Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19040
Title: Special Block-Colourings of Steiner 2-Designs
Authors: Reid, Colin
Advisor: Rosa, Alex
Department: Mathematics
Keywords: block, colourings, steiner, designs, special, pair, system
Publication Date: Feb-2010
Abstract: <p> Let t, k, v be three positive integers such that 2 ≤ t < k ≤ v. A Steiner system S(t, k, v) is a pair (V, B) where |V| = v and B is a collection of k-subsets of V, called blocks, such that every t-subset of V occurs in exactly one block in B. When t = 2, the Steiner system S(2, k, v) is sometimes called a Steiner 2-design.</p> <p> Given a Steiner 2-design, S = (V, B), with general block size k, a block-colouring of S is a mapping ¢ : B ---> C, where C is a set of colours. If |C| = n, then ¢ is an n-block-colouring. In this thesis we focus on block-colourings for Steiner 2-designs with k = 4 with some results for general block size k.</p> <p> In particular, we present known results for S(2, 4, v)s and the classical chromatic index. A classical block-colouring is a block-colouring in which any two blocks containing a common element have different colours. The smallest number of colours needed in a classical block-colouring of a design S = (V, B), denoted by x'(S), is the classical chromatic index.</p> <p> We also discuss n-block-colourings of type π, where π = ( π1, π2, ... , πs ) is a partition of the replication number r = v-1/k-1 for a Steiner system S(2,k,v). In particular, we focus on 8(2,4,v)s and the partitions (2, 1, 1, ... , 1), (3, 1, 1 ... , 1), and partitions of the form π = (π1, π2, ... , πs), where |πj -πil ≤ 1 for all 1 ≤ i < j ≤ s. These latter partitions are called equitable partitions and the corresponding block-colourings are called equitable block-colourings.</p> <p> Finally, we present results on the T-chromatic index for S(2, 4, v )s for various configurations T. The T-chromatic index for a Steiner system S(2, k, v), S, is the minimum number of colours needed to colour the blocks of S such that there are no monochromatic copies of T. In particular, we focus on configurations containing 2 lines and configurations containing 3 lines for both S(2, 4, v)s and general S(2, k, v)s. </p>
URI: http://hdl.handle.net/11375/19040
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Reid_Colin_2010Feb_Ph.D..pdf
Open Access
2.77 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue