ESTIMATION AND INFERENCE OF NONLINEAR
STOCHASTIC TIME SERIES

A COMPARATIVE STUDY OF TECHNIQUES FOR ESTIMATION AND
INFERENCE OF NONLINEAR STOCHASTIC TIME SERIES

By
DEXTER BARROWS, B.SC.

A Thesis Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements for the Degree
Master of Science

McMaster University (€)Copyright by Dexter Barrows, April 2016

MASTER OF SCIENCE (2016) McMaster University

(Mathematics)

TITLE

AUTHOR
SUPERVISOR

NUMBER OF PAGES

Hamilton, Ontario, Canada

A Comparative Study of Techniques for Estimation and
Inference of Nonlinear Stochastic Time Series

Dexter Barrows, B.Sc. (Honours), Ryerson University
Dr. Benjamin Bolker

x, 148

Abstract

Forecasting tools play an important role in public response to epidemics. Despite this,
limited work has been done in comparing best-in-class techniques across the broad
spectrum of time series forecasting methodologies. Forecasting frameworks were devel-
oped that utilised three methods designed to work with nonlinear dynamics: Iterated
Filtering (IF) 2, Hamiltonian MCMC (HMC), and S-mapping. These were compared
in several forecasting scenarios including a seasonal epidemic and a spatiotemporal
epidemic. IF2 combined with parametric bootstrapping produced superior predictions
in all scenarios. S-mapping combined with Dewdrop Regression produced forecasts
slightly less-accurate than IF2 and HMC, but demonstrated vastly reduced running
times. Hence, S-mapping with or without Dewdrop Regression should be used to glean
initial insight into future epidemic behaviour, while IF2 and parametric bootstrapping
should be used to refine forecast estimates in time.

il

Acknowledgements

There are many people I have to thank for their support over the last two years:

My supervisor Dr. Ben Bolker for his mentorship, advice, direction, and especially
patience.

My defence committee members Dr. Jonathan Dushoff and Dr. David Earn who have
taken the time to read my work and provide valuable input.

The Theobio lab for including me in stimulating discussions, even when they were
over my head.

My Mom, Dad, Joel, and Sofia for being there for me through good times and trying
ones.

v

Contents

2 _Hamiltonian MICIMCOC)
21 Markov Chaind
L2 _lakehhood
3 Prior distributioo
.4 FProposal distribution
2.5 Algorithm|
PO Bum-m
.7 lhmmng
x Hamiltonian Monte Carlad
£.Y9 Rbtan Fitting]

b lterated Filtering
bl Formulation 000
b.2 Algorithm|
b.o Particle Collapsd
b.4 lterated Filtering and Data Cloning| . .
B.o lterated Filtering 2 (IF2)
b.6 IF2 Fitting

d Parameter Fitting
A.1 Fitting detup L
g2 Calibrating Sampley
B3 IFZ2ZFittimg
a4 IF2 Convergencd
don k2 Densitied
g6 HMC Fittmng
A/ HMC Densities
s HMC and bootstrapping
2.9 Multi-trajectory Parameter Hstimation

© 00 3 O ot

10
10
13

18
18
19
21
21
22
24

26
26
29
30
32
34
35
35
36
37

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

p Forecasting Frameworks

b.l Data detup
S 1
p.2.1 Parametric bootstrappmg
bh2Z22Z2 1B Forecastdo
B3 HNT

b4 1riuncation vs BHrrod

o S-map and SIRS

0.1 S-apd o e e e e
b.2 S-map Algorithm
b3 SIKRS Maodel . 0 0 . 0 o 0 .
p.4 SIS Model Forecasting]

[(Spatial Epidemics

I/, Spatial SIR 0.
I(.2 Dewdrop hegressiono
Il.o Spatial Model Forecastingl

& __Iiscussion and Future irectiond
B.1 Parallel and Distributed Computing
B.2 1F2, bootstrapping, and Forecasting Methodology

5 l1terated Filtering
B1 FEunll K coda

L Parameter Fitting
1 SIR Forward Simiuilaton

D Forecasting Frameworks
D.1 12 FParametric bootstrapping Function

HS-map and S1RY
1 SIS K Fanetion Codd L Lo
2 SIS HMOC K Bunction Codd
B SMAP Codda s s

.4 SMAF Parameter Optimization Codd

vi

39
39
40
41
41
43
44

46
46
47
49
o1

54
o4
o6
o7

60
60
63
64

70
70
73

75
75
77

88
88

90
90
92

94
94
95
97
98

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

o RStan SIRS Codd . . 0 0 0 0 0 0 0 0L 100
E6 TE2SIRS Cadd e 102
[Spatial Epidemicd 115
[F.T Spatial SIR R Function Codd 115
.2 Spatial SIR HMC R Funcfion Codd 117
.o RStan dSpatial DIk Codd oo 119
.4 12 Spatial OIRk Coddo 121
.5 CUDA IF?2Z Spatial Fitting Codd 131

vil

List of Figures

2.1

A Tinite state machine. States are shown as graph nodes, and the prob

pbility of transitioning irom one particular state to another 1S showr)|
bs a weighted graph edge. 2|

2.2

1rue SR ODE solution miected counts, and with added observation

2.5

‘Iraceplot of samples drawn for parameter /xXq, excluding burn-in/

2.4

‘Iraceplot of samples drawn for parameter /KXo, 1ncluding burn-in/

2.0

Kernel density estimates produced by Stan. Dashed lines show trud

parameter values|o

p.1

Kernel estimates 1or four essential system parameters. lrue values ard

Indicated by dashed lmmes) oo oL

m1

oimulated geometric autoregressive process shown in Equation [4.1]]

)

Density plot of values shown it Figurel4.1{)

g.3

otochastic IR model simulated using an explicit Fuler stepping scheme)

|L'he solid line 1s a single random trajectory, the dots show the datal

points obtained by adding in observation error defined as €., = N (0, 10)]

hnd the grey ribbon 1s centre Yoth quantile from 100U random trajectoq

g.4

FITUING errors) e e

t.5

‘1rue system trajectory (solid line), observed data (dots), and k2 esti

mated real state (dashed line)|

2.6

‘I'he horizontal axis shows the IF2Z pass number. [he solid black lineg

show the evolution of the ML estimates, the solid grey lines show thd
frue value, and the dashed grey lines show the mean parameter estid
mates irom the particle swarm aiter the nnal pass|

g.7

‘I'he horizontal axis shows the 1F2 pass number and the solid black lineg

show the evolution ol the standard deviations oI the particle swarny

falies] oL

2.3

'I'he solid grey lines show the true parameter values and the dashed

prey lines show the density medians)

viil

14
15
16

17

25

27
28

28
31

31

33

33

35

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

2.9

As belore, the solid grey lines show the true parameter values and thd

dashed grev lines show the density medians)

g.10

Result from 100 HMC bootstrap trajectories. The solid Iine shows thd

frue states, the dots show the data, the dotted line shows the averagd
pystem behaviour, the dashed line shows the bootstrap mean, and thd

erey ribbon shows the centre Yoth quantile of the bootstrap trajectories)

g.11

1F2 point estimate densities are shown 1 black and HMC point es

fimate densities are shown 1n grey. [he vertical lines show the trud
parameter values)o

g.12

Fitting times 1or 1F2 and HMVC, 1n seconds. '1he centre box 1 each

plot shows the centre oUth percent, with the bold centre line showing|

Intection count data triimcated at '/ = A 1T he sohid hine shows the trud

underlying system states, and the dots show those states with added|
pbservation noise. Parameters used were Kqg = 0.0, v = 0.1, n = .09
boroe = 0.0, and additive observation noise was drawn from N (0, 10)]

p.2

Infection count data truncated at " = 30 from Figure [5.1]. The dashed

line shows IF2Z’s attempt to reconstruct the true underlying state rroml
the observed data pomts)o

b.3

Forecast produced by the IF2 / parametric bootstrapping framework.

|L'he dotted line shows the mean estimate ol the Iorecasts, the dark]
erey ribbon shows the 957 conhidence interval based on the 0.025 and
U.Y70 quantiles on the true state estimates, and the lighter grey ribbon

ghows the same confidence interval on the trie state estimates with

hdded observation noise drawn from N (0,0))

5.4

Forecast produced by the HMC / bootstrapping framework with N =

U0 trajectories. 1he dotted line shows the mean estimate of the fored
casts, and the greyv ribbon shows the 95% confidence interval on thq
pestimated true states as described 1n Figure [9.3])

b.o

rror growth as a ftunction of data truncation amount. both methodsg

used 200 bootstrap trajectories. Note that the y-axis shows the natural
log of the averaged SSE, not the total DOE]

p.1

Five cvcles generated by the SIRS Tunction. 1'he solid line the the trud

humber o cases, dots show case counts with added observation noise|
|L'he parameter values were Kg = o.U, vy =0.1., n =1, 0 = o, and 1
mifial cases]

p.2

S>-map applied to the data from the previous ngure. 1he solid ling

shows the 1niection counts with observation noise Irom the previoug
plot, and the dotted line 1s the S-map Iorecast. Parameters chosern|
mere H — 14 and £ = 31

p.3

X

36

37

38

38

40

41

42

44

45

50

o1
52

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

p.4

Runtimes for producing S1RS rorecasts. 1 he box snows the middle oUth|

percent, the bold line 1s the median, and the dots are outliers. Notd
that these are not “true” outliers, simply ones outside a threshold based|
pn the mterquartile range) oo

0.5

Coverage plots for forecast weeks 10 (top) and 45 (bottom). Black

bars are trom IF2Z Iorecast trajectories, and grey bars are from HMQ
................................

[.1

Hvolution oI a spatial epidemic 1n a ring topology. I'he outbreak wasg

ptarted with o cases 1n Location 2. Farameters were Xg = o.U, v = 0.1}
n=0.5. 0. =00, ando=0.0]

[7.2

Evolution of a spatial epidemic as 1n Figure |7.1], with added observa4

fion noise drawn from JV(0,10)]

[7.3

Average dok (log scale) across each location and all trials as a function|

.4

Runtimes for producing spatial SIR forecasts. 1L'he box shows the mid

dle o0th percent, the bold line 1s the median, and the dots are outliers)

[7.5

Coverage plots for forecast weeks 2 (top) and 10 (bottom) in location|

B. black bars are from 1F2 Iorecast trajectories, and grey bars are Irroml
HMC trajectories)

£ 1

Running times for ntting the spatial SIk model to data

53

93

95

56

o8

58

V]

N O ot s W

o

10
11
12
13
14
15
16

17
18
19
20
21
22
23

24
25

26
27
28

Chapter 1

Introduction

Epidemic forecasting is an important tool that can help inform public policy and
decision-making in the face of an infectious disease outbreak [9][B0][22]. Successful
intervention relies on accurate predictions of the number of cases, when they will occur,
and where. Without this information it is difficult to efficiently allocate resources, a
critical step in curbing the size and duration of an epidemic.

Despite the importance of reliable forecasts, obtaining them remains a challenge from
both a theoretical and practical standpoint [30]. Mathematical models can capture the
essential drivers in disease dynamics, and extend them past the present into the future.
However, different epidemics may present with varying dynamics and require different
model parameters to be accurately represented [[7]. These parameters can be inferred
by using statistical model fitting techniques, but this can become computationally
intensive, and the modeller risks “overfitting” by attempting to capture too many
drivers with too little data. Thus, the modeller must exercise restraint in model
selection and fitting technique [A].

Securing precise, error-free data in the midst of an outbreak can be difficult if not
impossible [36], thus observational uncertainty must be built into mathematical mod-
els of disease spread from the beginning. Models must differentiate between natural
variation in the intensity of disease spread (process error) and error in data collec-
tion (observation error) in order to accurately determine the dynamics underlying a
data set, adding another layer of complexity [25]. With these caveats and concerns
acknowledged, we can turn to a discussion of technique.

Broadly, there are three primary categories of approaches used in forecasting: phe-
nomenological, pure mechanistic, and data integration.

Phenomenological methods operate purely on data, fitting models that do not try
to reconstruct disease dynamics, but rather focus purely on trend. A long-standing
and widely-used example is the Autoregressive Integrated Moving Average (ARIMA)

D U s W N =

N

10
11
12
13

14

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

model. ARIMA assumes a linear underlying process and Gaussian error distributions.
It uses three parameters representing the degree of autoregression (p), integration
(trend removal) (d), and the moving average (¢), where the orders of the autoregression
and the moving average are determined through the use of an autocorrelation function
(ACF) and partial autocorrelation function (PACF), respectively, applied to the data
a priori [43].

Pure mechanistic approaches simply try to capture the essential drivers in the disease
spreading process and use the model alone to generate predictions. For example one
could use a model in which individuals are divided into categories based on whether
they are susceptible to infection or infected but not yet themselves infectious, infec-
tious, or recovered. These are called compartmental models and are heavily used in
epidemiological studies. Typically the transition between compartments is governed
by a set of ordinary differential equations, such as

ds

= — _B]

dt pLS

% = BIS —~I (1.1)
dR

= =~

dt ,y)

where S, I, and R are the number of individuals in each compartment, [is contact
rate between susceptible and infected individuals, and v is a recovery rate. We also
let B = Roy/N, where R is the number of secondary cases per infected individual
in a wholly susceptible population, and N is the population size. As an outbreak
progresses, individuals transition from the susceptible compartment, through the in-
fectious compartment, then finish in the removed compartment where they no longer
impact the system dynamics. Many extensions of the SIR model exist and are com-
monly used, such as the SEIR model in which susceptible individuals pass through an
exposed class (or several) where they have been infected but are not yet themselves
infectious, and the SIRS model in which individuals become susceptible again after
their immunity wanes [[1][T2].

Combining the phenomenological and mechanistic approaches are data integration
schemes. These methods use a model to define the expected underlying dynamics
of the system, but integrate data into the model in order to refine estimates of the
model parameters and produce more accurate forecasts. Typically the first step in
implementing such a technique is fitting the desired model to existing data. There are
many ways to do this, most of which fall into two main categories: Sequential Monte
Carlo (SMC) methods [3][84][22], and Markov chain Monte Carlo-based (MCMC)
methods [2][29]. From there data can either be integrated into the model by refitting
the model to the new longer data set, or in an “on-line” fashion in which data points

=W N =

© 00 N o Ot

11
12
13

14
15
16
17
18
19
20
21

22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

can be directly integrated without the need to refit the entire model. Normally,
MCMC-based machinery must refit the entire model whereas SMC-based approaches
can sometimes integrate data in an on-line fashion, thus “on-line” methods are most
appropriate when data must be integrated in “real-time”.

Another, broader, distinction among techniques can be drawn between those that rely
on assumptions of linearity, and those that make no such assumption. As epidemic
dynamics are highly non-linear, it can be questionable as to even consider linear ap-
proaches to epidemic forecasting at all. In particular, stalwart approaches such as
ARIMA and the venerable Kalman filter face a distinct (at least theoretical) disad-
vantage in the face of newer SMC-based methods [39][42]. Extensions of the Kalman
filter, such as the ensemble adjustment Kalman filter are designed to handle non-
linearity, but these methods are very well-studied, and further work showing their
viability would likely prove extraneous in the modern academic landscape.

Somewhat frustratingly, there exists no “gold standard” in forecasting [9][30][22]. As
methodology varies widely in theoretical justification, implementation, and operation,
it is difficult to compare the state of the art in forecasting methods from a first-
principles perspective. Further, published work making use of any of these methods
to forecast uses different prediction accuracy metrics, such as the sum of squared
errors of prediction (SSE), peak time/duration/intensity, correlation tests, or root-
mean-square error of prediction (RMSE), among others [9][81]. Thus it is difficult to
select the best tool for the job when faced with a forecasting problem.

The primary focus of this work is to compare best-in-class methods for forecasting in
several epidemically-focused scenarios. These include a “standard” one-shot forecast
outbreak in which the outbreak subsides and does not recur, a seasonal outbreak
scenario such as what we see with influenza each year, and a spatiotemporal scenario
in which multiple spatial locations are connected and disease is free to spread from
one to another.

From MCMC-based methods we have selected Hamiltonian MCMC (HMC) [29], a
(slightly) less cutting-edge but nonetheless highly effective technique. We are us-
ing HMC through an implementation in the R package RStan [8], which at its core
uses HMC, but also contains implementations of several other innovative techniques.
Interestingly, the original goal of this package was not to implement a statistical
programming language similar to Just Another Gibbs Sampler (JAGS) or Bayesian
Inference Using Gibbs Sampling (BUGS), but with an HMC backend. In fact the
developers’ original goal was to implement any method that could fit multilevel hi-
erarchical models without halting as they were witnessing with BUGS and JAGS.
Only after experimenting with several options and starting to hear about it more and
more frequently did they attempt to work with HMC. In the end, the scope of the
project grew to include the development and subsequent integration of the No-U-Turn
Sampler (NUTS) [20], and an implementation of automatic differentiation machinery

© o N O s W N e

_ e =
w N = O

14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

[37].

For PF-based methods we have selected Iterated Filtering (IF) 2 [23], a very recently
developed approach that uses multiple particle filtering rounds to generate maximum
likelihood estimates (MLEs). It functions similarly to its predecessor, the Maximum
likelihood via Iterated Filtering (MIF) algorithm [22], but aims to be simpler, faster,
and more accurate. Theoretical justification and synthetic testing indicates that 1F2
meets these goals, and as such the authors recommend skipping MIF and jumping
straight to IF2 if an algorithm of their variety is sought. And so, we are doing just
that. We wrote our own IF2 implementation in C++ and integrated it into R using
the Repp package [[3]. The developers of MIF and TF2 have their own R package that
implements MIF and [F2, Partially Observed Markov Processes (POMP) [24][26], but
it didn’t provide some of the diagnostic information we needed, so it was not used
here.

Finally, from the phenomenological methods we have selected the sequential locally
weighted global linear maps (S-map) [I5][21][38][89], combined with Dewdrop Regres-
sion [I5]. These methods stand on their own as a unique take on the forecasting
problem, and bear little resemblance to other methodology. The virtues of these tech-
niques have been long-extolled by their developers, but their efficacy when compared
to competing methods has not been well-studied. This work will mark one of the first
times this has been done.

This thesis will begin with descriptions of HMC and IF2 with examples of simple model
fitting in Chapters 2 and 3. Chapter 4 explores parameter fitting of a stochastic SIR
model to synthetic data. Chapter 5 will establish the full forecasting frameworks used
with IF2 and HMC, and compare them in a simple scenario. All three methods will
be used to compare forecasts using a SIRS model in Chapter 6. Chapter 7 will show
forecasts using the aforementioned IF2 and HMC frameworks, along with Dewdrop
Regression combined with S-mapping. Finally, a summary of these results, and a
discussion of parallel computing and future directions will finish the thesis in Chapter
8.

© 00 N O Ut ks W

10

11

12

13

17

Chapter 2

Hamiltonian MCMC

Markov Chain Monte Carlo (MCMC) is a general class of methods designed to sample
from the posterior distribution of model parameters [2]. It is an algorithm used when
we wish to fit a model M that depends on some parameter (or more typically vector
of parameters) 6 to observed data D. MCMC works by constructing a Markov chain
whose stationary distribution converges to desired posterior distribution. The samples
drawn using MCMC are used to numerically approximate the stationary distribution,
and in turn the posterior [2].

2.1 Markov Chains

Figure |21 shows a finite state machine with 3 states S = {z1, z9, x3}.

The transition probabilities can be summarized as a matrix as

0 1 0
T=10 01 09]- (2.1)
06 04 0

The probability vector u(zV) for a state 2(!) can be evolved using 7' by evaluating
pw(x™M)T, then again by evaluating p(x(V)T?2, and so on. If we take the limit as the
number of transitions approaches infinity, we find

lim p(zM)T" = (27/122,50/122,45/122). (2.2)

t—o00

[\

w

10
11
12

13

14
15
16
17

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

0.6

Figure 2.1: A finite state machine. States are shown as graph nodes,
and the probability of transitioning from one particular state to an-
other is shown as a weighted graph edge. [?]

This indicates that no matter what we pick for the initial probability distribution
p(xM), the chain will always stabilize at the equilibrium distribution.

This property holds when the chain satisfies the following conditions

e [rreducible Any state A can be reached from any other state B with non-zero
probability

e Positive Recurrent The number of steps required for the chain to reach state A
from state B must be finite

e Aperiodic The chain must be able to explore the parameter space without be-
coming trapped in a cycle

Note that MCMC sampling generates a Markov chain (8,0 .. 9V)) that does
indeed satisfy these conditions, and uses the chain’s equilibrium distribution to ap-
proximate the posterior distribution of the parameter space [2].

2.2 Likelihood

MCMC and similar methods hinge on the idea that the weight or support bestowed
upon a particular set of parameters # should be proportional to the probability of
observing the data D given the model output using that set of parameters M (6). In
order to do this we need a way to evaluate whether or not M (#) is a good fit for D;

N o ot s W

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

this is done by specifying a likelihood function £(6) such that

£(0) « P(DI6). (2.3)

In frequentist Maximum Likelihood approaches, £(0) is searched to find a value of 0
that maximizes £(#), then this € is taken to be the most likely true value. Bayesian
approaches take this further by aiming to generate a posterior distribution of likelihood
values conditioned on prior information about the parameters and the data — to not
just maximize the likelihood but to also explore the area around it [2].

2.3 Prior distribution

Another significant component of MCMC is the user-specified prior distribution for
6 or distributions for the individual components of 6 (priors). Priors serve as a way
for us to tell the MCMC algorithm what we think consist of good values for the
parameters. Note that if very little is known about the parameters, or we are worried
about biasing our estimate of the posterior, we can simply use a a wide uniform
distribution. We cannot, however, avoid this problem entirely. Bayesian frameworks,
such as MCMC, require priors to be specified; what the user must decide is how strong
to make priors.

Exceedingly weak priors can prove problematic in some circumstances. In the case of
MCMC, weak priors handicap the algorithm in two ways: convergence of the chain
may become exceedingly slow, and more pressure is put on the likelihood function to
be as good as possible — it will now be the only thing informing the algorithm of what
constitutes a “good” set of parameters, and what should be considered poor. In the
majority of cases this does not pose as much as a problem as it would appear; if enough
samples are drawn, we should still obtain a good posterior estimate. We will only
really run into problems if an exceedingly weak prior, such as an unbounded uniform
distribution, or another unbounded distribution with a high standard deviation, is
specified — in those cases we may obtain poor posterior estimates if the data are weak

.

2.4 Proposal distribution

As part of the MCMC algorithm, when we find a state in the parameter space that
is accepted as part of the Markov chain construction process, we need a good way
of generating a good next step to try. Unlike basic rejection sampling in which we
would just randomly sample from our prior distribution, MCMC attempts to optimise

10
11

12

13

14

15

16

17

18

19
20

21
22

23

24

25
26
27

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

our choices by choosing a step that is close enough to the last accepted step so as to
stand a decent chance of also being accepted, but far enough away that it doesn’t get
“trapped” in a particular region of the parameter space.

This is done through the use of a proposal or candidate distribution. This will usually
be a distribution centred around our last accepted step and with a dispersion potential
narrower than that of our prior distribution.

The choice of this distribution is theoretically not of the utmost importance, but in
practice becomes important so as to not waste computer time [2].

2.5 Algorithm

Now that we have all the pieces necessary, we can discuss the details of the MCMC
algorithm.

We will denote the previously discussed quantities as
e p(-) - the prior distribution
e ¢(+]) - the proposal distribution
e L(-) - the Likelihood function
e U(-,+) - the uniform distribution

and the define the acceptance ratio, r, as

L(0")p(07)q(6"]0)
L(0)p(0)q(0]07)

where 6* is the proposed sample to draw from the posterior, and @ is the last accepted
sample. This is known as the Metropolis-Hastings rule.

r= (2.4)

In the special case of the Metropolis variation of MCMC, the proposal distribution is
symmetric, meaning ¢(6*|0) = ¢(0|6*), and so the acceptance ratio simplifies to

_ L(6)p(67)
r= —E(H)p(é)) (2.5)

Algorithm [I] shows the Metropolis MCMC algorithm.

In this way we are ensuring that steps that lead to better likelihood outcomes are
likely to be accepted, but steps that do not will not be accepted as frequently. Note
that these less “advantageous” moves will still occur but that this is by design — it

o N O Ot

10
11

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Algorithm 1: Metropolis MCMC

/* Select a starting point */
Input : Initialize 81

1 fori=2:N do

/* Sample */
2 | 0"~ q(]007Y)

3 | u~U(0,1)

/* Evaluate acceptance ratio */

£(67)p(6")
A OTIC)

/* Step acceptance criterion */
if w <min{l,r} then

|00 =0~
else

L) — gi—1)

® N o w;

/* Samples from approximated posterior distribution */

Output: Chain of samples (61,03 ... o(V)

ensures that as much of the parameter space as possible will be explored but more
efficiently than using pure brute force [2].

2.6 Burn-in

One critical aspect of MCMC-based algorithms has yet to be discussed. The algorithm
requires an initial starting point 6 to be selected, but as the proposal distribution
is supposed to restrict moves to an area close to the last accepted state, then the
posterior distribution will be biased towards this starting point. This issue is avoided
through the use of a Burn-in period.

Burning in a chain is the act of running the MCMC algorithm normally without saving
first M samples. As we are seeking a chain of length N, the total computation will
be equivalent to generating a chain of length M + N [2].

N O Ot s W N

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26

27
28
29
30
31

32

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

2.7 Thinning

Some models will require very long chains to get a good approximation of the posterior,
which will consequently require a non-trivial amount of computer storage. One way
to reduce the burden of storing so many samples is by thinning. This involves saving
only every n'! step, which should still give a decent approximate of the posterior (since
the chain has time to explore a large portion of the parameter space), but requires
less room to store [27].

2.8 Hamiltonian Monte Carlo

The Metropolis-Hastings algorithm has a primary drawback in that the parameter
space may not be explored efficiently in some circumstances — a consequence of the
rudimentary proposal mechanism. Instead, smarter moves can be proposed through
the use of Hamiltonian dynamics, leading to a better exploration of the target distri-
bution and a potential decrease in overall computational complexity. This algorithm
is coined Hamiltonian MCMC (HMC) [29]. Prior to the advent of HMC, some work
was conducted exploring adaptive step-sizing using MCMC-based methods, but found
they lack strong theoretical justification, and can lead to some samples being drawn
from an incorrect distribution [29]. HMC has in fact existed for nearly the same
amount of time as MCMC — both methods having been developed to model molecu-
lar dynamics, with MCMC taking a probabilistic approach and HMC taking a more
deterministic one — but had not received much attention outside its native discipline
until recently.

In the HMC formulation, the parameter estimates are treated as a physical particle
exploring a sloped likelihood surface. From physics, we will borrow the ideas of
potential and kinetic energy. Here potential energy, or gravity, is analogous to the
negative log likelihood of the parameter selection given the data, formally

U(0) = —log(L(0)p(0)). (2.6)

Kinetic energy will serve as a way to “nudge” the parameters along a different moment
for each component of §. We introduce n auxiliary variables r = (ry, rq, ..., r,), where
n is the number of components in . Note that the samples drawn for r are not of
interest, they are only used to inform the evolution of the Hamiltonian dynamics of
the system. We can now define the kinetic energy as

1
K(r)= §T’TM_17‘, (2.7)

10

10
11
12
13
14
15
16

17
18
19

20

21
22
23
24

25

26
27
28

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

where M is an n xn matrix. In practice M can simply be chosen as the identity matrix
of size n, however it can also be used to account for correlation between components

of 4.
The Hamiltonian of the system is defined as
HO,r)=U(#)+ K(r), (2.8)

where the Hamiltonian dynamics of the combined system can be simulated using the
following system of ODEs:

@ _ M=ty

glit (2.9)
-

— =-— 0).

7 VU ()

It is tempting to try to integrate this system using the standard Euler evolution
scheme, but in practice this leads to instability as it will not preserve the volume of
the system. Instead the “Leapfrog” scheme is used. This scheme is very similar to
Euler scheme, except instead of using a fixed step size h for all evolutions, a step size
of € is used for most evolutions, with a half step size of €/2 for evolutions of % at
the first step, and last step L. In this way the evolution steps “leapfrog” over each
other while using future values from the other set of steps, leading to the scheme’s

name.

The end product of the Leapfrog steps are the new proposed parameters (6*,7%).
These are either accepted or rejected using a mechanism similar to that of standard
Metropolis-Hastings MCMC. Now, however, the acceptance ratio r is defined as

r=exp|H(0,r)— H(O")], (2.10)

where (0, r) are the last values in the chain. This form of the acceptance ratio comes
from the definition of the Hamiltonian as an energy function. If we define the distribu-
tion of the total potential energy in the system (known as the canonical distribution)
as a function of the Hamiltonian as

PO,r) = %exp(—H(Q,r)) (2.11)

where Z is a normalizing constant, then taking the ratio of the total potential energy
of the proposed step P(6*,r*) to the total potential energy in the last accepted step
P(0,r), we obtain Equation (E710).

11

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

Algorithm 2: Hamiltonian MCMC

/* Select a starting point */
Input : Initialize 80V
1 fori=2:N do
/* Resample moments */
2 fori=1:ndo
3 | (i) « N(0,1)
/* Leapfrog initialization */
4 90 < H(i_l)
5 ro < 1 —VU(0) - €/2
/* Leapfrog intermediate steps */
6 for j=1:L—1do
7 6’j — Qj—l + M_lT’j_l <€
8 rj 11— VU(;)) - €
/* Leapfrog last steps */
9 0% < 011 + M_ITL,1 €
10 7’*<—VU(9L>'€/2—7’L,1
/* Evaluate acceptance ratio */
11 r = exp [H(H("_l), r) — H(6%, 7"*)}
/* Sample */
12 | u~U(,1)
/* Step acceptance criterion */
13 if uw <min{l,r} then
14 ‘ 60 = g+
15 else
16 L 9(7') — 9(7:_1)
/* Samples from approximated posterior distribution */

Output: Chain of samples (61,03 ... o0V))

12

DOt W N

10

11
12
13

14
15
16

17
18
19
20
21

22
23

24

25
26
27
28

29
30
31
32
33
34

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Together, we have Algorithm [2].

Note that the parameters ¢ and L have to be tuned in order to maintain stability
and maximize efficiency, a sometimes non-trivial process utilising trial fitting with
candidate values of ¢ and L [29]. However, some recent algorithms, such as the
No U-Turn sampler implemented in RStan, and adaptively select appropriate values
automatically during the sampling process [20].

2.9 RStan Fitting

Here we will examine a test case in which Hamiltonian MCMC will be used to
fit a Susceptible-Infected-Removed (SIR) epidemic model to mock infectious count
data.

The synthetic data was produced by taking the solution to a basic SIR ODE model,
sampling it at regular intervals, and perturbing those values by adding in observation
noise. The SIR model used was outlined in the introduction in Equation [I).

The solution to this system was obtained using the ode() function from the deSolve
package. The required derivative array function in the format required by ode() was
specified as the gradient in Equation [I).

The true parameter values were set to Ryo = 3.0, v = 0.1 recoveries/week, N = 500
individuals. The initial conditions were set to 5 infectious individuals, 495 people sus-
ceptible to infection, and no one had yet recovered from infection and been removed.
The system was integrated over [0,100] weeks with infected counts drawn at each
integer time step.

The observation error was taken to be e,s ~ N(0,0), where individual values were
drawn for each synthetic data point.

Figure [Z2] shows the system simulation results.

The Hamiltonian MCMC model fitting was done using Stan (http://mc-stan.org/),
a program written in C++ that does Baysian statistical inference using Hamiltonian
MCMC. Stan’s R interface (http://mc-stan.org/interftaces/rstan.html) was used
to ease implementation.

Throughout this paper, the explicit Euler integration scheme was used to obtain so-
lutions to our ODE-based models. While this scheme is not the most accurate or
efficient one available, it as chosen for its ease of implementation in the required lan-
guages and transparency with regards to stochastic processes, which have been added
into later models. Using a more advanced integrator such as Runge-Kutta makes it
harder to properly specify how stochastic process evolution should be handled, and

13

http://mc-stan.org/
http://mc-stan.org/interfaces/rstan.html

10

11
12
13

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

150 -

100 -

Infection Count

50 -

0 25 50 75 100
Time (weeks)

Figure 2.2: True SIR ODE solution infected counts, and with added observation noise.

would have required significantly more implementation work to boot. Hence, we have
opted for the lo-fi solution we know will function the way we require.

In order to use an Explicit Euler-like stepping method, with a step size of one per day,
in the later Stan model, the synthetic observation counts were treated as weekly obser-
vations in which the counts on the other six days of the week were unobserved.

Figure [Z23] shows the traceplot for the the post-burn-in chain data returned by the
RStan fitting. We see that the chains are mixing well and convergence has likely been
reached.

Figure [Z4] shows the chain data including the burn-in samples. We can see why it
is wise to discard these samples (note the scale).

Figure [PH] shows the the kernel density estimates for each of the model parameters
and the initial number of cases. We see that while the estimates are not perfect, they
are more than satisfactory.

14

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

W

0 100 200 300 400 500
Sample

Figure 2.3: Traceplot of samples drawn for parameter R, excluding
burn-in.

15

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

10.0 -
7.5-
Chain
1
o 5.0- 2
—3
— 4
2.5-
0.0-
0 250 500 750 1000
Sample

Figure 2.4: Traceplot of samples drawn for parameter Ry, including
burn-in.

16

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

254 . 150 - T
| |
2.0 | I
| 100 1 '
3154 | oy |
c C
) [} |
g_ >
g 1.0- g I
0.5+ | |
|
O.O- ! T T T O- T T !
3.0 33 3.6 3.9 0.085 0.090 0.095 0.100
Ro r
0.5 1 I T
|
I 0.4-
0.4 I |
| 03 |
>4 2777
g 0.3 1 %
5 | Z02- i
g 0.2- I o I
- 1
0.1- A 0.11 |
[|
0.0+ | 001 I T T T
9 10 11 12 13 14 6 8 10
o Initial Infected

Figure 2.5: Kernel density estimates produced by Stan. Dashed lines
show true parameter values.

17

V]

D Ut s W

N

10
11
12
13
14

15

16
17
18
19
20
21

22
23

24

Chapter 3

Iterated Filtering

Particle filters are similar to MCMC-based methods in that they use likelihoods to
evaluate the validity of proposed parameter sets given observed data D, but differ in
that they are largely trying to produce point estimates of the parameters instead of
samples from the posterior distribution.

Instead of constructing a Markov chain and approximating its stationary distribution,
a cohort of “particles” are used to move through the data in an on-line (sequential)
fashion with the cohort being culled of poorly-performing particles at each iteration
via importance sampling. If the culled particles are not replenished, this will be
a Sequential Importance Sampling (SIS) particle filter. If the culled particles are
replenished from surviving particles, in a sense setting up a process analogous to
Darwinian selection, then this will be a Sequential Importance Resampling (SIR)
particle filter [3].

3.1 Formulation

Particle filters, also called Sequential Monte-Carlo (SMC) filters, feature similar core
functionality as the venerable Kalman Filter. As the algorithm moves through the
data (sequence of observations), a prediction-update cycle is used to simulate the
evolution of the model M with different particular parameter selections, track how
closely these predictions approximate the new observed value, and update the current
cohort appropriately [3].

Two separate functions are used to simulate the evolution and observation processes.
The “true” state evolution is specified by

XtJrl ~ fl(Xt7 9), (31)

18

B~ W

© 0 N o w

11
12

13

14

15
16
17

18
19

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

And the observation process by

Y; ~ fo(X5, 0). (3.2)

Components of # can contribute to both functions, but a typical formulation is to
have some components contribute to fi(+,0) and others to fa(-,0).

The prediction part of the cycle uses fi(+,0) to update each particle’s current state
estimate to the next time step, while f5(-,0) is used to evaluate a weighting w for
each particle which will be used to determine how closely that particle is estimating
the true underlying state of the system. Note that fy(-,6) could be thought of as a
probability of observing a piece of data y; given the particle’s current state estimate
and parameter set, P(y;|X;,0). Then, the new cohort of particles is drawn from
the old cohort proportional to the weights. This process is repeated until the set of
observations D is exhausted.

3.2 Algorithm

Now we will formalize the particle filter.

We will denote each particle pY) as the j% particle consisting of a state estimate at
time ¢, X7, a parameter set #U), and a weight w?). Note that the state estimates
will evolve with the system as the cohort traverses the data.

The algorithm for a Sequential Importance Resampling particle is shown in Algorithm
3.

19

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Algorithm 3: SIR particle filter

/* Select a starting point */

Input : Observations D = yq, ys, ..., yr, initial particle distribution F, of size
J

/* Setup */

1 Initialize particle cohort by sampling (p™™, p®, ..., pi/)) from P,

2 fort=1:T do

/* Evolve */
3 for j = 1:J do

s | X e a0

/* Weight */
5 for j = 1:J do

s | [w0« PulX?.09) = p(x769)

/* Normalize */
7 for j = 1:J do

/* Resample */
9 pt) «— sample(pt*/), prob = w, replace = true)
/* Samples from approximated posterior distribution */

Output: Cohort of posterior samples (A1), 62 ... /)

20

Ut s W N

N

10

11
12
13
14

15
16
17

18
19
20

21

22
23

24

25
26
27
28
29
30
31

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

3.3 Particle Collapse

Often, a situation may arise in which a single particle is assigned a normalized weight
very close to 1 and all the other particles are assigned weights very close to 0. When
this occurs, the next generation of the cohort will overwhelmingly consist of de-
scendants of the heavily-weighted particle, termed particle collapse or degeneracy

[6][3].
Since the basic SIR particle filter does not perturb either the particle system states
or system parameter values, the cohort will quickly consist solely of identical par-

ticles, effectively halting further exploration of the parameter space as new data is
introduced.

A similar situation occurs when a small number of particles (but not necessarily a
single particle) split almost all of the normalized weight between them, then jointly
dominate the resampling process for the remainder of the iterations. This again halts
the exploration of the parameter space with new data.

In either case, the hallmark feature used to detect collapse is the same — at some point
the cohort will consist of particles with very similar or identical parameter sets which
will consequently result in their assigned weights being extremely close together.

Mathematically, we are interested in the number of effective particles, Ng, which
represents the number of particles that are acceptably dissimilar. This is estimated
by evaluating

1
Ng=— (3.3)

21 (wW)?

This can be used to diagnose not only when collapse has occurred, but can also
indicate when it is near [3].

3.4 Iterated Filtering and Data Cloning

A particle filter hinges on the idea that as it progresses through the data set D,
its estimate of the posterior carried in the cohort of particles approaches maximum
likelihood. However, this convergence may not be fast enough so that the estimate
it produces is of quality before the data runs out. One way around this problem is
to “clone” the data and make multiple passes through it as if it were a continuation
of the original time series. Note that the system state contained in each particle will
have to be reset with each pass.

21

=W N =

© o N O

11
12

13
14
15
16
17
18
19
20

21
22
23
24
25
26

27
28

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Rigorous proofs have been developed [22][23] that show that by treating the param-
eters as stochastic processes instead of fixed values, the multiple passes through the
data will indeed force convergence of the process mean toward maximum likelihood,
and the process variance toward 0.

3.5 Iterated Filtering 2 (IF2)

The successor to Iterated Filtering 1 [22], Iterated Filtering 2 [23] is simpler, faster,
and demonstrated better convergence toward maximum likelihood. The core concept
involves a two-pronged approach. First, a data cloning-like procedure is used to
allow more time for the parameter stochastic process means to converge to maximum
likelihood, and frequent cooled perturbation of the particle parameters allow better
exploration of the parameter space while still allowing convergence to good point
estimates.

IF2 is not designed to estimate the full posterior distribution, instead to produce
a Maximum Likelihood (ML) point estimate. Further, IF2 thwarts the problem of
particle collapse by keeping at least some perturbation in the system at all times. It
is important to note that while true particle collapse will not occur, there is still risk
of a pseudo-collapse in which all particles will be extremely close to one another so as
to be virtually indistinguishable. However this will only occur with the use of overly-
aggressive cooling strategies or by specifying an excessive number of passes through
the data.

An important new quantity is the particle perturbation density denoted h(6|, o). Typ-
ically this is multivariate Normal with o being a vector of variances proportional to
the expected values of #. In practice the proportionality can be derived from current
means or specified ahead of time. Further, these intensities must decrease over time.
This can be done via exponential or geometric cooling, a decreasing step function, a
combination of these, or through some other similar scheme.

The algorithm for IF2 can be seen in Algorithm [H].

22

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Algorithm 4: TF2

/* Select a starting point */
Input : Observations D = yy, 4o, ..., yr, initial particle distribution F, of size
J, decreasing sequence of perturbation intensity vectors oy, o9, ..., o

/* Setup */
1 Initialize particle cohort by sampling (p™,p®, ..., p’)) from P,

/* Particle seeding distribution */
2 O« PO
3 form=1:M do
/* Pass perturbation */
4 for j = 1:J do
L p) ~ h(OY) g,,)
6 fort=1:T do
7 for j = 1:J do
/* Iteration perturbation */
N P9~ h(pD, 1)
/* Evolve */
: XO (X8, 09
/* Weight */
10 | w0 = Pyl X 09) = (X7, 09)
/* Normalize x/
11 for j = 1:J do
/* Resample */
13 i p1) < sample(p™)), prob = w, replace = true)
/* Collect particles for next pass */
14 for j=1:Jdo

/* Samples from approximated posterior distribution */

Output: Cohort of posterior samples (61,62 . (1))

23

w

© 00 N O Ut

10
11

12
13

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

3.6 IF2 Fitting

Here we will examine a test case in which IF2 will be used to fit a Susceptible-Infected-
Removed (SIR) epidemic model to mock infectious count data.

As in the previous section, the model in Equation [was use to produce synthetic
data. The same parameters and initial conditions were used, namely: parameter
values were set to Ry = 3.0,y = 0.1, N = 500, initial conditions were set to 5 infectious
individuals, 495 people susceptible to infection, and no one had yet recovered from
infection and been removed, and observation error was taken to be e,s ~ N(0,0),
where individual values were drawn for each synthetic data point.

Figure [Z7] in the previous section shows the true SIR ODE system solution and
data.

The IF2 algorithm was implemented in C++ for speed, and integrated into the R
workflow using the Repp package.

There are three primary reasons we implemented our own version of IF2 instead of
using POMP. First, POMP does not provide final particle state distributions, making
it difficult to calibrate the algorithm parameters against the parameters used in RStan
(this procedure is described in the next chapter). Second, it is prudent to cross-check
the validity of an algorithm using another implementation. Third, this code can then
serve as a jumping-off point for further development using Graphics Processing Unit
acceleration (outlined in Chapter 8). We must acknowledge the disadvantages as well:
POMP has been extensively vetted with real-world usage, and using it would require
far less work as we would only need to specify the model. That being said, we believe
the advantages outweigh the disadvantages in this case, and so have proceeded to
develop our own implementation of IF2.

Figure [B] shows the final kernel estimates for four of the key parameters. As with
HMC, the distributions are not perfect, but are promising. Unlike with HMC, these
distributions are not meant to consist of samples from the true posterior distribution,
but rather serve a diagnostic role.

24

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

frequency

frequency

H T
| 20- 1
[
0.4 I
. 15-
| - [
(&}
[< I
(0]
| g. 10- I
(0]
0.2 1 = l
| 54 [
I I
| 1
0.04 l , 0- l
6 0.03 0.06 0.09 0.12 0.15
Ro r
] T
0.3
I |
I 0.3 I
| |
(&) i
I g 0.2 I
=}
| o |
o
I Y—
0.1+ J
I 0.1 I
I |
| |
0.0 I 0.0 |
510 715 QI 12'.5 0.0 25 N 5.0 7.5 10.C
o Initial Infected

Figure 3.1: Kernel estimates for four essential system parameters.
True values are indicated by dashed lines.

25

O N O Ut

10
11

12

13
14
15
16
17

18
19

20

21
22

Chapter 4

Parameter Fitting

4.1 Fitting Setup

Now that we have established which methods we wish to evaluate the efficacy of for
epidemic forecasting, it is prudent to see how they perform when fitting parameters
for a known epidemic model. We have already seen how they perform when fitting
parameters for a model with a deterministic evolution process and observation noise,
but a more realistic model will have both process and observation noise.

To form such a model, we will take a deterministic SIR ODE model specified in
Equation [and add process noise by allowing g to follow a geometric random walk
given by

Ber1 = exp (log(B:) + n(log(B) — log(B)) + €) - (4.1)

We will take ¢; to be normally distributed with standard deviation p? such that
e ~ N (0, p?). The geometric attraction term constrains the random walk, the force
of which is n € [0,1]. If we take n = 0 then the walk will be unconstrained; if we
let 7 = 1 then all values of 3, will be independent from the previous value (and
consequently all other values in the sequence).

When 7 € (0, 1), we have an autoregressive process of order 1 on the logarithmic scale
of the form

Xt+1 = C ‘I— ;OXt + €¢, (42)

where ¢; is normally distributed noise with mean 0 and standard deviation og. This
process has a theoretical expected mean of u = ¢/(1—p) and variance o = 0% /(1—p?).

26

© o N o

10
11

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

0.0020-
0.0015-
@ 0.0010-
0.0005 - ﬁl
0.0000-
0 100 200 300 400
Time

Figure 4.1: Simulated geometric autoregressive process shown in
Equation [EI).

If we choose 1 = 0.5, the resulting log-normal distribution has a mean of 6.80 x 10~*
and standard deviation of 4.46 x 1074,

Figure [E0] shows the result of simulating the process in Equation [BT] with n =
0.5.

Figure [E2] shows the density plot corresponding to the values in Figure [E).

We see a density plot similar in shape to the desired density, and the geometric random
walk displays dependence on previous values. Further the mean of this distribution
was calculated to be 6.92 x 10~* and standard the deviation to be 3.99 x 10~%, which
are very close to the theoretical values.

If we take the full stochastic SIR system and evolve it using an Euler stepping scheme
with a step size of h = 1/7, for 1 step per day, we obtain the plot in Figure [E=3].

27

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

1250 -

1000 -

frequency
-~
a
o
]

al

o

o
1

250 -

0.0000 0.0005 0.0010 0.0015 0.0020

B

Figure 4.2: Density plot of values shown if Figure[Z)|.

200

1501

100+

Infection count

504

0 20 40 60
Time

Figure 4.3: Stochastic SIR model simulated using an explicit Eu-
ler stepping scheme. The solid line is a single random trajectory,
the dots show the data points obtained by adding in observation er-
ror defined as €pys = N(0,10), and the grey ribbon is centre 95th
quantile from 100 random trajectories.

28

© 0 N O Ut s W N

_ = =
w N = O

14
15
16
17
18

19
20

21

22

23
24

25

26
27
28
29
30

31

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

4.2 Calibrating Samples

In order to compare HMC and IF2 we need to set up a fair and theoretically justified
way to select the number of samples to draw for the HMC iterations and the number
of particles to use for IF2. As we wish to compare, among other things, approximate
computational cost using runtimes, we need to determine how many sample draws for
each method are required to obtain a certain accuracy. Sample draws are typically
not comparable in terms of quality when considering multiple methods. For example,
vanilla MCMC draws are computationally cheap compared to those from HMC, but
HMC produces draws that more efficiently cover the sampling space. Thus we cannot
just set the number of HMC draws equal to the number of particles used in IF2 — we
must calibrate both quantities based on a desired target error. We assume that we

are working with a problem that has an unknown real solution, so we use the Monte
Carlo Standard Error (MCSE) [I7].

Suppose we are using a Monte-Carlo based method to obtain a mean estimate /i, for
a quantity p, where n is the number of samples. Then the Law of Large Numbers
says that ji, — p as n — oco. Further, the Central Limit Theorem says that the error
fi, — g should shrink with number of samples such that /n(j, — u) — N(0,0?) as
n — 0o, where o2 is the variance of the samples drawn.

We of course do not know p, but the above allows us to obtain an estimate &, for o
given a number of samples n as

o =\ = (X —), (43)

=1

which is known as the Monte Carlo Standard Error.

We can modify this formula to account for multiple, potentially correlated, variables
by replacing the single variance measure sum by

oV (e’ (4.4)

where ©* is a row vector containing the reciprocals of the means of the parameters of
interest, and V' is the variance-covariance matrix with respect to the same parameters.
This in effect scales the variances with respect to their magnitudes and accounts for
covariation between parameters in one fell swoop. We also divide by the number of
parameters, yielding

11
~ - * *\T'
G, = \/n—P@ V(%) (4.5)

29

N O Ot s W N

oo

10

11

12
13
14
15
16

17
18
19
20
21
22

23
24
25

26
27
28

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

where P is the number of particles.

The goal here is to then pick the number of HMC samples and IF2 particles to
yield similar MCSE values. To do this we picked a combination of parameters for
RStan that yielded decent results when applied to the stochastic SIR model specified
above, calculated the resulting mean MCSE across several model fits, and isolated the
expected number of [F2 particles needed to obtain the same value. This was used as
a starting value to “titrate” the IF2 iterations to the same point.

The resulting values were 1000 HMC warm-up iterations with 1000 samples drawn
post-warm-up, and 2500 IF2 particles sent through 50 passes, each method giving an
approximate MCSE of 0.0065.

4.3 1IF2 Fitting

Now we will use an implementation of the IF2 algorithm to attempt to fit the stochas-
tic SIR model to the previous data. The goal here is just parameter inference, but
since IF2 works by applying a series of particle filters we essentially get the average
system state estimates for a very small additional computational cost. Hence, we will
will also look at that estimated behaviour in addition the parameter estimates.

The code used here is a mix of R and C++ implemented using Rcpp. The fitting
was undertaken using 2500 particles with 50 IF2 passes and a cooling schedule given
by a reduction in particle spread determined by 0.975P, where p is the pass number
starting with 0. This geometric cooling scheme is standard for use with IF2 [24][26],
with the cooling rate chosen to neatly scale the perturbation factor from 1 to 0.02
(almost 0) over 50 passes.

The MLE parameter estimates, taken to be the mean of the particle swarm values
after the final pass, are shown in the table in Figure [E4)|, along with the true values
and the relative error.

From last [F2 particle filtering iteration, the mean state values from the particle
swarm at each time step are shown with the true underlying state and data in the
plot in Figure [A3].

30

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

IF2 HMC
Name True Fit Error Fit Error

Ro 3.0 3.27 9.08 x 1072 3.12 1.05 x 107 ¢

v 1071 1.04x107! 3.61x107%2 9.99x 1072 —7.56 x 1074
Initial Infected 5 7.90 5.80 x 101 6.64 3.28 x 1071
o 10 8.84 —1.15 x 1071 8.5 —1.50 x 1071

n 5x 1071 587 x 1071 1.73x 107! 457 x 1071 —-8.27 x 1072

Eerr 5x 1071 163 x1071 —6.73x 1071 1.60x 10! —6.80x 10!

Figure 4.4: Fitting errors.

150+

100+

Infection counts

a1
o
1

Time

Figure 4.5: True system trajectory (solid line), observed data (dots),
and TF2 estimated real state (dashed line).

31

0 N O Ot s W N

10

11
12
13

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

4.4 1F2 Convergence

Since IF2 is an iterative algorithm where each pass through he data is expected to
push the parameter estimates towards the MLE, we can see the evolution of these es-
timates as a function of the pass number. We expect near-convergence in the param-
eter estimates as IF2 nears the maximum number of passes specified. Unconvincing
convergence plots may signal suboptimal algorithm parameters. If sensible algorithm
parameters have been chosen, we should see the convergence plots display “flattening”
over time.

Figure [E8] shows evolution of the mean estimates for the six most critical parame-
ters.

Figure [E71] shows the evolution of the standard deviations of the parameter estimates
from the particle swarm as a function of the pass number. We should expect to see
asymptotic convergence to zero if the filter is converging.

32

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

0.111 10.0

3751 0.108 -

3.50-
g . i - 0.105- o

3.25-

0.102-
3.00
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Initial Infected
8proc

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 4.6: The horizontal axis shows the IF2 pass number. The
solid black lines show the evolution of the ML estimates, the solid
grey lines show the true value, and the dashed grey lines show the
mean parameter estimates from the particle swarm after the final

pass.
3- 61
9e-04 5-
2_
o« “ 6e-04- o 47
1- 37
3e-04
2_
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
g 0.100
20 0.06
©
2 0.075 -
317 0.04- .
c 10 - £ 0.050 -
j— A w
2 : 0.025-
T T T T T T T T T T T T 0000-| T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 4.7: The horizontal axis shows the IF2 pass number and the
solid black lines show the evolution of the standard deviations of the
particle swarm values.

33

10
11

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

4.5 IF2 Densities

Of diagnostic importance are the densities of the parameter estimates given by the
final parameter swarm. If the swarm has collapsed, these densities will be extremely
narrow, almost resembling a vertical line. A “healthy” swarm should display relatively
smooth kernels of reasonable breadth.

Figure [A=8] shows the parameter sample distributions from the final parameter swarm.

The IF2 parameters chosen were in part chosen so as to not artificially narrow these
densities; a more aggressive cooling schedule and/or an increased number of passes
would have resulted in much narrower densities, and indeed have the potential to
collapse them to point estimates. This is undesirable as it may indicate instability —
the particles may have become “trapped” in a region of the sampling space.

34

10
11
12
13

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

064 / 30- 0.3+ \
> ! ! i
o ! |
c 4 1 204 0.2- 1
3 0.4 ! : :
o ! I '
Lo.2-4 : 10 : 0.1 |
1
1 I .
1
0.0+ ! ! ' 0+ T : T T 0.0+ T T : J
2 3 4 0.075 0.100 0.125 0.15! 6 8 10 12
Ro r o
1 4+ 1 44 1
1 1
20.2- ! 3 | 31 :
c 1 | 1
S ! 2- \ 2- !
g 0.1+ . . }
= 1 1- 1 14 :
1 1
1
0.0 T T : T 04 r_/ T :I T T 0- T T T T
3 6 9 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 05
Initial Infected n Eproc

Figure 4.8: The solid grey lines show the true parameter values and
the dashed grey lines show the density medians.

4.6 HMC Fitting

We can use the Hamiltonian Monte Carlo algorithm implemented in the RStan pack-
age to fit the stochastic SIR model as above. This was done with a single HMC chain
of 2000 iterations with 1000 of those being warm-up iterations.

The MLE parameter estimates, taken to be the means of the samples in the chain, were
shown in the table in Figure [A4] along with the true values and relative error.

4.7 HMC Densities

Figure [E9] shows the parameter estimation densities from the Stan HMC fitting.

The densities shown here represent a “true” MLE density estimate in that they rep-
resent HMC’s attempt to directly sample from the parameter space according to the
likelihood surface, unlike IF2 which is in theory only trying to get a ML point esti-
mate. Hence, these densities are potentially more robust than those produced by the
IF2 implementation.

35

Ut s W N

N

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

0.5 '
J
1
1 - o
>24 ! 150 0.4 :
c 1
0.31 1
g ! 100 - X
g1 i 0.2 !
= 1 50 - 1
| 0.1+ ! K;
1
0-|—/\/ —, 0 - 0.0 :
25 30 35 40 0.0960.0990.1020.105) 10 12
RO r g
1.25 :
0.37 1.00 !
1 : 1 6 I
g ! 0.75 ' |
g 021 : ' : 4 :
g | osolf |
= 0.1+ 4
- : 0.25 : 2 :
1
0.0+ —— 0.00- b——r— ol
50 7.5 10.0 125 0.00 0.25 0.50 0.75 1.0(0.1 02 03 04 05
Initial Infected n Eproc

Figure 4.9: As before, the solid grey lines show the true parameter
values and the dashed grey lines show the density medians.

4.8 HMC and Bootstrapping

Unlike in some models, our RStan epidemic model does not keep track of state esti-
mates directly, but does keep track of the autoregressive process latent variable draws,
which allow us to reconstruct states. This was done to ease implementation as RStan
places some restrictions on how interactions between parameters and states can be
specified.

Figure [E10] shows the results of 100 bootstrap trajectories generated from the RStan
HMC samples.

36

10
11
12
13
14
15

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

150+

100+

Infection count

501

0 20 40 60
Time

Figure 4.10: Result from 100 HMC bootstrap trajectories. The solid
line shows the true states, the dots show the data, the dotted line
shows the average system behaviour, the dashed line shows the boot-
strap mean, and the grey ribbon shows the centre 95th quantile of
the bootstrap trajectories.

4.9 Multi-trajectory Parameter Estimation

Here we fit the stochastic SIR model to 200 random independent trajectories using
each method and examine the density of the point estimates produced.

Figure [E—T) shows the results of the mean parameter fits from IF2 and HMC for 200
independent data sets generates using the previously described model.

The densities by and large display similar coverage, with the IF2 densities for r and
Eproc Showing slightly wider coverage than the HMC densities for the same parame-
ters.

Figure [ETJ] summarizes the running times for each algorithm.

The average running times were approximately 45.5 seconds and 257.4 seconds for 1F2
and HMC respectively, representing a 5.7x speedup for IF2 over HMC. While I[F2 may
be able to fit the model to data faster than HMC, we are obtaining less information;
this will become important in the next section. Further, the results in Figure [E12]
show that while the running time for IF2 is relatively fixed, the times for HMC are
anything but, showing a wide spread of potential times.

37

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

15
0.4+
150 1
AN
8101 03~
@ 100 A
=l d N 0.2
0.5
2 / \\ 501 /7 \ 014
0.0 T T T O_I/I Y Y 0.0
20 25 30 35 40 0.090.095.100.108.110 8 9 10 11 12
RO r o
2.5
0.15- 2.0 61
3
G 0.10- 15 a 41
= 1.0 /
& 0.05+ 05_/ 27
O.OO'I T T T 0'o-l T T T 0-(T _l\'
25 50 7.5 10.0125 02 04 06 08 0.25 050 0.75 1.0(

Initial Infected n €proc

Figure 4.11: IF2 point estimate densities are shown in black and
HMC point estimate densities are shown in grey. The vertical lines
show the true parameter values.

HMCMC ee s+ = . A .

IF2 4

0 1000 2000 3000
Time (seconds)

Figure 4.12: Fitting times for [F2 and HMC, in seconds. The centre
box in each plot shows the centre 50th percent, with the bold centre
line showing the median.

38

=

Chapter 5

Forecasting Frameworks

5.1 Data Setup

This section will focus on taking the stochastic SIR model from the previous section,
truncating the synthetic data output from realizations of that model, and seeing how
well IF2 and HMC can reconstruct out-of-sample forecasts.

Figure [b] shows an example of a simulated system with truncated data.

In essence, we want to be able to give either IF2 of HMC only the data points and
have it reconstruct the entirety of the true system states.

39

o N O Ut s W N

10

11
12

13
14
15
16

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

2501 .

200

=

a

o
1

100+

Infection count

504

0 20 40 60
Time

Figure 5.1: Infection count data truncated at 7' = 30. The solid
line shows the true underlying system states, and the dots show
those states with added observation noise. Parameters used were
Ro = 3.0, v = 0.1, n = .05, 0prec = 0.5, and additive observation
noise was drawn from N (0, 10).

5.2 IF2

For TF2, we will take advantage of the fact that the particle filter will produce state
estimates for every datum in the time series given to it, as well as producing ML
point estimates for the parameters. Both of these sources of information will be used
to produce forecasts by parametric bootstrapping using the final parameter estimates
from the particle swarm after the last IF2 pass, then using the newly generated
parameter sets along with the system state point estimates from the first fitting to
simulate the systems forward into the future.

We will truncate the data at half the original time series length (to 7' = 30), and fit
the model as previously described.

Figure 2 shows [62] the state estimates for each time point produced by the last IF2
pass.

Recall that IF2 is not trying to generate posterior probability densities, but rather
produce a point estimate. Since we wish to determine the approximate distribution of
each of the parameters in addition to the point estimate, we must add another layer
atop the IF2 machinery, parametric bootstrapping.

40

0 N O Ot s W N

10

11

12
13
14

15
16

17

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

2501 .

200

=

a

o
1

100+

Infection counts

504

0 20 40 60
Time

Figure 5.2: Infection count data truncated at T" = 30 from Figure
[61]. The dashed line shows IF2’s attempt to reconstruct the true
underlying state from the observed data points.

5.2.1 Parametric Bootstrapping

The goal of the parametric bootstrap is use an initial density sample 6* to generate
further samples 61, 05, ..., 8, from the sampling distribution of 6. It works by using 6 to
generate artificial data sets Dy, D, ..., Dy to which we can refit our model of interest
and generate new parameter sets. The literature suggests the most straightforward
way of doing this is to fit the model to obtain 6*, then use the model’s forward
simulator to generate new data sets, in essence treating our original estimate 6* as
the “truth” set [I4].

An algorithm for parametric bootstrapping using IF2 and our stochastic SIR model
is shown in Algorithm [B].

5.2.2 1IF2 Forecasts

Using the parameter sets 61, 6s, ..., 6, and the point estimate of the state provided by
the initial IF2 fit, we can use use forward simulations from the last estimated state
to produce estimates of the future state.

Figure [63| shows a projection of the data from the previous plots in Figures [b]
and [B2].

We can define a metric to gauge overall forecast effectiveness by calculating the sum

41

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Algorithm 5: Parametric Bootstrap

Input : Forward simulator S(), data set D

/* Initial fit %/
1 0« IF2(D)

/* Generate artificial data sets */
2 fori=1: M do

/* Fit to new data sets */
4 fori=1:M do
5 | 0« IF2(Dy)

Output: Distribution samples 01,0, ..., 0y

2504

200

=

al

o
1

100+

Infection count

504

0 20 40 60
Time

Figure 5.3: Forecast produced by the IF2 / parametric bootstrapping
framework. The dotted line shows the mean estimate of the forecasts,
the dark grey ribbon shows the 95% confidence interval based on the
0.025 and 0.975 quantiles on the true state estimates, and the lighter
grey ribbon shows the same confidence interval on the true state
estimates with added observation noise drawn from N(0, o).

42

=W N =

© o N O

11
12

13
14

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

of squared errors of prediction (SSE). For the data in Figure [63] the value was
approximately SSE = 50.1. Normally we would also want to address questions of
forecast coverage, but this would require at least a 100-fold increase in computational
cost. This is potentially an avenue of future investigation.

5.3 HMC

For HMC we can use a simpler approach to approach forecasting. We do not get state
estimates directly from the RStan fitting due to the way we implemented the model,
but we can construct them using the process noise latent variables as described in
Chapter 2. Once we’ve done this we can forward simulate the system from the state
estimate into the future.

Figure [64] shows the result of the HMC forecasting framework as applied to the data
from Figure [51).

And as before we can evaluate the SSE of the forecast for the data shown, giving
approximately SSE = 608.

43

[A V]

© 0 N O

10
11

12
13
14
15
16
17

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

250+

200 -

150+

100+

Infection count

504

0 20 40 60
Time

Figure 5.4: Forecast produced by the HMC / bootstrapping frame-
work with M = 200 trajectories. The dotted line shows the mean
estimate of the forecasts, and the grey ribbon shows the 95% con-

fidence interval on the estimated true states as described in Figure

5.4 Truncation vs. Error

Of course the above mini-comparison only shows one truncation value for one trajec-
tory. Really, we need to know how each method performs on average given different
trajectories and truncation amounts. In effect we wish to “starve” each method of data
and see how poor the estimates become with each successive data point loss.

Using each method, we can fit the stochastic SIR model to successively smaller time
series to see the effect of truncation on forecast averaged SSE. This was performed
with 10 new trajectories drawn for each of the desired lengths. The results are shown
in Figure [B3].

IF2 and HMC perform very closely, with IF2 maintaining a small advantage up to a
truncation of about 25-30 data points.

Since the parametric bootstrapping approach used by IF2 requires a significant num-
ber of additional fits, its computational cost is significantly higher than the simpler
bootstrapping approach used by the HMC framework, about 35.5x as expensive. How-
ever the now much longer running time can somewhat alleviated by parallelizing the
parametric bootstrapping process; as each of the parametric bootstrap fittings in en-
tirely independent, this can be done without a great deal of additional effort. The code

44

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

SSE (logyo)

/

/'

0 10 20
Truncation

30 40

Method
—IF2
HMCMC

Figure 5.5: Error growth as a function of data truncation amount.
Both methods used 200 bootstrap trajectories. Note that the y-axis
shows the natural log of the averaged SSE, not the total SSE.

1 used here has this capability, but it was not utilised in the comparison so as to accu-
2 rately represent total computational cost, rather than potential running time.

45

V]

© 0 N O Ut

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26

Chapter 6

S-map and SIRS

6.1 S-maps

A family of forecasting methods that shy away from the mechanistic model-based
approaches outlined in the previous sections have been developed by George Sugihara
and collaborators [38][39][21][15] over the last several decades. As these methods do
not include a mechanistic model in their forecasting process, they also do not attempt
to perform parameter estimation or inference. Instead they attempt to reconstruct
the underlying dynamical process as a weighted linear model from a time series.

One such method, the sequential locally weighted global linear maps (S-map), builds
a global linear map model and uses it to produce forecasts directly. Despite relying on
a linear mapping, the S-map does not assume the time series on which it is operating
is the product of linear system dynamics, and in fact was developed to accommodate
non-linear dynamics. The linear component of the method only comes into play when
combining forecast components together to produce a single estimate

The S-map works by first constructing a time series embedding of length E, known as
the library and denoted {x;}. Consider a time series of length T denoted 1, x, ..., T7.
Each element in the time series with indices in the range E, E + 1,...,T will have a
corresponding entry in the library such that a given element z; will correspond to a
library vector of the form x; = (x4, 4—1, ..., z4—p+1). Next, given a forecast length L
(representing L time steps into the future), each library vector x; is assigned a predic-
tion from the time series y; = x;, 1, where z; is the first entry in x;. Finally, a forecast
y; for specified predictor vector x; (usually from the library itself), is generated using
an exponentially weighted function of the library {x;}, predictions {y;}, and predictor
vector Xg.

This function is defined as follows:

46

10
11
12

13
14

15

16
17
18

19
20
21
22
23

24

25

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

First construct a matrix A and vector b defined as

A7) = w(||xi — x¢|])xi(7) (6.1)

b(i) = w(|lxi = xl)ys

where || - || is the Euclidean norm, i ranges over 1 to the length of the library, and j
ranges over [0, F]. In the above equations and the ones that follow, we set z;(0) = 1
to account for the linear term in the map.

The weighting function w is defined as

ot = o (1), 62

where d is the euclidean distance between the predictor vector and library vectors in
Equation [E] and d is the average of these distances. We can then see that 6 serves
as a way to specify the appropriate level of penalization applied to poorly-matching
library vectors — if 6 is 0 all weights are the same (no penalization), and increasing 6
increases the level of penalization.

Now we solve the system Ac = b to obtain the linear weightings used to generate the
forecast according to

= Z cr(7)xe (). (6.3)

In this way we have produced a forecast value for a single time. This process can
be repeated for a sequence of times T+ 1,7 + 2, ... to project a time series into the
future.

In essence what we are doing is generating a series of forecasts from every vector in
the library, weighting those forecasts based on how similar the corresponding library
vector is to our predictor vector, obtaining a solution to the system that maps com-
ponents of a predictor vector to its library vector’s forecasted point (the mapping),
then applying that mapping to our predictor variable to obtain a forecast.

6.2 S-map Algorithm

The above description can be summarized in Algorithm [G].

47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

Algorithm 6: S-map

/* Select a starting point */
Input : Time series x1, 22, ..., x7, embedding dimension F, distance
penalization @, forecast length L, predictor vector xy

/* Construct library {x;} */
1 fori=F:T do
2 L Xi = (xmxi—l, ---;$z‘—E—1)
/* Construct mapping from library vectors to predictions */
sfori=1:(Tg+1)do
for j=1:F do
| A) = w(lxi — xel[)xi(j)
6 fori=1:(Tg+1)do
| 0(1) = w(|lxi — x|)y

/* Use SVD to solve the mapping system, Ac = b */
8 SVD(Ac=1b)

/* Compute forecast */
o U = ZJEZO ct(7)%¢(J)

/* Forecasted value in time series */

Output: Forecast 9,

48

Ut s W N

N

10
11

12
13
14

15

16
17
18

19

20
21
22
23

24

25

26
27

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

6.3 SIRS Model

In an epidemic or infectious disease context, the S-map algorithm will only really work
on time series that appear cyclic. While there is nothing mechanically that prevents it
from operating on a time series that do not appear cyclic, S-mapping requires a long
time series in order to build a quality library. Without one the forecasting process
would produce unreliable data.

Given, the S-map’s data requrements, we need to specify a modified version of the
SIR model. As IF2 and HMC in principle should be able operate on any reasonably
well-specified model, the easiest way to compare the efficacy of S-mapping to IF2 or
HMC is to generate data from a SIRS model with a seasonal component, and have
all methods operate on the resulting time series.

The basic skeleton of the SIRS model is similar to the stochastic SIR model described
previously, with one small addition. The deterministic ODE component of the model
is as follows.

dS
— = -I'(¢ I
7 (t)BSI + aR
I
% =T(t)8SI — ~I (6.4)
dR
N —
7 y aR,

There are two new features here. We have a rate or waning immunity « through which
people become able to be reinfected, and a seasonality factor function I'(¢) defined

T(t) = exp [2 (Cos (1§:art) - 1)] , (6.5)

where ¢ is in days. This function oscillates between 1 and e~* (close to 0) and is
meant to represent transmission damping during the off-season, for example summer
for influenza. Further, it displays flatter troughs and sharper peaks to exaggerate its
effect in peak season.

As before, 3 is allowed to walk restricted by a geometric mean, described by

Bie1 = exp (log(6:) + n(log(B) —log(By)) + €t) - (6.6)

Figure [67] shows the SIRS model simulated for the equivalent of 5 years (260 weeks)
and adding noise drawn from N (0,).

49

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

40

w
o
1

Infection count
N
o

10

Time

Figure 6.1: Five cycles generated by the SIRS function. The solid
line the the true number of cases, dots show case counts with added
observation noise. The parameter values were Ry = 3.0, v = 0.1,
n =1, 0 =5, and 10 initial cases.

1 Figure [E2] shows how the S-map can reconstruct the next cycle in the time se-
2 Ties.

50

10
11

12

13
14
15

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

40

w
o
1

Infection count
N
o

10

Time

Figure 6.2: S-map applied to the data from the previous figure. The
solid line shows the infection counts with observation noise from the
previous plot, and the dotted line is the S-map forecast. Parameters
chosen were £ = 14 and 0 = 3.

The parameters used in the S-map algorithm to obtain the forecast used in Figure
[62] were obtained using a grid search of potential parameters outlined in [[5]. The
script to perform this optimisation procedure is included in the appendices.

6.4 SIRS Model Forecasting

Naturally we wish to compare the efficacy of this comparatively simple technique
against the more complex and more computationally taxing frameworks we have es-
tablished to perform forecasting using IF2 and HMC.

To do this we generated a series of artificial time series of length 260 meant to represent
5 years of weekly incidence counts and used each method to forecast up to 2 years into
the future. Our goal here was to determine how forecast error changed with forecast
length.

Figure [633] shows the results of the simulation.

Interestingly, all methods produce roughly the same result, which is to say the spikes
in each outbreak cycle are difficult to accurately predict. IF2 produces better results
than either HMC and the S-map for the majority of forecast lengths, with the S-map

51

ot

© 0 N O

11
12
13
14

15
16
17
18
19
20

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

3.54

3.01 \

N
3
|

—IF2
HMCMC
S-map

SSE (logyo)
N
o

=
o
|

1.0+

0 25 50 75 100
Weeks ahead

Figure 6.3: Error as a function of forecast length.

producing the poorest results with the exception of the second rise in infection rates
where it outperforms the other methods.

While the S-map may not provide the same fidelity or forecast as IF2 or HMC, it
shines when it comes to running time. Figure [64] shows the running times over 20
simulations.

It is clear from Figure [64] that the S-map running times are minute compared to the
other methods, but to emphasize the degree: The average running time for the S-map
is about 0.15 seconds, for IF2 it is about 47,000, and for HMC it is about 9, 200.
This is a speed-up of over 316,000x compared to IF2 and over 61,800x compared to
HMC.

Additionally, we are interested in coverage. While a full coverage analysis would
require roughly a 100-fold increase in computational complexity, we can use the tra-
jectories generated by IF2 and HMC to display forecast coverage across data sets,
given particular weeks in the forecast.

Figure [[H] shows such plots for forecasts 10 and 45 weeks ahead. Week 10 repre-
sents the approximate first epidemic “spike” we are attempting to predict, a typically
difficult task, and week 45 represents the first “trough”, which should be easier to
predict. We can see that the error bars are much wider when attempting to predict
the spike, and much smaller for the trough. Also the trough coverage appears slightly
better than the spike coverage.

52

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

S—-map -

HMCMC - . .

IF2- .

0 10000 20000 30000 40000 50000
Time (seconds)

Figure 6.4: Runtimes for producing SIRS forecasts. The box shows
the middle 50th percent, the bold line is the median, and the dots
are outliers. Note that these are not “true” outliers, simply ones
outside a threshold based on the interquartile range.

1504
100+

N | | .|JJJIJ4
—50-4{

-100+

Estimate — True
o
—
-

o

]

o]

1

.

o]

o

—d

10+

Estimate — True
o
———
—
| .
-
]
o
o
]
B
)
4

10

Data set

Figure 6.5: Coverage plots for forecast weeks 10 (top) and 45 (bot-
tom). Black bars are from IF2 forecast trajectories, and grey bars
are from HMC trajectories.

53

V]

N O Ot

o]

10
11
12

13

14
15
16
17
18

19

Chapter 7

Spatial Epidemics

7.1 Spatial SIR

Spatial epidemic models provide a way to capture not just the temporal trend in an
epidemic, but to also integrate spatial data and infer how the infection is spreading
in both space and time. One such model we can use is a dynamic spatiotemporal SIR
model.

We wish to construct a model build upon the stochastic SIR compartment model
described previously but one that consists of several connected spatial locations, each
with its own set of compartments. Consider a set of locations numbered : = 1,..., N,
where N is the number of locations. Further, let N; be the number of neighbours
location 7 has. The model is then

N,
dsS; N; ¢ -
dt - (1 ¢Nz+1) 615111 (Nz+1) Szjzoﬂjlj
N.
dI, N; ¢ : (7.1)
b I ST : T —~T
dR;
=1
dt YL
Neighbours for a particular location are numbered j = 1,...,N;. We have a new

parameter, ¢ € [0,1], which is the degree of connectivity. If we let ¢ = 0 we have
total spatial isolation, and the dynamics reduce to the basic SIR model. If we let
¢ = 1 then each of the neighbouring locations will have weight equivalent to the
parent location.

As before we let § embark on a geometric random walk defined as

o4

[SUIE)

0 N o ot e

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

200+
Location
150 - —1
= —2
3 —3
O
.E 100+ — 4
2 5
Q2
c 6
50 - !
8
0_

0 25 50 75 100

Figure 7.1: Evolution of a spatial epidemic in a ring topology. The
outbreak was started with 5 cases in Location 2. Parameters were
Ro=3.0,v=0.1,n=0.5, 0 =0.5, and ¢ = 0.5.

Biwr1 = exp (log(Bi) + n(log(B) — log(Bis)) + €) - (7.2)

Note that as [is a state variable, each location has its own stochastic process driving
the evolution of its 3 state.

If we imagine a circular topology in which each of 8 locations is connected to exactly
two neighbours (i.e. location 1 is connected to locations N and 2, location 2 is
connected to locations 1 and 3, etc.), and we start each location with completely
susceptible populations except for a handful of infected individuals in one of the
locations, we obtain a plot of the outbreak progression in Figure [[Z].

If we add noise to the data from Figure [[l], we obtain Figure [[2].

95

© 0 N O Ut s W N

10
11
12
13
14
15
16
17
18
19

20
21

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

200 -
Location
150 - —1
= —2
3 —3
(§]
§ 100+ —4
5 5
Q2
c 6
7
50
8
0_

Figure 7.2: Evolution of a spatial epidemic as in Figure [1], with
added observation noise drawn from AN (0, 10).

7.2 Dewdrop Regression

Dewdrop regression [Z1] aims to overcome the primary disadvantage suffered by meth-
ods such as the S-map or its cousin Simplex Projection: the requirement of long time
series from which to build a library. Suggested by Sugihara’s group in 2008, Dewdrop
Regression works by stitching together shorter, related, time series, in order to give
the S-map or similar methods enough data to operate on. The underlying idea is that
as long as the underlying dynamics of the time series display similar behaviour (such
as potentially collapsing to the same attractor), they can be treated as part of the
same overarching system.

It is not enough to simply concatenate the shorter time series together — several pro-
cedures must be carried out and a few caveats observed. First, as the individual time
series can be or drastically differing scales and breadths, they all must be rescaled to
unit mean and variance. Then the library is constructed as before with an embedding
dimension F, but any library vectors that span any of the seams joining the time
series are discarded. Further, and predictions stemming from a library vector must
stay within the time series from which they originated. In this way we are allowing
the “shadow” of of the underlying dynamics of the separate time series to infer the
forecasts for segments of other time series. Once the library has been constructed,
S-mapping can be carried out as previously specified.

This procedure is especially well-suited to the spatial model we are using. While
the dynamics are stochastic, they still display very similar means and variances.

56

=W N =

© o N O

11
12

13

14
15
16
17

18
19

20
21
22
23
24
25

26
27
28

29
30
31
32

33
34
35

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

This means the rescaling process in Dewdrop Regression is not necessary and can
be skipped. Further, the overall variation between the epidemic curves in each loca-
tion is on the smaller side, meaning the S-map will have a high-quality library from
which to build forecasts.

7.3 Spatial Model Forecasting

In order to compare the forecasting efficacy of Dewdrop Regression with S-mapping
against IF2 and HMC, we generated 20 independent spatial data sets up to time
T = 50 weeks in each of L = 10 locations and forecasted 10 weeks into the future.
Forecasts were compared to that of the true model evolution, and the average SSFE
for each week ahead in the forecast were computed. The number of bootstrapping
trajectories used by IF2 and HMC was reduced from 200 to 50 to curtail running
times.

The results are shown in Figure [3].

The results show a clear delineation in forecast fidelity between methods. IF2 main-
tains an advantage regardless of how long the forecast produced. Interestingly, Dew-
drop Regression with S-mapping performs almost as well as IF2, and outperforms

HMC. HMC lags behind both methods by a healthy margin.

If we examine the runtimes for each forecast framework, we obtain the data in Figure

As before, the S-map with Dewdrop Regression runs faster than the other two methods
with a huge margin. It is again hard to see exactly how large the margin is from the
figure due to the scale, but we can examine the average values: the average running
time for S-mapping with Dewdrop Regression was about 249 seconds, whereas the
average times for [F2 and HMC were about 29,000 seconds and 38,800 seconds,
respectively. This is a speed-up of just over 116x over IF2 and 156x over HMC.

Considering how well S-mapping performed with regards to forecast error, it shows
a significant advantage over HMC in particular — it outperforms it in both forecast
error and running times.

As before, we are interested in coverage. Again, a full coverage analysis would require
roughly a 100-fold increase in computational complexity, but we can use the trajec-
tories generated by IF2 and HMC to display forecast coverage across data sets, given
particular weeks in the forecast.

Figure [[73] shows such plots for forecasts 2 and 10 weeks ahead in location 8. Location
8 was used as it lands in the middle of the cohort of locations in terms of outbreak
progression. We can see that the error bars are much wider when attempting to

57

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

2.75 -

~—~
S — IF2

8 250-
= — HMCMC
w
wn S—map
%]

2.25-

2.00 -

25 5.0 75 10.0
Weeks ahead

Figure 7.3: Average SSE (log scale) across each location and all trials
as a function of the number of weeks ahead in the forecast.

S—-map

HMCMC - .

IF2 - .

10000 20000 30000 40000 50000
Time (seconds)

o-

Figure 7.4: Runtimes for producing spatial SIR forecasts. The box
shows the middle 50th percent, the bold line is the median, and the

dots are outliers.

58

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

100+

_50 -

Estimate — True
o
]
o]
o
o]
o]
o
.
]
]
)
J
{

—-1004

100+

-100+

Estimate — True
o
_]
N
—
-
]
—
]
—
—d
—

Data set

Figure 7.5: Coverage plots for forecast weeks 2 (top) and 10 (bottom)
in location 8. Black bars are from IF2 forecast trajectories, and grey
bars are from HMC trajectories.

1 predict further into the future. HMC is consistently underestimates the intensity of
2 the epidemic in both forecast lengths, but produces smaller error bars for the longer
3 forecast.

59

© 00 N O Ut

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24
25

Chapter 8

Discussion and Future Directions

A summary of the results of forecasts in the previous three chapters follows.

Immediately, we can see that the IF2 / parametric bootstrapping framework produces
great results. This framework consistently out-performs both the HMC framework
and S-mapping by itself or with Dewdrop Regression. This is not to say that the
results produced by the other methods are poor, but rather that the ones produced
by IF2 are noticeably better. This is true in every scenario we have explored here,
and is particularly pronounced in the SIRS and spatial forecasting set-ups.

A surprise has been how well S-mapping has performed. Given the almost ludicrously
shorter running times exhibited by S-mapping, it is almost shocking how well it per-
forms. In the SIRS scenario it produces results only slightly less accurate than the
other two methods, and is even the most accurate at predicting the rise to the second
outbreak peak. In the spatial scenario it performs almost as well as IF2, and much
better than HMC. The critical point here is that S-mapping, with its relative ease of
implementation, efficiency, and accuracy would make a great “first-blush” forecast-
ing tool that could be run and give a good prediction well before one would be able
to even code the model specification for either of the other two methods. While S-
mapping does require an up-front computational cost in “tuning” the two algorithm
parameters, it is still negligible when compared to the costs incurred by IF2 and
HMC.

8.1 Parallel and Distributed Computing

Whenever running times are discussed, we must consider the current computing land-
scape and hardware boundaries. In 1965, Intel co-founder Gordon E. Moore published
a paper in which he observed that the number of transistors per unit area in integrated

60

Tt W N =

© 00 N O

11

12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

circuits double roughly every year. The consequence of this growth is the approximate
year-over-year doubling of clock speeds (maximum number of sequential calculations
performed per second), equivalent to raw performance of the chip. This forecast was
updated in 1975 to double every 2 years and has held steady until the very recent
past [4T].

Recently, transistor count growth has begun to falter. This is due to several physical
factors preventing tighter “packing” of transistors into a single processor. To com-
pensate for these limitations, chip manufacturers have instead redesigned the internal
chip structures to consist of smaller “cores” within a single CPU die. The resulting
processing power per processor then stays on track with Moore’s Law, but keeps the
clock speeds of each individual core under control.

Of course this raises many problems on the software and algorithm side of computing.
Using several smaller cores instead of a single large one has the distinct disadvantage
of lack of cohesion — the cores must execute instructions completely decoupled from
each other. This means algorithms have to be redesigned, or at least rewritten at the
software level to consist of multiple independent pieces that can be run in parallel.
This practice is known as parallelization, and has become critical in taking full ad-
vantage of machines of all scales — from mobile phones which overwhelmingly favour
multi-core CPU architectures, to large clusters and supercomputers which rely on
distributed computing “nodes”.

When working with computationally intensive algorithms, particularly iterative meth-
ods such those used in this paper, the question of parallelism naturally arises. It may
come as no surprise that the potential degrees of parallelism varies between meth-
ods.

Hamiltonian MCMC is cursed with high dependence between iterations. While HMC
has an advantage over “vanilla” MCMC formulations in terms of efficiency of step
acceptance and ease of exploration of the parameter per number of samples, each
sample still depends entirely on the preceding one, and at a conceptual level the
construction of a Markov Chain requires iterative dependence. We cannot simply take
an accepted step, compute several proposed steps accept/reject them independently —
doing so would break the chain construction and could potentially bias our posterior
estimate to boot. We can, however, process multiple chains simultaneously and merge
the resulting samples, which has the added benefit of providing data from which to
assess convergence. If the required number of samples for a problem were large and
the required burn-in time were low, this method could prove effective. However, the
parallel burn-in sampling is still inefficient as it is a duplication of effort with limited
pay-off — in the sense that the saved sample to discarded burn-in sample ratio would
not be as efficient as running a single long chain. Thus while parallelism via multiple
independent chains would help with a reduction in wall clock running times, it would
result in an increase in total computer time.

61

D U s W N =

co

10

11
12

13

14

15

16
17
18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33
34
35
36

37

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

With regards to the bootstrapping process we used with HMC, it should be clear that
each bootstrap trajectory is completely independent, and thus this component of the
forecasting framework can be considered “embarrassingly” parallel or distributed. Un-
fortunately, however, this is the least computationally demanding part of the process
by several orders of magnitude, and so working to parallelize it would provide little
advantage.

In the case of IF2, we have a decidedly different picture. In IF2 we have 5 primary
steps in each data point integration:

e Forward evolution of the particles’ internal system state using their parameter
state

Weighting those state estimates against the data point using the observation
function

Particle weight normalizations

Resampling from the particle weight distribution

Particle parameter perturbations

Luckily, 4 of the 5 steps can be individually parallelized and run on a per-particle
basis. The particle weight normalizations, however, cannot. Summation “reductions”
are a well-known problem for parallel algorithms; they can be parallelized to a degree
using binary reduction, but that only reduces the approximate running time from
O(n) to O(log(n)) [I8]. The normalization process requires the particles” weight sum
to be determined, hence the unavoidable obstacle of summation reductions rears its
head. However this is in practice a less-taxing step, and its more demanding siblings
are more amenable to parallelization.

Further, the full parametric bootstrapping process is highly computationally demand-
ing, and also completely parallelizable. Each trajectory requires a fair bit of time to
generate, on the order of of the original fitting time, and can be computed completely
independently. Hence, IF2 is a very good candidate for a good parallel implementa-
tion.

A future offshoot of this project would be a good parallel implementation of both the
IF2 fitting process and the parametric bootstrapping framework. An ideal platform for
this work would be NVIDIA’s Compute Unified Device Architecture (CUDA) Graph-
ics Processing Unit (GPU) computing framework. While a CUDA implementation of
a spatial epidemic IF2 parameter fitting algorithm was implemented, it lacked a good
front-end implementation, R integration, and a parametric bootstrapping framework
and so was not included in the main results of this paper. However, the code and
some preliminary results are included in the appendices.

S-mapping, like the other two methods, is parallelizable to a degree. However, the

62

o N O Utk Ww N

10
11
12
13
14

15

16

17
18
19

20
21
22
23
24
25
26
27

28
29
30
31
32

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

S-map is already a great deal faster than the other two methods, and in the worst case
(paired with Dewdrop Regression and applied to a spatiotemporal data set) still only
takes a few minutes to run. Setting this observation aside, if one were investing in
developing a faster S-map implementation, this is certainly possible. By far the most
computationally expensive component of the algorithm is the SVD decomposition, and
algorithms exist to accelerate it via parallelization. Further, each point in the forecast
can be computed separately; in the cases similar to the one here with application to
spatiotemporal prediction, there can be a significant number of these points.

Further work developing parallel implementations of forecasting frameworks could be
advantageous if the goal were to generate accurate forecasts under more stringent
time limitations. IF2 seems to have emerged as a leader in forecast accuracy, if not in
efficient running times, and demonstrates high potential for parallelism. Expansion
of the CUDA IF2 (culF2) implementation to include a parallel bootstrapping layer
and R integration could prove very promising.

8.2 1IF2, Bootstrapping, and Forecasting Method-
ology

The parametric bootstrapping approach used to generate additional parameter pos-
terior samples and produce forecasts has proven effective, but not necessarily compu-
tationally efficient.

A recent paper utilising IF2 for forecasting [25] generated trajectories using IF2,
parameter likelihood profiles, weighted quantiles, and the basic particle filter. The
parameter profiles were used to construct a bounding box to search for good parameter
sets, within which combinations of parameters to generate forecasts were selected
using a Sobol sequence. Finally the forecasts were combined using a weighted quantile,
taking into account the likelihood of the parameter sets used. Whether this approach
would result in higher quality forecasts or lower running times is of interest, and could
serve as a future research direction.

Expanding on this, there are other bootstrapping approaches that could be used to
produce forecasts. A paper focusing solely on using IF2 with varied bootstrapping
approaches and determining a forecast accuracy versus computational time trade-off
curve of sorts would be useful, and would be another step towards establishing which
tools are best for which jobs.

63

© 0 N O Ut s W N

e e e e o e
S Ut R W N = O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

8.3 Fin

The overarching theme in this paper, from the theoretical considerations to the results
to the discussion, is that there still exists no “silver bullet” for forecasting problems.
Largely you can decide, as the user, how accurate you need your results to be, how
much computer time you have at your disposal, and how fast you need your results,
and select the method that best satisfies your needs. If speed is the priority, then you
can use S-mapping to get very quick and relatively accurate results. If you require
accuracy above all else, you must turn to heavier methods such as 1F2, HMC, and
parametric bootstrapping in order to produce the cleanest forecast possible. And
this represents only three data points in a larger picture. There are a wide variety
of methods that are similar but not identical to methods explored here, each with
their own positive and negative attributes, their own advantages and disadvantages,
and that are ultimately likely to fill out our spectrum of methods more completely.
Thus future work should focus on attempting further direct comparison across a wider
swath of techniques, and implementing those techniques in a parallel fashion to take
advantage of the current and future landscape of high-performance computing.

64

Bibliography

Mohammad Ali et al. “Time Series Analysis of Cholera in Matlab, Bangladesh,
during 1988-2001". In: Journal of health, population, ... 31.1 (2013), pp. 11-19.
URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702354/.

Christophe Andrieu et al. “An introduction to MCMC for machine learning”.
In: Machine Learning 50.1-2 (2003), pp. 5-43. 1SSN: 08856125. DOI: 10.1023/A:

M.S. Arulampalam et al. “A tutorial on particle filters for online nonlinear /non-
Gaussian Bayesian tracking”. In: IEEE Transactions on Signal Processing 50.2
(2002), pp. 174-188. 18SN: 1053587X. DOI: 10.1109/78.978374. URL: http:
//1eeexplore.1eee.org/lpdocs/epic@d3/wrapper.htm?arnumber=97/8374.

Jacob Bock Axelsen et al. “Multiannual forecasting of seasonal influenza dy-
namics reveals climatic and evolutionary drivers.” In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 111.26 (July 2014),
pp- 9538-42. 18SN: 1091-6490. DOI: 10 . 1073/ pnas . 1321656111. URL: http:
//www.pubmedcentral.nih.gov/articlerender.ftcgi?artid=4084473%/B%5C&
%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

M Babyak. “What You See May Not Be What You Get: A Brief, Nontechnical
Introduction to Overfitting in Regression Type Models”. In: J. Bio. Med. 66.3
(2004), pp. 411-421. 18SN: 0033-3174. DOIL: 10 . 1097 /01 . psy . 0000127692 .
723778 .a9.

Thomas Bengtsson, Peter Bickel, and Bo Li. “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems”. In: Probability and
Statistics 2 (2008), pp. 316-334. DOI: 10.1214/193940307000000518. arXiv:
W80WhH.3034. URL: http://arxiv.org/abs/0805.3034.

a. Camacho et al. “Explaining rapid reinfections in multiple-wave influenza out-
breaks: Tristan da Cunha 1971 epidemic as a case study”. In: Proceedings of the
Royal Society B: Biological Sciences 278 (2011), pp. 3635-3643. 1SSN: 0962-8452.
DOI: 10.7098/rspb.2011.0300.

65

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702354/
http://dx.doi.org/10.1023/A:1020281327116
http://dx.doi.org/10.1023/A:1020281327116
http://dx.doi.org/10.1023/A:1020281327116
http://dx.doi.org/10.1109/78.978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=978374
http://dx.doi.org/10.1073/pnas.1321656111
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4084473%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4084473%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4084473%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4084473%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4084473%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1097/01.psy.0000127692.23278.a9
http://dx.doi.org/10.1097/01.psy.0000127692.23278.a9
http://dx.doi.org/10.1097/01.psy.0000127692.23278.a9
http://dx.doi.org/10.1214/193940307000000518
http://arxiv.org/abs/0805.3034
http://arxiv.org/abs/0805.3034
http://dx.doi.org/10.1098/rspb.2011.0300

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

8]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

Bob Carpenter et al. “Stan : A Probabilistic Programming Language”. In: Jour-
nal of Statistical Software (2016). URL: http://www.stat.columbia.edu/%/B~%
/Dgelman/research/unpublished/stan-resubmit-JSS1293. pdtl.

Jean-Paul Chretien et al. “Influenza forecasting in human populations: a scop-
ing review.” In: PloS one 9.4 (Jan. 2014), €94130. 1SSN: 1932-6203. DOI: 1@
1371/ journal . pone.099413@. URL: http://www. pubmedcentral .nih. gov/
articlerender . tcgi?artid=39/7/9/60%/B%5C&%/Dtool=pmcentrez% /B%5C&
%/Drendertype=abstract.

Samantha Cook et al. “Assessing Google Flu trends performance in the United

States during the 2009 influenza virus A (HIN1) pandemic”. In: PLoS ONE 6.8
(2011), pp. 1-8. 18SN: 19326203. DOI: 10.1371/journal.pone.0023610.

Andrea Freyer Dugas et al. “Influenza forecasting with Google Flu Trends.” In:
PloS one 8.2 (Jan. 2013), e56176. 1sSN: 1932-6203. DOI: 10.1371/journal.pone.
A0bb1/6. URL: http://www.pubmedcentral.nih.gov/articlerender.tcgi?
arti1d=3572967%/B%5C&%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

Jonathan Dushoff et al. “Dynamical resonance can account for seasonality of
influenza epidemics.” In: Proceedings of the National Academy of Sciences of
the United States of America 101.48 (2004), pp. 16915-16916. 1SSN: 0027-8424.
DOI: 10.10/3/pnas.040/293101. URL: http://www.pnas.org/content/101/
48/16915. tull.

Dirk Eddelbuettel and Romain Fran. “Rcpp: Seamless R and C 4+ Integration”.
In: Journal Of Statistical Software 40.8 (2011), pp. 1-18. 1SSN: 15487660. DOTI:
10.7007/978-1-4614-6868-4. arXiv: arXiv:1011.1669v3. URL: http://www.
jstatsoft.org/v40/108/.

Christian Genest and Bruno Remillard. “Validity of the parametric bootstrap
for goodness-of-fit testing in semiparametric models”. In: Annales de ["institut
Henri Poincare (B) Probability and Statistics 44.6 (2008), pp. 1096-1127. 1SSN:
02460203. DOI: 1@.1214/07-ATHP148.

Sarah M. Glaser, Hao Ye, and George Sugihara. “A nonlinear, low data re-
quirement model for producing spatially explicit fishery forecasts”. In: Fisheries
Oceanography 23 (2014), pp. 45-53. 1sSN: 10546006. DOL: 10.1111/fog.12042.

Andrea L Graham et al. “Explaining rapid reinfections in multiple-wave in-
fluenza outbreaks : Tristan da Cunha 1971 epidemic as a case study”. In: Proc.
R. Soc. B (2016). DOI: 10.7098/rspb.2011.0300.

Bradley Harding. “Standard errors : A review and evaluation of standard error
estimators using Monte Carlo simulations”. In: (2014), pp. 107-123.

Mark Harris. Optimizing parallel reduction in CUDA. Sept. 2007. URL: http://
docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf|.

66

http://www.stat.columbia.edu/%7B~%7Dgelman/research/unpublished/stan-resubmit-JSS1293.pdf
http://www.stat.columbia.edu/%7B~%7Dgelman/research/unpublished/stan-resubmit-JSS1293.pdf
http://www.stat.columbia.edu/%7B~%7Dgelman/research/unpublished/stan-resubmit-JSS1293.pdf
http://dx.doi.org/10.1371/journal.pone.0094130
http://dx.doi.org/10.1371/journal.pone.0094130
http://dx.doi.org/10.1371/journal.pone.0094130
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3979760%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3979760%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3979760%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3979760%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3979760%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0023610
http://dx.doi.org/10.1371/journal.pone.0056176
http://dx.doi.org/10.1371/journal.pone.0056176
http://dx.doi.org/10.1371/journal.pone.0056176
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572967%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572967%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572967%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1073/pnas.0407293101
http://www.pnas.org/content/101/48/16915.full
http://www.pnas.org/content/101/48/16915.full
http://www.pnas.org/content/101/48/16915.full
http://dx.doi.org/10.1007/978-1-4614-6868-4
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1214/07-AIHP148
http://dx.doi.org/10.1111/fog.12042
http://dx.doi.org/10.1098/rspb.2011.0300
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf

N O Ot

31
32
33

34
35

36

St

39

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Florian Hartig et al. “Statistical inference for stochastic simulation models -
theory and application”. In: Fcology Letters 14.8 (2011), pp. 816-827. ISSN:
1461023X. DOL: 10.1111/7.7461-0248.2011.01640.X.

Matthew D. Hoffman and Andrew Gelman. “The No-U-Turn Sampler: Adap-
tively Setting Path Lengths in Hamiltonian Monte Carlo”. In: Journal of Ma-
chine Learning Research 15.April (2014), pp. 1593-1623. arXiv: T111 4746,
URL: http://mc-stan.org/.

Chih-hao Hsieh, Christian Anderson, and George Sugihara. “Extending nonlin-
ear analysis to short ecological time series.” In: The American naturalist 171.1
(2008), pp. 71-80. 1sSN: 0003-0147. DOIL: 10.1086/5242072.

E L Ionides, C Bret, and a a King. “Inference for nonlinear dynamical systems.”
In: Proceedings of the National Academy of Sciences of the United States of
America 103.49 (Dec. 2006), pp. 18438-43. 1sSN: 0027-8424. DOI: 10.1073/pnas.
¥603181103. URL: http://www.pubmedcentral.nih.gov/articlerender.tcgi?
arti1d=3020138%/B%5C&%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

Edward L. Ionides et al. “Inference for dynamic and latent variable models
via iterated, perturbed Bayes maps”. In: Proceedings of the National Academy
of Sciences 112.3 (2015), pp. 719-724. 1SSN: 0027-8424. DOI: 10.1073/pnas .
T4T@5971172. URL: http://www . pnas.org/ lookup/doi/ 10 . 1073/ pnas .
1410597117,

Aaron A King, Dao Nguyen, and Edward L. Tonides. “Statistical Inference for
Partially Observed Markov Processes via the R Package pomp”. In: Journal of
Statistical Software 59.10 (2015). arXiv: arXiv:1509 0a5a3v1.

Aaron A King et al. “Avoidable errors in the modelling of outbreaks of emerg-
ing pathogens, with special reference to Ebola”. In: Proceedings of the Royal
Society B: Biological Sciences 282.1806 (2015), pp. 20150347-20150347. 1SSN:
0962-8452. DOI: 10 . 1098/ rspb.2015.0347. arXiv: 1417 .0968. URL: http:
//rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2015.0347.

Aaron A King et al. pomp: Statistical inference for partially observed Markov
processes. 2016. URL: http://Kingaa.github.10/pomp.

William A. Link and Mitchell J. Eaton. “On thinning of chains in MCMC”.
In: Methods in Ecology and Evolution 3.1 (2012), pp. 112-115. 18SN: 2041210X.
DOI: 10.1111/7.2041-210X.2011.00131.X.

Kanti V. Mardia et al. “The Kriged Kalman filter”. In: Test 7.2 (1998), pp. 217
282. 18SN: 11330686. DOI: 10.1007/BFO2565T11T.

Radford M Neal. “Handbook of Markov Chain Monte Carlo”. In: Handbook
of Markov Chain Monte Carlo 20116022 (2011), pp. 113-162. pOI: 10. 1201/
b10905. arXiv: ArXiv:1206.1901v1. URL: http://www.crcnetbase.com/doi/
book/10.1201/b10904.

67

http://dx.doi.org/10.1111/j.1461-0248.2011.01640.x
http://arxiv.org/abs/1111.4246
http://mc-stan.org/
http://dx.doi.org/10.1086/524202
http://dx.doi.org/10.1073/pnas.0603181103
http://dx.doi.org/10.1073/pnas.0603181103
http://dx.doi.org/10.1073/pnas.0603181103
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3020138%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3020138%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3020138%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1073/pnas.1410597112
http://dx.doi.org/10.1073/pnas.1410597112
http://dx.doi.org/10.1073/pnas.1410597112
http://www.pnas.org/lookup/doi/10.1073/pnas.1410597112
http://www.pnas.org/lookup/doi/10.1073/pnas.1410597112
http://www.pnas.org/lookup/doi/10.1073/pnas.1410597112
http://arxiv.org/abs/arXiv:1509.00503v1
http://dx.doi.org/10.1098/rspb.2015.0347
http://arxiv.org/abs/1412.0968
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2015.0347
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2015.0347
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2015.0347
http://kingaa.github.io/pomp
http://dx.doi.org/10.1111/j.2041-210X.2011.00131.x
http://dx.doi.org/10.1007/BF02565111
http://dx.doi.org/10.1201/b10905
http://dx.doi.org/10.1201/b10905
http://dx.doi.org/10.1201/b10905
http://arxiv.org/abs/arXiv:1206.1901v1
http://www.crcnetbase.com/doi/book/10.1201/b10905
http://www.crcnetbase.com/doi/book/10.1201/b10905
http://www.crcnetbase.com/doi/book/10.1201/b10905

35
36

37
38
39
40

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

[32]

33]

[34]

[35]

Elaine O Nsoesie et al. “A systematic review of studies on forecasting the dy-
namics of influenza outbreaks.” In: Influenza and other respiratory viruses 8.3
(May 2014), pp. 309-16. 1sSN: 1750-2659. DOT: 1@.1111/1irv.12226. URL: http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%/B%5C&
%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

Elaine Nsoesie, Madhav Mararthe, and John Brownstein. “Forecasting peaks of
seasonal influenza epidemics.” In: PLoS currents 5 (Jan. 2013), pp. 1-14. 1SSN:
2157-3999. DOI: 1@.1371/currents.outbreaks.bb1e879a23137027ea/9a8c508bA30bc.
URL: http://www. pubmedcentral . nih.gov/articlerender . fcgi?artid=
3712489%/B%5C&%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

Robert C Reiner et al. “Highly localized sensitivity to climate forcing drives
endemic cholera in a megacity.” In: Proceedings of the National Academy of
Sciences of the United States of America 109.6 (Feb. 2012), pp. 2033-6. 1SSN:
1091-6490. DOI: 10.710/3/pnas. 1108438109. URL: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=327/579%/B%5C&%/Dtool=pmcentrez¥
/B%5C&%/Drendertype=abstract.

Sujit K Sahu. “A Bayesian Kriged-Kalman model for short-term fore- casting of

air pollution levels”. In: Appl. Statist 54 (2005), pp. 223-244. 18SN: 0035-9254.
DOI: 10.1111/7.146/7-9876.2005.00480. X.

Jacques Sau et al. “Particle filter-based real-time estimation and prediction of
traffic conditions Modeling framework”. In: Information Systems (1918), pp. 1-
8.

Jeffrey Shaman and Alicia Karspeck. “Forecasting seasonal outbreaks of in-
fluenza.” In: Proceedings of the National Academy of Sciences of the United
States of America 109.50 (Dec. 2012), pp. 20425-30. 1SSN: 1091-6490. DOTI:
10 . 1073/ pnas . 1208772109. URL: http://www. pubmedcentral . nih. gov/
articlerender . fcgli?artid=3528592%/B%5C&%/Dtool =pmcentrez%/B%5C&
%/Drendertype=abstract.

Jeffrey Shaman, Wan Yang, and Sasikiran Kandula. “Inference and Forecast of

the Current West African Ebola Outbreak in Guinea, Sierra Leone and Liberia”.

In: PLoS Currents 6 (2014), ecurrents.outbreaks.3408774290b1a0f2dd7cae877c8b8f.

ISSN: 2157-3999. DOI: 10.1371/currents.outbreaks.34087747290b1adt2dd7cae877c8b8t16.

Stan Development Team. “Stan Modeling Language User’s Guide and Reference
Manual”. In: 2.9.0 (2015).

G Sugihara and R M May. Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series. 1990. DOI: 10.1038/34473420.

George Sugihara. “Nonlinear Forecasting for the Classification of Natural Time
Series”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 348 (1994), pp. 477-495. 1sSN: 1364-503X.
DOI: 10.1098/rsta.1994.0106.

68

http://dx.doi.org/10.1111/irv.12226
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181479%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3712489%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3712489%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3712489%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1073/pnas.1108438109
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277579%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277579%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277579%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277579%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3277579%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1111/j.1467-9876.2005.00480.x
http://dx.doi.org/10.1073/pnas.1208772109
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6
http://dx.doi.org/10.1038/344734a0
http://dx.doi.org/10.1098/rsta.1994.0106

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

[40]

[43]

Carmen L Vidal Rodeiro and Andrew B Lawson. “Online updating of space-
time disease surveillance models via particle filters.” In: Statistical methods in
medical research 15.5 (2006), pp. 423-444. 1SsN: 0962-2802. pDOI: 1@ . 1177/
096778070607 1644.

Mitchell Waldrop. “More then Moore”. In: Nature 530.11. February (2016),
p. 145.

Wan Yang, Alicia Karspeck, and Jeffrey Shaman. “Comparison of filtering meth-
ods for the modeling and retrospective forecasting of influenza epidemics.” In:
PLoS computational biology 10.4 (Apr. 2014), e1003583. 1sSN: 1553-7358. DOTI:
10.1377/7journal.pcbi.1003583. URL: http://www.pubmedcentral.nih.gov/
articlerender . tcgi?artid=3998879% /B%5C&%/Dtool =pmcentrez% /B%5C8&
%/Drendertype=abstract.

Xingyu Zhang et al. “Comparative study of four time series methods in fore-
casting typhoid fever incidence in China.” In: PloS one 8.5 (Jan. 2013), e63116.
ISSN: 1932-6203. DOI: 1@. 1371/ journal . pone. ©¥063116. URL: http://www.
pubmedcentral . nih . gov/ articlerender . fcgi ?7artid=3641111% 7B %5C&
%/Dtool=pmcentrez%/B%5C&%/Drendertype=abstract.

69

http://dx.doi.org/10.1177/0962280206071640
http://dx.doi.org/10.1177/0962280206071640
http://dx.doi.org/10.1177/0962280206071640
http://dx.doi.org/10.1371/journal.pcbi.1003583
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3998879%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3998879%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3998879%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3998879%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3998879%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0063116
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641111%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641111%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641111%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641111%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641111%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Appendix A

Hamiltonian MCMC

A.1 Full R code

This code will run all the indicated analysis and produce all plots.

library(deSolve)
library(rstan)
library(shinystan)
library(ggplot2)
library(RColorBrewer)
library(reshape2)

SIR < function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

B < RO*r/N
BSI <~ B*Sx*I

rI <+ rxI

dS = -BSI

dI = BSI - rI
dR = rI

return(list(c(dS, dI, dR)))

1))

70

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

pars <« c(R0 <+ 3.0,

r — 0.1,
N +— 500)

T <+ 100
y_ini < c(S = 495, 1
times < seq(@, T, by

5, R = 0)
1

odeout + ode(y_ini, times, SIR, pars)

set.seed(1001)
sigma < 10
infec_counts_raw < odeout[,3] + rnorm(T+1, @, si

infec_counts < ifelse(infec_counts_raw < 0,

g < qplot(0:T, odeout[,3], geom = "line”, xlab =
= "Infection Count") +
geom_point(aes(y = infec_counts)) +
theme_bw ()

print(g)

ggsave(g, filename="dataplot.pdf”, height=4, wid

sPw < 7
datlen « (T-1)*7 + 1

data < matrix(data = -1, nrow = T+1, ncol = sPw)
datal[,1] « infec_counts

standata + as.vector(t(data))[1:datlen]

sir_data < list(T = datlen,

y = standata,

N = 500,

h = 1/sPw)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
stan_options < list(chains = 4,

iter = 2000,
warmup = 1000,
thin = 2)
fit « stan(file = "d_sirode_euler.stan",
data = sir_data,
chains = stan_options$chains,
iter = stan_options$iter,
warmup = stan_options$warmup,
thin = stan_options$thin)

exfit < extract(fit, permuted = TRUE, inc_warmup

71

gma)

@, infec_counts_raw)

"Time (weeks)",

th=6.5)

= FALSE)

ylab

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

ROpoints < exfit$Ro
ROkernel < qgplot(ROpoints, geom = "density"”, xlab
ylab = "frequency”) +

color="grey50") +
theme _bw ()

print (ROkernel)
ggsave (ROkernel, filename="kernelR0O.pdf"”, height=

rpoints < exfit$r
rkernel < gplot(rpoints, geom = "density”, xlab =
frequency”) +

color="grey50") +
theme _bw ()

print(rkernel)
ggsave (rkernel, filename="kernelr.pdf"”, height=3,

sigmapoints < exfit$sigma
sigmakernel < gplot(sigmapoints, geom = "density"”
sigma), ylab = "frequency”) +

color="grey50") +
theme _bw ()

print(sigmakernel)

infecpoints «+ exfit$yol[,2]
infeckernel < gplot(infecpoints, geom = "density”
Infected”, ylab = "frequency”) +
geom_vline(aes(xintercept=y_ini[[’I’'11),
size=1, color="grey50") +
theme_bw()

print(infeckernel)

n) +

72

3,

n

expressi

geom_vline(aes(xintercept=RO), linetype="dashed”, si

width=3.

r'", ylab

geom_vline(aes(xintercept=r), linetype="dashed"”, siz

on(R[01),

ze=1,

25)

n

e=1,

width=3.25)

’

’

xlab = ex

geom_vline(aes(xintercept=sigma), linetype="dashed”,

ggsave (sigmakernel, filename="kernelsigma.pdf"”, height=3, wi

xlab = "I

pression(

size=1,

dth=3.25)

nitial

linetype="dashed",

ggsave(infeckernel, filename="kernelinfec.pdf"”, height=3, wi
exfit « extract(fit, permuted = FALSE, inc_warmup = FALSE)
plotdata < melt(exfit[,,"R0"])
tracefitRO < ggplot() +
geom_line(data = plotdata,
aes(x = iterations,
y = value,
color = factor(chains, labels = 1:st
options$chains))) +
labs(x = "Sample”, y = expression(R[@]), color

dth=3.25)

an_

= "Chain

© 00 N O Ut e W NN

[e T e e
O © 0 N O Ut e WD E O

21

27

28

29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

scale_color_brewer(palette="Greys") +
theme _bw ()

print(tracefitRo)

print(tracefitRo)
ggsave (tracefitRo, filename="traceplotRO_inc.pdf",
=6.5)

sso < as.shinystan(fit)
sso < launch_shinystan(sso)

ggsave (tracefitRe, filename="traceplotR0.pdf"”, height=4, width=6.5)

exfit <« extract(fit, permuted = FALSE, inc_warmup = TRUE)
plotdata + melt(exfit[,,"R0"])
tracefitRO < ggplot() +
geom_line(data = plotdata,
aes(x = iterations,
y = value,
color = factor(chains, labels = 1:stan_
options$chains))) +
labs(x = "Sample”, y = expression(R[@]), color = "Chain
"y o+
scale_color_brewer (palette="Greys") +
theme _bw ()

height=4, width

A.2 Full Stan code

Stan model code to be used with the preceding R code.

data {
int <lower=1> T;
real y[TI;
int <lower=1> N;
real h;

}

parameters {

real <lower=@, upper=10> RO ;
real <lower=@, upper=10> r;

73

© 00 N O Ut e W NN

W W W N NN DN DNNDNDNDNLDLN = = = = = = e
N m O © 00 9 O U i W N HFH O © 0 3 O Ut i Wi+~ O

33

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

real <lower=0,
real <lower=0,

upper=20>
upper=500>

sigma;
yor3l;

3
model {
real

real
real

S[T];
I[T];
RLTI;

SC1]
If1]
R[]

<- yo[1];
<- yo[2];
<- yo[3];
y[1]

normal (yo[2], sigma);

for (t in 2:T7) {
S[t] <- S[t-11]

I[t] <- I[t-1]
R[t] <- R[t-1]

+

h*(

+ +

if (y[t]l > 0) {
y[t] normal (I[t],
3

yo[1]l ~
yo[2] ~

normal (N - y[1], sigma);
normal (y[1], sigma);

RO lognormal (1,1);
r ~ lognormal (1,1);
sigma lognormal (1,1);

hx(S[t-1]*I[t-1]*xRO0*r/N
hx(I[t-1]*r);

- S[t-1]1*I[t-1]*R@*r/N);

- I[t-11*r);

sigma);

74

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Appendix B

Iterated Filtering

B.1 Full R code

This code will run all the indicated analysis and produce all plots.

library(deSolve)
library(ggplot2)
library(reshape2)
library(gridExtra)
library (Rcpp)

with(as.list(c(State,

B < RO*r/N
BSI < B*Sx*I
rI < rxI

dS = -BSI
dI = BSI - rI
dR = rlI

return(list(c(dsS,

1))

SIR < function(Time, State,

Pars) {

Pars)), {

dI,

dR)>))

75

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

T — 100
N < 500
sigma — 10
i_infec < 5

true_init_cond <« c(S = N - i_infec,
I = i_infec,
R = 0)
true_pars < c(R0 = 3.0,
r =20.1,
N = 500.0)

odeout < ode(true_init_cond, ©:T, SIR, true_pars)
trueTraj < odeout[, 3]

set.seed(1001)

infec_counts_raw < odeout[,3] + rnorm(T+1, @, sigma)

sourceCpp(paste(getwd(),"d_if2.cpp”,sep="/"))

paramdata < data.frame(if2(infec_counts, T+1, N))

76

infec_counts < ifelse(infec_counts_raw < @, @, infec_counts_raw)
g < qplot(0:T, odeout[,3], geom = "line”, xlab = "Time (weeks)", ylab
= "Infection Count"”) +
geom_point(aes(y = infec_counts)) +
theme _bw ()
print(g)

ggsave(g, filename="dataplot.pdf”, height=4, width=6.5)

colnames (paramdata) < c("R0O", "r", "sigma", "Sinit"”, "Iinit”, "Rinit"”
)
ROpoints < paramdata$Ro
ROkernel < qgplot(ROpoints, geom = "density”, xlab = expression(R[@]),
ylab = "frequency") +
geom_vline(aes(xintercept=true_pars[["R0"]]1), linetype="
dashed”, size=1, color="grey50") +
theme _bw ()

© 00 N O Ut e W NN

B W W W W W W W W W NN NDNDNDNDNDNDNDDL o e e e e e e e
O V0 ISR DD RO O 0T TR XN REO©OWN O U kW = O

NN
=

43

44
45

47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics
print (ROkernel)
ggsave (ROkernel, filename="kernelR0O.pdf"”, height=3, width=3.25)
rpoints < paramdata$r
rkernel < gplot(rpoints, geom = "density”, xlab = "r", ylab ="

frequency”) +

n

, size=1, color="grey50") +
theme _bw ()

print(rkernel)

sigmapoints ¢ paramdata$sigma

color="grey50") +
theme _bw ()

print(sigmakernel)
ggsave (sigmakernel, filename="kernelsigma.pdf”, height=3,

infecpoints < paramdata$Ilinit

infeckernel < qgplot(infecpoints, geom = "density”, xlab =
Infected”, ylab = "frequency”) +
geom_vline(aes(xintercept=true_init_cond[[’I’1]),
dashed”, size=1, color="grey50") +
theme _bw ()

print(infeckernel)
ggsave(infeckernel, filename="kernelinfec.pdf”, height=3,

grid.arrange (Rokernel, rkernel, sigmakernel, infeckernel,
nrow = 2)

pdf ("if2kernels.pdf”, height = 6.5, width = 6.5)

grid.arrange (Rokernel, rkernel, sigmakernel, infeckernel,
nrow = 2)
dev.off ()

ggsave (rkernel, filename="kernelr.pdf”, height=3, width=3.

geom_vline(aes(xintercept=true_pars[["r"1]1), linetype="dashed

25)

sigmakernel < gplot(sigmapoints, geom = "density”, xlab = expression(
sigma), ylab = "frequency”) +
geom_vline(aes(xintercept=sigma), linetype="dashed”, size=1,

width=3.25)

"Initial

linetype="

width=3.25)

ncol 2,

ncol

1
N

B.2 Full C++4 code

Stan model code to be used with the preceding R code.

7

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University

- Mathematics

#tdefine IO

double
double
double
double
double
double
double
double
double

3

double
double
double
double
double
double

3

#define Treal
#define ROtrue
#tdefine rtrue
#define Nreal
#define merr

RO ;

R@mea
rmean
sigma

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <time.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <cstdlib>
#include <fstream>

100
3.0
0.1
500.0
10.0
5.0

#include <Rcpp.h>
using namespace Rcpp;

struct Particle {

struct ParticleInfo {

n; double
; double
mean; double

Sinitmean; double
Iinitmean; double
Rinitmean; double

ROsd;
rsd;

sigmasd;
Sinitsd;
Iinitsd;
Rinitsd;

int timeval_subtract (double =*result,

timeval =xy);
int check_double(double x,double y);
void exp_euler_SIR(double h,

78

struct timeval =*x,

double t@, double tn, int N,

struct

Particle =

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

particle);

void copyParticle(Particle * dst, Particle * src);

void perturbParticles(Particle * particles, int N, int NP,
passnum, double coolrate);

bool isCollapsed(Particle * particles, int NP);

void particleDiagnostics(ParticleInfo x partInfo, Particle
particles, int NP);

NumericMatrix if2(NumericVector * data, int T, int N);

double randu();

double randn();

NumericMatrix if2(NumericVector data, int T, int N) {

int NP = 2500;
int nPasses = 50;
double coolrate = 0.975;
int i_infec = 10;

NumericMatrix paramdata(NP, 6);
srand (time (NULL));

double w[NPIJ;

Particle particles[NP];

Particle particles_old[NP];

printf("Initializing particle states\n");

for (int n = @; n < NP; n++) {
double R@can, rcan, sigmacan, Iinitcan;

do {

RO@can = ROtrue + ROtruexrandn();
} while (R@can < 0);
particles[n].R@ = ROcan;

do {

rcan = rtrue + rtrue*randn();
} while (rcan < 0);
particles[n].r = rcan;

do {

sigmacan = merr + merr*xrandn();
} while (sigmacan < 0);

79

int

*

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

particles[n].sigma

do {
Iinitcan =

particles[n].Sinit

particles[n].Iinit
particles[n].Rinit

printf ("Pass\n");

for (int pass = 0;

for (int n = 0;

particles[n].S

particles[n].I
particles[n].R

for

(int t = 1;

for (int n =

0;

pass < nPasses;
printf(”...%d / %d\n",

perturbParticles(particles,

n < NP;

t <T;

perturbParticles(particles,

exp_euler_SIR(1.0/10.0,

sigmacan;

i_infec + i_infec*randn();
} while (Iinitcan < @

|| N < Iinitcan);
N - Iinitcan;
Iinitcan;
0.0;

printf(”Starting filter\n");
printf("-------------—--

pass++) {

pass, nPasses);

N, NP, pass, coolrate);

n++) {

particles[n].Sinit;
particles[n].Iinit;
particles[n].Rinit;

t++) {

N, NP, pass, coolrate);

< NP; n++) {

0.0, 1.0, N, &particles[nl);

double y_diff

wln] =

double merr_par =

1.0/ (merr_par*sqrt(2.0*xM_PI)) * exp(
y_diff / (2.@xmerr_par*merr_par));

80

particles[n].sigma;
datalt] - particles[n].I;

- y_diffx

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

for (int n = 1; n < NP;

wln] += w[ln-1];

n++) {

for (int n = @; n < NP; n++){

for @; n < NP; n++) {

(int n =

double w_r =

int i = 0;

while (w_r > wl[i]) {
i++;

3

copyParticle (&particles[n],

}

ParticleInfo pInfo;
particleDiagnostics (&pInfo, particles,
printf("Parameter results (mean |
printf ("
printf ("R0o
printf("r
printf("sigma
printf(”"S_init
printf("I_init
printf("R_init

%f %f\n",
%f %f\n",
%f %f\n",
% %f\n",
%f %f\n",
%f %f\n",

pInfo
pInfo
pInfo

printf("\n");

for (int n = @; n < NP; n++) {

paramdata(n, @) = particles[n].R0;

81

copyParticle (&particles_old[n],

.R@Omean,
.rmean,

.sigmamean,
pInfo.Sinitmean,
pInfo.Iinitmean,
pInfo.Rinitmean,

&particles[nl]);

randu() * w[NP-11;

&particles_old[il]);

NP);

sd)\n");

pInfo.R0sd);
pInfo.rsd);
pInfo.sigmasd);
pInfo.Sinitsd);
pInfo.Iinitsd);
pInfo.Rinitsd);

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

3

particle) {

int num_steps

double I
double R

double RO =
double r =
double B =

for(int i

1
[

double dS
double dI
double dR

T H WD
+ 4+ o+
oo

particle->S
particle->I
particle->R

h*dS;
hxdI;
h*xdR;

paramdata(n, 1) = particles[n].r;

paramdata(n, 2) = particles[n].sigma;
paramdata(n, 3) = particles[n].Sinit;
paramdata(n, 4) = particles[n].Iinit;
paramdata(n, 5) = particles[n].Rinit;

return paramdata;

void exp_euler_SIR(double h, double t@, double tn,

= floor((tn-t@) / h);

double S = particle->S;
particle->I;
particle->R;

particle->R0;
particle->r;
RO * r / N;

i < num_steps; i++) {

- B*S*I;
B*S*xI - rx*I;
rxI;

O H On

82

int N,

Particle =

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

particles[n].Sinit N - Iinitcan;

void copyParticle(Particle * dst, Particle * src) {

83

void perturbParticles(Particle * particles, int N, int NP, int
passnum, double coolrate) {
double coolcoef = pow(coolrate, passnum);
double spreadR0 = coolcoef * ROtrue / 10.0;
double spreadr = coolcoef * rtrue / 10.0;
double spreadsigma = coolcoef * merr / 10.0;
double spreadIinit = coolcoef * I0 / 10.0;
double R@Ocan, rcan, sigmacan, Iinitcan;
for (int n = @; n < NP; n++) {
do {
RO@can = particles[n].R@ + spreadRO@xrandn();
} while (R@can < 0);
particles[n].R@ = R@can;
do {
rcan = particles[n].r + spreadr*xrandn();
} while (rcan < 0);
particles[n].r = rcan;
do {
sigmacan = particles[n].sigma + spreadsigma*randn();
} while (sigmacan < 0);
particles[n].sigma = sigmacan;
do {
Iinitcan = particles[n].Iinit + spreadlinit*randn();
} while (Iinitcan < @ || Iinitcan > 500);
particles[n].Iinit = Iinitcan;

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

dst->R0 =
dst->r =
dst->sigma =
dst->S =
dst->1I =
dst->R =
dst->Sinit =
dst->Iinit =
dst->Rinit =

bool retVal;

double ROmean
Iinitmean

for (int n =

ROmean
rmean
sigmamean
Sinitmean
Iinitmean
Rinitmean

for (int n =

src->R0O;
src->r;
src->sigma;
src->S;
src->1;
src->R;
src->Sinit;
src->Iinit;
src->Rinit;

bool isCollapsed(Particle * particles,

3

R@mean

rmean /=

sigmamean

Sinitmean /

Iinitmean /

Rinitmean /

double ROsd
Rinitsd =

= @, rmean = 0, si
= @, Rinitmean = 0;
@; n < NP; n++) {
+= particles[n].
+= particles[n].
+= particles[n].
+= particles[n].
+= particles[n].
+= particles[n].
= NP;
NP ;
= NP;
= NP;
= NP;
= NP;
=0, rsd = 0, sigma
9;
@; n < NP; n++) {

84

int NP) {

gmamean = @, Sinitmean = 0,

RO ;

sigma;
Sinit;
Iinit;
Rinit;

sd = 0, Sinitsd = @0, Iinitsd = 0,

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

retVal = tr
else

return retval;

ue;

retVal = false;

85

if ((R@sd + rsd + sigmasd) < 1e-5)

ROsd += (particles[n].R0 - R@Omean) * (particles[n].RO -
ROmean);
rsd += (particles[n]l.r - rmean) *x (particles[n].r -
rmean);
sigmasd += (particles[n].sigma - sigmamean) * (particles[n
].sigma - sigmamean);
Sinitsd += (particles[n].Sinit - Sinitmean) * (particles[n
1.Sinit - Sinitmean);
Iinitsd += (particles[n].Iinit - Iinitmean particles[n
].Iinit - Iinitmean);
Rinitsd += (particles[n].Rinit - Rinitmean particles[n
1.Rinit - Rinitmean);
3
ROsd /= NP;
rsd /= NP;
sigmasd /= NP;
Sinitsd /= NP;
Iinitsd /= NP;
Rinitsd /= NP;

}
void particleDiagnostics(ParticleInfo x partInfo, *
particles, int NP) {
double R@Omean = 0.0,
rmean = 0.0,
sigmamean = 0.0,
Sinitmean = 0.0,
Iinitmean = 0.0,
Rinitmean = 0.0;
for (int n = @; n < NP; n++) {
ROmean += particles[n].R0;
rmean += particles[n].r;
sigmamean += particles[n].sigma;
Sinitmean += particles[n].Sinit;
Iinitmean += particles[n].Iinit;

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

Rinitmean

3

R@mean =
rmean /=
sigmamean /=
Sinitmean /=

Iinitmean /=
Rinitmean =

double R@sd
rsd
sigmasd
Sinitsd
Iinitsd
Rinitsd
for (int n = 0;
ROsd +=
R@Omean
rsd +=
rmean);
sigmasd +=
1.sigma
Sinitsd +=
1.Sinit
Iinitsd +=
J.Iinit
Rinitsd +=
1.Rinit
3
Rosd =
rsd /=
sigmasd /=
Sinitsd /=
Iinitsd /=
Rinitsd =

partInfo->R0sd

partInfo->rmean
partInfo->rsd

partInfo->R@Omean

partInfo->sigmamean
partInfo->sigmasd

partInfo->Sinitmean

+=

NP ;
NP ;
NP ;
NP ;
NP ;
NP ;

[SEESEES ISR NN

NP; n++) {

(particles[n].R@ - R@Omean

)
(particles[n].

(particles[n].
- sigmamean);
(particles[n].
- Sinitmean);
(particles[n].
- Iinitmean);
(particles[n].
- Rinitmean);

ro-
sigma
Sinit
Iinit

Rinit

NP ;

NP ;

NP ;

NP ;

NP ;

NP ;
= ROmean;
= ROsd;
= sigmamean;
= sigmasd;
= rmean;
= rsd;

86

Sinitmean;

particles[n].Rinit;

sigmamean) * (
Sinitmean) * (
Iinitmean) * (

Rinitmean) * (

) * (particles[n].RO -

rmean) * (particles[n].r -

particles[n
particles[n
particles[n

particles[n

© 00 N O Ut e W NN

WoOWON N NN NNNDNNDLD & 2 s = e 2 e e
— O © 0 N0 R W N RO ©WNOo U W RO

32

M.Sc. Thesis - Dexter Barrows

3

partInfo->Sinitsd = Sinitsd;
partInfo->Iinitmean = Iinitmean;
partInfo->Iinitsd = Iinitsd;
partInfo->Rinitmean = Rinitmean;
partInfo->Rinitsd = Rinitsd;

double randu() {

return (double) rand() / (double) RAND_MAX;

double randn() {

double x1, x2, w, yl;

do {
x1 = 2.0 * randu() - 1.0;
X2 = 2.0 *x randu() - 1.0;
w = x1T * x1 + x2 * x2;

} while (' w >= 1.0);

w = sqrt((-2.0 x log(Cw)) / w);
yl = x1 * w;

return yi1;

87

McMaster University - Mathematics

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Appendix C

Parameter Fitting

C.1

SIR Forward Simulator

The basic Stochastic SIR model simulation function.

out < matrix(NA, nrow = (T+1),
RO < pars[[’R0’1]

r < pars[[’r’1]

N < pars[[’N’1]

eta < pars[[’eta’]]
berr <« pars[[’berr’]1]

S« yl[’s’1]
I+ y[[’I"]]
R« y[['R’1]

BO «— RO * r / N
B < B®

out[1,] + c(S,I,R,B)
h< 1 / steps

for (i in 1:(T*steps)) {

88

StocSIR < function(y, pars, T, steps) {

ncol

4)

© 00 N O Ut e W NN

WoOWON N NN NNNDNNDLD & 2 s = e 2 e e
— O © 0 N0 R W N RO ©WNOo U W RO

32

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

)

BSI < B*Sx*I
rI < rxI

dS < -BSI
dI « BSI - rI
dR < rI

S+ S + hxdS
I < I + hxdI
R+ R + h*dR

if (i %% steps ==
out[i/steps+1

)
»]

}

return(out)

B < exp(log(B) + eta*(log(B@®) - log(B)) + rnorm(1,

<~ c(S,I,R,B)

o,

berr)

89

Appendix D

Forecasting Frameworks

D.1 1IF2 Parametric Bootstrapping Function

The parametric bootstrapping machinery used to produce forecasts.

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

library(foreach)
library(parallel)
library(doParallel)
library (Rcpp)

if2_paraboot «+ function(if2data_parent, T, Tlim, steps, N, nTrials,
if2file, if2_s_file, stoc_sir_file, NP, nPasses, coolrate) {

source(stoc_sir_file)

if (nTrials < 2)
ntrials <« 2

paramdata_parent < data.frame(if2data_parent$paramdata)

names (paramdata_parent) < c("R0", "r", "sigma", "eta", "berr”, "
Sinit", "Iinit", "Rinit")

parmeans_parent < colMeans(paramdata_parent)

names (parmeans_parent) <« c("R0", "r", "sigma", "eta", "berr”, "
Sinit", "Iinit"”, "Rinit")

90

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

91

statedata_parent < data.frame(if2data_parent$statedata)
names (statedata_parent) <« c("S","I1","R","B")
statemeans_parent < colMeans(statedata_parent)
names (statemeans_parent) < c("S","I1","R","B")
trajectories < foreach(i = 1:nTrials, .combine = rbind, .packages
= "Rcpp"”) %dopar% {
source(stoc_sir_file)
pars < with(as.list(parmeans_parent),
c(RO = RO,
r=r,
N = N,
eta = eta,
berr = berr))
init_cond < with(as.list(parmeans_parent),
c(S = Sinit,
I = Iinit,
R = Rinit))
sdeout < StocSIR(init_cond, pars, Tlim + 1, steps)
colnames (sdeout) < c(’S’,’I’,’R’,’B")
counts_raw < sdeout[,’I’] + rnorm(dim(sdeout)[1], @, parmeans_
parent[[’sigma’1])
counts < ifelse(counts_raw < @, @, counts_raw)
rm(if2)
sourceCpp(if2file)
if2time + system.time(if2data <+ if2(counts, Tlim+1, N, NP,
nPasses, coolrate))
paramdata < data.frame(if2data$paramdata)
names (paramdata) < c("R0@", "r", "sigma", "eta", "berr”, "Sinit",
"Tinit"”, "Rinit")
parmeans < colMeans(paramdata)
names (parmeans) < c("R0", "r", "sigma", "eta", "berr", "Sinit",
Iinit", "Rinit")

"”

© 00 N O Ut e W NN

N NN N N e e e e e e
W N B O © 00 3O Ot i W N+ O

25

31

32
33

35
36
37
38
39
40
41
42
43
44
45
46
47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

pars < with(as.list(parmeans),

c(R0 = RO,
r=r,
N =N,
eta = eta,
berr = berr))
init_cond + c(S = statemeans_parent[[’S’]1],

I = statemeans_parent[[’I’1],
statemeans_parent[[’R’]])

sdeout_future < StocSIR(init_cond, pars, T-Tlim, steps)
colnames (sdeout_future) < c(’S’,’I’,’R’,’B")

return (c(counts = unname(sdeout_futurel[,’1I’1),

parmeans,
time = if2time[[’user.self’]1))

3

return(trajectories)

D.2 RStan Forward Simulator

The code used to reconstruct the state estimates, then project the trajectory forward
past data.

StocSIRstan < function(y, pars, T, steps, berrvec, bveclim) {
out < matrix(NA, nrow = (T+1), ncol = 4)
RO < pars[[’R0’ 1]
r < pars[[’r’1]

N < pars[[’N’]]
eta < pars[[’eta’]]

92

© 00 N O Ut e W NN

B W W W W W W W W W NN NDNDNDNDNDNDNDDL o e e e e e e e
O V0 ISR DD RO O 0T TR XN REO©OWN O U kW = O

NN
=

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

berr < pars[[’berr’1]

S+ y[[’s’1]
I <« y[[’I"1]
R« y[[’'R’]]

BO < RO * r / N
B < B0

out[1,] + c(S,I,R,B)

h+ 1 / steps

for (i in 1:(Txsteps)) {
if (i <= bveclim) {

B < exp(log(B) + etax(log(B0)
} else {

))
3

BSI < B*SxI
rl < rxI

dS <« -BSI
dI < BSI -
dR < rI

rl

+

h*dS
hxdI
hxdR

)
+

if (i %% steps Q)
out[i/steps+1,] < c(S,I,R,B)

b

return(out)

B < exp(log(B) + eta*(log(B0)

- log(B)) + berrvec[il])

- log(B)) + rnorm(1, @, berr

93

V]

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Appendix E

S-map and SIRS

E.1 SIRS R Function Code

R code to simulate the outlined SIRS function.

StocSIRS « function(y, pars, T,
out <~ matrix(NA, nrow = (T+1),

RO < pars[[’R0’ 1]

r < pars[[’r’1]

N < pars[[’'N’1]

eta < pars[[’eta’]]

berr <« pars[[’berr’]]
re < pars[[’re’1]

S+ yl[[’s’1]]
I+ y[[’I"]]
R+« y[['R"]]

B0 < RO x r / N
B < B@

out[1,] « c(S,I,R,B)
h+«< 1/ steps

for (i in 1:(Txsteps)) {

ncol

94

steps) {

= 4)

© 00 N O Ut e W NN

W W W W W W W W W WNNNDNDNDNDNNNDNRFE = R =R e e e
S © 00 N O Uk WNH O ©OWwWNO Uk WD KHFH O O© WO Ok Wi+ O

NN
=

43

44
45

47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

/ *pi/ *1)/
Bfac < exp(2*cos((2*pi/365)*i) - 2)

B < exp(log(B) + eta*(log(B®) - log(B)) + rnorm(1, @, berr))

BSI < Bfac*B*S*I
rl < rxI
reR < re%*R

dS < -BSI + reR
dI < BSI - rI
dR < rI - reR

S+« S + hx*dS
I « I + hxdI *
R < R + hx*dR *

if (i %% steps == 0)
out[i/steps+1,] + c(S,I,R,B)

b

colnames(out) « c("S","I","R","B")
return(out)

E.2 SIRS HMC R Function Code

R code to simulate the outlined SIRS function with HMC state reconstruction.

95

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

StocSIRSstan < function(y, pars, T,

out < matrix(NA, nrow = (T+1), nco
RO < pars[[’R0’]]

r < pars[[’r’]]

N < pars[[’N’]]

eta <« pars[[’eta’]]

berr < pars[[’berr’1]

re < pars[[’re’]]

S« y[[’S’ 1]
I« y[[’I’]]
R+« y[['R’1]]

B0 < RO * r / N
B <+ B0

out[1,] + c(S,I,R,B)

h+ 1 / steps

for (i in 1:(T*xsteps)) {

Bfac <+ exp(2*cos((2*pi/365)*i) -
if (i <= bveclim) {

} else {
B < exp(log(B) + etax(log
))
}

BSI < Bfac*BxSx*I
rl < rxI
reR < re*R

dS « -BSI + reR
dI < BSI - rI
dR < rI -reR

h*dS
hxdI *
hxdR *

S+ S +
I« 1+
R+ R +

if (i %% steps Q)
out[i/steps+1,] < c(S,I,R,B)

96

B < exp(log(B) + eta*(log(B0) -

steps, berrvec, bveclim) {

1 = 4)

2)

log(B)) + berrvecl[il])

(B2) - log(B)) + rnorm(1, @, berr

© 00 N O Ut e W NN

[e T e e
O © 0 N O Ut e WD E O

DO
[\

23

24

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

3

return(out)

E.3 SMAP Code

This code implements an SMAP function on a user-provided time series.

library(pracma)

smap < function(data, E, theta, stepsAhead) {

tseries <« as.vector(data)
liblen < length(tseries) - E + 1 - stepsAhead
lib < matrix(NA, liblen, E)

for (i in 1:E) {
lib[,i] « tseries[(E-i+1):(liblen+E-i)]
3

tslen < length(tseries)
predictee « rev(t(as.matrix(tseries[(tslen-E+1):tslenl])))
predictions < numeric(stepsAhead)

97

© 00 N O Ut e W NN

W W W W NN NDNNDNDNDDNDNDNLDLN H = = = = e e e
W N H O © 00 3 O U b W KN HFHO®©WOW-NO ULk W+~ O

34

40

41

42

43
44

45
46
47

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

}

for(i in 1:stepsAhead) {

predmat < repmat(predictee, liblen, 1)
distances < sqrt(rowSums(abs(lib - predmat)”2))
meanDist < mean(distances)

weights < exp(- (theta x distances) / meanDist)

preds < tseries[(E+i):(liblen+E+i-1)]

A ¢ cbind(rep(1.0, liblen), lib) * repmat(as.matrix(weights
), 1, E+1)
B < as.matrix(preds * weights)

Asvd < svd(A)
C + Asvd$v %*% diag(1/Asvd$d) %*x% t(Asvd$u) %*x% B

predsum < sum(C x c(1,predictee))

predictions[i] < predsum

return(predictions)

E.4 SMAP Parameter Optimization Code

This code determines the optimal parameter values to be used by the S-map algo-

rithm.

98

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

library(deSolve)
library(ggplot2)
library(RColorBrewer)
library(pracma)

set.seed(1010)

[}

stoc_sirs_file <« paste(getwd(),
sep = "/")

smap_file +— paste(getwd(), "smap.r",

source(stoc_sirs_file)

source(smap_file)

T — 6%x52
Tlim <+ T - 52
i_infec < 10
steps — 7
N <~ 500
sigma)

true_pars «< c(RO = 3.0,

r =20.1,
N = 500,
eta = 0.5,
berr = 0.5,
re = 1)
true_init_cond < c(S = N - i_infec,
I i_infec,
R = 0)

Elist < 1:20

thetalist < 10xexp(-(seq(0,9.5,0.5)))
nTrials < 100

ssemat < matrix (NA, 20, 20)

for (i in 1:1length(Elist)) {
for (j in 1:length(thetalist)) {

ssemean < @

for (k in 1:nTrials) {

99

sep =

"../sir-functions"”,

n/n)

"StocSIRS.r",

© 00 N O Ut e W NN

W W W W W W W W W WNNNDNDNDNDNNNDNRFE = R =R e e e
S © 00 N O Uk WNH O ©OWwWNO Uk WD KHFH O O© WO Ok Wi+ O

NN
=

43

44

45
46

47

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

E + Elist[i]
theta «+ thetalist[j]

sdeout < StocSIRS(true_init_cond, true_pars, T, steps)

infec_counts_raw « sdeout[1:(Tlim+1),’I’] + rnorm(Tlim+1,0,
sigma)

infec_counts < ifelse(infec_counts_raw < @, 0, infec_counts_
raw)

predictions < smap(infec_counts, E, theta, 52)

err < sdeout[(Tlim+2):dim(sdeout)[1],’I’] - predictions
sse < sum(err"2)

ssemean < ssemean + (sse / nTrials)

3

ssemat[i,j] < ssemean

3

quartz ()

image(-ssemat)

quartz ()

filled.contour (-ssemat)

mininds < which(ssemat==min(ssemat),arr.ind=TRUE)

Emin < Elist[mininds[, row’]]
thetamin < thetalist[mininds[, ’col’]]

print (Emin)
print(thetamin)

E.5 RStan SIRS Code

This code implements a periodic SIRS model in Rstan.

100

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

data {
int <lower=1> T;
real y[T1;
int <lower=1> N;
real h;

}

parameters {
real <lower=@, upper=10>
real <lower=@, upper=10>
real <lower=@, upper=10>
real <lower=@, upper=20>
real <lower=@, upper=30>
real <lower=0, upper=1>

attraction strength
real <lower=@, upper=1>
real <lower=-1.5, upper=1.5>

3

model {

real S[T];
real I[T];
real RL[T];
real B[TI1;
real BO;

real pi;
real Bfac;

pi < 3.1415926535;
BO <~ RO *x r / N;
B[1] <« BO;

S[1] « N - Iinit;
I[1] « Iinit;
R[1] < 0.0;

for (t in 2:T7) {

Bnoise[t]

//
/7
/7
/7

normal (@, berr);
Bfac < exp(2*cos((2*pi/365)*t)

101

total integration steps
observed number of cases
population size

step size

RO ; // RO

r; // recovery rate

re; // resusceptibility rate
sigma; // observation error
Iinit; // initial infected
eta; // geometric walk

berr; // beta walk noise
Bnoise[T]; // Beta vector

- 2);

© 00 N O Ut e W NN

[T T S R i e T
© 0 N O Utk W N = O

NN
=)

22

23

24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

Bnoisel[t]);

S[t] <~ S[t-11 + hx(

BL{t] < exp(log(B@) + eta * (log(BL[t-11)

- log(B@)) +

- Bfac*B[t]*S[t-1]1*xI[t-1] + re*xR[t-1]);

Ift] « I[t-1]

+ hx(Bfac*B[t]*S[t-11*xI[t-1]

- I[t-11*r);

R[t] <« R[t-1] + hx(I[t-1]*r - re*R[t-1]);
if (y[tl > 0) {
y[t] normal(I[t], sigma);
3
}
RO " lognormal(1,1);
r “ lognormal(1,1);
sigma lognormal (1,1);
re " lognormal(1,1);
Iinit " normal(y[1], sigma);

E.6 1IF2 SIRS Code

This code implements a periodic SIRS model using IF2 in C++.

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <time.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <cstdlib>
#include <fstream>
#define Treal 100
#define ROtrue 3.0
#define rtrue 0.1
#define retrue 0.05
#define Nreal 500.0
#define etatrue 0.5

102

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

#define berrtrue 0.5
#define merr 5.0
#tdefine 10 5.0
#define PSC 0.5

#include <Rcpp.h>
using namespace Rcpp;

struct State {
double S;
double I;
double R;
3

struct Particle {
double RO;
double
double
double
double
double
double
double
double
double
double
double
double

3

struct ParticleInfo {
double R@Omean;
double rmean;
double remean;
double sigmamean;
double etamean;
double berrmean;
double Sinitmean;
double Iinitmean;
double Rinitmean;

double
double
double
double
double
double
double
double
double

ROsd;
rsd;
resd;
sigmasd
etasd;
berrsd;
Sinitsd
Iinitsd
Rinitsd
I

int timeval_subtract (double =*result,
timeval *y);

int check_double(double x,double y);

void exp_euler_SIRS(double h,
particle);

void copyParticle(Particle =* dst,

103

double to,

’

’
’

’

struct timeval *x, struct

double tn, int N, Particle =*

Particle * src);

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

passnum, double coolrate);
particles, int NP);

void getStateMeans(State * state

NumericMatrix

double randu();

double randn();

nPasses, double coolrate) {

int npar = 9;
NumericMatrix
NumericMatrix
NumericMatrix
NumericMatrix
NumericMatrix

paramdata (NP,
means (nPasses,
sds(nPasses,
statemeans (T,
statedata (NP,

void perturbParticles(Particle * particles,
void particleDiagnostics(ParticleInfo * partInfo,

, Particlex particles,
if2(NumericVector =* data,

Rcpp::List if2_sirs(NumericVector data,

int N, int NP, int

Particle x

int NP);

int T, int N);

int T, int N, int NP, int

npar);
npar) ;

3);
4);

npar);

srand(time (NULL));
double w[NPI1;
Particle particles[NP];

Particle particles_old[NP];

printf("Initializing particle states\n");

for (int n = @; n < NP; n++) {

double RO@can,
berrcan;

rcan, recan, sigmacan,

do {

RO@can = ROtrue + ROtruexrandn();
} while (R@can < 0);
particles[n].R@ = ROcan;

do {

rcan = rtrue + rtrue*randn();
} while (rcan < 0);
particles[n].r = rcan;

do {
recan = retrue + retrue*randn();
} while (recan < 0);

104

Iinitcan,

etacan,

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

particles[n].re = recan;
particles[n].B = (double) R@can * rcan / N;

do {

sigmacan = merr + merrxrandn();
} while (sigmacan < 0);
particles[n].sigma = sigmacan;

do {

etacan = etatrue + PSCxetatrue*randn();
} while (etacan < @ || etacan > 1);
particles[n].eta = etacan;

do {

berrcan = berrtrue + PSCxberrtruexrandn();
} while (berrcan < 0);
particles[n].berr = berrcan;

do {

Iinitcan = I0 + I@*randn();
} while (Iinitcan < @ || N < Iinitcan);
particles[n].Sinit N - Iinitcan;
particles[n].Iinit Iinitcan;
particles[n].Rinit 0.0;

printf(”Starting filter\n");
printf("--------------- \n"y;
printf("Pass\n”);

for (int pass = 0; pass < nPasses; pass++) {

printf("...%d / %d\n", pass, nPasses);

for (int n = @; n < NP; n++) {

particles[n].S = particles[n].Sinit;
particles[n].I = particles[n].Iinit;
particles[n].R = particles[n].Rinit;
particles[n].B = (double) particles[n].R@ * particles[n].
r / N;
3
if (pass == (nPasses-1)) {

105

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

for

State sMeans;
getStateMeans (&sMeans, particles, NP);

statemeans (0,0) = sMeans.S;
statemeans(®,1) = sMeans.I;
statemeans(0,2) = sMeans.R;
(int t = 1; t < T; t++) {

for (int n = @; n < NP; n++) {

for

for

for

exp_euler_SIRS(1.0/7.0, (double) t-1, (double) t, N,

&particles[nl);

double merr_par = particles[n].sigma;
double y_diff

datal[t] - particles[n].I;

wln]l = 1.0/(merr_par*sqrt(2.0*M_PI)) x exp(- y_diff=*

y_diff / (2.@0*merr_parxmerr_par));

(int n = 1; n < NP; n++) {
wln] += w[ln-1];

(int n = @; n < NP; n++){
copyParticle (&particles_old[n], &particles[n]);

(int n = @; n < NP; n++) {

double w_r = randu() * w[NP-17;
int i = 0;
while (w_r > wl[il]) {

i++;

copyParticle (&particles[n], &particles_old[i]);

if (t < (T-1))

perturbParticles(particles, N, NP, pass, coolrate);

106

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

if (pass ==
State sMeans;

statemeans(t,0)
statemeans(t,1)
statemeans(t,2)

getStateMeans (&sMeans,

(nPasses-1)) {

particles, NP);
sMeans.S;
sMeans.I;

sMeans .R;

b

means (pass
means (pass
means (pass
means (pass
means (pass
means (pass
means (pass
means (pass
means (pass

sds(pass,
sds (pass
sds (pass,
sds (pass,
sds (pass,
sds (pass,
sds (pass,
sds (pass,
sds(pass,

3

printf ("
printf ("R0O
printf("r
printf("re
printf("sigma
printf("eta
printf ("berr

2)
D)
2)
3)
4)
5)
6)
7)
8)

2)
D,
2)
3)
4)
5)
6)
7)
8)

ParticleInfo pInfo;
particleDiagnostics (&pInfo,

= pInfo.
= pInfo.
= pInfo.
= pInfo.
= pInfo.
= pInfo.
= pInfo.
= pInfo.
= pInfo.

pInfo.
pInfo.
pInfo.
pInfo.s
pInfo.e
pInfo.
pInfo.
pInfo.I
pInfo.

ParticleInfo pInfo;
particleDiagnostics (&pInfo,

printf("Parameter results (mean |

%f
%f
%f
%t
%f

%f\n”
%f\n”
%f\n”
%f\n”
%f\n”

%f %f\n",

particles, NP);
ROmean;

rmean;

remean;

sigmamean;

etamean;

berrmean;

Sinitmean;
Iinitmean;
Rinitmean;

ROsd;
rsd;
resd;

igmasd;
tasd;

berrsd;
Sinitsd;

initsd;

Rinitsd;

if (pass < (nPasses + 1))
perturbParticles(particles,

N, NP, pass, coolrate);

particles, NP);

sd)\n");
, pInfo.

, pInfo.
, pInfo.

ROmean, pInfo.R0Osd);
rmean, pInfo.rsd);

remean, pInfo.resd);

, pInfo.sigmamean, pInfo.sigmasd);
, pInfo.etamean, pInfo.etasd);

pInfo.berrmean, pInfo.berrsd);

107

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

printf(”"S_init
printf("I_init
printf("R_init

%f %f\n",
%f %f\n",
%f %f\n",

pInfo.Sinitmean,

pInfo.Iinitmean,
pInfo.Rinitmean,

pInfo.Sinitsd);

pInfo.Iinitsd);
pInfo.Rinitsd);

printf("\n");

for (int n = @; n < NP; n++) {
paramdata(n, @) = particles[n].R0O;
paramdata(n, 1) = particles[n].r;
paramdata(n, 2) = particles[n].re;
paramdata(n, 3) = particles[n].sigma;
paramdata(n, 4) = particles[n].eta;
paramdata(n, 5) = particles[n].berr;
paramdata(n, 6) = particles[n].Sinit;
paramdata(n, 7) = particles[n].Iinit;
paramdata(n, 8) = particles[n].Rinit;

3

for (int n = @; n < NP; n++) {
statedata(n, @) = particles[n].S;
statedata(n, 1) = particles[n].I;
statedata(n, 2) = particles[n].R;
statedata(n, 3) = particles[n].B;

3

return Rcpp::List::create(

void exp_euler_SIRS(double h,

double to,

Rcpp::Named("paramdata”) = paramdata,
Rcpp::Named("means”) = means,
Rcpp::Named("statemeans”") =
statemeans,
Rcpp::Named("statedata”) = statedata,

Rcpp::Named("sds"”) = sds);

double tn, int N, Particle *

108

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

particle) {
int num_steps = floor((tn-t@) / h);

double S = particle->S;

double I = particle->I;

double R = particle->R;

double RO = particle->R0;
double r = particle->r;
double re = particle->re;
double B@ = RO * r / N;
double eta = particle->eta;
double berr = particle->berr;

double B = particle->B;

for(int i = @; i < num_steps; i++) {

double Bfac = exp(2*xcos((2*M_PI/365)*(t@*xnum_steps+i)) - 2);
B = exp(log(B) + eta*x(log(B@) - log(B)) + berrxrandn());

double BSI = Bfac*B*Sx*I;
double rI = rx*I;

double reR = re*R;
double dS = - BSI + reR;
double dI = BSI - rI;
double dR = rI - reR;

S += hxdS;

I += hxdI;

R += hxdR;

3

particle->S =
particle->I =
particle->R =
particle->B =

W o HW»

109

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

void perturbParticles(Particle * particles, int N, int NP, int
passnum, double coolrate) {

double coolcoef = pow(coolrate, passnum);

double spreadR0 = coolcoef x ROtrue / 10.0;
double spreadr = coolcoef *x rtrue / 10.0;
double spreadre = coolcoef * retrue / 10.0;
double spreadsigma = coolcoef * merr / 10.0;
double spreadIinit = coolcoef * I0Q / 10.0;
double spreadeta = coolcoef * etatrue / 10.0;
double spreadberr = coolcoef x berrtrue / 10.0;

double R@can, rcan, recan, sigmacan, Iinitcan, etacan, berrcan;
for (int n = @; n < NP; n++) {

do {

RO@can = particles[n].RQ + spreadRO@*randn();
} while (R@can < 0);
particles[n].R@ = R@can;

do {

rcan = particles[n].r + spreadr*randn();
} while (rcan < 0);
particles[n].r = rcan;

do {

recan = particles[n].re + spreadre*randn();
} while (recan < 0);
particles[n].re = recan;

do {

sigmacan = particles[n].sigma + spreadsigma*randn();
} while (sigmacan < 0);
particles[n].sigma = sigmacan;

do {

etacan = particles[n].eta + PSC*spreadeta*xrandn();
} while (etacan < @ || etacan > 1);
particles[n].eta = etacan;

do {

berrcan = particles[n].berr + PSCxspreadberr*randn();
} while (berrcan < 0);
particles[n].berr = berrcan;

110

McMaster University - Mathematics

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

do {

Iinitcan = particles[n].Iinit + spreadIlinit*randn();

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

} while (Iinitcan < @ ||
particles[n].Iinit =
particles[n].Sinit

void copyParticle(Particle =* dst,

dst->R0
dst->r
dst->re
dst->sigma =
dst->eta
dst->berr =
dst->B
dst->S

dst->1I

dst->R
dst->Sinit =
dst->Iinit =
dst->Rinit =

Iinitcan > 500);
Iinitcan;
N - Iinitcan;

src->R0O;

= src->r;
= src->re;

src->sigma;

= src->eta;

src->berr;

= src->B;
= src->S;
= src->I;
= src->R;

src->Sinit;
src->Iinit;
src->Rinit;

void particleDiagnostics(ParticleInfo x partInfo,

particles,

double

for (int n = 0;

R@Omean
rmean
remean
sigmamean
etamean
berrmean
Sinitmean
Iinitmean
Rinitmean

R@mean +=
rmean +=

int NP) {

n < NP;

I
[SEEEE RN RIS I SN
[SEEEE RN RN IR IS I N

n++) {

particles[n].R0O;
particles[n].r;

111

Particle * src) {

Particle =

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

112

remean += particles[n].re;
etamean += particles[n].eta,
berrmean += particles[n].berr,
sigmamean += particles[n].sigma;
Sinitmean += particles[n].Sinit;
Iinitmean += particles[n].Iinit;
Rinitmean += particles[n].Rinit;
3
R@Omean = NP;
rmean /= NP;
remean = NP;
sigmamean /= NP;
etamean = NP;
berrmean /= NP;
Sinitmean /= NP;
Iinitmean = NP;
Rinitmean /= NP;
double ROsd = 0.0,
rsd = 0.0,
resd = 0.0,
sigmasd 0.9,
etasd = 0.0,
berrsd = 0.0,
Sinitsd 0.0,
Iinitsd 0.0,
Rinitsd = 0.0;
for (int n = @; n < NP; n++) {
ROsd += (particles[n].R0 - ROmean) * (particles[n].R0O -
ROmean);
rsd += (particles[n].r - rmean) * (particles[n]l.r -
rmean);
resd += (particles[n].re - rmean) * (particles[n].re -
rmean);
sigmasd += (particles[n].sigma - sigmamean) * (particles[n
]l.sigma - sigmamean);
etasd += (particles[n].eta - etamean) * (particles[n].
eta - etamean);
berrsd += (particles[n].berr - berrmean) * (particles[n].
berr - berrmean);
Sinitsd += (particles[n].Sinit - Sinitmean) * (particles[n
]1.Sinit - Sinitmean);
Iinitsd += (particles[n].Iinit - Iinitmean) x (particles[n
].Iinit - Iinitmean);
Rinitsd += (particles[n].Rinit - Rinitmean) * (particles[n

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

partInfo->R@Omean
partInfo->R0sd
partInfo->rmean
partInfo->rsd
partInfo->remean
partInfo->resd
partInfo->sigmamean
partInfo->sigmasd
partInfo->etamean
partInfo->etasd
partInfo->berrmean
partInfo->berrsd
partInfo->Sinitmean
partInfo->Sinitsd
partInfo->Iinitmean
partInfo->Iinitsd
partInfo->Rinitmean
partInfo->Rinitsd

double randu() {

Smean +=
Imean +=
Rmean +=

].Rinit - Rinitmean);

3

ROsd = NP;
rsd /= NP;
resd /= NP;
sigmasd /= NP;
etasd /= NP;
berrsd = NP;
Sinitsd /= NP;
Iinitsd /= NP;
Rinitsd = NP;

ROmean;
ROsd;
rmean;
rsd;
remean;
resd;
sigmamean;
sigmasd;
etamean;
etasd;
berrmean;
berrsd;
Sinitmean;
Sinitsd;
Iinitmean;
Iinitsd;
Rinitmean;
Rinitsd;

return (double) rand() / (double) RAND_MAX;

}

void getStateMeans(State * state, Particlex particles,
double Smean = @, Imean = @, Rmean = 0;
for (int n = @; n < NP; n++) {

particles[n].S;
particles[n].I;
particles[n].R;

113

int NP)

{

© 00 N O Ut e W NN

NN N N = s e e e e e
W N H O © 003 O O i W N+~ O

24

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

state->S = (double) Smean / NP;
state->I = (double) Imean / NP;
state->R = (double) Rmean / NP;

double randn() {
double x1, x2, w, yl;

do {
x1 = 2.0 * randu() -
X2 = 2.0 * randu() -
w = x1 *x x1 + x2 * x2;
} while (w >= 1.0);

1.0;
1.0;

’

w = sqrt((-2.0 * log(w)) / w);
y1 = x1 * w;

return yi1;

114

V]

w

© 00 N OUt

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Appendix F

Spatial Epidemics

F.1 Spatial SIR R Function Code

R code to simulate the outlined Spatial SIR function.

StocSSIR < function(ymat, pars, T, steps, neinum, neibmat) {

nloc < dim(ymat)[1]

out <« array(NA, c(nloc, 4, T+1), dimnames = list(NULL, c("S","I",
"R7LVBTY,ONULL))

115

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

BSI < numeric(nloc)
rI « numeric(nloc)

RO + pars[[’R0’1]]

r < pars[[’r’1]

N < pars[[’N’1]]

eta < pars[[’eta’]]
berr <« pars[[’berr’]1]
phi < pars[[’phi’1]

BO < rep(RO*xr/N, nloc)

S+ ymat[,’S’]

I+ ymat[,’1°]

R < ymat[,’ R’]

B < B®

out[,,1] + cbhind(ymat, B®)

h<+« 1 / steps

for (i in 1:(T*xsteps)) {

B < exp(log(B) + eta*(log(B0)

berr))

for (loc in 1:nloc) {
n < neinum[loc]

sphi <~ 1 - phi*(n/(n+1))

ophi < phi/(n+1)

nBIsum < B[neibmat[loc,1:n]]

- log(B)) + rnorm(nloc,

%*% I[neibmat[loc,1:n]]

0,

BSI[loc] < S[locl*(sphi*B[loc]*I[loc] + ophi*nBIsum)

3

rI « rxI

dS < -BSI

dI < BSI - rI
dR + rlI

S+ S + h*dS
I « I + hxdI
R+ R + h*dR

if (i %% steps == 0) {

out[,,i/steps+1] < cbind(S,I,R,B)

3

116

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

3

return(out)

© 0 N O Utk W N
-

[T T S R i e T
© 0 N O Utk W N = O

NN
=)

» F.2 Spatial SIR HMC R Function Code

23 R code to simulate the outlined Spatial SIR function with HMC state reconstruc-
24 tion.

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 StocSSIRstan < function(ymat, pars, T, steps, neinum, neibmat,
43 berrmat, bmatlim) {

44
45
46 nloc + dim(ymat)[1]
47

117

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

out < array(NA, c(nloc, 4, T+1), dimnames = list(NULL, c("S","I",
HRH’HBH), NULL))

BSI < numeric(nloc)
rI < numeric(nloc)

RO < pars[[’R0’1]

r < pars[[’'r’1]

N < pars[[’N’1]

eta < pars[[’eta’]]
berr < pars[[’berr’1]]
phi < pars[[’phi’]]

BO < rep(RO*r/N, nloc)

S < ymat[,’S’]
I < ymat[, ' I"]
R < ymat[, ' R’]
B < B©

outl[,,1] « cbind(ymat, BQ)
h<+ 1 / steps
for (i in 1:(T*xsteps)) {

if (i <= bmatlim) {
B < exp(log(B) + eta*(log(B®) - log(B)) + berrmat[,i])
} else {
B < exp(log(B) + eta*(log(B0®) - log(B)) + rnorm(nloc, 0,
berr))

for (loc in 1:nloc) {
n < neinum[loc]
sphi < 1 - phix(n/(n+1))
ophi < phi/(n+1)
nBIsum < B[neibmat[loc,1:n]] %*% I[neibmat[loc,1:n]]
BSI[loc] < S[locl*(sphi*B[loc]*I[loc] + ophi*nBIsum)
3

rI < rxI

dS < -BSI

118

© 00 N O Ut e W NN

NN NN N KN e e e e e e e
CU e W N H O © 00 9 O Ut v W N+ O

26

32

33

34
35

36
37
38
39
40
41
42
43
44
45
46

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

dI < BSI - rI
dR <+ rI

S+ S + h*dS
I «+ I + hxdI
R+ R + h*dR

if (i %% steps == 0)
outl[,,i/steps+1] < cbind(S,I,R,B)

3

return(out)

F.3 RStan Spatial SIR Code

This code implements a Spatial SIR model in Rstan.

data {
int <lower=1> T; // total integration steps
int <lower=1> nloc; // number of locations
real y[nloc, T1J; // observed number of cases
int <lower=1> N; // population size
real h; // step size

119

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

<lower=0>
each location has

int

BO « RO *x r / N;

for (loc in

Bnoise[loc,

neinum[nloc];

int neibmat[nloc, nloc];
each location
}
parameters {
real <lower=@, upper=10> RO ;
real <lower=@, upper=10> r;
real <lower=@, upper=20> sigma;
real <lower=@, upper=30> Iinit[nloc];
infected for each location
real <lower=@, upper=1> eta;
attraction strength
real <lower=@, upper=1> berr;
real <lower=-1.5, upper=1.5> Bnoisel[nloc,T];
real <lower=@, upper=1> phi;
strength
}
model {
real S[nloc, T1J;
real I[nloc, TIJ;
real R[nloc, T1;
real B[nloc, T1;
real BO;
real BSI[nloc, T1;
real rI[nloc, T1;
int n;
real sphi;
real ophi;
real nBIsum;

Iinit[loc];

for (loc in 1:nloc) {
S[loc, 1]+ N -
I[loc, 1] < Iinit[loc];
R[loc, 1] «+ 0.0;
B[loc, 1] «+ BO;

3

for (t in 2:T7) {

1:nloc) {

t] normal (@, berr);

120

// number of neighbors

// neighbor list for

// RO

// recovery rate

// observation error
// initial

// geometric walk
// beta walk noise

// Beta vector
// interconnectivity

© 00 N O Ut e W NN

WO NN NN NN NN £ 2 2o s e 2
S O 0 N0 R W RO © WO U W RO

31

37

38

39
40

41
42
43
44
45
46
47

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

B[loc, t] < exp(log(B[loc, t-1]) + eta * (log(BO®) - log
(B[loc, t-1]1)) + Bnoise[loc, t]);
n < neinum[loc];
sphi + 1.0 - phix(n/(n+1.0));
ophi < phi/(n+1.0);
nBIsum < 0.0;
for (j in 1:n)
nBIsum < nBIsum + B[neibmat[loc, jJ], t-1]1 * I[neibmat
[loc, j1, t-11;
BSI[loc, t] < S[loc, t-1]x(sphi*B[loc, t-1]JxI[loc, t-1]
+ ophi*nBIsum);
rIifloc, t] <« rxI[loc, t-11;
S[loc, t] < S[loc, t-1] + hx(- BSI[loc, t]);
I[loc, t] < I[loc, t-1] + hx(BSI[loc, t] - rI[loc, t1);
R[loc, t] « R[loc, t-11 + hx(rI[loc, t1);
if (y[loc, t]1 > @) {
y[loc, t] normal(I[loc, t], sigma);
3
3
3
RO lognormal (1,1);
r " lognormal(1,1);
sigma lognormal (1,1);
for (loc in 1:nloc) {
Iinit[loc] normal (y[loc, 1], sigma);
3
}

F.4 1IF2 Spatial SIR

Code

This code implements a Spatial SIR model using IF2 in C++.

#include <stdio.h>

121

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

<math.h>
<sys/time.h>
<time.h>
<stdlib.h>
<string>
<cmath>
<cstdlib>
<fstream>

#include
#include
#include
#include
#include
#include
#include
#include

#define
#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#tdefine
#tdefine

()

[}
(S22 B &) BN S IE I G IO
[

Treal
ROtrue
rtrue
Nreal
etatrue
berrtrue
phitrue
merr

I0

O - © 00 U1l w —
. ®
[}

S

#define PSC 0.5

#include <Rcpp.h>
using namespace Rcpp;

struct Particle {
double RO;
double r;
double sigma;
double eta;
double berr;
double
double =
double
double
double
double

3

int timeval_subtract (double =*result,
timeval *y);
int check_double(double x,double y);

ND;
void exp_euler_SSIR(double h,
particle,

double to,

NumericVector neinum,
nloc) ;
void copyParticle(Particle =* dst,

122

struct timeval =*x,

void initializeParticles(Particle ** particles,

Particle * src,
void perturbParticles(Particle * particles,

struct

int NP, int nloc, int

double tn, int N, Particle *

NumericMatrix neibmat, int
int nloc);

int N, int NP, int nloc,

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

int passnum, double coolrate);
double randu();
double randn();

nPasses, double coolrate, NumericVector neinum,
neibmat, int nloc) {

NumericMatrix paramdata (NP, 6);

NumericMatrix initInfec(nloc, NP);
NumericMatrix infecmeans(nloc, T);

NumericMatrix finalstate(nloc, 4);

srand(time (NULL));

double w[NP];

printf("Initializing particle states\n");
Particle * particles = NULL;

Particle * particles_old = NULL;

initializeParticles (&particles, NP, nloc, N);
initializeParticles (&particles_old, NP, nloc,

printf(”Starting filter\n");
pl’intf(” ——————————————— \n”);
printf("Pass\n");

for (int pass = 0; pass < nPasses; pass++) {

printf(”...%d / %d\n", pass, nPasses);

for (int n = @; n < NP; n++) {
for (int loc = @; loc < nloc; loc++) {
particles[n].S[loc] = N - particle
particles[n].I[loc] = particles[n]
particles[n].R[loc] = 0.09;
particles[n].B[loc] = (double) par
particles[n].r / N;

123

Rcpp::List if2_spa(NumericMatrix data, int T, int N, int NP, int

NumericMatrix

N);

s[n].Iinit[loc];

.Iinit[loc];

ticles[n].RO =

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

if (pass == (nPasses-1)) {
double means[nloc];
for (int loc = @; loc < nloc; loc++) {
means[loc] = 0.0;
for (int n = @; n < NP; n++) {

means[loc] += particles[n].I[loc] / NP;

double w_r =

int i = 0;

while (w_r > w[il]) {
i++;

randu() * w[NP-17;

3

124

}
infecmeans(loc, @) = means[loc];
i
3
for (int t = 1; t < T; t++) {
for (int n = @; n < NP; n++) {
exp_euler_SSIR(1.0/7.0, 0.0, 1.0, N, &particles[n],
neinum, neibmat, nloc);
double merr_par = particles[n].sigma;
wln] = 1.0;
for (int loc = 0; loc < nloc; loc++) {
double y_diff = data(loc, t) - particles[n].I[
loc];
wln]l *= 1.0/(merr_parxsqrt(2.0*xM_PI)) x exp(-
y_diffxy_diff / (2.0*merr_par*merr_par));
}
i
for (int n = 1; n < NP; n++) {
wlnl += wln-11;
i
for (int n = @; n < NP; n++){
copyParticle (&particles_old[n], &particles[n], nloc);
3
for (int n = @; n < NP; n++) {

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

copyParticle (&particles[n],

if (t < (T-1))
perturbParticles(particles,
coolrate);

if (pass == (nPasses-1)) {
double means[nloc];
for (int loc = 0; loc
means[loc] = 0.0;
for (int n = @; n
means[loc] +=

< NP;

}

infecmeans(loc, t) =

if (pass < (nPasses + 1))

Imeans[nloc],
loc++) {

double Smeans[nloc],
for (int loc = @; loc < nloc;
Smeans[loc] = 0.0;

125

< nloc;

Rmeans[nloc],

&particles_old[i], nloc);

N, NP, nloc, pass,

loc++) (

n++) {

particles[n].I[loc] / NP;

means[loc];

perturbParticles(particles, N, NP, nloc, pass, coolrate);
3
for (int n = @; n < NP; n++) {
paramdata(n, @) = particles[n].R0O;
paramdata(n, 1) = particles[n].r;
paramdata(n, 2) = particles[n].sigma;
paramdata(n, 3) = particles[n].eta;
paramdata(n, 4) = particles[n].berr;
paramdata(n, 5) = particles[n].phi;
}
for (int n = @; n < NP; n++) {
for (int loc = 0; loc < nloc; loc++) {
initInfec(loc, n) = particles[n].Iinit[loc];
3
3

Bmeans[nloc];

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

Imeans[loc] = 0.0;
Rmeans[loc] = 0.0;
Bmeans[loc] = 0.0;
for (int n = @; n < NP;

}

return Rcpp::List::create(

particle,

nloc) {

double * S = particle->S;
double * I = particle->I;
double * R = particle->R;
double * B = particle->B;

double S_last[nloc];

n++) {

Smeans[loc] += particles[n].S[loc] / NP;
Imeans[loc] += particles[n].I[loc] / NP;
Rmeans[loc] += particles[n].R[loc] / NP;
Bmeans[loc] += particles[n].B[loc] / NP;

finalstate(loc, @) = Smeans[loc];
finalstate(loc, 1) = Imeans[loc];
finalstate(loc, 2) = Rmeans[loc];
finalstate(loc, 3) = Bmeans[loc];

Rcpp::Named("paramdata") paramdata,
Rcpp::Named("initInfec”) = initInfec,
Rcpp::Named("infecmeans”") =
infecmeans,
Rcpp::Named("finalstate”)
finalstate);

void exp_euler_SSIR(double h, double t@, double tn, int N, Particle =

NumericVector neinum, NumericMatrix neibmat, int

int num_steps = floor((tn-t@) / h);

126

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

double
double
double

double
double
double
double
double
double

for(int

for

for

I_last[nloc];
R_last[nloc];
B_last[nloc];

RO = particle->R0;

r = particle->r;

B0 = RO * r / N;
eta particle->eta;
berr particle->berr;
phi particle->phi;

t = 0; t < num_steps; t++) {

(int loc = ©@; loc < nloc; loc++) {
S_last[loc] S[loc];
I_last[loc] I[loc];
R_last[loc] R[loc];
B_last[loc] = B[loc];

(int loc = 0; loc < nloc; loc++) {

B[loc] = exp(log(B_last[loc]) + etax(log(B@) - log(
B_last[loc])) + berrxrandn());

int n = neinum[loc];
double sphi = 1.0 - phix((double) n/(n+1.0));
double ophi = phi/(n+1.0);

double nBIsum = 0.0;
for (int j = 0; j < n; j++)
nBIsum += B_last[(int) neibmat(loc, j) - 1] * I_last
[(int) neibmat(loc, j) - 11;

double BSI = S_last[loc]*(sphi*B_last[loc]*I_last[loc] +
ophi*nBIsum);
double rI = r*xI_last[loc];

double dS
double dI
double dR

- BSI;
BSI - rI;
rl;

S[loc] += hx*dS;
Ifloc] += h=dI;
R[loc]l += h#*dR;

127

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

N) |

*particles

’

for (int n

double

do {

for (int n =
(*particles)[n].S = (doublex*) malloc(nloc*sizeof (double));
(xparticles)[n].I
(xparticles)[n].R
(xparticles)[n].B
(xparticles)[n].Iinit = (doublex) malloc(nlocxsizeof (double))

void initializeParticles(Particle x* particles, int NP, int nloc, int

= (Particlex) malloc (NP*sizeof (Particle));

0; n < NP; n++) {

(double*) malloc(nloc*sizeof (double));
(doublex) malloc(nloc*sizeof (double));
(doublex) malloc(nlocxsizeof (double));

= 0; n < NP; n++) {

R@can, rcan, sigmacan, Iinitcan, etacan, berrcan,

phican;

RO@can = ROtrue + ROtruexrandn();
} while (R@can < 0);
(*particles)[n].R@ = RO@can;

do {
rcan = rtrue + rtrue*randn();
} while (rcan < 0);
(*particles)[nl.r = rcan;
for (int loc = @; loc < nloc; loc++)

(*particles)[n].B[loc] = (double) ROcan * rcan / N;

do {

sigmacan = merr + merr*randn();
} while (sigmacan < 0);
(xparticles)[n].sigma = sigmacan;
do {

etacan = etatrue + PSCxetatrue*randn();
} while (etacan < @ || etacan > 1);
(*particles)[n].eta = etacan;
do {

128

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

berrcan = berrtrue + PSCxberrtruexrandn();
} while (berrcan < 0);
(x*particles)[n].berr = berrcan;

do {

phican = phitrue + PSCxphitrue*randn();
} while (phican <= @ || phican >= 1);
(*particles)[n].phi = phican;

for (int loc = 0; loc < nloc; loc++) {
do {
Iinitcan = I0 + I@*randn();
} while (Iinitcan < @ || N < Iinitcan);
(*particles)[n].Iinit[loc] = Iinitcan;

int passnum, double coolrate) {

double coolcoef = pow(coolrate, passnum);

double spreadR0 = coolcoef * ROtrue / 10.0;
double spreadr = coolcoef *x rtrue / 10.0;
double spreadsigma = coolcoef * merr / 10.0;
double spreadIinit = coolcoef * I0Q / 10.0;
double spreadeta = coolcoef * etatrue / 10.0;
double spreadberr = coolcoef *x berrtrue / 10.0;
double spreadphi = coolcoef x phitrue / 10.0;

double R@can, rcan, sigmacan, Iinitcan, etacan, berrcan,
for (int n = @; n < NP; n++) {

do {

RO@can = particles[n].R@ + spreadRO@*randn();
} while (R@can < 0);
particles[n].R@ = R@can;

do {

rcan = particles[n].r + spreadrxrandn();
} while (rcan < 0);
particles[n].r = rcan;

129

void perturbParticles(Particle * particles, int N, int NP, int nloc,

phican;

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

do {

sigmacan = particles[n].sigma + spreadsigma*randn();
} while (sigmacan < 0);
particles[n].sigma = sigmacan;

do {

etacan = particles[n].eta + PSCxspreadetaxrandn();
} while (etacan < @ || etacan > 1);
particles[n].eta = etacan;

do {

berrcan = particles[n].berr + PSCxspreadberr*randn();
} while (berrcan < 0);
particles[n].berr = berrcan;

do {

phican = particles[n].phi + PSC#*spreadphi*randn();
} while (phican <= @ || phican >= 1);
particles[n].phi = phican;

for (int loc = ©@; loc < nloc; loc++) {

do {
Iinitcan = particles[n].Iinit[loc] + spreadIlinitx*
randn () ;
} while (Iinitcan < @ || Iinitcan > 500);
particles[n].Iinit[loc] = Iinitcan;

void copyParticle(Particle * dst, Particle * src, int nloc) {

dst->R0 = src->R0;
dst->r = src->r;
dst->sigma = src->sigma;
dst->eta = src->eta;
dst->berr = src->berr;
dst->phi = src->phi;

for (int n = @; n < nloc; n++) {

dst->S[n] = src->S[n];
dst->I[n] = src->I[n];
dst->R[n] = src->R[n];
dst->B[n] = src->B[n];
dst->Iinit[n] = src->Iinit[n];

130

McMaster University - Mathematics

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

double randu() {

return (double) rand() / (double) RAND_MAX;

© 00 N O Ut e W NN

e e e e
S UL R W NN = O

double randn() {

— =
(ol |

double x1, x2, w, yl;

N
o ©

do {
x1 = 2.0 * randu() -
X2 = 2.0 * randu() -
w = x1 * x1 + x2 * x2;
} while (' w >= 1.0);

’

[\
=

’

1.0
1.0

N NNNN
S Ot s W N

w = sqrt((-2.0 x log(w)) / w);
27 yl = x1 * w;

29 return yi1;

s F.5 CUDA IF2 Spatial Fitting Code

34 Below is the nascent CUDA code that will be expanded upon in future work. At
35 present it only implements the core IF2 fitting algorithm and does not implement
36 parametric bootstrapping nor produce forecasts.

37
38

39
40
41
42
43
44
45 #include <cuda.h>

46 #include <iostream>
47 #include <fstream>

131

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

<curand.h>
<curand_kernel.h>
<string>
<sstream>

<cmath>

#include
#include
#include
#include
#include

"timer .h"
"rand.h"
"readdata.h”

#include
#include
#include

#define NP
#define N
#define ROtrue
#define rtrue
#define etatrue
#define berrtrue
#define phitrue
#define merr
#tdefine 10
#define PSC

500.0
3.0

S U1, OO0
(S22 IS,

[S2 B

#define NLOC 10

#tdefine PI

\

typedef struct {
float RO;
float r;
float sigma;
float eta;
float berr;
float phi;
float S[NLOCI];
float I[NLOCI];
float RLNLOCIJ;
float BL[NLOC];
float Iinit[NLOC];
curandState randState;
} Particle;

(2%2500)

3.141592654f

132

define CUDA_CALL(x) do { if ((x) !'= cudaSuccess) {
\
std::cout << " Error at " << __FILE__ << ":” << __LINE__ << std::
endl; \
std::cout << " Error was " << x << " " << cudaGetErrorString(x)
<< std::endl; \
return EXIT_FAILURE ;}} while (0)

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

__host__ std::string getHRmemsize (size_t memsize);
_host__ std::string getHRtime (float runtime);

if (id < NP) {

curandState state;
curand_init(id, @, @, &state);

phican;

do {

RO@can = ROtrue + ROtruexcurand_normal (&state);
} while (R@can < 0);
particles[id].R@ = R@can;

do {

rcan = rtrue + rtrue*curand_normal (&state);
} while (rcan < 0);
particles[id].r = rcan;

for (int loc = @; loc < nloc; loc++)

133

__device__ void exp_euler_SSIR(float h, float to, float tn, Particle
* particle, int * neinum, int * neibmat, int nloc);

__device__ void copyParticle(Particle % dst, Particle * src, int nloc
)5

__global__ void initializeParticles (Particle * particles, int nloc)
{
int id = blockIdx.x*blockDim.x + threadIdx.x;

float R@can, rcan, sigmacan, Iinitcan, etacan, berrcan,

particles[id].B[loc] = (float) R@can * rcan / N;

do {
sigmacan = merr + merr*curand_normal (&state);
} while (sigmacan < 0);
particles[id].sigma = sigmacan;
do {
etacan = etatrue + PSC*etatrue*curand_normal (&state);
} while (etacan < @ || etacan > 1);
particles[id].eta = etacan;
do {

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

berrcan =
} while (berrcan < 0);
particles[id].berr = berrcan;

do {

phican =
} while (phican <= 0
particles[id].phi =

phican;

if (id < NP) {

particles[id].
particles[id].
particles[id].
particles[id].
particles[id].

RO = ROtrue;

r = rtrue;
sigma = merr;
eta = etatrue;
berr =

134

berrtrue + PSCxberrtruexcurand_normal (&state);

phitrue + PSCxphitruexcurand_normal (&state);
phican >= 1);

int nloc) {

- particles[id].Iinit[loc];

berrtrue;

int nloc) {

for (int loc = 0; loc < nloc; loc++) {

do {
Iinitcan = IQ + I@*curand_normal (&state);

} while (Iinitcan < @ || N < Iinitcan);
particles[id].Iinit[loc] = Iinitcan;

3

particles[id].randState = state;

3

}

__global__ void resetStates (Particle x particles,
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < NP) {

for (int loc = 0; loc < nloc; loc++) {
particles[id].S[loc] = N
particles[id].I[loc] = particles[id].Iinit[loc];
particles[id].R[loc] = 0.0;
}
3

}

__global__ void clobberParams (Particle * particles,
int id = blockIdx.x*blockDim.x + threadIdx.x;

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

135

particles[id].phi = phitrue;
for (int loc = 0; loc < nloc; loc++) {
particles[id].Iinit[loc] = I0;
3
}
}
__global__ void project (Particle * particles, int * neinum, int =
neibmat, int nloc) {
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < NP) {
exp_euler_SSIR(1.0/7.0, 0.0, 1.0, &particles[id], neinum,
neibmat, nloc);
3
}
__global__ void weight(float * data, Particle * particles, double * w
, int t, int T, int nloc) {
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < NP) {
float merr_par = particles[id].sigma;
double w_local = 1.0;
for (int loc = 0; loc < nloc; loc++) {
float y_diff = datallocxT + t] - particles[id].I[loc];
w_local *= 1.0/(merr_par*sqrt(2.0*xPI)) * exp(- y_diffx
y_diff / (2.0xmerr_par*xmerr_par));
3
wlid] = w_local;
3
}
__global__ void stashParticles (Particle * particles,

Particle =

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

particles_old, int nloc) {
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < NP) {

copyParticle(&particles_old[id], &particles[id], nloc);

3
3
__global__ void cumsumWeights (double * w) {

int id = blockIdx.x*blockDim.x + threadIdx.x;

if (id == 0) {

for (int i = 1; i < NP; i++)
wlil += wl[i-11];

3
}
__global__ void resample (Particle * particles, Particle =

particles_old, double * w, int nloc) {
int id = blockIdx.x*blockDim.x + threadIdx.x;

if (id < NP) {

double w_r = curand_uniform(&particles[id].randState) * w[NP
-11;

int i = 0;

while (w_r > w[il) {
i++;

3

copyParticle (&particles[id], &particles_old[i], nloc);

136

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

}
__global__ void reduceStates (Particle * particles, float =*
countmeans, int t, int T, int nloc) {
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < nloc) {
int loc = id;
double countmean_local = 0.0;
for (int n = @; n < NP; n++) {
countmean_local += particles[n].I[loc] / NP;
1
countmeans[loc*xT + t] = (float) countmean_local;
3
}
__global__ void perturbParticles(Particle * particles, int nloc, int

passnum, double coolrate) {

double coolcoef = pow(coolrate, passnum);

double spreadR0 = coolcoef * ROtrue / 10.0;
double spreadr = coolcoef *x rtrue / 10.0;
double spreadsigma = coolcoef * merr / 10.0;
double spreadIinit = coolcoef * I0Q / 10.0;
double spreadeta = coolcoef * etatrue / 10.0;
double spreadberr = coolcoef *x berrtrue / 10.0;
double spreadphi = coolcoef x phitrue / 10.0;

double R@can, rcan, sigmacan, Iinitcan, etacan, berrcan, phican;
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id < NP) {

do {
ROcan = particles[id].R@ + spreadR@*curand_normal (&
particles[id].randState);
} while (R@can < 0);
particles[id].R@ = R@can;

do {

137

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

rcan = particles[id].r + spreadr*xcurand_normal (&particles
[id].randState);

} while (rcan < 0);
particles[id].r = rcan;

do {
sigmacan = particles[id].sigma + spreadsigmax*
curand_normal (&particles[id].randState);
} while (sigmacan < 0);
particles[id].sigma = sigmacan;

do {
etacan = particles[id].eta + PSC*spreadetaxcurand_normal
(&particles[id].randState);
} while (etacan < @ || etacan > 1);
particles[id].eta = etacan;

do {
berrcan = particles[id].berr + PSC*spreadberr=*
curand_normal (&particles[id].randState);
} while (berrcan < 0);

particles[id].berr = berrcan;
do {
phican = particles[id].phi + PSCxspreadphi*curand_normal
(&particles[id].randState);
} while (phican <= @ || phican >= 1);

particles[id].phi = phican;

for (int loc = 0; loc < nloc; loc++) {
do {
Iinitcan = particles[id].Iinit[loc] + spreadlinit*
curand_normal (&particles[id].randState);
} while (Iinitcan < @ || Iinitcan > 500);
particles[id].Iinit[loc] = Iinitcan;

int main (int argc, char =xargv[]) {

int T, nloc;

double restime;
struct timeval tdr@, tdr1, tdrMaster;

138

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

if (argc < 4) {

return 0;
std::string argl(argv[1]);
std::string arg2(argv[2]);
std::string arg3(argv[3]);

std::string arg4(argv[4]);

std::cout << "Arguments:"” << std::endl;

std::cout << "Infection data: " << argl
std::cout << "Neighbour counts: " << arg2
std::cout << "Neighbour indices: " << arg3
std::cout << "Outfile " << arg4

float * data = getDataFloat(argl, &T, &nloc
size_t datasize = nloc*T*xsizeof (float);

std::cout << "Getting neighbour count data”
int * neinum = getDatalInt(arg2, NULL, NULL)
size_t neinumsize = nloc * sizeof(int);

std::cout << "Getting neighbour count data”
int * neibmat = getDatalInt(arg3, NULL, NULL

gettimeofday (&tdr@, NULL);

139

<<
<<
<<
<<

);

std::
std::
std::
std::

std::cout << "Getting count data” << std::endl;

std::cout << "Not enough arguments” << std::endl;

endl;
endl;
endl;
endl;

<< std::endl;

’

<< std::endl;

);

size_t neibmatsize = nloc * nloc * sizeof(int);

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

std::cout << "Allocating device

float * d_data;
Particle * particles;
Particle * particles_old;
double * W;

int * d_neinum;

int * d_neibmat;
float * countmeans;
float * d_countmeans;

CUDA_CALL(cudaMalloc((void=*x)
)
CUDA_CALL (cudaMalloc(
Particle)));
CUDA_CALL (cudaMalloc(
Particle)));
CUDA_CALL (cudaMalloc(
double)));
CUDA_CALL (cudaMalloc(
)
CUDA_CALL (cudaMalloc(
)5
CUDA_CALL (cudaMalloc(
float)));

(void*x)

(void*=*)

(void*x)

(void*x)

(void*x)

(void=*x)

gettimeofday (&tdrl1, NULL);

getHRmemsize (total) << "]”
std::cout <<
gettimeofday (&tdro, NULL);

CUDA_CALL(cudaMemcpy(d_data

140

"Copying data to device”

cudaMemcpyHostToDevice))

storage” << std::endl;

&d_data , datasize)

&particles , NPxsizeof (
&particles_old , NPxsizeof(
&w , NP*xsizeof (
&d_neinum , heinumsize)
&d_neibmat , heibmatsize)

&d_countmeans , hloc*T*xsizeof (

timeval_subtract (&restime, &tdrl1, &tdro);

std::cout << "\t” << getHRtime(restime) << std::endl;

size_t avail, total;

cudaMemGetInfo(&avail, &total);

size_t used = total - avail;

std::cout << "\t[" << getHRmemsize(used) << "] used of [" <<

<<std::endl;

<< std::endl;

, data , datasize ,

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

CUDA_CALL(cudaMemcpy(d_neinum , neinum , heinumsize ,
cudaMemcpyHostToDevice))

CUDA_CALL(cudaMemcpy(d_neibmat , neibmat , heibmatsize ,
cudaMemcpyHostToDevice));

gettimeofday (&tdrl1, NULL);
timeval_subtract (&restime, &tdrl1, &tdro);

std::cout << "\t" << getHRtime(restime) << std::endl;

std::cout << "Initializing particles” << std::endl;

int nThreads = 32;
int nBlocks ceil((float) NP / nThreads);

initializeParticles <<< nBlocks, nThreads >>> (particles, nloc);
CUDA_CALL(cudaGetLastError());
CUDA_CALL(cudaDeviceSynchronize());

initializeParticles <<< nBlocks, nThreads >>> (particles_old,
nloc);

CUDA_CALL(cudaGetLastError());

CUDA_CALL(cudaDeviceSynchronize());

cudaMemGetInfo(&avail, &total);

used = total - avail;

std::cout << "\t[" << getHRmemsize(used) << "] used of [" <<
getHRmemsize (total) << "]" <<std::endl;

for (int pass = 0; pass < 50; pass++) {

nThreads = 32;
nBlocks ceil((float) NP / nThreads);

resetStates <<< nBlocks, nThreads >>> (particles, nloc);

141

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

CUDA_CALL(cudaGetlLastError());
CUDA_CALL (cudaDeviceSynchronize());

nThreads = 1;
nBlocks = 10;
if (pass == 49) {

reduceStates <<< nBlocks, nThreads >>> (particles,
d_countmeans, @, T, nloc);

CUDA_CALL (cudaGetLastError ());

CUDA_CALL(cudaDeviceSynchronize());

int Tlim = T;

for (int t = 1; t < Tlim; t++) {

nThreads = 32;
nBlocks ceil((float) NP / nThreads);

project <<< nBlocks, nThreads >>> (particles, d_neinum,

d_neibmat, nloc);
CUDA_CALL(cudaGetlLastError());
CUDA_CALL(cudaDeviceSynchronize());

nThreads = 32;
nBlocks ceil((float) NP / nThreads);

weight <<< nBlocks, nThreads >>>(d_data, particles,
T, nloc);

CUDA_CALL (cudaGetLastError ());

CUDA_CALL(cudaDeviceSynchronize());

nThreads = 1;
nBlocks 1;

cumsumWeights <<< nBlocks, nThreads >>> (w);
CUDA_CALL (cudaGetLastError ());
CUDA_CALL(cudaDeviceSynchronize());

142

w,

t,

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

nThreads = 32;
nBlocks ceil((float) NP / nThreads);

stashParticles <<< nBlocks, nThreads >>> (particles,
particles_old, nloc);

CUDA_CALL(cudaGetlLastError());

CUDA_CALL(cudaDeviceSynchronize());

nThreads = 32;
nBlocks ceil((float) NP/ nThreads);

resample <<< nBlocks, nThreads >>> (particles,
particles_old, w, nloc);

CUDA_CALL(cudaGetlLastError());

CUDA_CALL(cudaDeviceSynchronize());

if (pass == 49) {
nThreads = 1;
nBlocks = 10;

reduceStates <<< nBlocks, nThreads >>> (particles,
d_countmeans, t, T, nloc);

CUDA_CALL (cudaGetLastError ());

CUDA_CALL (cudaDeviceSynchronize());

3
nThreads = 32;
nBlocks = ceil((float) NP/ nThreads);

perturbParticles <<< nBlocks, nThreads >>> (particles,
nloc, pass, 0.975);

CUDA_CALL(cudaGetlLastError());

CUDA_CALL(cudaDeviceSynchronize());

143

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

std::cout.precision(10);

cudaMemcpyDeviceToHost);

gettimeofday (&tdrMaster, NULL);

<< std::endl;

std::ofstream outfile;
outfile.open(filename.c_str());

for(int loc = @; loc < nloc; loct++) {
for (int t 0; t < T; t++) {
outfile << countmeans[loc*T + t] <<

3

outfile << std::endl;

outfile.close();

cudaFree(d_data);
cudaFree(particles);
cudaFree(particles_old);
cudaFree(w);
cudaFree(d_neinum);
cudaFree(d_neibmat);
cudaFree (d_countmeans);

exit (EXIT_SUCCESS);

144

countmeans = (float*) malloc (nlocxTxsizeof (float));
cudaMemcpy (countmeans, d_countmeans, nloc*Txsizeof (float),

timeval_subtract(&restime, &tdrMaster, &tdro);

std::cout << "Time: " << getHRtime(restime) << std::endl;
std::cout << "Rawtime: " << restime << std::endl;
std::string filename = arg4;

std::cout << "Writing results to file ’" << filename << "’

noon,
’

© 00 N O Ut e W NN

U Ut i e b ol B s R B R R W W W W W W W W W W NN NN N NN NNDN R e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

__device__

int num

float
float
float
float

* % % %

float
float
float
float

* % % X%

float r
float e
float b
float p

for(int

for

for

void exp_euler_SSIR(float h, float t@, float tn, Particle

* particle, int * neinum, int * neibmat, int nloc) {

_steps = floor((tn-t@) / h);

= particle->S;
= particle->I;
particle->R;
= particle->B;

@ T H W
1

S_last
I_last
R_last
B_last

(float*x) malloc (nloc*sizeof (float));
(floatx) malloc (nloc*sizeof(float));
(floatx) malloc (nloc*sizeof(float));
(float*x) malloc (nloc*sizeof(float));

float RO = particle->R0;

= particle->r;

float BO = RO * r / N;

ta
err
hi

particle->eta;
particle->berr;
particle->phi;

t = 0; t < num_steps; t++) {

(int loc = 0; loc < nloc; loc++) {
S_last[loc] S[loc];
I_last[loc] I[loc];
R_last[loc] R[loc];
B_last[loc] = B[loc];

(int loc = 0; loc < nloc; loc++) {

BL[loc] = exp(log(B_last[loc]) + eta*x(log(B@) - log(
B_last[loc])) + berrxcurand_normal (&(particle->
randState)));

int n = neinum[loc];
float sphi = 1.0 - phi*((float) n/(n+1.0));
float ophi phi/(n+1.0);

float nBIsum = 0.0;
for (int j = 0; j < n; j++)
nBIsum += B_last[neibmat[nloc*loc + j1-1]1 * I_last[
neibmat[nloc*xloc + jl-11;

float BSI = S_last[loc]x(sphi*B_last[loc]*I_last[loc] +

145

© 00 N O Ut e W NN

U Ot b ol b R R R R R R R W W W W W W W W W W N NN NN NN NDNDN e e e e
H O © 00 N O U x W N~ O © WO Uk W HFHO©OOWSNNO Utk WKN OO WO ULk W+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

std:

ophi*nBIsum);

float rI = rxI_last[loc];
float dS = - BSI;

float dI = BSI - rI;

float dR = rI;

S[loc] += h=*dS;
Ifloc] += hxdI;
R[loc] += hx*dR;

b

free(S_last);
free(I_last);
free(R_last);
free(B_last);

) {

dst->R0 src->R0;
dst->r = src->r;
dst->sigma = src->sigma;
dst->eta = src->eta;
dst->berr src->berr;
dst->phi src->phi;

for (int n = @; n < nloc;
dst->S[n] = src
dst->I[n] = src
dst->R[n] = src
dst->B[n] = src
dst->Iinit[n]

std::stringstream ss;

n++) {

->S[nl;
->I[n];
->R[n];
->B[n];
src->Iinit[n];

146

__device__ void copyParticle(Particle * dst, Particle * src,

:string getHRmemsize (size_t memsize) {

int nloc

© 00 N O Ut e W NN

R R W W W W W W W W W W NNNN N NN DNDNDN e e e
N P O © 0 N O U k= W hhHFEF O ©OWNO Utk W N HFHOO©OOWNNO O i W NN+~ O

M.Sc. Thesis - Dexter Barrows

McMaster University - Mathematics

std:

std::string valstring;

int kb = 1024;
int mb = kb*1024;
int gb = mb*x1024;

if (memsize <= kb)
ss << memsize << " B";
else if (memsize > kb && memsize <= mb)
ss << (float) memsize/ kb << " KB";
else if (memsize > mb && memsize <= gb)
ss << (float) memsize/ mb << " MB";
else
ss << (float) memsize/ gb << " GB";

valstring = ss.str();

return valstring;

:string getHRtime (float runtime) {

std::stringstream ss;
std::string valstring;

int mt = 60;
int ht mt*60;
int dt ht*x24;

if (runtime <= mt)
ss << runtime << " s";

else if (runtime > mt && runtime <= ht)
ss << runtime/mt << " m";

else if (runtime > ht && runtime <= dt)
ss << runtime/dt << " h";

else

ss << runtime/ht << " d";
valstring = ss.str();

return valstring;

Figure [ETD] shows the running times for parameter fitting as compared to IF2 and

HMC.

147

M.Sc. Thesis - Dexter Barrows McMaster University - Mathematics

CulF2 A

HMCMC -

IF2 4

2 3 4
Time (log,o seconds)

Figure F.1: Running times for fitting the spatial SIR model to data.

1 The means from the data in Figure [E-] are about 61.5 seconds for cuIF2, 574 seconds
2 for IF2, and 38, 800 seconds for HMC. For cuIF2 This is a speedup of over 9.33x against
3 IF2 and over 617x against HMC.

148

	Introduction
	Hamiltonian MCMC
	Markov Chains
	Likelihood
	Prior distribution
	Proposal distribution
	Algorithm
	Burn-in
	Thinning
	Hamiltonian Monte Carlo
	RStan Fitting

	Iterated Filtering
	Formulation
	Algorithm
	Particle Collapse
	Iterated Filtering and Data Cloning
	Iterated Filtering 2 (IF2)
	IF2 Fitting

	Parameter Fitting
	Fitting Setup
	Calibrating Samples
	IF2 Fitting
	IF2 Convergence
	IF2 Densities
	HMC Fitting
	HMC Densities
	HMC and Bootstrapping
	Multi-trajectory Parameter Estimation

	Forecasting Frameworks
	Data Setup
	IF2
	Parametric Bootstrapping
	IF2 Forecasts

	HMC
	Truncation vs. Error

	S-map and SIRS
	S-maps
	S-map Algorithm
	SIRS Model
	SIRS Model Forecasting

	Spatial Epidemics
	Spatial SIR
	Dewdrop Regression
	Spatial Model Forecasting

	Discussion and Future Directions
	Parallel and Distributed Computing
	IF2, Bootstrapping, and Forecasting Methodology
	Fin

	Hamiltonian MCMC
	Full R code
	Full Stan code

	Iterated Filtering
	Full R code
	Full C++ code

	Parameter Fitting
	SIR Forward Simulator

	Forecasting Frameworks
	IF2 Parametric Bootstrapping Function
	RStan Forward Simulator

	S-map and SIRS
	SIRS R Function Code
	SIRS HMC R Function Code
	SMAP Code
	SMAP Parameter Optimization Code
	RStan SIRS Code
	IF2 SIRS Code

	Spatial Epidemics
	Spatial SIR R Function Code
	Spatial SIR HMC R Function Code
	RStan Spatial SIR Code
	IF2 Spatial SIR Code
	CUDA IF2 Spatial Fitting Code

