Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19103
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBolker, Benjamin-
dc.contributor.authorBarrows, Dexter-
dc.date.accessioned2016-04-20T17:34:07Z-
dc.date.available2016-04-20T17:34:07Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/19103-
dc.description.abstractForecasting tools play an important role in public response to epidemics. Despite this, limited work has been done in comparing best-in-class techniques across the broad spectrum of time series forecasting methodologies. Forecasting frameworks were developed that utilised three methods designed to work with nonlinear dynamics: Iterated Filtering (IF) 2, Hamiltonian MCMC (HMC), and S-mapping. These were compared in several forecasting scenarios including a seasonal epidemic and a spatiotemporal epidemic. IF2 combined with parametric bootstrapping produced superior predictions in all scenarios. S-mapping combined with Dewdrop Regression produced forecasts slightly less-accurate than IF2 and HMC, but demonstrated vastly reduced running times. Hence, S-mapping with or without Dewdrop Regression should be used to glean initial insight into future epidemic behaviour, while IF2 and parametric bootstrapping should be used to refine forecast estimates in time.en_US
dc.language.isoenen_US
dc.subjectForecasting, Time series, Estimation, Fittingen_US
dc.titleA Comparative Study of Techniques for Estimation and Inference of Nonlinear Stochastic Time Seriesen_US
dc.typeThesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Barrows_Dexter_D_2016April_MSc.pdf
Open Access
996.44 kBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue