Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18995
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWong, Kon-
dc.contributor.authorLi, Yili-
dc.date.accessioned2016-03-28T17:39:39Z-
dc.date.available2016-03-28T17:39:39Z-
dc.date.issued2010-09-
dc.identifier.urihttp://hdl.handle.net/11375/18995-
dc.description.abstract<p> The study of the different sleep stages of a patient using his/her recorded EEG signals falls in the area of signal classification. In general, this involves extracting from the EEG signals, a signal feature on which the classification is performed. In this thesis, we apply the techniques of signal classification to the analysis of the sleep of a patient. The feature we use is the power spectral density (PSD) matrices of a multi-channel EEG signal. This not only allows us to examine the power spectrum contents of each signal which complies with what clinical experts use in their visual judgement of EEG signals, but also allows the correlation between the multi-channel signals to be studied. To establish a metric facilitating the classification, we analyze the structure as well as exploit the specific geometric properties of the space of PSD matrices. Specifically, we study this space from the viewpoint of Riemannian manifolds. We apply a Riemannian metric and, with the aid of fibre bundle theory, develop intrinsic (geodesic) distance measures for the PSD matrix manifold. To utilize such new distance measures effectively for EEG signal classification, we need to find a suitable weighting matrix for the PSD matrices so that the distances between similar features are minimized while those between dissimilar features are maximized. A closed form expression for this weighting matrix is obtained by solving an equivalent convex optimization problem. The effectiveness of using these novel weighted distance measures is verified by applying them to the sleep pattern classification of a collection of recorded EEG signals using the k-nearest neighbor decision algorithm with excellent results. </p>en_US
dc.language.isoenen_US
dc.subjectEEG signalsen_US
dc.subjectmultichannelen_US
dc.subjectsleep stagesen_US
dc.subjectPSDen_US
dc.titleMultichannel EEG Signal Classification -A Geometric Approachen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Yili_Li_2010_Phd.pdf
Open Access
15.86 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue