is transferred from one

side of the double cavity to the other. Even for a stationary mirror, the light

initially localized on one side would oscillate between the left and right modes

with frequency
√

∆2 + Γ(∆L)2/2 (see Eqn. (2.12)) exactly like Rabi oscilla-

tion in a two level atom interacting with a single mode field. The combined

effect of light sloshing back and forth and the moving mirror transferring light

population leads to an even larger rate of change of the diabatic amplitudes

compared to the corresponding modes. One of the goals of this section is to

numerically check that ignoring the time dependence of the mode functions is

justified. The other goal is to check numerically that the first order in time

reduction of the second order dynamics is valid.

3.4.1 Diabatic Equations of Motion Ignoring Time De-

pendence of Local Mode Functions

To find the spatial second derivatives of the diabatic modes for Eqn. (3.12),

we write each diabatic mode in the adiabatic basis, whose second deriva-

tives we know in terms of the Sturm-Liouville relationship in Eqn. (2.5),

∂2
xUm(x,∆L) = −k2

m (ε(x,∆L)/ε0)Um(x,∆L), and then convert back to the
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Figure 3.1: Comparison of the adiabatic and diabatic second order equations.
Here, we plot the time evolution of the left and right diabatic amplitudes due
to the ASOE from Eqn. (3.4) and DSOE from Eqn. (3.14). In this parameter
regime, (reflectivity 98%, mirror speed 5000 ms−1 and mirror displacement of
1 × 10−3 L, where L is the total length of the double cavity) the two curves
lie on top of each other showing that any differences are very small effects. In
order to see the subtle variations between the two sets of equations, we turn
to Figs. 3.2 and 3.3.
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Figure 3.2: Comparison of adiabatic and diabatic second order equations.
Here, we plot the difference of fractional change in energy due to the ASOE
from Eqn. (3.4) and DSOE from Eqn. (3.14) versus a rescaled time co-ordinate.
E0 denotes the initial energy of the light field. In this figure, each curve corre-
sponds to a different mirror speed while the reflectivity is held constant at 98%.
We see that the order of magnitude of difference between ASOE and DSOE,
quantified by the fractional change of energy, is about 1 × 10−5. This result
validates the approximation of ignoring the time dependence of the diabatic
modes in going from Eqn. (3.4) to Eqn. (3.14).
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Figure 3.3: Comparison of adiabatic and diabatic second order equations.
Here, we plot the difference of fractional change in energy due to the ASOE
from Eqn. (3.4) and DSOE from Eqn. (3.14) versus a rescaled time co-ordinate.
In this figure, each curve corresponds to a different mirror reflectivity while
the velocity is held constant at 5000 ms−1. We see that the order of magnitude
of difference between ASOE and DSOE, quantified by the fractional change of
energy, is about 1× 10−5. The conclusion is the same as in Fig. 3.2.
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diabatic mode basis using Eqn. (2.21). In matrix form, we then write

−

 äL

äR

 =

cos2 θω2
2 + sin2 θω2

1 cos θ sin θ(ω2
1 − ω2

2)

cos θ sin θ(ω2
1 − ω2

2) cos2 θω2
1 + sin2 θω2

2


 aL

aR

 (3.13)

or

−

 äL

äR

 =

[ωav + Γ(t)]2 + ∆2 2∆ωav

2∆ωav [ωav − Γ(t)]2 + ∆2


 aL

aR

 . (3.14)

From here onwards, we refer to Eqn. (3.14) as the diabatic second order equa-

tions (DSOE).

3.4.2 Approximate First Order in Time Equations of Mo-

tion

In the next stage, we see how to approximate this second order in time dy-

namics via the first order in time Landau-Zener type dynamics. We transform

the left/right mode variables as

aL/R = ãL/R exp

{
−i
∫ t

t0

βL/R(t′)dt′
}

(3.15)

where

βL/R(t) =
√

(Γ(t)± ωav)2 + ∆2. (3.16)

Then, we have

äL/R =
{

¨̃aL/R − 2iβL/R ˙̃aL/R − iβ̇L/RãL/R − β2
L/RãL/R

}
exp

{
−i
∫ t

t0

βL/R(t′)dt′
}
.

(3.17)
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Let us ignore the first and third terms since they are much smaller than the

β2
L/R ≈ ω2

av term which is of the order of magnitude 1030 for optical frequencies.

We will check the validity of these approximations later. Then, we have that

i ˙̃aL/R =
ωav∆

βL/R
ãR/L exp

{
±i
∫ t

t0

[βL − βR]dt′
}
. (3.18)

Assuming ωav is very large, and using the binomial expansion, we find that

βL/R(t) ≈ ωav

{
1± Γ(t)

ωav

+
1

2

∆2

ω2
av

}
. (3.19)

Hence, βL − βR ≈ 2Γ and ωav/βL/R ≈ 1, giving us

i ˙̃aL/R = ∆ãR/L exp

{
±2i

∫ t

t0

Γ(t′)dt′
}
. (3.20)

Changing the variables back to aL/R, assuming that the mirror is moving at

a constant speed so that Γ(t) is linear in time, we indeed get Landau-Zener

dynamics

i

 ȧL

ȧR

 =

ωav + Γ(t) ∆

∆ ωav − Γ(t)


 aL

aR

 (3.21)

with linearly varying diagonal elements and constant off-diagonal elements.

Mathematically, this equation resembles the Schrödinger equation with the

Landau-Zener Hamiltonian, but here the role of the quantum probability am-

plitudes are played by the amplitudes of the classical electric fields (hence, the

absence of ~). An important property of the Schrödinger equation is conser-

vation of probability (unitary dynamics) which is thus imposed on the electric

field amplitudes as |aL|2 + |aR|2 = 1. This is artificial since in classical elec-

tromagnetism this is an energy (Eqn. (3.10)) which is not conserved for a
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parametric driven mirror. From here onwards, we refer to Eqn. (3.21) as di-

abatic first order equations (DFOE). Hence, we have the following hierarchy:

the ASOE in Eqn. (3.4) are the Maxwell wave equation with time dependent

boundary conditions written in terms of the adiabatic basis. The DSOE in

Eqn. (3.14) are the two-level approximation near an avoided crossing of the

ASOE, while neglecting the time dependence of the diabatic mode functions.

Lastly, the DFOE in Eqn. (3.21) are an approximation to the DSOE by ne-

glecting fast oscillating terms, i.e. the first and third terms of the right hand

side of Eqn.(3.17). Furthermore, for linearly varying diagonal elements (set-

ting Γ(t) = ϑt/2), which occurs for a central mirror being driven at a constant

speed we can determine the adiabatic condition for adiabatic transfer of light

amongst the cavity halves. If the two level system is prepared in one of the

diabatic modes at time t = −∞, then the probability of transition to the other

mode at time t = ∞ is given by PLZ = e−2π∆2/ϑ [56, 55]. Hence, the adia-

batic transfer of light can be achieved for 2π∆2/ϑ � 1. In this section, we

simulate the dynamics for light initially located in the right side of the cavity

and moving the mirror from the left to the right using the ASOE and DSOE.

The dynamics in the two sets of equations are described in two different basis,

i.e. adiabatic modes for Eqn. (3.4) and diabatic modes for Eqn. (3.14) and

therefore the calculations are quite different. We can change between the two

bases using Eqn. (2.21). Comparing the dynamics of the two sets of equations

will show if it is valid to ignore the time dependence of the diabatic mode

functions or not. In Fig. 3.1, we see that the left/right amplitudes from the

ASOE and DSOE lie on top of each other. We can conclude that the difference

in the mode amplitudes due to the ASOE and DSOE are very small relative

to the order of magnitude of the amplitudes themselves. To get a closer look
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Figure 3.4: Comparison of diabatic second and first order in time equations
and the role of mirror reflectivity. This figure shows the difference of frac-
tional change in energy due to the DSOE in Eqn. (3.14) and the DFOE in
Eqn. (3.21) versus a rescaled time co-ordinate. Each curve corresponds to a
different mirror reflectivity, while the velocity is held fixed at 5000 ms−1. For
first order dynamics, ∆EDFOE/E0 has to be identically zero, while for second
order it is non-zero. Hence the difference between this quantity and zero can
be used to quantify the validity of the first order model to the more correct
second order equations of motion. As reflectivity goes up, the first order ap-
proximation becomes less valid. However, it is still a very good approximation
in the optical frequency regime.
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Figure 3.5: Comparison of diabatic second and first order in time equations
and the role of mirror velocity. This figure shows the difference of fractional
change in energy due to the DSOE in Eqn. (3.14) and the DFOE in Eqn. (3.21)
versus a rescaled time co-ordinate. Each curve corresponds to a different mirror
velocity, while the reflectivity is held constant at 98%. As our intuition would
suggest, the first order approximation becomes less valid for higher speeds.
Although a speed of 20000 ms−1 seems very high, such effective speeds can be
achieved by changing the background index of refractions rather than physi-
cally moving the mirror as discussed in Appendix A.2.
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into the order of magnitude of the effect of ignoring the time dependence of

the diabatic modes, we compare ∆E/E0 for the two sets of equations of mo-

tion. The change in energy is proportional to the adiabatic amplitude sum as

discussed in Sec. 3.3, Eqn. (4.11). From Figs. 3.2 and 3.3, we see that as long

as the mirror motion is close to the avoided crossing, the difference is of the

order of 10−5 even for mirror speeds as high as 20000 ms−1.

The other objective of this section is to check how good of an approximation

it is to ignore the first and the third term in Eqn. (3.17), i.e. how good of an

approximation the DFOE is to the DSOE. In Figs. 3.4 and 3.5 we compare

the DSOE to its first order reduction, the DFOE. Once again, the fluctuation

in the amplitudes due to the second order dynamics and its approximation

is much smaller than the magnitude of the modes. Hence it is easier to look

at ∆E/E0. Due to the unitary structure of the Schrödinger equation, the first

order dynamics is unitary (we have checked this numerically) and therefore, the

change in energy ratio, ∆EDFOE/E0, is identically zero. The difference between

the first and second order model is directly related to the energy pumped

into and out of the system. We can see that for increasing reflectivity and

mirror speed, the first order approximation becomes less valid. Though, in the

optical frequency regime, it is a very good approximation. The discrepancy

in this parameter regime is of the order of magnitude 10−3. This also shows

that ignoring the time dependence of the diabatic mode functions is a much

smaller effect than the first order reduction of DSOE.
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3.4.3 Effect of mirror reflectivity and speed

Just above, we showed that for large optical frequencies, one can approximate

the diabatic second order equations by diabatic first order equations that is

exactly mappable onto the analytically solvable Landau-Zener dynamics for

mirrors moving at constant speeds. However, the analysis does not clearly

show us the subtler dependence on mirror reflectivity and speed and were

smudged out when we ignored the first and third terms of Eqn. (3.17). We can

see that they have an effect, though small, from Figs. 3.4 and 3.5. This section

is dedicated to developing a criterion that allows us to evaluate when the first

order approximation is good or bad depending upon the mirror reflectivity and

speed.

Define the following matrix

M = −i

ωav + Γ(t) ∆

∆ ωav − Γ(t)

 (3.22)

and let

~a =

 aL

aR

 . (3.23)

We are interested in the condition/parameter regime where the DFOE are a

good approximation of the DSOE, which in turn we have also established to

be a very good approximation to the dynamics of light from the ASOE. Then,

we would like to have the condition for when the DFOE rewritten as

d

dt
~a = M~a (3.24)
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is a good approximation to the DSOE rewritten as

d2

dt2
~a = M2~a. (3.25)

To compare the two, we take the derivative of both sides of Eqn. (3.24), we

find
d2

dt2
~a = M2~a+ Ṁ~a (3.26)

where

Ṁ = −i

Γ̇ 0

0 −Γ̇

 . (3.27)

Eqn. (3.27) is the same as Eqn. (3.25) apart from the Ṁ~a term. In order for

the diabatic first order equations to be a valid approximation of the second

order equations, we require that r = ||M2||2
||Ṁ ||2 be large, i.e. ||Ṁ || is much smaller

than ||M2||.

The symbol || · || represents the norm of the matrix given by the sum

of each matrix element squared [57]. Then, the ratio describing first order

approximation validity becomes

r =
8∆2ω2

av + ([ωav + Γ]2 + ∆2)2 + ([ωav − Γ]2 + ∆2)2

2Γ̇2
. (3.28)

Note that this quantity takes account of the mirror speed (Γ̇) and the reflec-

tivity (∆). Before, we move on, let us take a brief excursion through the

structure of ω2/1(∆L) and the analytical implications of being near an avoided

crossing for central mirrors with high enough reflectivity. Detailed derivations

are given in references [12]. In analogy with the Landau-Zener Hamiltonian

and the avoided crossings the eigenvalues form, we fit the frequencies near the
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avoided crossing in the double cavity with

ω2/1 = ωav ±
√

∆2 + γ∆L2. (3.29)

Comparing this with Eq. (2.12), we see that

Γ(∆L) =
√
γ∆L. (3.30)

In Fig. 2.2, one can see that as the central mirror reflectivity approaches unity,

the avoided crossing curves become steeper which implies faster change of fre-

quencies with change in mirror position and that second order corrections be-

come important. As R→ 1, the term √γ asymptotically approaches the slope

of the diabatic frequency curve (red-dotted curve in Fig. 2.2). Furthermore,

we have the analytic formulae [12]

∆ =
ω0

2

1

1 +
ω2
0Lα

4c2

(3.31)

and

γ =
ω3

0

2Lc2
∆α (3.32)

where

ω0 =
2cnπ

L
(3.33)

where n denotes the n-th eigenfrequency. Then

r = (3.34)
(γ2∆L4 + ∆4 + ω4

av) + 6ω2
av(∆2 + γ∆L2) + 2γ∆2∆L2

γ∆L̇2
(3.35)
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Figure 3.6: The analytical condition of first order EOM validity is given
by the ratio, r in Eqn. (3.35) or log(r). Large r, means first order is a good
approximation. Here, we look at the dependence of r on mirror velocity and
reflectivity. It can be clearly seen that r becomes large as the mirror velocity
becomes small as well as r becomes small when the mirror reflectivity increases.
This supports what the numerical simulations have indicated previously as to
the validity of the first order model depending on the mirror velocity and
reflectivity. This figure is generated using equation (3.35).

where

ωav = ω0 + ∆. (3.36)

For large r, first order equations of motion are a good approximation. From

the form of r, the role of bare cavity eigenfrequency and mirror speed in the

DFOE validity is quite clear. Increasing ω0 and decreasing mirror speed imply

that r is increasing. Intuitively, we expect that a higher reflectivity should

lead to a breakdown of the first order approximation because a more reflective
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mirror perturbs the field more. Since R = 1
1+4c2/ω2α2 , as α increases, then so

does reflectivity, R and the avoided crossing gap 2∆. We need to understand

the dependence of r on increasing α. Differentiating r with respect to α, we

find that the derivative is always negative showing that r is a monotonically

decreasing function of α. This means that r goes down as α or mirror re-

flectivity goes up. Hence, the first order approximation becomes worse with

increasing reflectivity.
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Chapter 4
Work Energy Theorem and Classical

Dynamics

4.1 Introduction

In chapter 3 we saw that a first order in time reduction of the Maxwell wave

equation artificially conserves energy of the light field inside the double cavity.

The validity of the first order approximation (DFOE) is greater for lower work

done on the light field by the external agent driving the mirror. For a sta-

tionary double cavity, where the energy is conserved, the first order reduction

is exact. When the mirror begins to move, however, energy non-conservation

becomes inevitable. Consider a central mirror moving at a constant speed. For

the external source to continue to move the central mirror in such a fashion,

it needs to apply a force equal and opposite to the radiation pressure of the

light field inside the cavity on the mirror. Hence, the external source ends up

doing work on the light field. In this chapter, we take a detailed look at the

radiation pressure of the light field on the mirror. We compare the work done
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by the external source on the light field to the change in energy and in fact

find the two quantities to be in agreement as they should be. This serves as

a validity check for our numerical simulations. Lastly, we look at adiabaticity

for the Maxwell wave equation for time-dependent boundary conditions. We

compare adiabaticity in the context of the double cavity with a moving mir-

ror to our understanding of adiabaticity from the Schrödinger wave equation.

This provides closure to our classical study of the double cavity system.

4.2 Maxwell Stress Tensor and Radiation Pres-

sure of Light on Mirror

In this section, we connect two aspects of the double cavity: the radiation

pressure of light on the central mirror and the energy of the light field in

the system. Starting from the Maxwell stress tensor, we derive the radiation

pressure of light in the two level approximation near an avoided crossing.

We find that the radiation pressure obtained by simply adding the pressures

of each adiabatic mode (U1/2(x,∆L)) leads to erroneous results and is not

equivalent to the radiation pressure of the net electric field. We also check

that the work-energy theorem, ∆E = W =
∫
Fdx is satisfied, which gives us

a self consistency check of the numerical simulations in this thesis.

Moreover, studying the radiation pressure gives an intuitive explanation for

the energy non-conservation with the ASOE and DSOE as seen in Figs. 3.4

and 3.5. Assume that initially light is localized in the right side of the cavity.

Suppose we want to move the mirror from left to right at a constant speed.

The radiation pressure of light localized on the right side of the cavity will push
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against the mirror. Hence, to maintain a constant speed we need to apply a

force equal in magnitude to the radiation pressure force, but in the direction of

the mirror motion. Therefore, to maintain a constant mirror velocity, positive

work has to be done by the mirror on the light field and the energy of the

system will increase. One can see in Figs. 3.4 and 3.5 that the energy pumped

in reaches a maximum value. This occurs at the point where the light intensity

on the left and right are equal and the radiation pressure cancels to zero as

will be shown in Fig. 4.3 which provides the radiation pressure corresponding

to the curves in Fig. 3.4. On the other hand, if the mirror is being moved from

right to left, the radiation pressure points in the same direction as the mirror

motion. Hence, a force from the mirror on the light field has to be applied

opposite to the mirror motion to maintain a constant speed. This implies that

negative work is being done on the light field due to the mirror and energy

will end up being pumped out of the light field. The force due to radiation

pressure on some region of volume V and surface area S is given by [58]

F =

∫
S

←→
T · d~a− d

dt

∫
V
ε(~r) ~E × ~BdV (4.1)

where
←→
T is the Maxwell stress tensor defined by

Tij ≡ ε(~r)

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
. (4.2)

We are interested in the force on a central mirror in a double cavity due

to electromagnetic waves. S represents the interfaces of this mirror, while

V is its volume. The central mirror can be described by the finite mirror

or the δ function model. The latter is mathematically tractable while the
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former represents a more physically realistic model. Let us set the following

conventions: Electric field is polarized along the y-axis and the magnetic field is

polarized along the z-axis. The cavity axis is in the x̂ direction, i.e. ε(~r) = ε(x).

In this case, Txx is the only matrix element with a non-zero projection along

the surface are vector and given by

Txx =
ε(x)

2
E2
y +

1

2µ0

B2
z . (4.3)

Let us look at the second term of the force formula, d
dt

∫
V ε(~r)

~E× ~BdV (for the

finite mirror model). In general, this term is non-zero. Since we are interested

in a frequency regime far away from the resonance of the central mirror, the

electric and magnetic field strength inside V is negligible and we can neglect

this term. Hence, the force becomes

FM =

∫
S
Txxdax = A

{
εM(x)

2
E2
y,M +

1

2µ0

B2
z,M

}Left

Right

(4.4)

where A is the transverse area of the cavity and 2M is the width of the mirror.

When we take the limit M → 0, n → ∞ s.t. 2Mn2 = α [12], and the field

near the mirror is almost a node, the finite mirror approaches the δ-function

model and the force becomes

F
A

=

{
ε(x)

2
E2
y +

1

2µ0

B2
z

}Left

Right

. (4.5)

We could have written down this formula without appealing to the finite mir-

ror model. However, this shows us that there are no unwanted surprises in

using the less physically realistic δ-function mirror (away from the resonance

condition of the central mirror).
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One last simplification can be made to the force formula. The electric field

is continuous at the mirror interface while the magnetic field is discontinuous.

This is due to the fact that the magnetic field is related to the spatial derivative

of the electric field which happens to be discontinuous. Hence, the radiation

pressure becomes

P =

{
ε(x)

2
E2
y +

1

2µ0

B2
z

}Left

Right

(4.6)

=
1

2µ0

{
B2
z

}Left

Right

which is simply proportional to the difference of the magnetic field intensity

between the left and right sides of the central mirror.

4.3 Numerical check of the Work-Energy Theo-

rem in the Double Cavity

The electric field corresponding to frequency ωm is

~Em(x, t) = ŷam(t) exp[−iθm(t)]Um(x, t) (4.7)

The coefficient am(t) is time dependent, since we are assuming a non-stationary

mirror. From

∇× ~H =
∂ ~D

∂t
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the magnetizing field is given by

− ∂xHzŷ = ŷ {−iεam(t)ωm(t) exp[−iθm(t)]Um(x, t)+

ε exp[−iθm(t)]
∂

∂t
[am(t)Um(x, t)]

}
(4.8)

where ~D is the displacement field related to the electric field by D = εE. Let

us ignore the last term on the grounds that the optical frequency prefactor

in the first term will dominate. Then, the solution to Eqn. (4.8) where Um is

given by Eqn. (2.6) is

~Hm(x, t) = −ẑε0am(t)c · i exp[−iθm(t)]Gm(x,∆L)

where

Gm(x,∆L) =


Am cos[km(x+ L1)], −L1 < x < 0

Bm cos[km(x− L2)], 0 < x < L2

(4.9)

and c is the speed of light. Therefore, the radiation pressure due to a monochro-

matic wave of frequency ωm (ignoring the ε ∂
∂t

[am(t)Um(x, t)] term) is

Pm =
µ0

2

{
H2
z

}Left interface

Right interface

=
ε0
2
a2
m(t)

{
A2
m cos2(kmL1)−B2

m cos2(kmL2)
}
. (4.10)

Now that we have a formula for the radiation pressure force on the central mir-

ror, we can check its accuracy. We have simulations of the odd/even adiabatic

amplitudes, a1/2(t), defined in Eqn. (3.2) for a linear sweep of the mirror near

an avoided crossing. From these simulations, we can determine the energy
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difference per unit area using Eqn. (3.10) to be

∆E(τ)

A
≈ ε0

{
|a1(τ)|2 + |a2(τ)|2 − 1

}
(4.11)

assuming that we pick the initial amplitude sum to be 1.

From the radiation pressure calculation, we find that the work done by the

mirror on the light field is

∆E(τ)

A
= −v

∫ τ

−1

dτ ′ [P1(τ ′) + P2(τ ′)] (4.12)

where τ is a linear reparametrization of time such that τ = −1..1, when

t = −T0..T0. Hence, we find the net radiation pressure due to light by summing

the radiation pressure due to each monochromatic light field separately. The

radiation pressure force seems to work for the lower reflectivity cases in Fig. 4.1,

but the work and energy curves corresponding to 98% reflectivity does not fit

perfectly.

Instead of summing up the forces due to individual frequencies of light, we

find the force due to the net electromagnetic field. The electric field is

~E(x, t) = ŷ {a1(t) exp[−iθ1(t)]U1(x, t) + a2(t) exp[−iθ2(t)]U2(x, t)} . (4.13)

The magnetizing field satisfies

∂xHzŷ = ŷ
∑
m=1,2

{iεam(t)ωm(t) exp[−iθm(t)]Um(x, t)−

ε exp[−iθm(t)]
∂

∂t
[am(t)Um(x, t)]

}
. (4.14)
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Figure 4.1: Comparison of the work done by the external source driving
the mirror and the change in energy of the light field. This figure shows that
the ratio of the work done (W) to the initial light energy (E0) to overcome
the radiation pressure on the mirror closely resembles the fractional energy
change (∆E/E0) of the light field inside the cavity. The work and energy are
plotted as a function of some re-scaled time co-ordinate (τ). However, the
radiation pressure formula used here is not quite correct. As can be seen in
the next figure, the formula corresponding to that one is much better. The
red, solid curve is generated using equation (3.4). The blue, dotted curve
is generated using equation (4.12). The central mirror speed is 5000 ms−1,
mirror displacement 1× 10−3L and light initially localized on the right side of
the cavity.
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Figure 4.2: Comparison of the work done by the external source driving the
mirror and the change in energy of the light field. This agreement between
the fractional change in energy (∆E/E0) and the ratio of work done to the
initial energy of the light field (W/E0) is a strong indicator that the numerical
simulation codes and the formalism used is self consistent. The red, solid line
is simulated by equation (3.4), while the dotted, blue curve is simulated using
equation (4.16).
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Figure 4.3: Radiation pressure as a function of time for different mirror
reflectivities. Here, we plot the radiation pressure of light on the central mirror
inside the cavity as a function of time using equation (4.16). We keep the
mirror velocity fixed and vary the mirror reflectivity. We find that the initial
radiation pressure magnitude increases as the mirror reflectivity is increased.
The greater the reflection of light at the central mirror, the greater the change
in momentum imparted on the mirror and hence this leads to a higher radiation
pressure. One can see that for a reflectivity of 98% the radiation pressure
exhibits some oscillatory behaviour. This is due to the non-adiabatic nature
of the sweep through the avoided crossing. As the reflectivity approaches
unity, the gap at the avoided crossing becomes smaller. A non-adiabatic sweep
then causes the mode populations to be swapped back and forth leading to a
oscillatory radiation pressure.
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Figure 4.4: Radiation pressure as a function of time for different mirror ve-
locities. In this plot, the radiation pressure is simulated using equation (4.16),
while holding the reflectivity constant at 98% and changing the mirror speed
from non-adiabatic to adiabatic velocities. In Fig. 4.3, we saw that for a re-
flectivity of 98% and mirror speed 5000 ms−1, the radiation force showed some
oscillatory behaviour. We postulated that it was due to the non-adiabatic na-
ture of the mirror motion causing transitions amongst the two states. Indeed,
in this plot we find that as the mirror speed goes down, so does the swapping of
population amongst the two modes and consequently the oscillatory behaviour
of the radiation pressure. This figure corresponds to the light dynamics shown
in Figs. 4.6 and 4.5.
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Again we ignore the last term to find

~Hm(x, t) = −ẑε0c · i {a1(t) exp[−iθ1(t)]G1(x,∆L)+

a2(t) exp[−iθ2(t)]G2(x,∆L)} . (4.15)

Therefore, the radiation pressure due to a dichromatic wave of frequencies ω1/2

terms is given by

P =
ε0
2

{
|a2(t) exp[−iθ2(t)]A2(t) cos(k2L1) + a1(t) exp[−iθ1(t)]A1 cos(k1L1)|2

− |a2(t) exp[−iθ2(t)]B2 cos(k2L2) + a1(t) exp[−iθ1(t)]B1 cos(k1L2)|2
}
. (4.16)

Previously, when we added the radiation pressures due to the individual fre-

quencies, we were missing the cross terms that are included in Eqn. (4.16).

Taking into account the cross terms due to the dichromatic nature of the elec-

tromagnetic waves inside the cavity, as can be seen in Fig. 4.2, we have perfect

agreement in the work and energy curves. This is a self-consistency check that

strongly validates the numerical codes.

4.4 Adiabatic Condition of Double Cavity Dy-

namics with a Driven Mirror: Maxwell ver-

sus Schrödinger

In this section we investigate adiabaticity of the Maxwell wave equation de-

scribing light in the double cavity. The most basic aspect of adiabaticity for

the Schrödinger wave equation of a time dependent system is that if the ini-
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tial state is an instantaneous eigenstate the system continues to remain in the

same instantaneous eigenstate of the Hamiltonian with probability equal to

one. Thus, as we change the system more and more slowly, the population

transfer from the initially occupied instantaneous eigenstate to others will ap-

proach zero as the sum of the squares of the amplitudes is constrained to equal

one. Analogous to changing the potential function in the Schrödinger equa-

tion, here we consider changing the mirror position or dielectric function of

the double cavity from some initial to final position. In this section, we find

that decreasing mirror speed is a sufficient criterion for achieving adiabaticity

in the Maxwell wave equation, but that even in this slow mirror speed limit we

do not achieve energy conservation. This requires a bit of elaboration to fully

appreciate. Though the Maxwell and Schrödinger wave equations describe

the time evolution of wave functions, physically, the former represent classical

field amplitudes while the latter represent probability amplitudes. While the

sum of the squares of the field amplitudes is conserved under the Schrödinger

wave equation, it is not under the Maxwell wave equation. Since for classical

electromagnetic fields the sum of the squares of the field amplitudes is the

energy, this implies that under the Maxwell wave equation energy is in general

not conserved, whereas under the Schrödinger-like first order approximation

energy is artificially conserved. Of course, this is expected since the light field

interacts with the mirror via radiation pressure and as a result energy can be

transferred back and forth between the field and the mirror.

If the electric field is an instantaneous eigenstate of the double cavity cor-

responding to the starting position of the central mirror, moving the mirror

more and more slowly will ensure that the electric field continues to remain in

the same instantaneous eigenstate of the cavity. Under the Schrödinger-like
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equation, if the initially occupied mode has amplitude 1, the final amplitude

of the eigenstate level will approach 1 in the adiabatic limit. However, under

the Maxwell wave equation, starting from the initial mode amplitude 1, no

matter how slowly we move the mirror, the final amplitude in general will not

be 1. Due to radiation pressure, some energy is always pumped into/ out of

the system regardless of how slowly the central mirror is being moved. This

feature, that the field can remain in the same eigenstate and yet evolve to a

different amplitude is a basic and interesting difference between adiabaticity

in the Schrödinger and Maxwell wave equations.

Let us consider the question of adiabaticity for a double cavity more quanti-

tatively. A central mirror moves at a constant velocity from position x = −L0

to L0 over time t = −T0 to T0. The displacement of the mirror from the center

is given by ∆L/2. Then, the mirror displacement function can be written

∆L(t)

2
=
L0

T0

t. (4.17)

The mirror speed is given by v = L0/T0. We fix L0 and change the param-

eter T0. To have a clearer understanding of the role of decreasing mirror speed

in adiabaticity of the Maxwell wave equation, consider the following change of

variable

τ =
t

T0

= λt, −1 ≤ τ ≤ 1 (4.18)

i.e. λ = 1
T0
. Eqn. (3.4), i.e. the adiabatic basis equations, can now be rewritten

as

dcm
dτ

= −dωm
dτ

cm
2ωm

− iλ

2ωm

d2cm
dτ 2

−
∑
n

{[
iλ

ωm

dcn
dτ

+
ωn
ωm

cn

]
P̄mn +

iλ

2ωm
cnQ̄mn

}
(4.19)
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where

θ̄mn =
1

λ

∫ τ

τ0

[ωm(τ ′)− ωn(τ ′)] dτ ′

P̄mn =

∫ L/2

−L/2

ε(τ, x)

ε0
Um(τ, x)∂τUn(τ, x)dxeiθ̄mn

Q̄mn =

∫ L/2

−L/2

ε(τ, x)

ε0
Um(τ, x)∂2

τUn(τ, x)dxeiθ̄mn .

Note that in Eqn. (4.19), which the adiabatic criterion analysis is based on,

we do not assume that the dynamics takes place close to an avoided crossing

or make a two level approximation. As a specific example of the adiabaticity,

however, we numerically simulate the case of a mirror being swept close to the

avoided crossing and apply a two level approximation. The deductions made

in this section about adiabaticity in the double cavity hold even for a mirror

moving through multiple avoided crossings.

Let us assume that the mode ci (in the adiabatic basis) is initially populated

and all other modes are empty. When T0 → ∞, we have that λ → 0 and the

terms Pnm for n 6= m approach zero due to the presence of the phase term

which oscillates more and more wildly in that limit. The term Pii lacks a similar

phase term and so remains finite. The term, dωi

dτ
ci

2ωi
in Eqn. (4.19) is related to

the slope of the frequency function and is non-zero everywhere except exactly

at the avoided crossing. Since the first and third terms on the right hand side

of Eqn. (4.19) do not approach zero in the adiabatic or equivalently, the slow

mirror limit, dci
dτ

does not approach zero. Meanwhile, the rate of change of all

initially unpopulated states do approach zero in the adiabatic limit because the

first term of Eqn. (4.19) depends on the mode population. This shows that all

the initially vacant modes continue to remain vacant in the slow mirror limit,
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Figure 4.5: Approach to adiabaticity under the Maxwell wave equation. The
vertical axis of this figure shows |c2|2, i.e. mode 2 amplitude in the adiabatic
basis, as a function of a time co-ordinate normalized for the sake of comparison.
The initial condition for the dynamics is c1 = 1 and c2 = 0. We can see that as
the mirror speed goes down, the unpopulated mode amplitude approaches the
zero. Parameters: Mirror reflectivity, 98% and mirror displacement, 1×10−3L,
where L is the total length of the double cavity. We have simulated the light
field dynamics according to Eqn. (4.19) in the two level approximation near
an avoided crossing.
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Figure 4.6: Demonstration that field amplitudes are not conserved under
adiabatic evolution of Maxwell fields. In this figure, we plot the quantity
|c1|2, corresponding to the setup in Fig. 4.5. We can see that as the mirror
speed is decreased the amplitude function of the initially populated mode does
not approach unity. This is because, whilst the slowly moving mirror limit is
sufficient to achieve adiabaticity, the amplitude sum still tends to a finite limit.
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as can be seen in Fig. 4.5. However, the mode that was initially populated will

change in magnitude. Hence, no matter how slowly the mirror is moved, there

will always be some minimum energy transferred into or out of the populated

mode from or to the mirror. This can be seen in Fig. 4.6. Furthermore, in

Fig. 4.7, we look at the energy of the system. It was shown in Sec. 3.3 that

the difference of the amplitude sum from unity gives the change in energy as a

function of time divided by the energy, i.e. |c1|2 + |c2|2− 1 = ∆EASOE/E0. One

can see that no matter how slowly the mirror is being moved, the difference

in amplitude sum from the initial value reaches some non-zero limit.
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Figure 4.7: Sum of Maxwell field amplitude squared terms tend to a finite
non-zero limit in the adiabatic regime. Here, we plot the time evolution of
the fractional change (∆E/E0) in the energy of the light field. This plot shows
that as we displace the mirror slower and slower, the energy pumped into the
system does not vanish. Furthermore, we see that adiabaticity does not imply
conservation of the light field energy.
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Chapter 5
Quantum Dynamical Formalism for

Light in Double Cavity with a

Parametric Mirror

5.1 Introduction

This chapter marks the boundary where we transition from the study of clas-

sical dynamics of light in a double cavity to the quantum dynamics. Both the

classical and quantum dynamics are non-trivial due to the time-dependence

of the boundary condition manifested as the moving central mirror. In partic-

ular, we are interested in the dynamical Casimir effect (DCE) in the double

cavity. The static Casimir force was discovered by Hendrik B. G. Casimir as

being due to the presence of vacuum modes of the electromagnetic field in

reference [18]. In the last chapter we saw energy change in the light field due

to the interaction of the moving mirror with the light field via the radiation

pressure. The DCE is the creation of photons due to the movement of the
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Figure 5.1: Accelerating the cavity mirror converts vacuum photons into real
photons inside the cavity.

mirror and the presence of the vacuum light field. One of the earliest works

on the excitation of the vacuum modes due to dynamical effects was done by

G. T. Moore in reference [5]. G. T. Moore showed that the number of photons

created due to the time dependence of boundary conditions is a convergent

term and rather small in the non-relativistic regime. We begin by studying

the quantum mechanical effective Hamiltonian for the double cavity system in

Sec. 5.2. Inspecting the effective Hamiltonian, we see that photon creation in

a non-stationary double cavity is due to a combination of squeezing and an

acceleration effect, with implicit and explicit dependence on the mirror veloc-

ity q̇. Furthermore, the acceleration term contains both light scattering terms

and parametric oscillator terms. In Sec. 5.3, we write down the equations

of motion of the creation/annihilation operators to understand the resonance

condition when the frequency of the sinusoidally driven central mirror is tuned

to generate the most photons. For the initial vacuum state, the dynamics is
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dominated by the parametric oscillator term for short times [49] and driv-

ing the mirror at approximately twice that of a cavity mode frequency leads

to parametric amplification of the corresponding light mode energy [59]. An

analogous example would be the optical parametric oscillator which involves

an intense laser beam shining on some non-linear crystal (β-barium borate for

example) which causes the electric dipoles in the atoms of the crystal to vi-

brate with the pump frequency (ωp) and emit electromagnetic radiation. Due

to energy conservation, when the pump frequency satisfies ωp = 2ω0, where ω0

is the frequency of the output radiation, a pair of photons of the corresponding

frequency can be radiated [60] in a process known as degenerate parametric

amplification (the photons are emitted in pairs due to invariance under charge

conjugation). In Sec. 5.4, we review the formalism already present in the liter-

ature [24, 22, 28, 2] which is extremely convenient for numerically simulating

the quantum dynamics propagator. This is the approach we take to simulate

the quantum dynamics in this thesis. We numerically generate the propagator

of the dynamics for a certain cutoff frequency determined according to our ac-

curacy needs. Then, depending on the initial state of the light field (vacuum,

general coherent states etc.), the propagator determines the photon numbers

corresponding to the evolved light state at later times.

5.2 Effective Quantum Mechanical Hamiltonian

of Light in The Double Cavity

In this section we review the effective Hamiltonian formulation for a cavity

with a parametric driven mirror due entirely to C. K. Law [49]. Consider a
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double cavity system consisting of an optical cavity with perfect end mirrors

and a partially transmissive central mirror that is moved parametrically. The

Lagrangian density of the electromagnetic (light) field inside the system is

given by [61]

LF =
1

2

[
ε(x, q(t))(∂tA)2 − (∂xA)2/µ0

]
, (5.1)

and the corresponding conjugate momentum is given by

Π(x, t) = ε(x, q(t))∂tA(x, t), (5.2)

where q(t) denotes the position function of the central mirror. Furthermore,

we can write down the quantized vector potential function and its conju-

gate momentum in the instantaneous eigenstate basis of the system denoted,

{φk(x, q)}, given by

Â(x, t) =
1
√
ε0

∑
k

Q̂k(t)φk(x, q(t)) (5.3)

Π̂(x, t) =
ε(x, q(t))
√
ε0

∑
k

P̂k(t)φk(x, q(t)).

Since, {φk(x, q)} satisfies the Sturm-Liouville equation given by

∂2φk(x, q(t))

∂x2
+ µ0ε(x, q(t))ω

2
k(q(t))φk(x, q(t)) = 0, (5.4)

it forms an orthonormal basis satisfying

∫ l

0

ε(x, q(t))

ε0
φj(x, q(t))φk(x, q(t))dx = δjk. (5.5)

The dynamics of light corresponding to the Lagrangian above is given by
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the Euler-Lagrange equation, ∂x
{

∂LF
∂(∂xA)

}
+ ∂t

{
∂LF
∂(∂tA)

}
− ∂LF

∂A
= 0, which im-

plies that

∂2
xA(x, t)/µ0 − ∂t{ε(x, q(t))∂tA(x, t)} = 0. (5.6)

For a stationary double cavity, the co-ordinates {Q̂k, P̂k} are canonical vari-

ables of the quantized simple harmonic oscillator corresponding to the eigen-

mode, ωk(q). Since we do not treat the mirror position and momentum as

dynamical variables, we cannot proceed from the Lagrangian to the Hamilto-

nian via Legendre transformations. The Hamiltonian of a single and double

cavity is quantized in references [16, 17], respectively, by treating both the

light field and the central mirror in terms of dynamical variables i.e. the mo-

tion of the mirror is not a prescribed function of time but evolves under the

combination of radiation pressure and a conservative potential. In [49], the

formalism for the effective Hamiltonian is derived by examining the dynamics

of light in terms of the canonical variables {Q̂k, P̂k} or {âk, â†k}. One feature

that we will see later is that if we wish to change from one set of canonical

variables to another, expecting Hamilton’s equations to hold, we cannot just

simply substitute the old variables in terms of the new. [One cannot derive

a Hamiltonian via a Legendre transformation applied to the Lagrangian and

Hamilton’s equations are not preserved under canonical transformations.] To

write down an effective Hamiltonian in terms of any canonical variables, we

would have to examine the dynamics in terms of the new variables and then

back-engineer the corresponding Hamiltonian. Hence, this is not a true Hamil-

tonian but rather an effective one that satisfies Hamilton’s equations for some

variables of interest [49]. In our study of light in the double cavity, due to the

parametric nature of the mirror motion, it is implicit that a true Hamiltonian
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cannot be written down. If one wished to study the dynamics of this system

via the Schrödinger equation, one would have to rely on an effective Hamil-

tonian. From Eqns. (5.4) and (5.5) the amplitudes {Q̂k, P̂k} can be projected

out and found to be

Q̂k(t) =
1
√
ε0

∫ l

0

ε(x, q(t))Â(x, t)φk(x, q(t))dx, (5.7)

P̂k(t) =
1
√
ε0

∫ l

0

Π̂(x, t)φk(x, q(t))dx.

We are interested in the scenario where the boundary conditions in the double

cavity are changing via a moving central mirror. To find the dynamics of the

electromagnetic field, we take the time derivatives of {Q̂k, P̂k}. We find that,

dQ̂k

dt
=

1
√
ε0

∫ l

0

[
∂ε(x, q(t))

∂t
Â(x, t)φk(x, q(t))+ (5.8)

ε(x, q(t))
∂Â(x, t)

∂t
φk(x, q(t)) + ε(x, q(t))Â(x, t)

∂φk(x, q(t))

∂t

]
dx

=
1
√
ε0

∫ l

0

Π̂(x, t)φk(x, q(t))dx +
1
√
ε0

∫ l

0

[
∂ε(x, q(t))

∂t
Â(x, t)φk(x, q(t))+

ε(x, q(t))Â(x, q(t))
∂φk(x, q(t))

∂t

]
dx

= P̂k(t)−
∑
j

Gkj(q(t))Q̂j(t),

where,

Gkj(q(t)) = q̇Ḡkj, (5.9)

where, Ḡkj(q) =
∫ l

0
dx ε(x,q)

ε0
φk(x, q)

∂φj(x,q)

∂q
. This separates the purely dynam-

ical effect of the mirror velocity in Gkj from the stationary properties of the

cavity denoted by Ḡkj. To go from line 2 to line 3 of Eqn. (5.8) we use the

orthogonality of the φk basis given in Eqn. (5.5) to reduce the first term to
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P̂k(t). The second and third terms are reduced by observing that

∫ l

0

1
√
ε0

[
∂ε(x, q(t))

∂t
Â(x, t)φk(x, q(t))+ (5.10)

ε(x, q(t))Â(x, t)
∂φk(x, q(t))

∂t

]
dx

=
∑
j

Q̂j(t)

∫ l

0

[
∂

∂t

ε(x, q(t))

ε0
φj(x, q(t))φk(x, q(t))+

ε(x, q(t))

ε0
φj(x, q(t))

∂φk(x, q(t))

∂t

]
dx

= −
∑
j

Q̂j(t)

∫ l

0

ε(x, q(t))

ε0
φk(x, q(t))

∂φj(x, q(t))

∂t
dx

= −
∑
j

Gkj(q(t))Q̂j(t),

where the first equality follows from substituting to expansion in 5.4 for Â(x, t)

and the second equation from differentiating the normalization condition

0 =
∂

∂t

∫ l

0

ε(x, q(t))

ε0
φk(x, q(t))φj(x, q(t))dx (5.11)

=

∫ l

0

[
∂

∂t

ε(x, q(t))

ε0
φk(x, q(t))φj(x, q(t)) +

ε(x, q(t))

ε0

∂φk(x, q(t))

∂t
φj(x, q(t))+

ε(x, q(t))

ε0
φk(x, q(t))

∂φj(x, q(t))

∂t

]
dx.

The equation of motion for P̂k is obtained similarly. Differentiating Eqn. (5.8)

we find that

dP̂k
dt

=
1
√
ε0

∫ l

0

[
∂Π̂(x, t)

∂t
φk(x, q(t)) + Π̂(x, t)

∂φk(x, q(t)

∂t

]
. (5.12)

The first term is treated by differentiating Eqn. (5.2) and making use of the
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Euler-Lagrange equation 5.6 to give

1
√
ε0

∫ l

0

∂tΠ̂(x, t)φk(x, q(t))dx =
1

√
ε0µ0

∫ l

0

∂2
xÂ(x, t)φk(x, q(t))dx (5.13)

=
1

ε0µ0

∑
j

Q̂j(t)

∫ l

0

∂2
xφj(x, q(t))φk(x, q(t))dx

= −ω2
k(q(t))Q̂k(t),

where to obtain the final equality, the Helmholtz equation 5.4 has been used.

The second term in Eqn. (5.12) is treated as follows

1
√
ε0

∫ l

0

Π̂(x, t)∂tφk(x, q(t))dx (5.14)

=
∑
j

P̂j(t)

∫ l

0

ε(x, q(t))

ε0
φj(x, q(t))∂tφk(x, q(t))dx

=
∑
j

P̂j(t)Gjk(q(t)),

so that Eqn. (5.12) becomes

dP̂k
dt

= −ω2
k(q(t))Q̂k(t) +

∑
j

P̂j(t)Gjk(q(t)). (5.15)

The effective Hamiltonian corresponding to the variables {Q̂k, P̂k} can be writ-

ten as

Ĥeff =
1

2

∑
k

[
P̂ 2
k + ω2

k(q(t))Q̂
2
k −Gkk(q(t))

{
P̂kQ̂k + Q̂kP̂k

}]
−
∑
j 6=k

P̂kGkjQ̂j

(5.16)

because it satisfies Hamilton’s equations Eqns. (5.8) and (5.15) for the vari-

ables {Qk, Pk}. If we want an effective Hamiltonian in terms of the variables

{â†k, âk}, we would have to look at the equations of motion for those variables
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and back-engineer the corresponding Hamiltonian. Note, we cannot simply

transform from {Qk, Pk} to {â†k, âk} as the resulting Hamiltonian would lead

to erroneous equations of motion. The terms in Eqn. (5.16) resembling the har-

monic oscillator with time dependent frequencies (i.e. the terms without the

coupling terms Gmn) are responsible for the squeezing effect in the DCE [29].

Meanwhile, the remaining terms involving the coupling coefficient terms are

responsible for the so-called acceleration effect in the DCE [29] since Gmn ex-

plicitly contains the motional q̇ term according to the definition in Eqn. (5.9).

Note that despite the naming of this part of the Hamiltonian as the accel-

eration effect, it still contributes to the DCE even for a mirror moving at a

constant velocity. Even though the acceleration effect in the effective Hamil-

tonian appears as a higher order relativistic correction, the squeezing and the

acceleration parts contribute to the DCE on an equal footing according to the

authors in reference [29]. The acceleration part of the effective Hamiltonian

leads to both photon hopping between modes and parametric amplification

when there is a mode pair whose frequencies add up to the driving frequency.

In references [62, 63], the time evolution of states in the time-dependent har-

monic oscillator potential given by the Hamiltonian

Ĥ(Qk, Pk, t) =
P̂ 2
k

2
+
ω2
k(t)

2
Q̂2
k. (5.17)

The squeezing part of the Hamiltonian is comprised of these time dependent

harmonic oscillator Hamiltonians corresponding to each cavity frequency func-

tion. More specifically, the ground state corresponding to the initial frequency
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of the potential (ωk(t0) = ω0
k), given by

ψ0(q′, t = 0) =

(
ω0
k

π

)1/4

exp

{
−ω

0
k

2
q′

2

}
(5.18)

will evolve as

ψ0(q′, t) =

(
ω0
k

π

)1/4
1√
u(t)

exp

{
i

2

u̇(t)

u(t)
q′

2

}
, (5.19)

where,

ü+ ω2
k(t)u = 0 (5.20)

with initial conditions u(0) = 1, u̇(0) = iω0
k. However, the evolved state does

not correspond to the instantaneous ground state of the potential since the

width is determined by the time dependence of the instantaneous frequency

and in general u̇
u
6= ω(t). Furthermore, this squeezed state has some non-

zero population in the excited states of the Fock basis corresponding to the

instantaneous frequency. Hence, due to the presence of the time dependent

boundary condition, vacuum photons are excited to real photons. Though the

time evolved states are not minimum uncertainty states (MUS) with respect to

the Heisenberg uncertainty relation (σxσp ≥ ~/4), they are MUS corresponding

to the weaker Schrödinger-Robertson uncertainty relation (σxσp − σ2
px ≥ ~/4)

as shown in references [23, 63]. These states are known as correlated squeezed

states [64]. Parametric amplification processes leading to pair production in

such squeezed states were discussed in reference [65]. Since the photons are

created in pairs, the must be correlated and were crucial in the observation of

the DCE [35] for the quantum signature they provide.
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5.3 Resonance condition between driving frequency

and Photon Creation

The following treatment loosely follows C. K. Law’s observation on the res-

onance condition in reference [49]. In this section, we are interested in the

resonance between photon creation and the driving frequency of the central

mirror. To gain an understanding of the connection between the two, we an-

alyze the time dependence of the creation operators in the Heisenberg picture

and the role of the driving frequency of the sinusoidal mirror motion. The

effective Hamiltonian for light in a double cavity with a parametric central

mirror in terms of the creation/annihilation operators is given by [49]

ˆ̃H =
∑
k

ωk(t)â
†
kâk −

i

2

∑
k

{
Gkk(t)−

ω̇k
2ωk

}[(
â†k

)2

− â2
k

]

− i

2

∑
j,k
j 6=k

√
ωk(t)

ωj(t)
Gkj(t)

(
â†kâ

†
j + â†kâj − âj âk − â

†
j âk

)
, (5.21)

where

Gkj(t) =

∫ l

0

dx
ε(x, q(t))

ε0
φk(x, q(t))

∂φj(x, q(t))

∂t
(5.22)

and is equivalent to Eqn. (5.9). Note that the time dependence of the boundary

condition leads to both zero photon processes (scattering) via terms â†kâj−â
†
j âk,

as well as two photon processes due to terms â†kâ
†
j − âj âk. For a sinusoidally

driven mirror, the latter term is responsible for second harmonic generation

(for k = j) and parametric down conversion (for k 6= j). The harmonic oscil-

lator Hamiltonian with time dependent frequencies in Eqn. (5.21) is defined as

the squeezing part while the other terms involving Gkj and ω̇k/ωk is defined
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as the acceleration part in the DCE. The acceleration part of the effective

Hamiltonian does contain terms that correspond to the squeeze operator (Ap-

pendix B.1) and ironically enough, without the demonstration in Sec. 5.2 it

is not as obvious that the "squeezing part" leads to a squeezing of the vac-

uum state. The Heisenberg equations of motion for the creation operators,

continued from Hamilton’s equations, are given by

˙̂an = −i ∂
ˆ̃H

∂â†n
and ˙̂a†n = i

∂
ˆ̃H

∂ân
. (5.23)

Defining

ekn(t) ≡

√
ωk(t)

ωn(t)
Gkn(t) +

√
ωn(t)

ωk(t)
Gnk(t) (5.24)

fkn(t) ≡

√
ωk(t)

ωn(t)
Gkn(t)−

√
ωn(t)

ωk(t)
Gnk(t).

we have that

˙̂an = −iωn(t)ân −
[
Gnn −

ω̇n
2ωn

]
â†n +

∑
k 6=n

[
fknâk − eknâ†k

]
. (5.25)

Even for a static cavity, in analogy with the creation/annihilation operators

in the simple harmonic oscillator, ân contains a fast oscillating phase term of

exp
[
−i
∫ t
t0
ωn(t′)dt′

]
. For the time dependent cavity case, we can transform

the analogous phase away via the following change of variable

âk = exp

[
−i
∫ t

t0

ωn(t′)dt′
]
b̂k = e−iθk(t)b̂k. (5.26)
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Hence, the equations of motion become

˙̂
bn = −q̇

[
Ḡnn −

∂qωn
2ωn

]
e2iθn b̂†n+q̇

∑
k 6=n

[
f̄knb̂ke

i(θn−θk) − ēknb̂†ke
i(θn+θk)

]
. (5.27)

Assuming a sinusoidal vibration of the central mirror, i.e.

q(t) = l0 + ε sin (ΩDt) , (5.28)

the mirror velocity q̇ = εΩD cos (ΩDt) = εΩD

2

[
eiΩDt + e−iΩDt

]
. Resonance oc-

curs due to the cancellation of the mirror driving phase term and the phase

terms in the equations of motion. There are three sets of phase terms in the

equation of motion: 2θn, θn − θk, θn + θk. To get a handle on the resonance

condition, let us look at the time dependence of the term N̂n = b̂†nb̂n. We have

that

˙̂
Nn =

˙̂
b†nb̂n + b̂†n

˙̂
bn (5.29)

= −
[
Gnn −

ω̇n
2ωn

]{
b̂2
ne
−2iθn +

(
b̂†n

)2

e2iθn

}
+
∑
k 6=n

[
fkn

{
b̂†kb̂ne

−iαnk + b̂†nb̂ke
iαnk

}
−enk

{
b̂nb̂ke

−iβnk + b̂†nb̂
†
ke
iβnk

}]

where αnk = θn − θk = −αkn and βnk = θn + θk = βkn. The terms containing

phase αnk are responsible for photon transfer amongst the modes. Then, there

are the phases βnk and 2θn which are much larger. However, the mirror velocity

prefactor from Eqn. (5.27) can lead to a partial cancellation of the phase. A

large net phase would lead to a small contribution to the growth in photon

numbers. Hence, for net photon growth, we require a driving frequency that
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will reduce the order of magnitude of the βnk and 2θn phases. For photon

transfer amongst modes, we require a driving frequency twice size of the gap

between the modes.

The total number of photons N̂ =
∑
n

N̂n and we have that

˙̂
N =

∑
n

˙̂
Nn (5.30)

=
˙̂
b†nb̂n + b̂†n

˙̂
bn

= −
∑
n

[
Gnn −

ω̇n
2ωn

]{
b̂2
ne
−2iθn +

(
b̂†n

)2

e2iθn

}
+
∑
k,n
k 6=n

[
fkn

{
b̂†kb̂ne

−iαnk + b̂†nb̂ke
iαnk

}
−enk

{
b̂nb̂ke

−iβnk + b̂†nb̂
†
ke
iβnk

}]
= −q̇

∑
n

[
Ḡnn −

∂qωn
2ωn

]{
b̂2
ne
−2iθn +

(
b̂†n

)2

e2iθn

}
−2q̇

∑
k,n
k<n

ēnk

{
b̂nb̂ke

−iβnk + b̂†nb̂
†
ke
iβnk

}
.

Not surprisingly, the effect of photon scattering terms cancel out in the total

photon number of the cavity. Now we can see that taking the driving fre-

quency to be twice the initial frequency corresponding to any mode will cancel

out some of the fast oscillating terms and cause the photon number to grow.

Otherwise, the fast oscillating terms keep the photon growth close to zero.

This resonance condition holds true for both the single and the double cavity.

In the double cavity, as we will see later, due to the close proximity of the

eigenstates in the avoided crossing, we get further interference between phases

which leads to some extra features not present in the single cavity DCE.
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5.4 Formalism to Numerically Simulate the Prop-

agator

We assume from this section onwards that ~ = c = ε0 = 1. We follow the

formalism first used by [24] in a quantum mechanical context. The notation

in this section closely follows that of Ruser in references [2, 3] The method de-

pends on a reformulation of the equations of motion starting from the Heisen-

berg equations of motion for {Q̂n, P̂n} given by

dQ̂n

dt
= P̂n(t)−

∑
j

Gnj(q(t))Q̂j(t) (5.31)

dP̂n
dt

= −ω2
n(t)Q̂n(t) +

∑
j

P̂j(t)Gjn(q(t)).

Combining the two equations, we find that

¨̂
Qn =

˙̂
Pn −

∑
j

ĠnjQ̂j −
∑
j

Gnj
˙̂
Qj (5.32)

= −ω2
n(t)Q̂n +

∑
m

GmnP̂m −
∑
j

ĠnjQ̂j −
∑
j

Gnj
˙̂
Qj

= −ω2
n(t)Q̂n +

∑
m

[
Gmn

˙̂
Qm −Gnm

˙̂
Qm − ĠnmQ̂m

]
−
∑
m,j

GmnGmjQ̂j.

Assume that the mirror motion begins at some time t0. We are interested in

the photon number (or energy) of the light field at some later time t1 when the

mirror comes back to rest. We take the mirror to be at rest at time t1, since the

photon number for changing boundary conditions is ambiguous. Let, ωn(t0) =

ω0
n and ωn(t1) = ω1

n. Let {ân, â†n} and {Ân, Â†n} be the creation/annihilation

operators at times t0 and t1 respectively. Then, the vacuum states at the
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different times satisfy

ân|0, t0〉 = 0 (5.33)

Ân|0, t1〉 = 0.

For the sake of clarity, we must point out that |0, t1〉 is not the time evolved

state corresponding to |0, t0〉, but rather |0, t0/1〉 are the ground states corre-

sponding to the instantaneous creation/annihilation operators. We connect

the creation/annihilation operators at different times via Bogoliubov transfor-

mations,

Ân =
∑
m

[
Amn(t1)âm +B∗mn(t1)â†m

]
. (5.34)

From the commutation relations [Ân, Âk] = 0 and [Ân, Â
†
k] = δnk, writing

Â†k =
∑
j

[
A∗jk(t1)â†j +Bjk(t1)âj

]
, (5.35)

we have that

0 = [Ân, Âk] (5.36)

=
∑
m,j

{
Amn(t1)B∗jk(t1)[âm, â

†
j]− Ajk(t1)B∗mn(t1)[âj, â

†
m]
}

=
∑
m

{Amn(t1)B∗mk(t1)− Amk(t1)B∗mn(t1)} ,
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and

δnk = [Ân, Â
†
k] (5.37)

=
∑
m,j

{
Amn(t1)A∗jk(t1)[âm, â

†
j]−B∗mn(t1)Bjk(t1)[âj, â

†
m]
}

=
∑
m

{Amn(t1)A∗mk(t1)−B∗mn(t1)Bmk(t1)} .

Let us denote the time evolution operator by Û ≡ Û(t, t0). Then, write

the time evolution of the initial co-ordinate values {Q̂n(t0), P̂n(t0)} in terms

of some ansatz comprised of complex coefficients ε(m)
n (t) and the initial cre-

ation/annihilation operators

Q̂n(t) = Û †Q̂n(t0)Û =
∑
m

âm√
2ω0

m

ε(m)
n (t) + h.c. (5.38)

P̂n(t) = Û †P̂n(t0)Û =
∑
m

âm√
2ω0

m

[
ε̇(m)
n (t) +

∑
k

Gnk(q(t))ε
(m)
k (t)

]
+ h.c.

Furthermore, by substituting the new form of Q̂n(t) in the equations of motion,

we find that for every fixed m, ε(m)
n (t) satisfies the exact same equation of

motion as Q̂n with the initial conditions

ε(m)
n (t0) = δnm (5.39)

ε̇(m)
n (t0) = −iω0

nδnm +Gnm(q(t0)),

since Eqn. (5.39) is motivated by the {Q̂n, P̂n} operators for the static quantum

harmonic oscialltor and its relation to the creation/annihilation operators. The
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initial condition comes from the observation that

Q̂n(t0) =
ân√
2ω0

n

+ h.c. (5.40)

P̂n(t0) = i

√
ω0
n

2
â†n + h.c.,

and comparing it to the previous form in terms of ε(m)
n (t). There is an impor-

tant point to be made in view of these initial conditions. We need to impose a

cutoff frequency to compute the photon number and similar quantities. Phys-

ically, we note that the high frequencies in the double cavity would not ’see’

the end mirrors. Moreover, if we look at the ε̇(m)
n (t0) term, we see that for a

moving system, arbitrarily high frequencies can be excited due to the presence

of the Gnm(q(t0)) term. A cutoff frequency ensures that total light energy

and photon number do not diverge in finite time due to the presence of these

excitations. Furthermore, at time t1, we have that

Q̂n(t1) =
Ân + Â†n√

2ω1
n

(5.41)

P̂n(t1) = i

√
ω1
n

2

[
Â†n − Ân

]
.

Since

Ân =
∑
m

[
Amn(t1)âm +B∗mn(t1)â†m

]
(5.42)

Â†n =
∑
m

[
A∗mn(t1)â†m +Bmn(t1)âm

]
,
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we have that

Ân + Â†n =
∑
m

{[Amn(t1) +Bmn(t1)] âm+ (5.43)

[A∗mn(t1) +B∗mn(t1)] â†m
}

Â†n − Ân =
∑
m

{
[Bmn(t1)− Amn(t1)] âm + [A∗mn(t1)−B∗mn(t1)] â†m

}
.

Then, we can say that

Amn(t1) +Bmn(t1) =

√
ω1
n

ω0
m

ε(m)
n (t1) (5.44)

Amn(t1)−Bmn(t1) =
i√

2ω0
mω

0
n

[
ε̇(m)
n (t1) +

∑
k

Gnk(q(t1))ε
(m)
k (t1)

]
.

Solving the previous set of equations, we find that

Amn(t1) =
1

2

√
ω1
n

ω0
m

{
ε(m)
n (t1)+ (5.45)

i

ω1
n

[
ε̇(m)
n (t1) +

∑
k

Gnk(q(t1))ε
(m)
k (t1)

]}

Bmn(t1) =
1

2

√
ω1
n

ω0
m

{
ε(m)
n (t1)−

i

ω1
n

[
ε̇(m)
n (t1) +

∑
k

Gnk(q(t1))ε
(m)
k (t1)

]}

expressing the Bogoliubov coefficients in terms of the complex coefficients,

ε
(m)
n (t) and its time derivative. Since Âk = âk for t1 = t0, Amn(t0) = δmn and

Bmn(t0) = 0.

Our end goal is to reformulate the Heisenberg equations in terms of first

order in time differential equations that yield the propagator for the dynamics.

Now, let us motivate the introduction of the auxillary variables ξ(m)
n and η(m)

n .
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Defining, b̂n(t) ≡ Û †ânÛ , where ân = 1√
2

[√
ω0
nQ̂n(t0) + i√

ω0
n

P̂n(t0)

]
, we have

that

b̂n(t) =
1√
2

[√
ω0
nÛ
†Q̂n(t0)Û +

i√
ω0
n

Û †P̂n(t0)Û

]
(5.46)

=
1√
2

[√
ω0
nQ̂n(t) +

i√
ω0
n

P̂n(t)

]
.

Defining

∆±(t) ≡ 1

2

[
1± ω0

n

ωn(t)

]
, (5.47)

and

ξ(m)
n (t) = ε(m)

n (t) +
i√
ω0
n

[
ε̇(m)
n (t) +

∑
k

Gnk(q(t))ε
(m)
k (t)

]
(5.48)

η(m)
n (t) = ε(m)

n (t)− i√
ω0
n

[
ε̇(m)
n (t) +

∑
k

Gnk(q(t))ε
(m)
k (t)

]

we find that the auxillary variables contain information regarding the time

evolution of the Bogoliubov coefficients since

b̂n(t) =
∑
m

1

2

[
ξ(m)
n (t)âm + η(m)

n

∗
(t)â†m

]
. (5.49)

Following these changes of variables

Amn(t1) =
1

2

√
ω1
n

ω0
m

[
∆+
n (t1)ξ(m)

n (t1) + ∆−n (t1)η(m)
n (t1)

]
(5.50)

Bmn(t1) =
1

2

√
ω1
n

ω0
m

[
∆−n (t1)ξ(m)

n (t1) + ∆+
n (t1)η(m)

n (t1)
]
.

Furthermore, using Eqn. (5.49) and the Heisenberg equations of motion satis-
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fied by ε(m)
n (t) one can check that

ξ̇(m)
n = −i

[
a+
nnξ

(m)
n − a−nnη(m)

n

]
−
∑
k

[
c−nkξ

(m)
k + c+

nkη
(m)
k

]
(5.51)

η̇(m)
n = −i

[
a−nnξ

(m)
n − a+

nnη
(m)
n

]
−
∑
k

[
c+
nkξ

(m)
k + c−nkη

(m)
k

]
,

with the initial conditions ξ(m)
n (t0) = 2δmn and η(m)

n (t0) = 0, where

a±nn(t) =
ω0
n

2

{
1±

[
ωn(t)

ω0
n

]2
}

(5.52)

and

c±nk(t) =
1

2

[
Gnk(q(t))±

ω0
k

ω0
n

Gkn(q(t))

]
. (5.53)

These relations completely describe the dynamics of the system by giving us

the propagator in terms of first order in time equations of motion without

having to compute the
∑
m,j

GmnGmjQ̂j terms in Eqn. (5.33) which is compu-

tationally intensive. To find the photon number, we merely need to simulate

ξ
(m)
n and η(m)

n and then find Bmn which gives us the photon number starting

with a vacuum state as shown later. From the same information, one can

find the energy of the field as well. Simulating these quantities give us the

propagator for the quantum dynamics. Then, depending on the initital state

of the light field, we can easliy find the time of evolution of the particular

initial state. In other words, once we have the propagator, the hard part of

the numerical study is done. We merely need to project the initial state into

the Fock basis and recombine using the propagator coefficients to generate the

photon numbers and energy corresponding to the time evolved state.
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5.4.1 Photon Number for Light in an initial Vacuum and

also a General Coherent State

At this point, let us consider the quantity N̂n(t1) = Â†nÂn, which gives us the

number of photons corresponding to the frequency ω1
n. If the initial state of

light was the vacuum state, i.e.

|0, t0〉 = |0, t0〉ω0
1
|0, t0〉ω0

2
...|0, t0〉ω0

k
..., (5.54)

the photon number corresponding to ω1
n is given (in the Heisenberg picture) by

〈0, t0|N̂n(t1)|0, t0〉. Since the action of the instantaneous annihilation operator

on the initial state is given by

Ân|0, t0〉 =
∑
m

[
Amn(t1)âm +B∗mn(t1)â†m

]
|0, t0〉 (5.55)

=
∑
m

B∗mn(t1)|0, t0〉ω<ω0
n
|1, t0〉ω0

n
|0, t0〉ω>ω0

n

we have that the photon number in mode n at time t1 is given by

〈0, t0|N̂n(t1)|0, t0〉 =
∑
m

|Bmn(t1)|2, (5.56)

and the total energy is given by E(t1) =
∑
n

ω1
nN̂n(t1). In the case of the initial

state being some general coherent state rather than the vacuum state, i.e.

|ψ(t0)〉 = |α1, t0〉ω1(t0)|α2, t0〉ω2(t0)... = |~α, t0〉, (5.57)
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the process for determining the photon number is similar.

N̂n(t1) =
∑
i,j

[
A∗in(t1)â†i +Bin(t1)âi

] [
Ajn(t1)âj +B∗jn(t1)â†j

]
(5.58)

=
∑
i,j

[
A∗in(t1)Ajn(t1)â†i âj + A∗in(t1)B∗jn(t1)â†i â

†
j+

Bin(t1)Ajn(t1)âiâj +Bin(t1)B∗jn(t1)âiâ
†
j

]
.

Then, using that [âi, â
†
j] = δij, we find that

〈~α, t0|N̂n(t1)|~α, t0〉 (5.59)

=
∑
i,j

(A∗inα
∗
i +Binαi)

(
Ajnαj +B∗jnα

∗
j

)
+
∑
i

|Bin|2.

This result is true in general, regardless of perfect or open single cavity or

double cavity DCE.
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Chapter 6
Numerical Simulation of the Dynamical

Casimir Effect in a Double Cavity

6.1 Introduction

In this chapter we study the dynamical Casimir effect for a semi-open single

cavity with the aid of numerical simulations. The semi-open single cavity has

a stationary, perfectly reflecting mirror at one end and a sinusoidally driven,

partially transmissive mirror at the other end. We build up to simulating

the semi-open cavity by first simulating the perfect single cavity and then

moving onto a symmetric double cavity before finally using an asymmetric

double cavity to simulate the semi-open single cavity. The DCE in the double

cavity has been analytically studied by Soff et al in reference [66] where they

vibrate one of the perfect end mirrors. We, on the other hand, study the

case where the partially transmissive central mirror is driven. Because photon

production from the vacuum is tiny except at relativistic mirror speeds, we take

this opportunity to remind the reader that an equivalent of the DCE can be
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studied where the properties of a background dielectric or mirror in the cavity

are manipulated [67, 68, 25]. This results in a variation of the optical length

(Appendix A.1) allowing for higher effective mirror velocities in experiments.

In fact, the confirmation of the DCE in the experiment by Wilson et al in

reference [35] uses an analogue system (superconducting circuit) to simulate a

moving mirror.

Extensive analytical work has been done on the dynamical Casimir effect

(DCE) for the perfect single cavity [22, 28, 27, 30, 31]. A numerical study

and confirmation of analytical results have been done in references [2]. In

such a system, an end mirror driven with a frequency twice some cavity mode

frequency leads to a resonance effect and the photon number corresponding

to that mode grow non-linearly (quadratic for short times). This begs the

question as to what happens to the number of photons if the driven mirror

were to be partially transmissive and the cavity was coupled to an external

environment? Analytically this topic has been studied using several differ-

ent approaches: master equation formulation [37, 66, 38], scattering approach

[39, 40, 25] and using cavity quasi-modes [26]. In references [26, 25] where a

partially transmissive mirror of an open cavity is driven, it is predicted that

after an initial quadratic growth of photons in the resonant mode, the photon

number would become saturated. This result is in contrast to the perfect sin-

gle cavity case and is not surprising because the photons leak out of the cavity

at a constant rate Γ, say Ṅ = −ΓN , and also since the coupling between the

driven mirror and the vacuum field is lower for transmissive mirrors, which

therefore perturb the vacuum field less, we expect the rate of photon produc-

tion to be smaller than in the case of a driven perfect mirror. On the other

hand, in reference [66], where it is the perfect mirror of a semi-open cavity that
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is driven, the photon growth rate is not drastically modified for high enough

reflectivites of the (static) partially transmissive mirror.

In this chapter, we answer the question of photon growth rate in the semi-

open single cavity by numerically simulating the dynamics. Theoretically, such

a cavity admits a continuum of modes which poses a difficulty in the simulation

of the dynamics. We get around this obstacle by recognizing that a semi-open

single cavity is just a single cavity coupled to an external environment by

making one of the end mirrors partially transmissive. If we approximate the

environment by a very long cavity, then we end up with an asymmetric (one

cavity half much longer than the other) double cavity. Since the wavenumber

structure in this asymmetric double cavity is discrete, numerical simulations

of the dynamics becomes possible. In the limit the environment cavity length

approaches infinity, the wavenumber structure approaches a continuum and the

asymmetric double cavity model approaches an ideal semi-open single cavity.

This approach to modelling an open cavity via a double cavity has been used

in a classical context in references [10, 42] with success. The drawback of the

method is that due to the finite size of the environment cavity, the photons

that have decayed into the environment will eventually slosh back into the

open cavity. For high enough reflectivities or large enough cavities, however,

the time taken for the light to slosh back becomes large.

Neverthless, we find that the photons created in the open cavity converge

as the environment cavity length is increased which shows that the approach

is justified. Indeed, the numerical simulations show that after an initial ex-

ponential growth of the photon number a saturation takes place. In contrast

with previous predictions for the open cavity [26], our essentially exact results

for the semi-open cavity show that the saturation takes place much earlier,
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and the maximum number of photons in the cavity is much lower than the

predicted value [26, 25] for open cavities with time-varying dielectrics. This

is not surprising considering that even the static Casimir force is strongly re-

duced for cavities with transmissive mirrors studied as two parallel dielectric

plates [69] since the coupling of such a mirror with the vacuum field is weaker.

Although our approach to the open cavity seems very similar to the setup

studied by [66], the situation is fundamentally different because they drive a

perfectly reflective end mirror, whereas we drive the partially transmissive end

mirror of the semi-open cavity.

The arrangement of this chapter is as follows: First in parallel to the work

in references [3, 2] we numerically simulate the DCE for the perfect single

cavity and compare to the analytical works in references [22, 28]. Then we

numerically study the DCE in the symmetric double cavity, i.e. a double

cavity with two equal halves and a sinusoidally driven, partially transmissive

central mirror. This result is already interesting since the double cavity can

be thought of as two semi-open cavities coupled to each other. We change the

reflectivity of the central mirror and compare the total photon number to the

two perfect single cavities case. Then, we simulate the DCE for a semi-open

single cavity by letting one of the cavity halves of a double cavity be much

longer than the other. Next, we delve into the behaviour of photon growth in

the open cavity and compare it to the growth of photon number in the perfect

cavity with the decay rate factored in artificially. Lastly, we finish off this

chapter by discussing regularization of the energy and photon number in the

results presented.
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Figure 6.1: As the end mirror of a perfect single cavity begins to move, it
excites photons from the vacuum field.

6.2 Numerical Study of DCE in a Single Cavity

with Perfect End Mirrors

In this chapter we simulate the DCE in a perfect single cavity. In other words,

we study the evolution of photon number in a single cavity with perfect end

mirrors assuming that the light field is initially in the vacuum mode. This

single cavity is comprised of a perfectly reflective end mirror fixed at position

x = 0 and another perfectly reflecting end mirror at position x = l0[1 +

ε sin(ΩDt)], where l0 is the cavity length at time t = 0, ε is the amplitude of the

mirror vibration in units of l0 and ΩD is the driving frequency of the mirror.

Hence, the cavity length is variable and given by l(t) = l0[1 + ε sin(ΩDt)].

This problem was studied by M. Ruser in reference [2] and we shall follow his

approach here (and have checked we reproduce his results). We adopt natural

units ~ = c = ε0 = 1 and set the cavity length to be l0 = 1, and set ε = 0.001.

The drive frequency ΩD = 2ω0
n = 2nDπ where nD = 1.5, 3. The highest mirror
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driving frequency considered in this thesis is 6π and implies a maximum mirror

speed of 0.019c. The frequency is in units of c/l0, time in units of l0/c and

length is in units of ~/ckg from here onwards. For t ≤ 0, the cavity end

mirrors are taken to be at rest. The sudden jump in velocity to a finite value

is small for ε � 1 since it implies a small velocity once the mirror starts

moving [3]. This leads to a small discontinuity in initial creation of photons

and can be eliminated by considering mirror parametrizations that are smooth.

We consider the sinusoidal parametrization, l(t) = l0[1 + ε sin(ΩDt)], since it

has been studied extensively analytically [22, 28, 30]. The initial quantum

state of the light field is taken to be the vacuum mode. The two end mirrors

will experience a static Casimir force. As the mirror begins moving, work

needs to be done to counteract the static Casimir Force and move according

to the prescribed sinusoidal motion. Due to this, photons are pumped in

and out from the external drive into the cavity. Lastly, the changing cavity

frequency causes the vacuum photons to evolve into the excited modes as the

Fock basis itself evolves since the cavity frequencies are changing due to the

moving mirror. Once vacuum photons are converted to real photons, it leads

to further modulation of the photon number in the cavity since the mirror

motion now needs to counteract the new radiation pressure due to these real

photons on the mirror. In fact, we have already seen the analogous classical

effect in chapters 3 and 4. The effects leading to the growth of photon number

can also be categorize as being due to the squeezing and the acceleration

effect [29]. Non-adiabatic change of cavity length squeezes the initial vacuum

state leading to growth in photon number and is referred to as the ’squeezing’

effect. In addition, there are photons created due to the explicit contribution

of velocity and its higher order derivatives referred to as the ’acceleration’
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Figure 6.2: This figure shows the total photon number (a) and energy (units
of ~c/l0) (b) inside a single cavity with perfect end mirrors as a function
of time. We compare the numerical results against the analytical results in
Eqns. (6.1) and (6.2). These formulae hold for short times, i.e. t � 300 or
t ≈ 30. We see that after the initial quadratic growth, the photon emission rate
slows down. We also see that the total photon energy also grows exponentially.
The nD = 3 curve corresponds to a driving frequency of ΩD = 2nDπ = 6π and
resonantly enhances the growth of photon number for the frequency nDπ = 3π.
Meanwhile, the nD = 1.5 curve corresponds to a driving frequency of ΩD = 3π
and is not resonant with any of the cavity modes.
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Figure 6.3: This figure shows a snapshot of the population of photons in
each cavity mode for both short and long times. For short times, for example
t = 25, the greatest photon population is centered around the modes the
driving frequency is resonant with. For nd = 1.5, this would be the first and
second modes, while for nD = 3, this would be the third mode. We compare
the numerical results for short time against the analytical result given by
Eqn. (6.3).
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effect.

For small time, επt � 1, analytical formulae for the total photon number

and energy due to Dodonov and Klimov [22] and Ji et al [28] are respectively

given by

N(t) = nD(4n2
D − 1)(10−3πt)2/12 (6.1)

and

E(t) = (4n2
D − 1)π sinh2(nD10−3πt)/12. (6.2)

We can see in Fig. 6.2 that the numerical and analytical values for total photon

number and energy agree very well for short enough times. We see that after

the initial quadratic growth in photon number, the rate slows down. Know-

ing that the analytical results come from a perturbative treatment, it makes

sense that higher order corrections come into play for longer times. The light

field energy inside the cavity grows non-linearly (sinh2(·)) as predicted by the

analytical result. Meanwhile, the analytical formula for photon number corre-

sponding to a particular cavity mode is given by

Nk(t) = (2nD − k)k(10−3πt)2/4 (6.3)

where, k < 2nD and Nk(t) = 0 for all other modes. Note that this is only true

for small enough times. As we can see in Fig. 6.3, the analytical formula and

the numerical results for the photon numbers in individual modes match very

closely. For modes close to the resonant frequency, the photon population is

high and it tapers off to zero beyond a width of 2nD around the resonant fre-

quency. This photon population shape is one of the important considerations

behind our choice of driving frequencies. Choosing larger driving frequencies
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require us to include a larger number of modes for the simulation and hence

is computationally too intensive.

Since the growth in photon number inside the cavity is affected by the

interaction between the oscillating mirror and the radiation pressure, we ex-

pect photons to be pumped out of the cavity as well as into the cavity and

hence the photon number growth to be modulated in time. This reasoning is

motivated by the classical field results discussed in chapter 4. However, the

analytical results and the numerical results in Fig. 6.2 show only monotonic

growth in photon number. Assuming that somehow the perturbative nature

of the analytic formulae fails to capture the effect of the photons pumped out

and that the numerical simulations did not zoom in enough, we simulate the

dynamics for a short time of tf and sample 400 points in the time interval. We

plot these results in Fig. 6.4 and sure enough see micromodulations in the total

photon number inside the cavity, which has also been observed by M. Ruser in

reference [3]. Furthermore, in the same figure we also plot
(
l̇/l
)2

and find that

the period of oscillation coincides with the micromodulation period. For every

2 mirror oscillations, both curves have 4 dips. In reference [30], the authors

find periodic behaviour in the Bogoliubov coefficients reminiscent of the mi-

cromodulation structure observed in our photon number curves, although they

do not compute the photon number explicitly. Also in Fig. 6.4, we plot the

growth in photon numbers while ignoring the acceleration term in the effective

Hamiltonian given by Eqn. (5.16) and find that the photon creation rate is ap-

proximately halved in comparison to the full effective Hamiltonian (squeezing

+ acceleration). This is in agreement with the analysis in reference [29] that

the squeezing and acceleration contributions of the effective Hamiltonian are

of the same order of magnitude. Remarkably, we can also discern that there is
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Figure 6.4: This figure shows the total photon number and energy in the
cavity for nD = 2 as a function of the number of mirror oscillations. Here,
a mirror oscillation denotes the time taken for the driven mirror to come
back to its initial position with the initial velocity. The period of the mirror
oscillation (TM) is 0.5 since ΩD = 4π = 2π/TM . Taking many more time
samples, we see both micromodulations and an underlying piecewise linear
behaviour in the numerical simulation that are not predicted by the simple
perturbative formula in Eqn. (6.1). We also see that the squeezing part of the
Hamiltonian contributes about half of the DCE and so the acceleration terms
in the Hamiltonian (those that depend on velocity) contribute the other half.
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Figure 6.5: Time evolution of Bogoliubov coefficients. We plot the Bogoli-
ubov coefficients, Bmn(t) defined in Eqn. (5.35) as a function of time to get a
better understanding of the creation of photons of the second mode, i.e. N2(t).
From the definition in Eqn. (5.56), we set n = 2. We find that for m = 2,
the coefficient grows almost monotonically if we ignore the micromodulations.
For all other m values, we see a periodic behaviour and the coefficients vanish
sharply at times t = 1 or 2. The piecewise linear behaviour discernable in
Fig. 6.4 is due to the periodic behaviour of these off-diagonal terms.
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an underlying piecewise linear growth in the photon number curves, a feature

also not predicted by prior analytic work. Furthermore, the mode structures

and coupling coefficients used in the code were analytical functions. This gives

us confidence that this behaviour is a real feature of the dynamics rather than

an error in the simulation code or lack of accuracy. We further investigate

the single cavity DCE at high resolution times in Fig. 6.5, where we plot the

Bogoliubov coefficients that are summed in Eqn. (5.56) to give the photon

population corresponding to the resonant mode. Upon closer inspection, we

find that the piecewise linear behaviour is due to Bmn for m 6= n. The diago-

nal Bogoliubov coefficient for m = n = 2 grows monotonically underneath the

micromodulations. The off-diagonal coefficients, which account for the con-

tributions from the off-resonant modes are, interestingly, periodic functions.

One might assume that this periodicity is somehow linked to the mirror re-

turning to its initial position and the Bogoliubov transformation reducing to

the identity matrix. The period of the coefficients in Fig. 6.5 are 2 for |B12/32|2

and 1 for |B42|2 while the period of the mirror oscillations is 0.5. Hence, we

see that the periodicity must be linked to some other factor that the mirror

has returned to its initial position with the initial velocity. Nevertheless, it is

remarkable that the contribution from the off-diagonal Bogoliubov coefficients

gives rise to a linear growth underneath the micromodulations.
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Figure 6.6: The double cavity system is a perfect single cavity with an
externally driven partially transmissive central mirror. Photons are created
from the vacuum due to the time-dependent boundary condition. The double
cavity can also be thought of as two semi-open single cavities coupled to one
another.

6.3 Dynamical Casimir Effect in the Double Cav-

ity

In the previous section, we took a brief look at the dynamical Casimir ef-

fect for a perfect single cavity. Now we shift our focus to a slightly more

elaborate system by symmetrically adding a third mirror to the perfect single

cavity system. Moreover, the central mirror is now made partially transmis-

sive as shown in Fig. 6.6, which presents no difficulty in numerical simulations

since the wavenumbers in this system are still discrete. Importantly, the mov-

ing mirror is not perfectly reflective which means that we do not suffer from

pathological problems described by Moore [5] and Barton and Eberlein [6].

On the other hand, if one of the end mirrors was made partially transmissive,

we would have to deal with a continuum of modes. The resulting system is

just the familiar double cavity that we have dealt with extensively in the first

few chapters. The double cavity is comprised of two perfect end mirrors at

x = 0 and x = 2l0. It has a partially transmissive, driven central mirror with
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the position function x(t) = l0 [1 + ε sin(ΩDt)]. As before, ε and ΩD are the

amplitude and the driving frequency of the mirror. Since the double cavity can

be thought of as two semi-open single cavities coupled to each other, this is a

detour along the way to studying an open single cavity coupled to an external

environment. It is a good test of our intuition to guess what would happen to

the photon creation in the double cavity starting with light in the vacuum state

and driving the central mirror sinusoidally. We simulate the dynamics for the

exact same parameter values as in the previous section where l0 = 1 in units

such that ~ = c = ε0 = 1, ε = 0.001 and ΩD = 2nDπ = 3π, 4π. The driving

frequency corresponding to nD = 2 is resonant with the frequencies near 2π,

i.e. photons corresponding to these eigenfrequencies experience the greatest

growth. In Fig. 6.7 (a) and (b), we see that the total photon number created

in the double cavity, unless for very high reflectivities (α = 10), is very modest

compared to the perfect central mirror case. The reflectivities corresponding

to the resonant eigenfrequencies near 2π are given by R(α = 1) = 90.8%,

R(α = 2) = 97.5%, R(α = 4) = 99.4% and R(α = 10) = 99.9%. Moreover, as

the reflectivity of the central mirror approaches 100%, the total photon num-

ber asymptotically approaches the sum of N(t) curves of two perfect single

cavities. The double cavity where the central mirror is completely reflective

(α =∞) is of course just two perfect single cavities.

Mathematically, the photon creation in cavities with time-dependent bound-

ary conditions is due to the squeezing and acceleration parts of the Hamiltonian

as discussed at the end of Sec. 5.2. Despite the same mathematical origins for

photon creation in a double cavity with a perfectly reflective and partially

transmissive driven mirror, the actual photon number curves in Fig. 6.7 have

qualitative differences. In the former, the photon number inside the cavity
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Figure 6.7: In this figure we compare the total number of photons created in
the double cavity for the two different central mirror frequencies against the
perfectly reflective central mirror case. In (a) nD = 2 and in (b) nD = 1.5.
The initial lengths of the cavity halves are L1(t0) = L1,0 = 1 and L2(t0) =
L2,0 = 1. We find that after an initial growth in photon number equal to
the perfect central mirror case (α =∞), the photon creation rate slows down
and reaches a local maximum. Furthermore, we find that as the central mirror
reflectivity is increased, the number of photons created inside the double cavity
also increases, i.e. the mirror couples to the field more strongly.
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more or less grows monotonically (ignoring micromodulations seen in Fig. 6.4),

while in the latter case there are dips in the photon number curves. These

dips can be explained using a very classical concept that we dealt with in

chapters 3 and 4. A major difference between the perfect and the partially

transmissive central mirror is that the photons can slosh in back and forth

between the two cavity halves when they are coupled together. As we saw in

Figs. 4.1 and 4.2, the external source driving the central mirror has to counter

the radiation pressure exerted by the real (i.e. non-vacuum state) photons on

the driven mirror. As a result of the external source doing work on the cavity

light field, photons will be pumped in and out of the cavity.

In the case where the central mirror is perfectly reflective, i.e. the system

consists of two perfect single cavities, the photon production is equal in both

cavity halves and hence the intensity of the light field on both sides of the

central mirror is equal. Since the radiation pressure is proportional to the

difference of the light field intensity between the two interfaces of the cen-

tral mirror, the net radiation pressure ends up being zero. In contrast, from

the moment the photons are being created in the transmissive double cavity,

the photons begin to slosh back and forth. As the asymmetry in the pho-

ton localization increases, due to imbalance in light intensity between the two

cavity halves, the central mirror will begin to experience a net radiation pres-

sure. Furthermore, as the light sloshes back and forth, this radiation pressure

changes direction as well. Lastly, let us note that higher reflectivity will lead

to lower sloshing rate but stronger photon localization imbalance. This might

explain why the dips in photon number curves in Fig. 6.7 have a longer period

and yet larger dips for the higher reflectivities.

In the same figure, it can be seen that the partially transmissive photon
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number curves grow at a similar rate to the perfect mirror case until t ≈ 10,

but after this initial spurt, the mechanism described above leads to a difference

in the photon number curves for different reflectivities.. This is not surprising

considering that the photons have not had enough time to transfer amongst

the two cavity halves and hence the resultant radiation pressure is negligible.

These effects depend on the parametric driving, which is the same sinusoidal

motion used throughout this chapter, and the other being the cavity frequency

structure. We restrict mirror vibrations to be very close to the avoided cross-

ing and hence the double cavity frequencies vary negligibly. Higher mirror dis-

placement would require a higher cutoff frequency which would become very

time-consuming to simulate. Furthermore, the reflectivities we consider are

quite high, 91% (α = 1) being the lowest. For higher reflectivites, the avoided

crossing gap is much smaller and hence the diabatic frequencies are closer to

the frequencies of the perfect single cavities. Thus, not only are the double

cavity with the transmissive mirror frequencies very close to begin with, but

also they vary negligibly as the mirror moves with small amplitude near the

avoided crossing (ε = 0.001). Consequently, it comes as no shock to find that

before the tunelling mechanism causes the photon number curves to diverge

in Fig. 6.7, the growth in photon number match very closely. Lastly, let us

mention that as the central mirror reflectivity is lowered further, we expect

the initial photon growth rate to go down. One can think of the case where

the central mirror has zero reflectivity. In such a situation, the photon growth

rate should be zero. Seeing how meagre the photon growth is due to the DCE

even for a reflectivity of 91%, lower reflectivities which would yield even lower

photon creation are not particularly interesting. A more promising candidate

for numerical study would be to consider higher mirror displacement where the
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Figure 6.8: In this figure, we compare the number of photons created for each
mode k for different central mirror reflectivities (α = 1, 2, 4, 10) in the double
cavity and compare it to the perfect central mirror case (α =∞). Figure (a)
corresponds to a driving frequency of ΩD = 4π while (b) is for ΩD = 3π. We
see that the number of photons created for the perfect double cavity (i.e. two
single cavities) is higher than the partially transmissive central mirror cases.
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variation in the wavenumber structure due to various reflectivity parameters

would be brought into play.

In Fig. 6.9, we plot the photon number per frequency mode number for the

fixed time t = 25 and driving frequencies 4π in plot (a) and 3π in plot (b).

For lower reflectivites of the driven central mirror, fewer photons are created

in the double cavity. Apart from that, there is a qualitative difference in the

mode populations between the perfect and the partially transmissive central

mirror cases. In Fig. 6.9 (a), the α = ∞ case exhibits equal population for

modes 2 & 3, modes 4 & 5 and modes 6 & 7. This is because each of the mode

pairs correspond to the diabatic modes of the uncoupled left and right cavity

halves. Due to the uncoupled and symmetric nature of the two cavity halves,

the photon creation in the diabatic mode pairs is equal. Also, note that mode

1 of the perfect central mirror case is an artificial construct, shown merely for

the sake of comparison with the transmissive central mirror case where it is

infact an eigenfrequency. However, from the figures we see that the parameters

we use for the dynamical simulations yield a mode 1 population of either zero

or very small. Going back to the qualitative difference discussion, we note

that the finite reflectivity parameters plot (a) exhibits unequal population for

modes 2 & 3 and modes 6 & 7. Instead, there are dips at modes 3 and 6.

Similar qualitative features are also present in plot (b) for the off-resonance

driving frequency. As the reflectivity approaches unity, these dips tend to

flatten and approach the α =∞ case.

Fig. 2.3 shows the difference in frequency structure in the double cavity

for the perfect and partially transmissive central mirror cases. The modes are

denoted as the diabatic and adiabatic modes, respectively. When the mirror is

exactly centered, the diabatic frequencies are degenerate, while the adiabatic
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Figure 6.9: This figure shows the effect of varying the driving frequency of
the central mirror in the double cavity so that it is resonant with the lower
and upper wavenumber branches of an avoided crossing denoted by ΩD,l and
ΩD,u. ΩD,m is the average of the upper and lower driving frequencies.We vary
the central mirror reflectivity according to (a) α = 2 (b) α = 2.5 (c) α = 3.6
(d) α = 10 and plot the photon number per mode number. We find that not
only do relatively small perturbations in the driving frequency influence the
photon creation rate but this also has subtle influences on which modes are
populated.
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Figure 6.10: This figure shows the effect on total photon number of varying
the driving frequency of the central mirror in the double cavity so that it
is resonant with the lower and upper wavenumber branches of an avoided
crossing denoted by ΩD,l and ΩD,u. ΩD,m is the average of the upper and
lower driving frequencies.We vary the central mirror reflectivity according to
(a) α = 2 (b) α = 2.5 (c) α = 3.6 (d) α = 10. We find that ΩD,m leads to the
greatest growth in total photon number followed by ΩD,u and the ΩD,l. As the
reflectivity is increased, the gap between the photon number curves close up
while maintaining the same hierarchy.
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frequencies have a gap of magnitude 2∆. As we have discussed before, the gap

vanishes as the mirror reflectivity approaches unity, i.e. 2∆ → 0 as α → ∞.

When we simulated the DCE previously, we picked driving frequencies resonant

to the centered diabatic modes. For example, the driving frequency 4π is

resonant with the degenerate centered diabatic modes 2π. Now, we wish to

study the effect of a small perturbation to the driving frequency such that it

is resonant with the lower or the upper branches. Let us refer to these cases as

ΩD,l and ΩD,u. In addition to that, we also simulate the DCE for the average of

the two driving frequencies referred to as the middle driving frequency (ΩD,m).

In Fig. 6.9 the photon number is plotted as a function of the frequency mode

number. The reflectivity is changed in the plots (a) through (d). For each

fixed reflectivity, we determine the driving frequency resonant to the lower

and upper branch of the adiabatic modes near 2π. The reflectivities are (a)

R(α = 2) = 97.5%, (b) R(α = 2.5) = 98.4%, (c) R(α = 3.6) = 99.2% and

(d) R(α = 10) = 99.9%. We find that the photon population dips that we

observed in Fig. 6.7 are directly effected by the small perturbations in the

driving frequency. We note that the dip for the middle driving frequency is

smaller than the dip corresponding to the lower driving frequency. Meanwhile,

the upper driving frequency result exhibits a monotonic decrease in photon

number away from the central resonant modes. Lastly, it can be seen that

increasing the reflectivity flattens out the photon population imbalances in

modes 2 & 3 and modes 6 & 7. We see in Fig. 6.10 that the middle driving

frequency leads to a highest total photon number curve, followed by the upper

and lastly the lower driving frequency. As the central mirror reflectivity is

increased, the three curves maintain the same hierarchy but close in towards

each other while moving up.
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Figure 6.11: We model a semi-open single cavity by an asymmetric double
cavity with a cavity with the dimensions of the open cavity of interest coupled
to an extremely long cavity via a partially transmissive middle mirror. As the
partially transmissive mirror is driven sinusoidally, photons are created in the
open cavity. Furthermore, due to the open nature of the cavity, we see decay
of photons as well.

6.4 Modelling a single cavity coupled to an en-

vironment via a Double Cavity

In this section, we study photon creation in an ideal semi-open cavity due to

time-dependent boundary conditions. We define the ideal semi-open cavity

as a semi-open cavity coupled to an infinite environment as opposed to the

finite semi-open cavity forming a double cavity studied in the previous section.

The ideal semi-open cavity is comprised of a perfect end mirror placed at

x = 0 and a partially transmissive mirror at the variable position x(t) =

l0 [1 + sin(ΩDt)]. Hence, the cavity is coupled to a continuum of modes of

the infinite environment via the partially transmissive mirror. Numerically,

it is not possible to simulate the dynamics for a continuum of modes. We

get around this problem, by modelling the infinite environment by another

much larger cavity as shown in Fig. 6.4. Hence, we add an end mirror at the

position x = L. Similar to the previous sections, we take the parameters l0 = 1,
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ε = 0.001 and focus our attention on the driving frequency ΩD = 4π. The

cavity used to model the environment, shown as the right cavity half in Fig. 6.4

is from here onwards referred to as the environment cavity, while the other half,

the cavity of our main interest is referred to as the open cavity. One might

also notice that the resultant cavity system forms a highly asymmetric double

cavity. As the environment cavity length approaches infinity, the asymmetric

double cavity approaches an ideal semi-open cavity. In order to study the

convergence properties of the model, we vary the length of the environment

cavity to be L − l0 = 3.1, 5.1, 7.1, 9.1. Here, we have avoided environment

cavity lengths of 3, 5, 7, 9 (~/ckg), to ensure that we are not studying the

special case where the environment cavity length is an integer multiple length

of the open cavity. In Fig. 6.12, we plot the eigenvalue structure corresponding

to the parameters α = 4, L1(t0) = L1,0 = 1 and L2(t0) = L2,0 = 9.1 (~/ckg),

which are the initial lengths of the open and environment cavity respectively.

In addition, the diabatic modes (eigenmodes for α = ∞) of the uncoupled

cavities of initial lengths L1,0 and L2,0 are plotted for variable displacements

of the central mirror from the initial position. The diabatic wavenumbers

inside the smaller cavity of initial length L1,0 change more significantly than

the wavenumbers in the much larger cavity of initial length L2,0. This is

expected since for a perfect cavity the wavenumbers depend upon L and ∆L

as

kn(∆L) =
nπ

L+ ∆L
. (6.4)

For small perturbations in the length, which is the regime we operate in,

kn(∆L) ≈ nπ
L

(
1− ∆L

L

)
. Hence, for a mirror displacement of ∆q, the change

in diabatic frequencies inside the smaller cavity is given by ∆q/L2
1,0 and for
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Figure 6.12: In this figure, we show the wavenumber structure for an asym-
metric double cavity with a partially transmissive central mirror (α = 4) and
initial cavity half lengths of L1(t0) = L1,0 = 1 and L2(t0) = L2,0 = 9.1. The
dotted curves represent the diabatic modes of the cavity, i.e. for α =∞ while
the solid lines represent the adiabatic modes of the cavity. The blue solid lines
represent modes that are strongly localized in the environment cavity. The
red solid curves correspond to modes that are localized in the open cavity.
When the length L2,0 → ∞, the blue solid lines will become more dense and
approach a continuum and the model approaches an ideal open cavity with a
partially transmissive single cavity coupled to an infinitely large environment.
Here, ki represents the i-th wavenumber in the eigenspectrum.
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Figure 6.13: In this figure, we show the localization of the modes correspond-
ing to the wavenumbers and parameters shown in Fig. 6.12 for various posi-
tioning of the driven mirror. Am represent the amplitude of the corresponding
eigenfunctions of km in the open cavity, while Bm represent the amplitude in
the environment cavity. (Am/Bm)2 � 1 implies that the mode is strongly
localized in the environment cavity.
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the larger cavity is given by ∆q/L2
2,0. This can be seen in Fig. 6.12, where the

diabatic modes (dotted curves) changing little correspond to the environment

cavity while the diabatic mode changing significantly correspond to the open

cavity. Near the intersection of the two sets of diabatic modes, the adiabatic

modes of the asymmetric double cavity i.e. when the two cavities are coupled

due to finite α, form an avoided crossing structure. In Fig. 6.12, these curves

are shown in red, solid lines (k10,11). Meanwhile, the blue, solid curves are the

adiabatic modes located away from any intersection of diabatic modes. As

the environment cavity length is increased , there will be a greater density of

adiabatic modes that will approach a continuum for L2,0 → ∞. Intuitively,

since the blue, solid curves (k8,9,12,13) closely follow the environment cavity

diabtic modes, we expect it to be weakly localized in the semi-open cavity

and vice-versa for the red, solid curves. In Fig. 6.13, we indeed see this to be

true. In particular, we see that the light field of k11 is very strongly localized

and k10 is somewhat localized in the open cavity. Meanwhile, for all other

wavenumbers, the localization of light in the open cavity is very weak.

We begin our study of the DCE in the semi-open cavity by checking the con-

vergence properties of the asymmetric double cavity (ADC) approximation of

the ideal semi-open cavity as the length of the environment cavity is increased..

We fix the reflectivity parameter α = 1 of the partially transmissive mirror for

the environment cavity lengths L2,0 = 3.1, 5.1, 7.1, 9.1. The propagator for the

quantum dynamics in this setup is numerically generated using the formalism

setup in Sec. 5.4. In Fig. 6.14, total photon number in the semi-open cavity

numerically generated employing the ADC model is plotted as a function of

time. We consider a photon corresponding to a particular mode to be located

in the semi-open cavity (as opposed to the environment cavity) if
(
An

bn

)2

> 1
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Figure 6.14: The total photon number in the semi-open cavity is plotted
here as the length of the environment cavity is changed. The reflectivity
parameter is α = 1 throughout. For the shorter environment cavity length
of L2,0 = 3.1, the light eigenmodes are not strongly localized in the open or
environment cavity. Hence, the plotted total photon number for L2,0 = 3.1 is
not particularly meaningful. For L2,0 = 5.1, 7.1, 9.1, the localization is much
stronger and the total photon number in the open cavity become a meaningful
quantity. We see that initially (t ≤ 15 ), the growth in photon number agree
for all the length values considered. Around t ≈ 15, the growth in photon
number reaches a local maximum. Moreover, we see a sloshing back and forth
of the photon population in the form of some periodic micromodulation. This
effect would be stronger for shorter environment lengths or lower reflectivities
of the driven mirror. As the environment cavity length increases or the driven
mirror reflectivity increases, we expect to see the sloshing of the photons go
down.
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as for the wavenumber k11 in Fig. 6.13. Total photon (N(t)) curves agree for

all environment cavity lengths L2,0 = 3.1, 5.1, 7.1, 9.1 for t ≤ 12. Furthermore,

all of these curves exhibit a local maximum of photon number around t ≈ 10,

i.e. the photon growth rate in the semi-open cavity becomes zero. This sort

of behaviour is not present in the perfect single cavity case where the photon

number grow more or less monotonically as shown in Fig. 6.2. For t > 15, the

N(t) curves begin to diverge, a sign that the convergence of the ADC model is

breaking down due to inadequate environment cavity length. The environment

cavity length determines the time taken for the "decayed" light to slosh back

into the semi-open cavity. In other words, as photons are being created in the

semi-open cavity due to the moving mirror, it is constantly leaking out into the

environment cavity since the driven mirror is transmissive. In an ideal semi-

open cavity, this leaked light would never be reflected back into the semi-open

cavity. Due to the approximation of the infinite environment by a large finite

cavity for the sake of numerical simulations, the "decayed" photons eventually

reflect back from the environment cavity end mirror and re-enters the semi-

open cavity. Fig. 6.15 shows fixed time snapshots of photon population per

mode localized in the semi-open cavity. At t = 15, the agreement between the

L2,0 = 7.1, 9.1 is good which is expected since the corresponding N(t) curves

lie on top of each other for t ≤ 15. At t = 30, it can be seen that the Nk(t)

curves begin separate due to the sloshing back of the decayed photons. From

the convergence of the plots for t ≤ 15 as the environment cavity length is

increased, we conclude that the ADC model of the ideal semi-open cavity is a

legitimate approximation in that time domain. Note that a lower reflectivity

of the driven mirror would require higher environment cavity lengths to see

convergence of the model to the ideal semi-open cavity case due to a faster
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Figure 6.15: Here photon number for modes localized in the open cavity are
plotted as a function of mode number while the environment cavity length is
varied as L2,0 = 3.1, 5.1, 7.1, 9.1. The number of photons generated in the open
cavity as a result of the partially transmissive (α = 1) driven mirror as the
environment cavity is lengthened converges showing that a model of the open
cavity via an asymmetric double cavity is achieved. For short times t ≤ 15,
we see that the convergence is very good for L2,0 = 9.1, while, for t ≥ 15,
the convergence becomes worse with time implying that longer environment
cavity is required to properly model the open cavity. Part of the reason for
the lack of convergence for longer times is the finite size of the environment.
Eventually, the photons created in the open cavity that had decayed into the
environment slosh back into the open cavity.
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Figure 6.16: The number of photons in the semi-open cavity are plotted in
this figure using the ADC model with an environment cavity length, L2,0 = 9.1.
The semi-open cavity is taken to have the initial length of L1,0 = 1 and the
driving frequency of the partially transmissive mirror is 4π. The reflectivity
parameter of the driven mirror is varied and the corresponding photon number
curves are compared against the perfect single cavity DCE represented by the
α =∞ curve.

sloshing rate. Furthermore, for a more highly reflective driven mirror and fixed

environment cavity length, the model is a valid approximation over a larger

time domain compared to a driven mirror of lower reflectivity. In Fig. 6.16,

we plot the results of the DCE in the semi-open cavity using the asymmetric

double cavity (ADC) model. The growth of photon number in the semi-open

cavity approaches the perfect single cavity curve as the mirror reflectivity is

increased. The reflectivity parameter, α = 1, is equivalent to a reflectivity of

91% for frequencies near 2π. We see in the figure that even for such a high
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reflectivity, the resultant photon number growth is quite small compared to

the perfect single cavity case. It is not surprising that the photon growth is

drastically reduced since the static Casimir force for transmissive mirrors is

weaker [69]. In experiments, the mirrors used would be partially transmissive

and this result shows that only for very highly reflective mirrors would the re-

sults approach the perfect single cavity DCE results. Furthermore, the curves

with α = 1, 2, 4, show some oscillatory behaviour that can be attributed to the

finite size approximation of the infinite environment leading to a sloshing back

of the photons that had leaked out of the semi-open cavity. We do not see any

such behaviour for the α = 10 case, however, due to it is very high reflectivity,

the sloshing time scale is much larger than the time domain of the simulated

dynamics. In Fig. 6.17, the mode popuations of the ADC are plotted as a

function of the mode numbers. In contrast to Fig. 6.15, where we only plot

the mode numbers with strong localization in the semi-open cavity, here we

plot all the modes regardless of the strength of localization in the semi-open

or environment cavity. The spikes in the Nk(t = 60) curve near k = 10, 20, 30

correspond to the photons created in the semi-open cavity. This plot shows

us that the mode frequency cutoff number, N = 54, is adequate for our time

domain of interest as the photon population beyond mode number 35 is negli-

gible. Since we consider a driving frequency of 4π throughout this section, the

growth of photons for frequency modes near 2π is resonantly enhanced. We

denote the photon number curve for these resonant modes in both the perfect

single cavity (PSC) and ADC systems as Nr(t). Out of curiosity, we compare

the growth of photons of the semi-open cavity using the ADC model against

the PSC photon growth rate having factored in the decay of photons through

the partially transmissive driven mirror. The resonant mode photon number
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Figure 6.17: In this figure, we plot the photon number for each mode k for
the semi-open cavity with the ADC model parameters, L1,0 = 1, L2,0 = 9.1,
ΩD = 4π, and α = 1, 2, 4, 10 at time t = 60. The photon population peaks at
k = 21 since the mode is resonant with the driving frequency.
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Figure 6.18: The numerical Nr(t) curve denotes the growth of photons in
the modes resonant to the driving frequency using the ADC model of the ideal
semi-open cavity. The parameters for the ADC are L1,0 = 1, L2,0 = 9.1, ΩD =
4π with variable reflectivity parameters across the panels of α = 1, 2, 4, 10 m.
It is compared to the analytic formula of the perfect single cavity growth
multiplied by the decay factor in Eqn. 6.6.
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for the semi-open cavity is given by

Nr(t) = NADC
10 (t) +NADC

11 (t) (6.5)

and compared to the analytic result given by

Nr(t) = NPCS
2 exp (−γt) , (6.6)

where, NPSC
i and NADC

i are the photon number corresponding to the ith mode

in the perfect single cavity and the asymmetric double cavity model. The

decay constant is given by [70]

γ =
c

L1,0

√
1√
R

+
√
R− 2, (6.7)

where R denotes the reflectivity of the partially transmissive, driven mirror.

Note that the reflectivity is dependent on the wavenumber and that was taken

into account as well. From Eqn. 6.3 and for short times, i.e. t ≤ 30, we

have that NPCS
2 = (10−3πt)2. For α = 1, we find the agreement between the

analytic and the numeric curves to hold only for very short times (t ≤ 2 or

four mirror oscillation cycles). As the reflectivity parameter is increased, the

time domain on which the two curves agree becomes larger. Hence, the semi-

open cavity DCE cavity cannot by approximated as a perfect single cavity

with decay introduced to it for longer time domains. The previous analytic

formulae would perhaps best describe a semi-open cavity where the perfect

end mirror is driven as in reference [66], where the theoretical calculations

report that the effect of losses do not drastically change the photon growth.

In reality, however, all mirrors are partially transmissive and our simulations
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Figure 6.19: Here we plot the total photon number created in the double
cavity for a central mirror with reflectivity parameter α = 1, displacement of
0.001L1,0 and driven at frequency ΩD = 4π generated via numerical simula-
tions while varying the cutoff frequency mode number and the accuracy of the
MATLAB ode solver denoted by opt. The initial length of the cavity halves
are L1,0 = L2,0 = 1.

show that the DCE is strongly modified for such a scenario in comparison to

the ideal perfect mirror case.

6.5 Regularization and Accuracy of Numerical

Simulations

In this section we discuss the process by which determine the cutoff frequency

for our simulations and the accuracy taken. There are two factors that can
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be controlled to give a reliable photon number data, namely the maximum

number of modes considered in the simulation (in principle we require an

infinite number of modes, but that is not practical) and the accuracy used

by the ODE solver. The accuracy of the MATLAB ode solver is denoted by

opt. We use ode113 (Adams-Bashforth-Moulton PECE) and ode 45 (Runge-

Kutta-Dormand-Prince) solver. The opt value sets the relative (RelTol in

MATLAB) and absolute tolerance (AbsTol in MATLAB) of the solution. For

example, opt = 10−5 sets the relative and absolute tolerance, by the command

"opt = odeset(′RelTol′, 1e− 5,′AbsTol′, 1e− 5)", to be 10−5 each. ‘RelTol’ is

the measure of the error relative to the size of the solution and it controls the

number of correct digits unless it is smaller than ‘AbsTol’. ‘AbsTol’ sets the

threshold below which the accuracy of the solution is unimportant. Moreover,

it is used to determine the accuracy when the solution approaches zero and

the ratio of the error to the solution blows up. At each time step, the error in

the solution is less than the maximum of the two tolerances. The constraint

for these types of numerical simulations are computation power and time.

Fig. 6.19 shows the balance that needs to be achieved. As we can see, from

the inset plot that N = 25, 27 and opt = 10−5 curves agree quite well for

short times and eventually for longer times the curves diverge a bit. We would

expect that taking N = 29, opt = 10−5 we would see some convergence in

the three curves. However, simulations actually show the case to be different.

The issue is that the order of magnitude of the extra terms now introduced

is smaller than the accuracy of the ODE solver considered. Hence, adding

more modes is actually adding greater error. Furthermore, we see in the figure

that increasing the accuracy of the ODE solver to opt = 10−6 for N = 29, we

indeed do get a convergence of the three curves. Furthermore, we look at the
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Nk(t = tf ) vs k plot and check if the end mode populations are close to zero.

This ensures that we have considered an adequate cutoff frequency.
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Chapter 7
Conclusions and Outlook

In this thesis, we first studied the classical dynamics of light in the double cav-

ity with a linearly driven, partially transmissive central mirror (chapters 2, 3

and 4). Following that we studied the dynamical Casimir effect inside the

double cavity for a sinusoidally driven central mirror (chapters 5 and 6). Fur-

thermore, we modelled a semi-open single cavity by an asymmetric double

cavity (ADC) to get around the numerical simulation difficulties of dealing

with a continuum of allowed cavity modes. Furthermore, a significant feature

of our numerical study of the DCE is that we do not assume a perfect driven

mirror which has difficulties associated with it according to author in refer-

ences [5, 6]. In this chapter we summarize the main results in the thesis and

discuss the future directions for this work.

7.1 Summary

We studied the classical dynamics of light in the double cavity using the

Maxwell wave equation with time-dependent boundary conditions. Assuming

that the motion of the central mirror is in a non-relativistic regime, i.e. mirror
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speed is much smaller than the speed of light, we were able to approximately

reduce the second order in time Maxwell wave eqation to a first order in time

dynamics using a paraxial approximation in time. We went on to examine the

validity of this first order in time reduction, referred to as the diabatic first

order equation (DFOE), as the central mirror reflectivity, speed and the light

frequency is varied. The DFOE is an exact reduction of the Maxwell wave

equation only for the static double cavity case. The DFOE, which is a very

good approximation for the optical frequency and mirror velocity to speed of

light as high as 20, 000 ms−1, diverges from the second order in time Maxwell

wave equation when the central mirror reflectivity increases. However, this

divergence is small and more importantly bounded as the central mirror re-

flectivity approaches unity. Furthermore, we found that the validity of the

DFOE approximation improves for lower mirror speeds and higher frequencies

of light in the cavity. In addition, the DFOE is unitary and hence predicts con-

served field amplitudes even as the central mirror is driven, while the adiabatic

second order equation (ASOE) which is the Maxwell wave equation written in

the adiabatic basis correctly predicts non-conserved field amplitudes. In other

words, the validity of DFOE as an approximation is equivalent to the extent

of light energy non-conservation in the actual dynamics. All this was studied

in chapter 3. In chapter 4, we confirmed that the non-conserved light energy

in the double cavity with the driven mirror was due to the external driving

source having to counteract the radiation pressure of the light field on the

mirror. As a result, the external source ends up pumping energy into/out of

the double cavity. This is a classical analog of the DCE which leads to photon

creation due to the interaction of the vacuum field and the time-dependent

boundary conditions. Lastly, we find that in the context of the double cavity,
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moving the central mirror slowly enough ensures that the system will continue

to remain in an instantaneous eigenstate and therefore achieving adiabaticity.

But in contrast to the Schrödinger case, the amplitude of the eigenmode ex-

periences a finite change while the changes in all the others vanish (the sum

of the squares of all the amplitudes is not conserved).

After our in-depth study of the classical dynamics of light in the double

cavity, we shifted our attention to the quantum dynamics. In particular, we

focused on the DCE for a sinusoidally driven partially transmissive central

mirror inside a double cavity. In chapter 5 we reviewed a very convenient

reformulation of the Heisenberg equation of motion (due to reference [24]) in

terms of auxillary variables that satisfy a first order in time differential equa-

tion and is less computationally intensive for light in the presence of a moving

boundary. Moreover, this reformulation is general in the sense that it applies

to the perfect single cavity and double cavity alike. In addition, the formalism

can be easily adjusted to simulate DCE in analogous systems to a cavity with

a moving mirror. For example, if the transmissivity (α in Eqn. (2.1)) or back-

ground dielectric constants in the cavity were to be varied, we would need to

compute the instantaneous cavity frequencies and the corresponding electric

field modes (Eqns. (2.9) and (2.6) for the moving mirror case) as a function

of the parameter being varied. This in turn would modify the expressions in

Eqns. (5.52) and (5.53), after which one can proceed with the numerical sim-

ulations of DCE analogs using Eqn. (5.52). Following references [3, 2] which

numerically studies the DCE in a perfect single cavity (reviewed briefly in

Sec. 6.2), we performed numerical simulations of the DCE in the more com-

plex double cavity system. A novelty of our numerical study is that we assume

that the driven mirror is partially transmissive as opposed to a completely re-
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flective mirror which we find to be a significant idealization. We find that

the photon creation in the double cavity approaches that of two perfect sin-

gle cavities when the central mirror reflectivity approaches unity. However,

even for reflectivities of 91%, the number of photons created is drastically

lower compared to the perfect mirror case. When the reflectivity is taken very

close to 100%, the photon creation asymptotically approaches that of the per-

fect mirror case. This implies that the experimental observation of the DCE

for even highly reflective driven mirrors is much lower in comparison to the

theoretical perfect cavity with completely reflective mirrors. Furthermore, in

Sec. 6.3, we see effects analogous to parametric amplification, where a resonant

driving frequency enhances the growth of photon number for particular modes

(studied in Sec. 5.3). It is possible that the DCE can be greatly enhanced in

the double cavity since the curvature of the avoided crossing structure which

can be modified by fiddling with the cavity parameters might give us access

to higher effective accelerations. Since the double cavity can be thought of as

two semi-open cavities coupled to one another, it is natural to next consider a

semi-open cavity coupled to an infinite environment. An infinite environment

creates a difficulty in the implementation of the numerical simulation since the

allowed eigenfrequencies in the cavity form a continuum. We get around this

issue by modelling the environment by a large and finite cavity. This forms

a highly asymmetric double cavity, but the allowed eigenmodes are discrete

allowing us to numerically simulate the dynamics. In Sec. 6.4, we found that

the ADC model is indeed well behaved and the photon numbers created in

the semi-open cavity converge as the environment cavity becomes larger. For

a fixed environment cavity length and reflectivity, as the photons leak out of

the semi-open cavity, due to the finite size of the environment cavity length, it

140



CHAPTER 7. CONCLUSIONS AND OUTLOOK

eventually sloshes back into the semi-open cavity. The ADC model is accurate

for time domains where a negligible amount of the leaked out photons have

sloshed back. Lastly, we saw that factoring in decay to the photon production

of a perfect single cavity is inadequate to explain the growth of photons in

the semi-open cavity except for very highly reflective mirrors and even then

for rather short times. Our study in chapter 6 shows that open cavities can

behave quite differently than perfect cavities and creation of photons even for

reflectivities as high as 91% is drastically reduced.

7.2 Future Directions

There are several interesting avenues beyond the scope of this thesis that open

up following our numerical study of the quantum dynamics of light in the

double cavity. The quantum dynamics of light in general coherent states in

the double cavity relavant to optomechanical experiments could be simulated

numerically to confirm theoretical and analytical results in the literature. The

open cavity rather than the semi-open cavity coupled to an infinite environ-

ment could be modelled by a triple cavity and the resultant DCE compared to

the analytical results due to [25, 26]. There are also a lot of subtle conceptual

issues to be resolved in the DCE such as the implications of the periodicity

of the off-diagonal Bogoliubov coefficients in Fig. 6.5 and their relation to the

curious piecewise linear photon growth. Furthermore, one could ask how many

of the photons pumped into the system in the DCE are only due to the exter-

nal driving source having to counteract the static Casimir force for which we

would need to know how the static Casimir force is modified for the double

cavity. As the field of optomechanics progresses and the entanglement of the
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optical and mechanical degrees are improved along with the advent of highly

reflective mirrors, more elaborate versions of the numerical study done in this

thesis might be used to understand the behaviour of light in such systems.
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Appendix A
Appendix to Chapter 3

A.1 Relativistic corrections to the Maxwell wave
equation in a medium

According to [54], the approximate Maxwell wave equation in a moving dielec-
tric correct to order v/c is given by

∂2E

∂x2
− n2

c2

∂2E

∂t2
− vn

2 − 1

c2

∂

∂x

∂E

∂t
= 0. (A.1)

The highest mirror velocity considered in this paper is 20, 000 ms−1. The
highest mirror reflectivity considered is 98% for cavity length 100µm and
wavenumber 8.0425× 106 m−1. The Mirror width is taken to be 100nm. This
approximately corresponds to an index of refraction of 4.

We can estimate the size of each term by substituting the ansatz E(t, x) =
exp i [(kx− ωt)] into equation (A.1). Order of magnitude of ∂2E

∂x2
: k2. Order

of magnitude of n2

c2
∂2E
∂t2

: n2k2 = 16k2. Order of magnitutde of v n2−1
c2

∂
∂x

∂E
∂t
:

v
c
(n2 − 1)k2 = 0.001k2.

A.2 Changing optical lengths in cavities via in-
dex of refraction of background medium

Instead of the double cavity comprised of an optical cavity with a moveable
central mirror, one can also implement a, equivalent system as two coupled
waveguides with controllable refractive indices. Assume that each waveguide
has length L/2 and has indices of refraction n1/2. The lengths of the double
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cavity halves can now be realized by making the substitution

L1/2 = n1/2
L

2
. (A.2)

In order to conserve the total optical length, the indices of refraction are varied
as (for example, using the electro-optic effect)

n1 = n0 + η (A.3)
n2 = n0 − η,

where n0 is the background dielectric material and η is the modulation. The
modulation of the dielectric need only be small to change the optical length
difference, ∆L = L1 − L2 = ηL. The transmission function of the central
mirror in such a setup using the δ mirror model is given by

T =
n2

1
(n1+n2)2

4
+ k2α2

4

. (A.4)

In order to ensure that the wavenumber structure of the waveguide system
with the controllable refractive index be equivalent to the double cavity with
a moving central mirror, we need to make sure that the transmission function
for the former agrees with the latter. This can indeed be ensures if we take
that η � n0 and we replace αk → αk/n0. By making these substitutions,
most of the formulae derived for the double cavity with the moving mirror can
be extended to the waveguide case.
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Appendix to Chapter 5

B.1 Squeezed States
Coherent states, |α〉 (α is a complex valued parameter), are states that sat-
isfy the minimum uncertainty relation, ∆x̂∆p̂ = ~

2
, where x̂ and p̂ are the

position and momentum operators. In addition, the variances in the position
and momentum co-ordinate of the coherent states are equal, i.e. ∆x = ∆p.
Squeezed states are states that have unequal position and momentum variances
(∆x 6= ∆p) while satisfying the minimum uncertainty relation. Operator rep-
resentation of a general squeezed coherent state, |α, ξ〉, is given by

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉 (B.1)

where
Ŝ(ξ) = exp

{
1

2

(
ξ∗â2 − ξ(â†)2

)}
(B.2)

is the squeezing operator and

D̂(α) = exp
{
αâ† − α∗â

}
(B.3)

is the displacement operator [64] and {â, â†} are the creation/annihalation
operators corresponding to the co-ordinates {x̂, p̂}. The squeezed mode above
is referred to as a single squeezed mode. Meanwhile, two mode squeezed states
are defined as

Ŝ2(ξ)|0〉 = exp
{
ξ∗âb̂− ξâ†b̂†

}
|0〉, (B.4)

where b̂† and b̂ are the creation/annihilation operators corresponding to some
other mode in the system of interest.
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