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Abstract 

The study of the different sleep stages of a patient using his/ her recorded EEG sig­

nals falls in t he area of signal classification. In general, this involves extracting from 

the EEG signals, a signal feature on which the classification is performed. In t his 

thesis, we apply the t echniques of signal classification to the analysis of the sleep 

of a patient . The feature we use is the power spectral density (PSD) matrices of a 

mult i-channel EEG signal. This not only allows us to examine t he power spectrum 

contents of each signal which complies with what clinical experts use in their visual 

judgement of EEG signals, but also allows the correlation between the multi-channel 

signals to be studied. To establish a metric facilitating the classification, we ana­

lyze the structure as well as exploit the specific geometric propert ies of the space of 

PSD matrices. Specifically, we study this space from the viewpoint of Riemannian 

manifolds. We apply a Riemannian metric and , with the aid of fibre bundle t heory, 

develop intrinsic (geodesic) distance measures for the PSD matrix manifold . To uti­

lize such new distance measures effectively for EEG signal classification, we need to 

find a suitable weighting matrix for the PSD matrices so that the distances between 

similar features are minimized while those between dissimilar features are maximized. 

A closed form expression for this weighting matrix is obtained by solving an equiv­

alent convex optimization problem. The effectiveness of using t hese novel weighted 

distance measures is verified by applying them to the sleep pattern classification of 
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a collect ion of recorded EEG signals using the k-nearest neighbor decision algorithm 

with excellent results. 
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Chapter 1 

Introduction 

An electroencephalogram (EEG) is the measurement of electrical activities produced 

by the brain. The measurement is carried out by placing electrodes on the scalp 

recording the electrical potentials generated by synaptic fields in the cerebral cortex. 

Although such an electrode would pick up the superposition of many different waves 

emitted from various regions of the brain, rendering it more difficult to interpret 

the data, EEG is still a valuable measure of the brain's electrical function. EEGs 

have been employed in many clinical areas such as administration of anaesthetics, 

detection and prediction of epileptic seizures, recognition of pathological conditions 

such as concussion, as well as analysis of depression, etc. [23,45, 50]. In this thesis, we 

study an important application of EEG to the determination of the level of sleep of a 

patient. In particular, we determine the depth of a patient's natural (no anaesthetics) 

sleep by classifying the pattern of the recorded EEG signals. 

The dependence of pattern classification on mathematics can be well character­

ized by the following quoting of the mathematical philosopher A. N. Whitehead: "The 

notion of the importance of patterns is as old as civilization. Every art is founded 
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on the study of patterns. Mathematics is the most powerful technique for the un­

derstanding of patterns and for the analysis of the relationships of patterns." [87]. 

However, mathematics being abstract, has no physical constraints. It is therefore a 

challenging problem to choose the proper mathematical techniques and apply them 

to the real-life pattern classification problems. 

An EEG pattern is an entity indicating a specific state of the brain. EEG classifi­

cation is the study of how machines can process the EEG signals, learn to distinguish 

EEG patterns in different brain states, and make reasonable decisions on the classes 

of the patterns. In this chapter, we first present a brief overview of sleep staging based 

on the contents of the different types of EEG signals. Then, we review some existing 

EEG signal classification methods. Finally, we present a preview of our geometric 

approach to EEG signal classification. 

1.1 Sleep Staging by EEG Signals 

The study of sleep is highly important in health care since sleep disorders affect the 

well-being and productivity of many individuals. However, the sleep of a person 

is not a homogenous state from the beginning to the end. Analysis of a patient's 

sleep history requires putting the patient in a sleep laboratory to acquire up to 8 

hours of polysomnographic recordings which not only consists of recordings of EEG, 

but often also includes ocularogram (EOG) as well as other physiological data such 

as the activity of selected muscles, the electrocardiogram, oxygen concentration in 

arterial blood Sa02, and breathing rate. In this thesis, our attention is focused on 

the determination of the patient's sleep stages using only the recorded EEG signals. 
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1.1.1 Measurement of EEG signals 

The recording of EEG is carried out by attaching electrodes to the scalp. A typical 

internationall0-20 electrode placement system is shown in Fig. 1.1. The hemispheric 

INION 

Figure 1.1: A typical international 10-20 electrode placement system: A=Ear lobe, 
C=Central, P=Parietal, F=Frontal, Fp=Frontal polar, and O=Occipital. 

locations of the sensors are indicated by combinations of letters and numbers. The 

letters Fp, F, C, P, 0, T correspond to Front Polar, Frontal, Central, Parietal, Oc­

cipital, and Temporal. Locations on the right and left hemispheres are indicated by 

even and odd numbers respectively while the letter Z shows electrode placements 

along the centre line. According to this system, electrodes are placed at 10% and 

20% of a semi-circumference measurement on the scalp (see Fig 1.1). Instead of 

using the entire set of sensors, generally only M of the sensors are used for most 

EEG studies. In our studies of EEG classification for sleep stage determination, a 

differential understanding of EEG activity in the different regions of the brain is of 

no great value. Therefore, our measurements are usually limited to a small number 
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of sensors. Our decision for the placement of these sensors is based on the experi­

ence of other researchers who have carried out EEG signal measurements for sleep 

stage decision. The manual published by Retschaffen and Kales [76] recommends 

referential recording for single sensor EEG measurements (usually either C3 or C4 , 

referenced to an indifferent electrode placed on the ear lobe or contralateral mastoid 

(At or A2 ). There are a number of advantages in using (C3 - A2 ) or (C4 - At) signals. 

Retschaffen and Kales state [76]: "On one hand the relatively large interelectrode 

distance optimises EEG signal amplitudes for sleep analysis, and on the other hand 

most sleep grapho-elements, sleep staging criteria (vertex sharp waves, K complexes 

and spindles) are well visualised in these regions. Moreover, high-voltage NREM 

slow waves seen maximally in frontal regions minimises the contamination of ocular 

movements in REM sleep on EEG activity. By contrast, the alpha rhythm of relaxed 

wakefulness is maximal over the occipital poles." Since we are interested in all stages . 

of sleep including relaxed wakefulness, and, in addition, the correlation of the signals 

at the various locations in the brain is also of importance to our studies, therefore, 

we choose to have M = 4 sensors positioned at: C3 , C4 , Ot, and 0 2 , each referenced 

to the earlobe sensor on the opposite side of the skull. Thus, our measurements will 

all have four channels (C3 - A2 ), (C4 -At), (Ot - A2), and (02 -At) connected 

to a recording machine which displays the readings~ each channel producing a time 

series. 

The EEG signals recorded represent the effects of the superimposition of diverse 

processes in the brain and are often contaminated by noise and artifacts due to 

eye blinking or other muscular activities. Even though it is, in general, a difficult 

task to recognize and eliminate the artifacts in EEG recordings, it is essential to 

do so for the development of practical automatic sleep staging systems. The aim of 

artifacts removal should, on the one hand, minimize the amount of data that have 
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to be eliminated and, on the other hand, ensure that the results obtained are not 

influenced by undetected artifacts. In this thesis, we follow the usual practice of 

removing noise and artifacts by suitably filtering of the EEG recordings. 

After filtering and the artifacts have been removed, the EEG signal is then divided 

into epochs of 30 seconds each. These are then examined by a trained clinical expert 

who visually determines the stage of sleep from awake to deep sleep for each of the 

epochs of the EEG data using the Rechtschaffen and Kales (R&K) [76] scoring system. 

The expert's decision is then labeled on the corresponding epoch. 

1.1.2 EEG signals in sleep analysis 

The different stages of the sleep process reflect the different states of the brain which 

are characterized by the occurrence of different EEG signals. In general, EEG sig­

nals occupy the frequency range of 0 - 60 Hz which is usually separated into five 

constituent physiological subbands, viz., 6 (0- 4Hz), e (4-7Hz), o: (8-12Hz), 

(3 (13-30Hz), and 1 (30-60Hz) [22]. Typical EEG patterns in these subbands 

are shown in Figs. 1.2-1.6. Beside the occurrence of these more "stationary" pat-

Figure 1.2: 6 wave 

terns, during a patient's sleep, there are other more transient signal patterns such 

as the sleep spindles and the K-complexes. A sleep spindle consists of 12 - 16 Hz 

waves that occur for 0.5-1.5 seconds. A K-complex consists of a brief negative high­

voltage peak followed by a slower positive complex. A K-complex occurs roughly 

9 



Ph.D. Thesis - Yili Li McMaster- Electrical & Computer Engineering 

Figure 1.3: ewave 

Figure 1.4: a wave 

Figure 1.5: (3 wave 

Figure 1.6: 1 wave 
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every 1.0 - 1.7 minutes and is often followed by bursts of sleep spindles. Figs. 1.7 

depicts a K-complex followed by a sleep spindle. 

K<ompl ,.
,-......__, 

Figure 1.7: K-complex 

1.1.3 Classification of sleep stages 

In 1953, Kleitman and Aserinsky [6] laid the foundation of sleep classification by 

observing the existence of two different classes of sleep processes, viz. , slow wave 

sleep which is defined by the presence of delta activity having an amplitude of at 

least 75J-LV in the EEG for more than 20% of the time, and rapid eye movement 

(REM) sleep which refers to altered ocular motility during sleep. Further insight into 

t he significance of the REM stages prompted a new terminology of sleep stages that 

emphasized the dichotomy of two distinct neurophysiological states of sleep: slow 

sleep (non-REM sleep) and fast sleep (REM sleep). Non-REM sleep can be further 

subdivided into 4 stages according to the depth of the sleep. Table 1.1 shows the 

modern day classification of the various stages of sleep together with the associated 

EEG activities [76]. 

The transition from stage to stage may be somewhat imprecise. The distinction 
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Table 1.1: Sleep stages 

Sleep stage Frequency range Wave patterns 
1 4-8Hz a, () 

2 8-15Hz B, spindles, K-complexes 
3 2-4Hz r5' () 
4 0.5- 2Hz r5' () 

REM >12Hz /3,/ 
Awake 8 ­ 12Hz or > 12Hz a,/3,/ 

between some stages needs quantitative measurements. For example, Stage 3 and 

Stage 4 have similar rhythms. They can only be distinguished by measuring the 

prevalence occupancy of delta activity. 

Although the visual sleep scoring method of Rechtschaffen and Kales (R&K) [76] 

has been used in clinics, it is sometimes very difficult for every electroencephalogra­

pher to note exact measures for EEG phenomena as spikes, sharp waves, or other 

abnormal patterns. The experienced specialist is able to detect these EEG phenom­

ena only by "eyeballing". This is a laborious and costly classification process, limiting 

the availability of laboratory sleep analysis in current health care with inter-rater reli­

ability between two expert observers typically around 77% (Cohen's Kappa: 0.68) [4]. 

Therefore, it is necessary to develop some computer-assisted systems for sleep-staging, 

which is regarded as EEG signal classification. 

To carry out EEG signal classification, filtering is first applied to remove interfering 

components, and to extract the portion of signals of interest, i.e., features. This 

is then followed by a signal classifier in which the signals are classified based on 

similarity/dissimilarity measured between the features of the EEG signals. A typical 

classification scheme is shown in Figure 1.8. Since the R&K manual was published, 

numerous attempts to design and implement computer-based automatic sleep staging 
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' 
' ' DecisionEEG Signali 'Feature

Filtering r------­ Classification
Extraction +----­(Input) ' ' (OUtput)' '' ' 


, Feature representation , 

L--------------------------------------1 


' 

Figure 1.8: A typical classification scheme 

have been proposed [4]. 

It should be noted that sleep staging involves a rather imprecise process of detec­

tion and identification of EEG patterns such that it is not an easy task to perform 

a computer-assisted analysis since the standards are not well defined. This may be 

the reason why many algorithms developed in the past decades have not gained wide 

acceptance in practice. In general, these approaches depend very much on the pop­

ulation for which they were developed in the sense that the performance varies from 

laboratory to laboratory. 

1.2 Existing methods of EEG signal classification 

1.2.1 Features and feature extractions of EEG signals 

After filtering is applied to remove the artifacts, we begin the extraction of the signal 

features. EEG signal features can be thought of as the characteristics of the EEG 

signal suitable for the purpose of classification. The chosen feature could be the power 

spectral densities (PSD), the auto regression coefficients, time frequency distributions 

etc. 

In the design and implement of automatic sleep staging, various features of EEG 
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signal have been used. For example, Anderer et al [4] developed an automatic classi­

fication system based on one central EEG channel, two EOG channels and one chin 

EMG channel that adheres to the R&K rules for visual scoring and includes a struc­

tured quality control procedure. They achieved an 80% (Cohen's Kappa: 0.72) agree­

ment between automatic and visual epoch staging. Other researchers have studied 

sleep stages using more analytic approaches such as ratios of power spectral densi­

ties measured with data from the different channels [28], inter and intra hemispheric 

spectral coherence analysis [2], and spectral correlation coefficients between data from 

the two hemispheres for each of the frequency bands [1]. Spectral power changes in 

the EEG bands have also been noted during and after apnea/hypopnea events during 

sleep [91]. Several researchers have reduced the number of channels of EEG in an 

effort to reduce instrumentation and computational complexity. Berthomier et al [15] 

validated an automatic sleep scoring system, ASEEGA, which uses spectral properties 

determined by Fourier analysis or autoregressive (AR) modelling, plus recognition of 

sleep features such as spindles, of single channel EEG and found agreement of 83% 

between 5 state classification by 2 experts and ASEEGA. Virkalla et al [83] devel­

oped a scoring system based on the cross-correlation of low frequency bands in the 

two channels of EOG, and found 72% agreement between full montage visual and 

their automatic scoring. Other researchers developed a continuous marker for sleep 

depth using the Short-time Fourier Transform and/or AR modelling [7]. Reduction of 

feature space dimensionality has also been addressed using the minimal redundancy 

method [23] or mutual information [73]. In the detection of seizures in epilepsy in 

patients, wavelet decomposition and chaos analysis of EEG signals have been used to 

provide features in which dimensionality has been reduced using Principal Component 

Analysis [45]. 
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1.2.2 Recent EEG signal classification methods 

After features have been selected and extracted from EEG signals, classification be­

gins. Classification algorithms can be divided into different categories based on dif­

ferent perspectives such as linear classifiers, nonlinear classifiers, and combinations of 

classifiers [ 64]. 

The popular linear classifiers used in EEG signal classifications are linear discrim­

inate analysis (LDA) and linear support vector machines (SVM). LDA [34] assumes 

that the data in each class has normal (Gaussian) distribution all having the same 

covariance matrix. The separating hyperplane is constructed by seeking the projec­

tion that maximizes the distance between the means of two classes and minimizes the 

variance of interclass. LDA classifier has a very low computational requirement which 

makes it suitable in online applications [43]. The main drawback of LDA is that it 

gives poor performance on complex nonlinear EEG data [42]. Linear SVM [34] aims 

to find a hyperlane that maximizes the margins, i.e., the distance from the nearest 

training points. Linear SVM has been successfully applied to synchronous brain com­

puter interface (BCI) problems [43]. By using "kernel trick" the linearity restriction 

can be relaxed so that nonlinear decision boundaries can be created, with only a low 

increase of the classifier's complexity. The radial basis function (RBF) SVM also have 

successful applications in EEG signal classification [43]. SVM has good generalization 

properties due to the margin maximization and the regularization. It is insensitive to 

overtraining. It overcomes the problem of "curse-of-dimensionality". The drawback 

is the low speed of execution. 

The nonlinear classifiers mostly used in EEG signal classification are the Nonlinear 

Bayesian classifiers [58]. Another choice is the Hidden Markov model (HMM) classi­

fiers because it is not necessary to extract feature vectors from EEG signals for the 

classification. HMM has been used successfully in BCI [71, 72] and sleep staging [32]. 
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A neural network can be viewed as universal approximator of continuous functions. 

Thus, it can produce nonlinear decision boundaries when used in classification [19]. 

However, the universality makes the classifiers sensitive to overtraining, especially 

with noisy and non-stationary data. Therefore, one must be careful to select the 

architecture and regularization [54]. Multilayer perceptron (MLP), together with 

linear classifiers, are the neural networks mostly used in EEG signal classifications [51, 

9, 84]. Other neural network architectures have also been applied to EEG signal 

classifications [67]. 

The k-Nearest neighbor classifiers are the simplest and among the most effective 

nonlinear classifiers. The idea is to assign a feature vector to a class according to 

its nearest neighbors. The neighbors can be feature vectors from the training set 

if a distance measure is defined between feature vectors [20], or class prototypes if 

Mahalanobis distance is used [25]. The performance of a k-nearest neighbor classifier 

can be equal to that of a neural network classifier in the automatic scoring of human 

sleep recordings [ 11]. A more detailed introduction of k-nearest neighbor classifier 

will be given in Chapter 5. 

There are others who suggested the use of several classifiers in cascade, each 

classifier focusing on the errors committed by the previous ones [34, 54]. However, 

the complexity of the classification will also dramatically increase. 

As introduced in the above, if EEG signals can be represented by feature vectors 

of appropriate size in the sense of low dimensionality, then there are various choices 

of classifiers to carry out the classification [34]. However, feature extraction is not 

a trivial problem in the sense there is no way to guarantee that features extracted 

from EEG observations are good for classification. Furthermore, based on the same 

feature space, different classifiers often give very different classification performance. 

Examples of such difference in performance can be found in [45]. 
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The above approaches of automatic EEG classification for sleep state determina­

tion have limited success rate and have thus not been widely used. At present, the 

common practice is still to have the EEG signals determined by sleep experts whose 

judgments are based mainly on the frequency and amplitude of the recorded EEG 

signals which are governing factors of the power distribution of the signal. Since 

modern EEG and polysomnography systems (e.g. Xltek, Oakville, Ontario, Canada) 

are computer-based, EEG data that have already been classified by expert clinicians 

are now readily available to test new approaches. 

1.3 A new outlook on EEG signal classification 

Signal classification is essentially a process of measuring the similarity and dissimi­

larity of the feature of a signal from different known feature sets. The measure of 

similarity/ dissimilarity is generally based on the concept of distance. The most com­

monly used approaches to the problem are from a vector space point of view [37, 75] 

in which the selected features of the different classes of signals are treated as entities 

in a vector space prescribed with a distance measure. Here in this section, we will 

give an introduction to our outlook on the geometry of this vector space which forms 

the basis of the thesis. First, let us examine a feature of the EEG signal which may 

be attractive for practical sleep classification. 

1.3.1 PSD- an EEG signal feature for sleep assessment 

In the previous section, we mentioned that at present, the common practice of de­

termining a patient's sleep stage is still by having sleep experts visually inspect the 

EEG signals and make judgments based mainly on the frequency and amplitude of 

the recorded EEG signals. These are the governing factors of the power distribution 
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of the signals. That classification of sleep stages can be carried out by inspecting 

(a) s{ll: An EEG signal from sleep state 1 of 
subject A 

(b) s<2l: An EEG signal from sleep state 1 of 
subject B 

0.01,---~--~-~--~-r=====,;;:;] 

- psdols10 

- Psdotsl210009 

0.008 

0 .007 

0006 

[ 	 0.005 

0004 

0 003 

20 25 30 

(c) Power spectral densit ies of the EEG signals g{l) 
and s<2l 

Figure 1.9: Example 1 

the amount of power in certain frequency ranges can be illustrated by studying the 

power spectral densities of EEG signal in the following examples. Figure 1.9 shows 

the case of two EEG signals and their power spectral densities from one class, and 

Figure 1.10 shows the case of two EEG signals and their power spectral densities from 

a different class. To compare these power spectral densities we put them in one figure 

as shown in Figure 1.11. 
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(a) s (3l : An EEG signal from sleep st ate 3 (b) s<4l : An EEG signal from sleep state 3 of 
of subject A subject B 
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(c) Power spectral densi t ies of the EEG signals s<3l 
and s<4l 

Figure 1.10: Example 2 
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Figure 1.11: Comparison of the spectral densities of the EEG signals s(l), sC2), sC3), 

and sC4 ) 

It can be seen that EEG signals from the same class have similar power spectral 

densities and signals from different classes have obvious different power spectral den­

sities in the sense of their shapes. Therefore, we conclude that the judgements of the 

sleep experts have sound basis and that it is reasonable to represent EEG signals by 

their power spectral densities for sleep classification purposes. Since it is essential for 

our results of the automatic EEG classification to have meanings which concur with 

judgements of the clinical experts , in our studies, we have chosen the PSD of the EEG 

signals as the selected feature. In particular, since the EEG signals are collected from 

multi-channel measurements , we use the PSD matrices of the multi-channel EEG sig­

nals as our features. This will not only provide us with the power density distribution 

information of the signals, but will also provide us with the information of the cross 

power density distributions between the signals from the different channels. The use 

of t he PSD matrix as the chosen feature can further be justified by noting that the 

EEG signals are generally considered to be wide-sense stationary (WSS) processes, 
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and therefore, can be represented by their second order moments, or equivalently, 

their PSD matrices (see Chapter 2). 

1.3.2 Distance measures for signal classification 

Let us turn to the process of classification. Supervised signal classification is a com­

parison of similarity jdissimilarity between a signal and a standard group of signals 

so that a decision can be made. To this end, we define a distance between a pair of 

signals. Now, the set of signals itself begins to take on a geometric character called a 

signal space [37]. (A more detailed discussion of this concept is given in Chapter 2). 

The extracted features of the signals can also form a signal space on which a distance 

can also be defined for the purpose of classification. For example, suppose the signals 

(or their features) are represented by the set ~n (or en) of ordered sequences of n 

real (or complex) numbers (n-tuple) such that x = [xi,··· ,xn]· Then, the totality 

of n-tuples of values of {xi,··· ,xn} constitutes a real (or complex) signal space of 

n-dimensions. Each of the n-tuples is called a point in the space. There are many 

ways of defining the distance between two points in a signal space, each providing the 

space with different geometric characteristics and application advantages [79]. Some 

examples of such measures will be discussed in Chapter 3. A standard metric in this 

n-dimensional signal space is the Euclidean distance such that 

n 

d2(x,y) = L lxi- Yil 2 (1.1) 
i=I 

This metric is used in a majority of engineering measurements due to the many 

important physical quantities it can represent. 

However, while the Euclidean metric is very useful in most physical applications, it 

may not be the most appropriate measure for some. In our case of EEG signal classifi­

cation, we use the PSD matrices of the EEG signals as features. These PSD matrices 
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form different points in the signal space in which our classification is performed. Now, 

if we examine these PSD matrices, we observe that they are: 1) Hermitian symmetric, 

and 2) positive definite. These common properties of the PSD matrices describe a 

hyper-surface, called a manifold, in the signal space on which these points of PSD 

matrices are located. More specifically, these PSD matrices describe a Riemannian 

manifold [41], which is a particular kind of differentiable manifold (for further details, 

see in Appendix B). Now, if measurement of the distance between two points is to 

be carried out for the purpose of classification, a reasonable way is to measure the 

distance along the shortest path on the manifold between the points. This is analo­

gous to finding the distance between two cities on a globe in which case the shortest 

path between two points on the globe surface has to be established and measured. 

The Euclidean distance which measures the straight line joining the two points may 

be neither appropriate nor informative. The following example further reinforces this 

idea: 

Suppose that we have some data points which are distributed on a curved surface 

in ~3 as shown in Figure 1.12. Now, consider the three points A, B, and C. Here, 

the Euclidean distance between two points is measured in terms of the length of the 

straight line between them. Thus, the Euclidean distance between A and B is shorter 

than the Euclidean distance between A and C. On the other hand, if we measure 

the distance in terms of the shortest length along the curved surface joining the two 

points (called the intrinsic distance), then clearly, the distance between points A and 

B is much longer than the distance between points A and C. For this given data 

set, the use of the intrinsic metric to measure similarity j dissimilarity may yield more 

appropriate results than the use of Euclidean distance in practice. 

Therefore, in this thesis, we explore the geometry of the Riemannian manifold of 

the EEG PSD matrices. By considering the tangent space at a point on the feature 
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Figure 1.12: Data on a curved surface 

manifold, we can develop a suitable Riemannian metric from which a geodesic (the 

curve of minimum distance) between two points on the manifold can be established. 

The direct evaluation of the Riemannian (geodesic) distance may, in general, be very 

complicated or even untractable. However, with the help of fibre bundle theory, a 

straightforward derivation of the distance can be obtained. 

Furthermore, even though we have seen that the PSD matrices may be a reason­

able choice of a signal feature for EEG classification in the determination of sleep 

levels , there is no guarantee that this choice will yield the optimum separability 

between different signal classes. We therefore propose to weight the Riemannian dis­

tance so that the distinction between similar and dissimilar signal groups may be 

enhanced. To t his end, we seek an optimum weighting matrix for the features using 

convex optimization techniques. A closed form of the weighting matrix can then be 

obtained. 

Using the optimally weighted Riemannian distance, we can employ a classifier 

to carry out the EEG classification. We use the k-nearest neighbor classifier in this 
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thesis due to its relative simplicity. The effectiveness of our new geometrical approach 

to EEG classification can then be thoroughly tested. 

1.4 Main features of the thesis 

The following are the main features of this thesis: 

1. 	 The PSD matrix is chosen as the feature representing an EEG signal for clas­

sification purpose. Therefore, EEG epochs are represented as curves on the 

manifold of PSD matrices. 

2. 	 Geodesic distances are developed with chosen Riemannian metrics endowed 

to the manifold by using elementary Riemannian geometry. Applying fibre 

bundle theory, complex computation is avoided in the evaluation of the geodesic 

distance by establishing an isometric horizontal subspace of the tangent space 

at the image of the point considered on the manifold. 

3. 	 The similarity/dissimilarity measure between two EEG signals rs defined in 

terms of the geodesic distances. 

4. 	 A general distance metric learning problem is proposed. In particular, an opti­

mum weighting matrix for the geodesic distance on the manifold of PSD matri­

ces is found in a closed form. 

5. 	 k-nearest neighbor classification rule is applied. To reduce the computational 

load for the Riemannian distances between a large number of points in the case 

of very large training sets, a multi-mean representation of classes is proposed 

and applied. 
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6. 	 Experimental results show the power of the discrimination of the classification 

method developed. 

Features listed in Items 2, 3, and 4 are considered major research contributions of 

this thesis. 
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Chapter 2 

EEG Signals- Pre-Processing, 

Feature Extraction and 

Mathematical Representations 

For efficient classification, the EEG signals have to be reasonably free from artifacts 

and other interference so that the signal and its feature characteristics can be deter­

mined accurately. In this chapter, we examine the collected EEG signals which are in 

segments of 30-sec epochs with a sampling frequency of 200Hz. The pre-processing 

of the EEG signals collected from the patient is first carried out so that artifacts are 

removed and additive noise reduced. Then, we examine the properties of the PSD as 

a feature of the EEG signal and describe how this feature can be extracted from the 

collected signals. We then present a general mathematical method of representing 

the EEG signals and their PSD matrices. 
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2.1 Pre-processing of EEG signals 

As ment ioned in Chapter 1, EEG signal measurements are subject to t he interference 

of noise and other internal and external artifacts . The effect s of t hese interferences 

may often lead to the degradation of t he classification performance. Therefore, before 

the process of classification, t he EEG signals must first be pre-processed so as to 

remove the artifacts and reduce the noise in the signals. 

2.1.1 Artifact removal 

Art ifacts in EEG signals are usually caused by movements internal or external to 

the patient. Artifact removal is still one of t he challenges in EEG signal processing. 

The problem is that there is no definite shape or size or duration of the artifacts. 

At present , the common practice of t he clinical experts is to identify t he art ifacts by 

visual inspection and then replace the art ifact samples . Other methods have been pro­

posed to remove art ifacts from EEG recordings including regression in time/frequency, 

and linear decomposit ion and reconstruction, etc. [47, 88, 5, 94, 24 , 78]. Since t his is 

not the main theme of t he thesis, we will simply follow the common practice of visual 

inspection. A brief description of our procedure is given in t he following: 

We notice that t he amplit udes of art ifacts in t he collected EEG signals are usually 

very large and very short in duration compared to t hat of t he the normal EEG signals. 

An example of such is shown in Figure 2.1 in which an EEG signal of sleep st age 1 

contains an art ifact during time interval 20 - 20.1 seconds. 

In t he pre-processing of such art ifact infested signals, we measure the mean f..L and 

standard deviation a of t he EEG signal epoch. Treating the distribution of t he EEG 

signal as if it were Gaussian , any sample which has an amplitude larger t han IJ..L +3al 

will be removed [10] and replaced by random samples within the range of ± IJ..L + 3a j. 
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Figure 2.1: EEG signal with artifact 

Figure 2.2 shows the EEG signal of Figure 2.1 after the artifact samples are removed. 

2.1.2 Noise filtering 

Since in our applications, all the EEG signals concentrate in the frequency range of 

0 - 35 Hz, t herefore, to reduce the addit ive noise in t he recorded EEG signals, we 

apply low-pass filtering to the signal epochs after t he art ifacts have been removed. 

To ensure a relatively low distortion to the signal we choose the Butterworth filter 

design since it has a maximally fiat amplit ude response and a relatively linear phase 

response in t he pass-band [18]. It should also have a relatively narrow transit ion 

band . For these requirements, a tenth order low-pass Butterworth fil ter with the 

cut-off frequency of 58Hz is chosen and is realized as an Infinite-duration Impulse 

Response (IIR) digital filter [35]. The t ransfer function of such a filter is given by [35] 

H( ) = N( z ) (2.1) z D(z) 
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Figure 2.2: EEG signal with artifact removed 

where 

N(z ) 0.0093z10 + 0.0932z9 + 0.4193z8 + 1.1180z7 + 1.9565z6 + 2.3478z5 

+ 1.9565z4 + 1.1180z3 + 0.4193z2 + 0.0932z + 0.0093 (2.2) 

and 

D(z) 1.0000z10 + 1.5938z9 + 2.4143z8 + 2.0262z7 + 1.4469z6 + 0.7003z5 

+ 0.2712z4 + 0.0723z3 + 0.0139z2 + 0.0016z + 0.0001 (2.3) 

The amplit ude and phase response are shown in Figure 2.3. 

It can be seen that t he amplitude response is flat from 0 to 35 Hz (corresponding 

to t he normalized frequency of 2 x w j w8 = 2 x 35/ 200 = 0.35, where w is t he fre­

quency in radians/ second and W 8 is t he sampling frequency) and the phase response 

is approximately linear in t he range of 0 - 35 Hz. 

At the transition band , although the amplitude response rolls off relatively more 

gently than some other designs (e .g., Chebychev, elliptic, etc.) , this has insignificant 
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Figure 2.3: The amplitude and phase response of the filter 

effects on our purpose because the EEG signals have negligible amplit udes beyond 

the frequency range of 35 Hz. The EEG signal of Figure 2.2 after passing through 

the digital Butterworth IIR low-pass filter is shown in Figure 2.4. 

2.1.3 EEG signal normalization and data collection 

After the above clean-up procedures, we can now collect all the M channel measure­

ments for t he ith patient and represent each of t he preprocessed nth epoch of these 

mult i-channel data at time t as a vector: 

s' (i) (t) = [s ' (i) (t) · · · s ' (i) (t) ]T t = 1, · · · ,T (2.4)
n nl ' ' n/11 ' 

Thus, t he nth epoch measured data matrix (represent ing M channels of measured 

data for a duration ofT seconds) for t he ith patient is given by 

n = 1 · · · N (i ) (2.5)
' ' 
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Figure 2.4: The filtered EEG signal 

Each epoch of measured EEG data is then normalized such that the normalized data 

matrix is given by 

(2.6) 


with [S'~)]ij denoting the ijth element of S'~) . These normalized data matrices are 

then carefully inspected and classified by several clinical experts and is labeled indi­

cating that it represents a particular state of sleep for t he patient . Thus, for the ith 

patient , we have the following labeled sample EEG signals: 

- g (i) 1 l [ g (i) l [ . . . g (i) l } D (i) . . . n N ( i ) (2.7)
- { (i) ) ) (i) ) ) (i) . [ £1 fn eN(•) 

where 

f(i) E £ = { 1 2 · · · L} (2.8) 
n ' ' ' 

denotes the label of the nth epoch of the EEG signal belonging to any of the L states 

of sleep. A library of t hese labeled sampled EEG signals from several patients are 
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stored up such that v = u i V (i) having a total of N = L i N (i ) epochs of data. Since 

the goal of the research in this thesis is to derive a reliable classification method to 

automatically determine the label R0 of a new normalized measured EEG data matrix 

S0 without having to involve expert human judgement, t his collection of data will 

serve as a reference library as well as the supply of test data for formulating the 

classification measure and testing the performance of the classification methods. 

2.2 EEG signals - wide-sense stationarity 

We now turn our attention to the feature characterization of the EEG signals. Since 

there is no deterministic pattern of an EEG signal, it is usually regarded as stochastic. 

Let us first review some basic properties of stochastic processes [7 4]. A stochastic 

process s(t , ~) can be viewed as a real (or complex) valued function of two variables 

t and ~. The domain of ~ is the set S of outcomes of an experiment and the t ime 

domain oft is a set of real numbers. For a specific outcome ~i , s(t , ~i ) signifies a single 

time function. For a specific time ti , s(ti , 0 is seen as a random variable. We usually 

use s(t) to represent a stochastic process with its dependence on~ omitted. 

For a real process s(t) , t he value s(t) at a specific t is a random variable. The 

distribution of this random variable will depend on t in general, i.e. , we have 

F(s , t) = P(s(t) ~ s) (2.9) 

where P(-) denotes the probability of the event . Eq. (2.9) is called the first-order 

distribution of the process s(t). In most situations, the distribution has a probability 

density function which can be defined as 

8F(s, t)f( ) 
= 

(2.10)s' t OS 
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The joint distribution of s(t i) and s(t2 ) depends, in general, on t1 and t2 , i.e., 

(2. 11) 

which is called t he second order distribution of t he process s(t) . The corresponding 

density function is given by 

(2. 12) 


In general, it is costly to measure t he distribut ion F (s , t) experimentally and t he 

computation of the probability density function f (s , t) is extremely difficult. They 

are also too cumbersome to be used in practice. A simpler alternative to t his form 

of descript ion is to compute a number of average characterist ics of a process . In 

other words, the moments of a probability distribution serve as simple numerical 

characteristics of the distribution. 

The mean p, (t ) of a process s(t ) is defined as the expected value of t he random 

variable s(t ) (at a fixed t) , i.e. , 

p, (t) = IE [s(t) ] = 1:sf (s, t )ds 	 (2.13) 

It is, in general, a function oft. The autocorrelation of s(t) is defined as the joint 

moment of the random variable s(t i) and s(t2 ) , i.e ., 

(2.14) 

and it is a function of t1 and t2 . The autocovariance of s(t) is the covariance of t he 

random variable s(t1) and s(t2 ) , i. e. , 

c(t1, t2) ~ 	 IE[(s(t1) - p, (tl))(s(t2) - p,(t2))] (2 .1 5a) 

r(t1, t2) - p, (t1)p,(t2) (2.15b) 
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The relationship between autocorrelation and autocovariance in Eq. (2.15b) follow 

directly from Eqs. (2.14) and (2.15a). 

The cross-correlation of two processes s 1 (t) and s2 (t) is defined as 

(2.16) 


and their cross-covariance as 

(2.17) 


A process s(t) with distribution function F(s , t) is called a wide sense stationary 

(WSS) process if it satisfies the following two conditions 

(1) 	 The mean value of s(t) is a constant , i.e. , 

J..L(t) 	 = J..l, a constant (2.18) 

(2) 	 The autocorrelation function depends only on the time difference T = t 1 - t 2 , 

Le., 

(2.19) 


We say that two processes s1(t) and s2 (t) are jointly stationary in the wide sense if 

each of them is a WSS process and their cross-correlation depends only on the time 

difference T = t1 - t2: 

(2 .20) 


These averages do not necessarily describe a stochastic signal completely, but 

they may be very useful for a general description of signals such as EEG. In fact , 

the statistical properties of EEG signals depend on both time and space. These 

make EEG signals complex. The temporal characteristics show that EEG signals are 

varying from time to t ime. However, each time series can be divided into epochs 
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which have more or less t ime-invariant st atistical properties [86]. It is thus commonly 

assumeed that EEG epochs (awake condition or during sleep) of less t han 32 seconds 

are wide-sense stationary [ 66]. 

2.3 	 Power spectral density - A characterization 

feature of EEG signals 

The power spectral density (also called power spectrum) function, p(w) , and the 

autocorrelation, r(T), of a WSS process s(t) form a Fourier transform pair (see [93] 

for a rigorous treatment) such that , i. e. , 

(2.21 )p(w) 

(2.22) 

whereas the cross-power spectral density, p8182 (w), and the cross-correlation, r 8182 (T) , 

of two WSS processes also form a Fourier t ransform pair: 

(2.23) 

(2.24) 

The spectral representation of a univariate WSS process can be generalized to 

mult idimensional case in a straightforward way. Let us consider a WSS M channel 

EEG signal 

s(t) = 	 [s1(t) s2(t) · · · SM(t )]T, t = 1, 2, · · · , T (2.25) 
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It can be written in a matrix form as 

S = [s (1), .. · , s (T )] = (2 .26) 

We make an M T x MT vector by stacking columns of S as 

s = [s (1f , s (2f , .. . , s (T f]T (2.27) 

Then, t his signal can be characterized by its mean and variance-covariance matrix, 

i.e., 

[1, = IE[s] (2.28) 

and 

(2.29) 

which contains theM x M matrices R (T) = R(t1 - t2), t1, t2 = 1, · · · ,T , specifically 

R(O) R(1) R (T - 1) 

R = 
R(-1 ) R(O) R (T- 2) 

(2. 30) 

R(1 - T ) R(2- T ) R(O) 

where 

ru (T) r12 ( T) rlM(T) 

R(T) = R(t1 - t2) = 
r21 ( T) r 22(T) r2M(T) 

(2. 31) 

rMl (T) rM2(T) rMAt(T) 

where 

rij(T) = IE[(si(t) - J.Li)(sj(t + T) - P,j)] (2.32) 
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Since the EEG signals we considered are real, we have 

(2.33) 


Thus, the matrix R can be completely characterized by the 2T elements {R(1 ­

T ), .. · , R ( -1 ), R (O), R (1), .. · , R (T- 1)}. 

The information contained in the covariances can be expressed equivalently in 

t erms of t he power spectral density matrix, P (w) , of t he signal which is t he Fourier 

transform of t he autocorrelation of matrix such that 

(2.34) 


if 1:IIR(T)IIdT < 00 (2.35) 

where II · II denotes the t\ -norm of the matrix. Eq. (2.34) gives the power spectral 

density for a cont inuous signal in terms of its autocorrelation function. For observed 

signals in discrete time as is in the case of EEG signal measurements, we need to take 

the discret e Fourier transform (DFT) of t he signal autocorrelation so that 

00 

(2.36) 

T= -CXJ 

In practice, the autocorrelation matrix is evaluated by taking t he product of the 

fini te signal sequences at different t ime shifts. That the DFT of t his product indeed 

converges to Eq. (2.36) can be seen using the following lemma [53]: 

Lemma 2.1 Let Pn = ao + · · · +an be the partial sum of a series I:~=O ak· Let 

f3n = (Po+ ··· + Pn-I) / n = 2::::~:~(1- ~)ak be the Cesaro mean (average sum) . If 

limn_,00 Pn = p, then limn_,00 f3n = p. 
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Assuming JE[s (t)] = 0 without loss of generality, we consider 

(2 .37) 


Taking t he expectation we have 

(2 .38) 


which is a Cesaro mean of t he series for 

P (w) = L
00 

e-jwTR (T) (2.39) 
r=-oo 

By Lemma 2.1 , t he series (2.38) is convergent and 

lim JE[I (w)] = P (w) ::=:: 0 (2.40) 
T__,oo 

since JE[I (w)] ::=:: 0. The fact that P (w) is Hermit ian and positive semi-definite follows 

from Eq. (2.34) and RH(T) = R ( -T). 

The spectral density measures how the power of an EEG signal is distributed with 

frequency and has been commonly used as a feature for EEG signal classification. 

However, for most of the applications, eit her the power spectral information of a 

single channel EEG signal or the collection of t he power information of several single 

channel EEG signals is used . The inter -channel information (cross-power spectrum) 

which may be important for EEG signal classification has not been used. Furthermore, 

if power spectral density is used as t he feature for EEG signal classification, t hen 

t he geometrical structure of t he space it describes is essent ial to t he definit ion of 

similarity/dissimilarity between EEG signals. For these reasons, we choose to employ 

the power spectral density matrices as t he feature characterizing t he multi-channel 

EEG signals. Examination and analysis of the geometry of t he space of t he power 

spectral density matrices leads to novel and efficient similarity / dissimilarity measures 

on t he space for classification. 
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2.4 Feature extraction - Estimation of the PSD 


matrix 

The power spectral density of a signal can be estimated using either non-parametric 

methods or parametric modeling methods [57]. Non-parametric methods are simple, 

but are in general, not consistent in t he estimate of the power spectrum. Further­

more, they are limited in their ability to resolve closely spaced variations of frequency 

response when the number of dat a samples is limited. The parametric modeling ap­

proaches usually give higher accuracy in the spectral estimation of signals if the model 

is chosen appropriately. There are various choices of parametric modeling. Here, be­

cause of its relative simplicity, we use the vector auto-regression (VAR) model for the 

estimation of EEG power spectral density, a brief outline of which is presented in the 

following: 

The autocorrelation function (ACF) of a spectrally white multichannel noise se­

quence n(t) satisfies 

(2.41) 


where P nn is a constant M x M matrix. Thus its PSD matrix is a constant , i.e. , 

(2.42) 


Now, the output signal of a q-th order vector auto-regression (VAR) model can be 

described as 

s (t) =- L
q 

A (T) s(t - T) + n (t) (2.43) 
T= l 

where A (T) are the M x M coefficient matrices and n (t) is the M x 1 vector of a 
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spectrally white noise. Let A (O) = I. Then, the ACF of n (t) is 

IE[n (t)nT(t + T)] 

IE[ L 
q 

L
q 

A (~~;) s (t- ~~;) sT(t +~~;-~)AT(~)] 
t<=O •=0 

q q

L L A(~~;)Rss(T + K;- ~)AT(~) (2.44) 
~<=0 •=0 

Taking the z-transform of Eq. (2.44), we have 

00 

r=-oo 
q 00 q 

( L A(~~;)z") ( L Rss (T + K;- ~)z-(r+~<-•) ) ( L AT(~)z-•) 
t<=O r=-oo •=0 

(2.45) 

Let z = e1w and use Eq.(2.36) , we have 

q q 

Pnn (w) = (LA(~~;)e1w")Pss (w) (LAT(~)e-jw•) (2.46) 
t<=O •=0 

Therefore, we have 

q - 1 q -1 

( L A(~~;)ejw~< ) Pnn (w) ( L AT(~)e-jw•) 
~<=0 •=0 

q - 1 q - 1(L A(~~;)ejw~<) P nn ( L AT(~)e-jw•) (2.47) 
t<=O •=0 

by Eq. (2.42) . Let 

A (w) = L
q 

A (T)e-jwr (2.48) 
r=O 

Then 

A T(w) = L
q 

A T(T)e-jwr (2.49) 
r=O 

Thus, t he Eq.( 2.47) can be rewritten as 

(2.50) 
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From Eq. (2.50) we see that to find the power spectral density matrices P 55 (w) of the 

signal s( t) one needs to estimate the coefficient matrices A ( T) in the VAR model of 

Eq. (2.43) . We employ the Nuttall-Strand algorithm [70] [81] which is a well-known 

algorithm applying the observed signal sequence to estimate the coefficient matrices 

A (w) and t he power spectral density P nn of t he spectrally white noise. The estimate 

of P (w) based on the VAR model is given by 

(2 .51) 


where C) denote estimated quantity. The detailed description of the algorithm is 

shown in Appendix A. The estimated PSD matrix P (w) so obtained will be used as 

the feature for the classification of t he EEG signals in our sleep analysis. 

2.5 	 Representation of the PSD matrix in linear 

vector spaces 

Having collected all the signals (or their features) exhibiting some common property 

into a set, our attention naturally turns to examining the distinctive properties of 

elements within the set. A particular signal is interesting only in relation to other 

signals in the set. A general approach for studying the properties of the elements of 

a signal set is to add some simple algebraic and geometric structures to the set. This 

can be achieved through the concept of a signal space (normed linear vector space) . 

In this section we first review the concept of linear spaces [79] [89], in particular, an 

inner product space and show how, in general, t he feature of PSD matrices can be 

represented in such a space. 
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2.5.1 Inner product linear space 

2. 5.1.1 Met ric spaces 

A general approach for characterizing t he difference between two elements of a signal 

set is to assign to each pair of elements a posit ive, real number. This number will 

be interpreted as t he "distance" between the elements. The set , with a suitably 

defined distance, will be referred to as a signal space. To define a distance, we need 

a functional which maps all pairs of elements from the set into the real line. Such a 

functional, d : { x , y} -t IR , is called a metric if it possesses the following propert ies: 

d(x , y) ~ 0 and d(x , y) = 0 i:,:~:etry) )d(x ,y) = d(y ,x) 	 (2 .52) 

d(x, z) :::; d(x , y) + d(y, z) (triangular inequality) 

A set of elements X , together with a metric d, is called a m etric space (X , d) . It 

should be noted that two different metrics, defined on the same set of elements , form 

two different metric spaces . For a given metric space (X , d), a sequence x 1 , x 2 , x 3 , ... 

is Cauchy if, for every positive real number E > 0, t here is a posit ive integer N such 

that for all natural numbers m, n > N , 

(2.53) 

A metric space (X , d) is complete if every Cauchy sequence in (X , d) has a limit t hat 

is also in (X , d). 

2.5.1.2 N or med linear spaces 


A linear space is a set of elements called vectors with the following propert ies: 


A. 	For each pair of vectors x and y in t he set, there is a corresponding vector in 

t he set x + y called the sum of x and y , such t hat 
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(1) Addition is commutative: x + y = y + x 

(2) 	 Addition is associative: x + (y + z) = (x + y) + z 

(3) 	 The set contains a unique vector 0 such that x + 0 = x V x 

(4) 	 For each x , t here is a unique vector ( - x) such t hat x + ( -x) = 0 

B. 	 There is a set of elements (called scalars) which form a field and an operation 

(called scalar multiplication) such that for every scaler a and every vector x 

there is a vector a x , and multiplication by scalars follows: 

(1) 	 a(f3 x ) = af3 x (associative law) 

(2) 	 1 X = X and Q X = 0 'rf X 

(3) 	 a(x + y ) =a x + a y (distribut ive law) 

(4) 	 (a+ f3) x =a x + f3 y (distributive law) 

The scalars can be real or complex resulting in the linear space being a real or 

complex linear space. Under the above vector addition and scalar mult iplication, a 

vector space is closed.1 The vector obtained by taking the sum of n particular vectors, 

each multiplied by a scalar coefficient 

n 

x = L ai x i 	 (2.54) 
i=l 

is called a linear combination. The set of all linear combinations of { x 1 , x2 , ... , xn} 

forms a linear space. Furthermore, if we take a subset of 

then the set of linear combinations forms a linear space which is a subset of the linear 

space form from linear combinations of {x1,x2 , .. . ,xn}· Such a subset is called a 

1The vector resulting from the operations of add ition and scalar multiplication remains in the 
vector space. 
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linear subspace. A set of vectors {xi; i = 1, 2 ... , n} is said to be linearly independent 

if the relation 

n 

I: O:i Xi= 0 (2 .55) 
i=l 

can only be satisfied if each of the scalars ai is zero. In other words , a vector in 

a linearly independent set cannot be expressed as a linear combination of the other 

vectors in the set. Let X be the space of linear combinations of n linearly independent 

vectors {xi, i = 1, 2, . . . n}. Each vector in X is a unique linear combination of the 

{xi} (a unique set of scalar coefficients). X is said to be an "n-dimensional" linear 

space. The set {xi} is called a basis for X , and X is said to be spanned by this basis. 

Any set of n linearly independent vectors in X will serve as a basis for X ; hence a 

linear space does not have a unique basis. 

Representation of Finite-Dimensional Vectors: Now let M be an arbit rary n-dimensional 

linear space spanned by the basis { u i; i = 1, 2, ... , n}. Any x E M can be expressed 

uniquely by 

n 

x = I: a i ui (2.56) 
i=l 

The ordered sequence of scalar coefficients {ai} can be interpreted as an n-tuple. 

Thus there is a one-to-one correspondence between vectors in the arbitrary space M 

and the space of n-tuples, and JRn or en can be used as a model for any real or 

complex n-dimensional space. We say that the n-tuple a = { ai} is a representation 

(in JRn or en) for X relative to the basis { U i}· 

We now combine the geometric concepts associated with metric spaces with the 

algebraic concepts associated with linear spaces. This is accomplished by assigning 

a real number reflecting the "size" of any element in a linear space. This number 

is called the norm of a vector (denoted by llxll) and can be defined in terms of 

44 



Ph.D. Thesis - Yili Li McMaster- Electrical & Computer Engineering 

any mapping from the linear space into the real line which satisfies the following 

properties: 

(a) llxll ~ 0 and llxll = 0 iff X= 0 

(2.57)(b) llx + Yll :S llxll + IIYII 

(c) llo:xll = Iaiii xll 

Note that the norm of a vector is its distance from the origin. A normed linear space 

which is also complete as a metric space is called a Banach Space. 

2.5.1.3 Inner product spaces 

The final step in the development of signal spaces is to supply additional geometric 

structure in the form of an inner product relationship between pairs of vectors. We 

shall henceforth deal with complex linear spaces, since the real spaces can always be 

treated as a special case. The inner product is a mapping of ordered pairs of vectors 

in the linear space into the complex plane. The mapping, with images denoted by 

(x, y) in C, satisfies the following properties: 

(x,y) = (y,x)* (2.58a) 

(o: x + ;Jy, z) = o: (x, z) + ;3 (y, z) (2.58b) 

(x, x) ~ 0 and (x, x) = 0 iff x = 0 (2.58c) 

From (2.58a) and (2.58b) we see that (o:x,y) = o:(x,y), (x,o:y) = o:*(x,y) and that 

(x, x) is real. An important consequence of the definition of the inner product is that 

llxll = (x, x) 112 (2.59) 

is a valid norm for the linear space. Furthermore, from the properties of Eqs. (2.57), 

it is easy to show that 

2d(x,y) = llx-yll = ((x-y),(x-y)) 1
/ (2.60) 
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is a metric (2.52) and this metric is implied when we refer to the inner product linear 

space. The inner product thus induces a norm which in turn induces a metric, by 

(2.60), so that an inner product space is a metric space with a particular metric 

implied. An inner product space which is also complete, as a metric space, is called 

a Hilbert Space. 

The following properties of inner product and norm are important: 

For x, v E X we have 

(i) Cauchy-Schwarz inequality: 

l(x,y)l :S: llxiiiiYII, x,y f 0 (2.61) 

with equality if and only if x = ay for some scalar a 

(ii) Parallelogram law: 

(2.62) 

(iii) Pythagorean theorem: If x 1._ y then 

(2.63) 

2.5.2 Representation of matrices in a linear vector space 

The very successful development of signal theory and signal analysis has been, by 

and large, based on the framework of normed linear vector spaces. The EEG signal 

classification problem is no exception, and most researchers have followed the same 

steps by defining a normed linear vector space for the single-channel EEG signals 

and their features and analysed their properties for classification. However, when the 

multi-channel PSD matrix is chosen as the EEG feature, it is natural to try converting 

the set of the PSD matrices into a corresponding set of vectors. In the following, we 

present several common ways of the such vectorization methods. 

46 



Ph.D. Thesis - Yili Li 	 McMaster- Electrical & Computer Engineering 

1. 	 We can represent an M x M matrix Pas a vector by having [46]: 

Vpa = vec(P) 	 (2.64) 

where vec(P) is a vector of complex dimension M 2 formed by stacking up the 

columns of P upon each other. 

2. 	 Since P is Hermitian symmetric, its ijth element is simply the complex con­

jugate of the jith element. Therefore, stacking up the elements renders the 

dimension of vec(P) unnecessarily high containing a lot of redundant informa­

tion. To eliminate the redundancy, we can stack up all the elements of only the 

upper (or lower) triangular part of P forming a vector Vpb having M 2 elements 

of real numbers [82]. 

3. 	 Since P is Hermitian and is positive semi-definite, its eigenvalues {Am} are real 

and positive semi-definite, and its eigenvectors {urn} form an orthonormal set 

such that 

(2.65)P = L
M 

AmUmu;;; 
m=l 

where ( · )H denotes the Hermitian conjugate of a vector or matrix. Since the 

PSD matrix represents the average cross-power between signals from different 

sensors, it can be conceived that a random vector that produces this averaged 

cross-power is given by 

(2.66) 


where bm is a random scalar such that 

(2.67) 
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The expansion of a random vector as a linear combination of the eigen-vectors of 

P with orthogonal random coefficients as in Eq. (2.66) is called the Karhunen­

Loeve expansion [74]. Since the vector x has average power Am in its component 

Um, therefore, it is reasonable to represent the matrix Pas a power vector having 

power components {>.m} in a linear combination of the eigenvectors such that 

(2.68) 


We note that for a Hermitian matrix P, the inner products of Vpa and Vpc are 

identical since 

M 	 M

L 1Pijl 2 = Tr[PPH] = L ).~ (2.69a) 
m=l 	 m=l 

M 

(vPc 1 Vpc) = 	 LA~ (2.69b) 
m=l 

None of the above representations of P as a vector is particularly satisfactory 

because some of the important structures, e.g., Hermitian symmetry, of the PSD 

matrix are not preserved. We now take a new look at the representation of PSD 

matrices. 

2.5.3 	 Representation of PSD matrices in a linear space- Lie 

algebra 

Here, we introduce a method to represent each M x M PSD matrix by a vector so 

that the vector representation preserves the properties of PSD matrices. This can be 

accomplished by building a one-to-one correspondence between M and another metric 

space N such that each point in M has a unique vector representation in N and vice 

versa. Then we can compare two points in M by comparing their correspondence in 
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N, i.e., we define the Euclidean distance between two vectors inN as the distance 

between the corresponding PSD matrices in M. 

We now show that the space N exists and is in fact a product space of X and 

U, i.e., N = x xU, where xis the space of all M-dimensional positive vectors (i.e., 

each element of the vector is positive) and U is the space spanned by a set of basis 

matrices {Ei}f~~- 1 . Since an M x M PSD matrix P is Hermitian, it is normal (i.e., 

it satisfies ppH = pHp) and thus has the eigen decomposition [52] 

P = UAU- 1 (2.70) 

where A= diag[,\1, · · · , ,\M]· Similarly, since the eigenvector matrix U is unitary, it 

must be normal. Therefore, it also has the eigen decomposition 

u = v:Ev-1 (2.71) 

with :E = diag[CT1, • · · , CTM]· Since U is unitary, we can rewrite the matrix :E as 

(2.72) 


where the real number Bm is the phase of CTm, m = 1, · · · , M, i.e., the eigenvalues of 

U are all of modulus unity 2
. We form a matrix 8 such that 

(2.73) 


2Let Uu =em. Then, we have 1 = (Uu)H(Uu) = a*auHu = lal 2 since the eigenvectors of U 
are orthonormal. Thus, the modulus of a is 1, i.e., lal = 1. 
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Then, we have 

(2.74) 

Now, we create another matrix U using the eigenvectors U and eigenvalues 01 so that 

u = vev-1 (2.75) 

Then, since V is unitary, we have 

U V~V-1 = Veiey-1 

I+ jV(e)v-1 + (jvev-1)2 + ... 
2! 

Jvev- 1 
1iJ e = e (2.76) 

Therefore, the matrices U and U can be directly related with each other. Since U is 

unitary, we have 

(2.77) 

Thus, (jiJ)H + jU = 0, i.e., jU is skew-Hermitian. Now, 

(2.78) 


Thus, U H = U. On the other hand, since U is Hermitian we have 


Tr[(jU)H- jU] = Tr[-jUH- jU] = -2jTrU (2.79) 
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and 

Tr[(jU)H- jU] = -2~[TrjU] = -2R[TrU] = -2TrU (2.80) 

where R(·) and~(·) denote the real part and imaginary part respectively. Therefore 

we should have 2TrU = 2jTrU, which implies TrU = 0. Therefore, U is Hermitian 

and null trace. In mathematics we say that U belongs to the Lie algebra of the 

group of unitary matrices with unit determinant (see Appendix B for definition of Lie 

algebra and Lie group).There are methods to construct a matrix-form basis {Ei}~~-l 

for the Lie algebra of the group of unitary matrices with unit determinant [31] [26]. 

For example, if M = 4, then Ei can be chosen as the modified Dirac matrices with 

M 2 
- 1 = 15 as shown in Table 2.1. 

Table 2.1: Modified Dirac matrices 

0 1 0 0 0 0 1 0 0 0 0 1 

El= 
1 
0 

0 
0 

0 
0 

0 
j E2 = 

0 
1 

0 
0 

0 
0 

-] 

0 E3 = 
0 
0 

0 
-] 

j 
0 

0 
0 

0 0 -] 0 0 j 0 0 1 0 0 0 
0 1 0 0 1 0 0 0 0 0 0 -] 

E4 = 
1 
0 

0 
0 

0 
0 

0 
-j E5 = 

0 
0 

1 
0 

0 
-1 

0 
0 E6 = 

0 
0 

0 
1 

1 
0 

0 
0 

0 0 J 0 0 0 0 -1 J 0 0 0 

E1 = 

0 
0 
-j 

0 
0 
0 

j 
0 
0 

0 
1 
j Es = 

0 
0 
1 

0 
0 
0 

1 
0 
0 

0 
j 
0 

Eg = 

0 
0 
0 

0 
0 
1 

0 
1 
0 

J 
0 
0 

0 1 0 0 0 -j 0 0 -j 0 0 0 
1 0 0 0 0 -j 0 0 0 0 0 1 

Ew = 
0 
0 

-1 
0 

0 
1 

0 
0 En= J 

0 
0 
0 

0 
0 

0 
1 E12 = 

0 
0 

0 
j 

-j 
0 

0 
0 

0 0 0 -1 0 0 1 0 1 0 0 0 
0 0 -] 0 0 j 0 0 1 0 0 0 

E13 = 
0 

J 
0 

0 
0 
1 

0 
0 
0 

1 
0 
0 

E14 = 
-] 
0 
0 

0 
0 
0 

0 
0 
1 

0 
1 
0 

E15 = 
0 
0 
0 

-1 
0 
0 

0 
-1 
0 

0 
0 
1 
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Note that the modified Dirac matrices satisfy the following properties [85] 

(2) E7 =I 


(5) TrEi = 0 

(6) {Ei} are linearly independent 

We note that U can be expanded as a linear combination of the basis matrices 

such that 
M 2 -1 

U = L aiEi (2.81) 
i=l 

where 

(2.82) 


That the dimension of U is M 2 - 1 in Eq. (2.81) is clear from the fact that there 

are M real parameters on its diagonal, ~!vf(M - 1) complex parameters on each 

of the lower and upper triangular part of the matrix (being conjugates), and the 

trace of the matrix is zero. Thus, the total degrees of freedom for the matrix is 

{M + 2 x ~M(M- 1)- 1} = (M2
- 1). That all o:i are real can be easily seen from 

taking the Hermitian conjugate of Eq. (2.81) and using Hermitian properties of U 
and Ei, we have 

M 2 -1 

U = L a:Ei (2.83) 
i=l 

Subtracting Eq. (2.83) from Eq. (2.81), we have 

M 2 -1

L (0: - o::)Ei = 0 (2.84) 
i=l 
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Since Ei are all linearly independent , then, a = a; . 

From the linear combination in Eqs. (2 .70) and (2.81), we see that we can represent 

P as a vector such that 

(2 .85) 


where A = [)q , · · · , AM ] and a = [a 1, · · · , aML 1]. This representation of P is desig­

nated Lie vector in this thesis and is illustrated in Fig. 2.5. 

Figure 2.5: Illustration of Lie vector representation 

It can be seen that the vector A is the representation of P in the eigen space 

(spanned by the eigenvectors of P) and the vector a is the representation of the 

eigen space in the space spanned by the basis {Ei} . In other words, we can represent 

the PSD matrix P by a vector vpL = [A, a ]T and characterize completely the P in 

the sense that the eigenvalues A represent the structure of the eigenvectors and the 

parameters a characterize the structure of t he unitary matrix U . Furthermore, a 

are invariant under complete unitary transformations and therefore are true invariant 

descriptors of the system. For all power spectral density matrices, a are located 

in t he same space which makes t he comparison between two power spectral density 
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matrices in terms of their vector representations reasonable. In the sequel we adopt 

this representation as our vector representation of power spectral density matrices. 

Let VpL1 = [)q, a!] and vpL2 = [A2, a2] be the vector representations of P1 and 

P 2 . Then, the distance between P 1 and P 2 can be defined as 

M 	 M 2 -l 

d(P1, P2) = d(vPLl' VpL2) = L)Alm- A2m)2 + L (o:le- 0:2e)2 (2.86) 
m=l 	 f=l 

2.6 	 Vector space of Hermitian matrices and man­

ifold of PSD matrices 

Since the PSD matrices of the EEG signal have been chosen to be the feature for 

classification and PSD matrices are a subset of Hermitian matrices, it is imperative 

for us to examine the structure of the vector space of these matrices. Let us first 

examine the vector space of Hermitian matrices. 

Let MM be the set of all theM x M complex matrices. Let 'HH and M denote 

respectively the set of all Hermitian matrices and the set of positive definite Hermitian 

matrices, i.e., 

'HH ={A E MM: AH =A} (2.87a) 

M = {P E 'HH: p >- 0} (2.87b) 

Thus, we have M C 'HH C MM. We have the following proposition: 

Proposition 2.1 'HH is a real linear vector space. It is isomorphic to the Euclidean 

space JRMxM. 

Proof: We note that for an M x M Hermitian matrix H and a complex scalar c, 

cH tt. 'HH in general since cH may no longer be Hermitian. Therefore, 'HH is closed 
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only for real scalar field. Furthermore, H can be represented as a linear combination 

of a set of basis Hermitian matrices {:Eij; i,j = 1, · · · , M} with all coefficients being 

real such that 
M M 

H= LLhmnEmn (2.88) 
m=l n=l 

where H = H H, Eij = Eg and hij = h;j. This is because the matrix H is Hermitian, 

therefore there are M real elements on the diagonal and ~M (M -1) complex elements 

above and below the diagonal, respectively which are complex conjugates. Thus, the 

number of real degrees of freedom is M + ~M (M- 1) + ~M (M - 1) = M 2 . Therefore, 

the total degrees of freedom for the set of Hermitian matrices is M 2 and thus, there 

exist M 2 linearly independent and orthonormal Hermitian matrices E11 , · · • , EMM 

forming the basis of the space resulting in the linear combination of Eq. (2.88). That 

the coefficients hij in Eq. (2.88) are all real follows exactly the same argument as 

those for Eq. (2.81). These orthonormal Hermitian basis matrices can be obtained 

by having 

0 0 0 0 

(2.89a)Emm = 0 1(mm) 0 

0 0 0 0 

0 0 0 0 

0 0 1(mn) 0 

(2.89b)Emn = 

0 1(nm) 0 0 

0 0 0 0 
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0 0 0 0 

0 

0 

0 

-j(nm) 

](mn) 

0 

0 

0 

(2.89c) 

0 0 0 0 

where the subscripts in parentheses denote the positions of the non-zero elements 

in the M x M matrix. The linear combination of Eq. (2.88) with real coefficients 

is a reminiscence of the representation of a vector as an n-tuple in JR.n as shown in 

Eq. (2.56), i.e., here we can represent an M x M Hermitian matrix as an (M x M)­

tuple {hmn; m, n = 1, · · · , M} in a real (M x M)-dimensional space JR.MxM. Since the 

basis matrices {Emn} in Eq. (2.88) are all orthonormal, the inner product (H1, H 2 ) 

in 1iH is also real since 
M M 

(Hl, H2) = L L hlijh2ij (2.90) 
i=l j=l 

Henceforth, we refer to 'HH as a real vector space. 


To show that 'HH and JR.MxM are isomorphic, we need to find a mapping ¢ : 'HH _____, 


JR.MxM such that 


¢(Ht) + ¢(H2) (2.91a) 

k¢(H) (2.91b) 

where k is a real number, and H, H 1, H 2 E 'HH· If we let 

(2.92)¢(H)= 
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then, it is easy to see that the mapping¢ satisfy Eqs. (2.91). This shows that 'HH 

and JRMxM are isomorphic, denoted by 'HH ~ JRMxM_ D 

Let us now consider the PSD matrices which are the features for EEG signal 

classification and are positive definite Hermitian. Therefore, we can likewise represent 

the PSD matrices as a linear combination with real coefficients {Pmn} such that 

M M 

p = LLPmnEmn (2.93) 
m=l n=l 

However, we cannot find a subspace in JRMxM in which ann-tuple representation for 

these positive definite PSD matrices can be defined. Now, the set of PSD matrices is 

a subset of the set of all the Hermitian matrices, i.e., 

(2.94) 

Therefore, we may conceive that the PSD matrices form a manifold 3 M in 'HH, the 

space of all Hermitian matrices. We now show that the manifold described by the 

PSD matrices is real: 

Lemma 2.2 [40} The exponential mapping 

(2.95) 

is a bijection. In other words, if A E 'HH, then eA EM; ifP EM, then there exists 

a unique A E HH such that P =eA. 

Corollary 2.1 M is a real manifold. 

3For now, a manifold can be looked upon as [36]: "Ann-dimensional manifold is a space which 
is not necessarily a Euclidean space nor is it a domain in a Euclidean space, but which, from the 
viewpoint of a short-sighted observer living in the space, looks just like such a domain of Euclidean 
space." 
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Proof. The mapping e in Lemma 2.2 is also continuous and its inverse is also 

continuous. Therefore, it is a homeomorphism. As a result , M and 7-iH share the 

same topological properties. 

Let TM (P ) be the tangent space formed by the set of vectors which are tangent 

to M at P . Since M is an open subset of 7-iH , the tangent space TM(P) can be 

identified with 7-iH. On the other hand , Proposition 2.1 shows that 7-iH is a real 

vector space. Therefore, we can conclude that M is a real manifold. 

The result in Corollary 2.1 is important in the development of distance measures in 

the manifold of PSD matrices. This is because we only have to consider real analysis 

of the geometry. 

In sleep classification, we characterize an epoch of multichannel EEG signal matrix 

S by its feature PSD matrices P (w) in a frequency range [w1,w2], therefore, we can 

regard the PSD matrix as represented by a series of points forming a curve on M 

parameterized by the frequency variable w, i.e. , 

P (w): (2.96) 

This concept is shown in Fig. 2.6. 

M 

EEG signal Curve on Manifold 

Figure 2.6: EEG signal representation 
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Chapter 3 

Distance Measures for EEG Signal 

Classification 

In the previous chapter, we have seen how the measured EEG signal can be collected 

and cleaned up, and how its PSD feature can be extracted and calculated. We have 

also seen that these PSD matrices can be represented as vectors and treated as points 

in a linear space, or the matrices themselves can be looked upon as points on a 

manifold in a linear space. For analysis of the these features, the linear space usually 

has certain geometric structures. These features of the collected EEG signals may 

then be used for classification purposes. 

Now, EEG signal classification is a matter of examining the similarityIdissimilarity 

between the features of the signals. SimilarityIdissimilarity can be quantified ac­

cording to a specific measure which may not necessarily be a metric in the strict 

mathematical sense. The only requirement is that it quantifies the similarity or com­

monality between two EEG signals by taking on small values for two similar EEG 

signals and large values for two distinct EEG signals. However, since we have shown 

that the set of all the PSD matrices is a real manifold which is a metric space, it is 
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our opinion that the similarity j dissimilarity between EEG signals should take on a 

mathematical measure. 

Intuitively two points in a mathematical space are similar if they are close to each 

other with respect to the metric endowed to the space, and vice versa. From the 

geometric point of view, the dissimilarity between two points in a space is naturally 

measured by some kind of distance function, or distance for short. The similarity 

can then be defined as a function of the dissimilarity. For example, one can define 

the similarity as the inverse of a distance function. Therefore, it is not necessary to 

distinguish dissimilarity and distance. The appropriate measure of distance depends 

on the structure of the space. Here in this chapter, we will study the geometric 

structures of these linear spaces and the various metrics used to measure distances. In 

particular, we will examine the space of Hermitian matrices and the the Riemannian 

manifold in it formed by the PSD matrices of the EEG signals. From this, we will 

derive metrics on the Riemannian manifold and arrive at distance measures suitable 

for the classification of EEG signals. 

3.1 	 Distance measures in an n-dimensional inner 

product vector spaces 

In the previous chapter, we have introduced the inner product vector space in which 

the distance between two vectors x and y is given by d(x, y) = llx- Yll- For two 

vectors X and y in the n-dimensional Euclidean space en in which the inner product 

is defined as 
n 

(x, y) = 	L XiY; (3.1) 
i=l 
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We now present some common measures of distance induced by the inner product 

1norm.

3.1.1 	 Distance measures between vectors induced by the in­

ner product 

The following are commonly used distance measures in an n-dimensional inner prod­

uct vector space: 

1. 	 Euclidean Distance This well-known distance measure mentioned in Eq. ( 1.1) 

is induced by the inner product norm such that: 

n 

dE(x, y) = V((x- y), (x- y)) = 2)xi- Yi) (3.2) 
i=l 

This metric coincides with the usual concept of distance in a three-dimensional 

space and, due to the many important physical quantities it can represent, the 

Euclidean distance is a powerful measure used in the study of signals [37] [75]. 

2. 	 Correlation Distance From Chapter 2, we see that the Cauchy-Schwarz in­

equality can be written as I(x, y) I ::; llxiiiiYII, we can define a real angle B 

between x and y as 
l(x,y)i 

(3.3)
cos e= llxiiiiYII 

We say that x and y are "orthogonal" if, and only if, (x, y) = 0 for which the 

distance between the two vectors is the greatest.2 Thus, the angle between two 

1There are other distance measures not induced by the inner product norm which are commonly 
found in engineering applications. These include the Minkowski distance defined as dM (x, y) = 

[I::~= 1 Ix;- y;jT] 1 
fr and the Chebyshev distance defined as dch(x,y) = maxi=l,·· .n lx;- y;l. 

2The difficulty with (3.3) applied to complex space is apparent since we would not generate 
second- and third-quadrant angles. On the other hand, if we replace I(x, y) I with Re(x, y), we could 
have e= ±7r/2 with (x, y) # 0. 
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vectors can be used as distance measures. For finite-dimensional real normalized 

vectors X such that X = {x E JRn : 2::::~= 1 x; = 1, x; > 0}, the Fisher-Rao 

distance [12] between x, y E X, is defined as 

n 

dFR(X, y) = 2 arccos c~= JXiYi) (3.4) 
i=l 

For two finite-dimensional complex vectors x, y E en the Fubini-Study dis­

tance [59] between x andy is defined as 

dFs(x, y) =arccos I(x, y) I (3.5)
J(x,x)(y,y) 

We may also define a Correlation distance measure in terms of the angle between 

two vectors such that the smaller the angle, the shorter is the distance 

(3.6) 


We note that the second term in Eq. (3.6) can refer to the argument in either 

dFR(x, y) or dFs(x, y) as the case of real or complex vectors may be. 

Weighted Euclidean distance: Often in different applications, the Euclidean 

distance can also be weighted allowing certain parts of the signal to be accentuated. 

The weighted Euclidean distance between x and y is defined as 

1 

dwE = (w~(x-y),W~(x-y)) 2 
= J(x-y)HW(x-y) (3.7) 

where W is a semi-positive definite matrix. The choice of W depends on the data 

structure. Often, the best choice of the weighting matrix may be obtained by solv­

ing an optimization problem with a certain objective function and constraints. The 

following example shows how W is chosen according to the structure of the data: 

62 



Ph.D. T hesis - Yili Li McMaster - Electrical & Computer Engineering 

Example: (Mahalanobis Distance) This dist ance is developed to fi t the measure­

ment of Gaussian data. Let x and y be two complex liD Gaussian vectors on di­

mension n with mean J.L and covariance :E . Then the Mahalanobis distance is defined 

as 

(3.8) 

Comparing Eqs . (3 .7) and (3.8), we note t hat t he Mahalanobis distance is a weighted 

Euclidean distance with W = (det ::E)11n::E - 1 and is part icularly suitable for mea­

suring distances between Gaussian random vectors of the same distribut ion. This 

can be illustrated as follows: Suppose we have three set s of real zero-mean bivari­

1 0 7 1 0 
ate Gaussian data such t hat J.L = [0 o]r , ::E 1 = [ · ] , ::E2 = [ ] , and 

0.7 1 0 1 

1 - 0.7 ] · ::E3 = The data are distributed as shown in Figure 3.1 respectively. 
[ -0.7 1 

0 

·~· 

(a) J.L, :L;I 

~ _, ~ _, ~ _, -2 _, 

Figure 3. 1: The geometries of bivariate normally distributed points with zero means 
and different covariance matrices . 

If t he unweighted Euclidean distance is adopted , as shown in Figure 3.2, the data 

distribut ion structure and the distance between two points relative to the distribu­

tion cannot be reflected in each of the cases. However, if t he Mahalanobis distance 

is employed, t he distances relative to t he data distribution in each of the cases is 
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completely characterized as shown in Figure 3.3. 

(a) (b) (c) 

Figure 3.2: Euclidean distances (solid circles) of 1, 2, and 3 from the origin, respec­
t ively. 

(a) (b) (c) 

Figure 3.3: Mahalanobis distances (solid circles and ellipses) of 1, 2, and 3 from the 
origin, respectively. 

Here, it can be seen that points at a constant unweighted Euclidean distance from a 

reference point are located on the hypersphere (a circle in two dimensions) , and points 

at a constant Mahalanobis distance to the center are located on a hyperellipsoid (an 

ellipse in two dimensions) following the distribution of the data. 
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The above example uses the data distribution to arrive at different weighting 

matrices which provides us with a distance inversely proportional to the correlation 

of the data. This weighted Euclidean distance (Mahalanobis distance) fits very well 

to the Gaussian distributed data if the first- and second-order statistics are known. 

However, in many of the practical applications including our study of EEG signal 

classification, the data distribution and data structure may not be known. In that 

case, an optimization problem with appropriate constraints suitable to our problem 

may have to be defined and solved to arrive at a suitable weighting matrix. This 

particular problem will be considered in Chapter 4. 

3.1.2 Distance measures between matrices 

In Chapter 2, we have seen several ways of representing a matrix as a vector. There­

fore, the above distance measures between vectors can all be applied as distance 

measures between matrices. For the space M of M x M matrices, a commonly used 

measure of distance between the matrices A = [aij] and B = [bij] is defined as 

M M 

dFo(A, B)= L L laij- bijl 2 = JTt[(A- B)(A- B)H] (3.9) 
i=l j=l 

which is called the Frobenius distance. From Eq. (2.69a), we see that this distance is 

induced by the inner product of ((A- B), (A- B)). Thus, the Frobenius distance 

can be considered as the Euclidean distance between A and B since dFo(A, B) 

dE(vec(A), vec(B)). The spaces M and en are thus isometric. 

In general, if Vp E en is the vector representation of p E M, then the Euclidean 

distance between Vpl and Vp2 in en is the induced Euclidean distance between pl 

and P 2 in M, i.e., 

(3.10) 
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In the same way as for vectors, we can define the weighted distance between two 

matrices since we have converted the distance between two matrices as the distance 

between two vectors. For example, for the Frobenius distance of Eq. (3.9) between 

two M x M matrices, similar to Eq. (3.7), we can attach a weighting matrix W to 

the distance so that 

dwFo(A, B) = y'Tr[(A- B)W(A- B)H] (3.11) 

3.2 Some other interesting distances 

In this section, we introduce some other distance measures which may be of interest 

to the application of EEG signal classification even though they are not induced by 

the inner product. 

3.2.1 Frechet distance 

The Frechet distance is defined for the measurement between two probability distri­

butions. Specifically, for two random vectors x and y have distributions f and g 

respectively, the Frechet distance is defined as [38] 

d(f, g) = Jmin JE[II x- y 11 2] (3.12)x,y 

For two Gaussian vectors x and y having means 1-tx, 1-ty and covariance matrices 

Rx, Ry respectively, it can be shown [33] that the Frechet distance is given by 

(3.13) 

In the case of zero-mean Gaussian vectors, then the Frechet distance between the 

distributions becomes the Frechet distance between the covariances Rx and Ry such 

that 

(3.14) 
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As shown in the previous chapter, for EEG classification, our choice of the signal 

feature is the PSD matrices which has been shown to be the Fourier transform of 

the covariance matrix. Therefore, the distance in Eq. (3.14) will be of interest to our 

application in EEG classification. 

3.2.2 Kullback-Leibler (KL) divergence and KL distance 

For probability density functions JI(x) and fz(x), the KL divergence, also known as 

the relative entropy, is defined as [61] 

J JI(x)
DKL(!IIIfz) = fi(x) log fz(x) dx (3.15) 

The KL divergence is commonly used in statistics as a measure of similarity between 

two distributions. It satisfies the following properties 

(a) Self-similarity: DKLUIIJ) = 0 

(b) Self-identification: DKL(!I I liz) = 0 if h = fz 

(c) Positivity: DKL (Jill fz) ?: 0 \::1 hand fz 

Properties (a) and (b) are obvious. Property (c) can be shown by letting ¢(!) = 

-log ~~i;j, which is convex. Thus, by Jensen's inequality [48], JE[¢(J)] ?: ¢[JE(J)], i.e., 

J!I (x) log ~~i:\ dx ?: -log Jh (x) ~~i:\ dx = 0. 

For two Gaussian vectors x and y having means ILx, ILy and positive definite 

covariance matrices Rx, Ry respectively, the KL divergence is found to be [60] 

1 [ det(R2) -I r -I ]
DKL((p,I, RI), (p,2 , R2)) = 2 log det(RI) +Tr(R2 RI)+Tr(p,I-p,2) R2 (p,I-p,2)-M 

(3.16) 

where M is the dimension of the two random vectors. In the case of the means being 

zero, this simplifies to 

(3.17) 
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The KL divergence does not define a distance on the space of covariance matrices as it 

is neither symmetric with respect to its two arguments nor does it satisfy the triangle 

inequality. Its symmetrized form (also called symmetrized divergence) is defined as 

(3.18) 

which can be expressed as 

(3.19) 

We define the KL distance between two covariance matrices as 

(3.20) 

Eq. (3.20) does not satisfy the axioms of a distance measure [3] since the triangular 

inequality is still not satisfied. In spite of this, dKL(R1 , R 2 ) is still called the "KL 

distance" by convention. 

As mentioned before, the PSD matrix is the Fourier transform of the covariance 

matrix. Therefore, we may replace R 1 and R 2 with P 1 and P 2 and define the KL 

distance between two PSD matrices P 1 and P 2 such that 

dKL(P1,P2) = VDKLs(PI,P2) = J~Tr(PIP2 1 + P!1P2- 21) (3.21) 

Clearly, Eq. (3.21) can also be used for measuring the similarity and dissimilarity of 

EEG signal features. 

We note that dKL is weighting invariant. This is because, for a given W = fU1H >- 0 

and weighted pl and P2, Plw = nHpln and P2w = nHp2n, we have 

~Tr[(nHpln)(nHp2n)-1 + (nHPln)-1(nHp2n)- 21] 

J~Tr[nHplnn- 1P2n-H + n-1P11n-HnHp2n- 21] 

(3.22) 
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3.3 The geometry of the space of PSD matrices 

In Chapter 2, we mentioned that the positive definite Hermitian matrices P describe 

a real manifold. Here, we introduce some of the concepts fundamental to the study of 

the geometry of the manifold. Since an n-dimensional manifold is a generalized sur­

face, we will start by introducing some of the geometric concepts from the elementary 

consideration of a surface in a three-dimensional Euclidean space. 

3.3.1 Intrinsic distance 

Consider a surfaceS in a three-dimensional Euclidean space JR3 . Let p and q be two 

points on S. We define the intrinsic distance from p to q denoted by d(p, q) to be the 

infimum (greatest lower bound) of the length £(C) of all possible arcs ConS joining 

p to q. It is clear that the intrinsic distance between two points on a surface always 

exists since the set of the real numbers £(C) is not empty (Sis connected and hence 

arcwise connected) and is bounded from below by the Euclidean distance liP- qii­
It can easily be shown [63] that d(p, q) satisfies all the properties (Eqs. (2.52)) of a 

metric. 

Given p and q, if there exists a regular arc C joining p and q whose length is 

equal to the intrinsic distance between p and q, then Cis called an arc of minimum 

length. In a plane in JR3 , d(p, q) is the Euclidean distance and the arc of minimum 

length is unique and is the straight line segment between p and q. 

3.3.2 Manifold and Riemannian geometry 

As mentioned above, the space M of Hermitian positive definite matrices is an open 

subset of the real vector space of Hermitian matrices. We will focus on the concepts 

of real manifold even though the elements of Hermitian matrices are not necessarily 
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real numbers. 

For an r times differentiable curve traced by a vector x(t) in the Euclidean space 

JR3 , consideration of the elemental segment 8s yields the length of an arc of the curve 

to be [63] 

ib 3 d . 1/2 1b 
S = a [ ~ ( ~z)] dt = a ~dt (3.23) 

where x(t) = [x1(t), x2(t), x3(t)]T and a :S t :::; b. Let a :::; t0 :S b. By replacing the 

fixed value a by t0 and the fixed value b by variable t we can rewrite Eq. (3.23) as 

s(t) = 1t ~dt 
to 

(3.24) 

so that the function s( t) is the arc length of the curve. Taking the derivative of 

Eq. (3.24) with respect to t we obtain 

(s)2 = (x, x) (3.25) 

Let { e 1, e2, e3} be the coordinate basis of JR3, i.e., e1 = [1, 0, O]T, e 1 = [0, 1, o]r, and 

e1 = [0, 0, 1JT. Then, we form a matrix Gas follows 

(e1,e1) (e1,e2) (e1,e3) I 
G = (e2,e1) (e2,e2) (e2,e3) (3.26) 

(e3,e1) (e3,e2) (e3,e3)I 

where (·, ·) denotes inner product. Obviously G is an identity matrix. Thus, we can 

write Eq. (3.25) symbolically as 

(3.27) 


We call the ds the line element of the arc. 

Now we consider the curves on a surface in JR3 . A surface S in JR3 can be expressed 

as a function x(u, v) = [x1 (u, v), x2 (u, v), x3 (u, v)JT of two real variables u and v, which 
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is defined in a simply-connected and bounded domain in the uv-plane. In other words, 

the surfaceS in JR3 is parameterized by two real variables u and v. Then, an r-time 

differentiable curve cr, r 2:: 1 on the surface S can be determined by a parametric 

representation as follows 

x(t) = 	 x(u(t),v(t)) (3.28) 

where t is a parameter of a real variable, i.e., by varying t the function x(t) traced 

a curve on S (Note that the parameters u and v are now functions of t). Then the 

direction of the tangent to the curve C: x(u(t),v(t)) on the surfaceS is determined 

by the vector 
. dx axdu axdv 
X=-=--+--	 (3.29)

dt au dt av dt 

i.e., the vector X. is a linear combination of the vectors : and ~ which are tangential 

to the coordinate curves passing through a point on S under consideration. The 

Eq. (3.29) can be written symbolically as 

ax ax
dx = -du+ -dv 	 (3.30)

au av 

Therefore, we find 

;ax ax ax ax )
(dx, dx) =\audu + av dv, au du + av dv 

;ax ax) 2 ;ax ax) ;ax ax) 2 (3.31)\au'au (du) + 2\au'av dudv+\av'av (dv) 

G = [ 	 9n 912] (3.32) 
921 922 

Then we have 

ds2 
= L

2 

9i1dudv = [du, dvfG[du, dv] 	 (3.33) 
i,j=1 
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If G = I in Eq. (3.32), then the surface S is a two-dimensional plane. Thus, we see 

that the matrix G is determined by the space, conversely, the matrix G reflects the 

nature of the space. The matrix G is also the key to calculate the line element ds2 

of a curve in the space considered. With line element ds2 given we can calculate the 

length of any smooth curve as well as the area of a bounded region in D C ffi.2 
• 

Now, let us turn our attention to the manifold generated by the PSD matrices. 

A manifold [36] is a topological space M which locally "looks" like a Euclidean 

space. If the Euclidean space is real, then the manifold is called a real manifold. 

Correspondingly, if the Euclidean space is complex, then the manifold is called a 

complex manifold. In other words, each point on M can be referred to by an element 

of the real or complex Euclidean space. Therefore, it is possible to characterize 

M by mapping neighboring points of M on neighboring points of ffi.n if it is real, 

or en if it is complex. In the case of the manifold being linear, then the manifold 

coincides with the Euclidean subspace. Since we have shown in Chapter 2 that all the 

M x M PSD matrices describe a real manifold in the real Euclidean space JRMxM of 

all Hermitian matrices, henceforth, we will focus only on real manifolds. The concept 

of real manifold is roughly shown in Figure 3.4. More precisely, that a topological 

space locally looks like a Euclidean space means that the tangent space at every 

point (say x) on the manifold (denoted by TM(x)) is isomorphic to ffi.n, denoted by 

TM(x) ~ ffi.n. 3 

The study of manifolds can be from an extrinsic point of view, in which the 

manifolds are considered as lying in a high dimensional space (as introduced above), 

or from an intrinsic point of view which started from the work of Riemann in which 

the manifolds are considered as given in a free-standing way. 

3TM ( x) """ !Rn means that there is a bijective map ¢ from TM ( x) to !Rn such that both ¢ and 
its inverse ¢-1 are homomorphisms, i.e., ¢ satisfies ¢(a+ b) = ¢(a)+ ¢(b) and ¢(ka) = k¢(a) for 
a,b E TM(x) and k E R 
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• a • 

• 

D 

Figure 3.4: Distance on manifold 

From an extrinsic point of view, if the manifold M can be thought of as an open 

subset of t he Euclidean space ~R_n , then the distance on M can be defined as the 

induced Euclidean distance. For example, the Euclidean distance between x and y of 

the sphere s n- l = {x E JR_n : L~l x; = 1} is the cord joining X and y. However, if 

M is a smooth connected submanifold in ~R_n then, one has the induced Riemannian 

distance, which is defined as the infimum of lengths of curves contained in M and 

joining x and y . To see this , let ( x 1, · · · , Xn) be the coordinate system in ~R_n and M 

embedded in ~R_n be parameterized in terms of coordinates q = (q1, · · · , qk) , k :::; n as 

xi = xi (q1 , · · · , qk ), i = 1, · · · , n . Then the Riemannian metric 9M on M is defined 

from the Euclidean length element according to 

(3.34) 

As a specific example, we consider a two-dimensional (k = 2) sphere x2+y2+z2 = 1 

embedded in IR.3 with coordinates (x, y, z) and length element ds2 = (dx) 2 + (dy) 2 + 
(dz )2 

. Let t he parameterization of the points on the sphere be in terms of spherical 
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coordinates (¢,B) as 

x rsin(B) cos(¢) 

y rsin(B)sin(¢) 

z rcos(B), (3.35) 

Then we have 

(3.36) 


Comparing Eq. (3.34) and Eq. (3.36) we obtain the matrix elements of the metric 9M 

2such that 911 = r ' 912 = 921 = 0, and 922 = r2 sin2 e. 
Riemann [80] started the study of manifold from an intrinsic point of view by using 

a quadratic formula for the infinitesimal change in distance ds. Such a structure is 

called a Riemannian metric. A manifold on which a Riemannian metric is defined is 

called a Riemannian manifold. 

Specifically, a Riemannian manifold is a differentiable manifold in which each 

tangent space4 is equipped with an inner product (-, ·) in a manner which varies 

smoothly from point to point, i.e., a Riemannian metric is a family of positive definite 

inner products5 defined by 

pEM (3.37) 

where TM (p) denotes the tangent space of M at the point p E M. The function 

defined in Eq. (3.37) is called a Riemannian metric on M and is a differentiable 

function from point to point on the Riemannian manifold M. 
4Some elementary notions of Riemannian geometry and the formal definitions of these terms in 

italics are given in Appendix B. 
5 An interesting and important question is: "What is the best Riemannian structure on the 

manifold?" [13]. Even though we are not involved in seeking the answer to this question in this 
thesis, we still have to make a choice if several Riemannian metrics are available. This choice 
depends on the application. Results of applying different Riemannian distances to EEG signal 
classification will be presented in subsequent chapters. 
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With a Riemannian metric defined, the line element of a curve on the manifold is 

given by 

ds2 = L
n 

9iJ(x)dxidXj (3.38) 
i,j=l 

if (x1, · · · , Xn) are local coordinates of class coo in an open subset 0 of M at each 

pE 0. 

3.4 Riemannian distances for matrix quantities 

Having established the concept of Riemannian metric, we now develop some Rie­

mannian distances on the manifold M of the PSD matrices {P} for the use in the 

classification of EEG signals. To achieve that, we must first endow the manifold M 

with a Riemannian metric g [41] which, as mentioned in the last section, is defined 

as an inner product on the tangent space TM(P), of each point P on M. Thus, 

we obtain a Riemannian manifold (M, g). Since there are infinitely many possible 

Riemannian metrics on a differentiable manifold, a suitable one for our purpose of 

signal classification has to be chosen. 

3.4.1 Riemannian distance dR1 

Let (M, gp) be the Riemannian manifold M with the Riemannian metric gp. Let 

[(h, B2] be a closed interval in IR, and let r (B) : [ B1 , B2] ---+ M be a sufficiently smooth 

curve on M such that r(B1 ) = P 1 and r(B2 ) = P 2 . The length of the curve r(B) is 

defined as [41] 

1
1h 

t(r) = II r(B) II dB (3.39) 
lh 
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. dl'(())
where r(B) = ~· With the use of the given Riemannian metric gp, Eq. (3.39) can 

be written as 
2 

l(r) = fe V9r(eJ("t(B), i'(B))dB (3.40)
Je1 

Then, the global Riemannian distance (i.e., intrinsic distance or geodesic distance) 

between the two points P 1 and P2 in the Riemannian manifold (M, gp) is defined as 

the shortest length of curves connecting the two points in the manifold such that 

(3.41) 


However, since this usually leads to a set of nonlinear differential equations which is 

difficult to solve (see Appendix B), it is not easy to find a closed form formula for the 

Riemannian distance directly from Eq. (3.41). To overcome this difficulty, we resort 

to the theory of fiber bundles [55]. The basic idea is introduced in the following and 

more details can be found in Appendix B. 

First, let us introduce a lemma for the representation of a point P in the manifold 

in a Hilbert space. 

Lemma 3.1 For a point P E M, there exists a P in a Hilbert space 'HM such that 

P =PPH. 

The proof of this Lemma is presented in Appendix C. 

Lemma 3.1 has important implications. It shows that for every PSD matrix P, 

there exists another matrix P E 'HM which though is not unique, can be viewed as a 

representation of P in the Hilbert space. (Henceforth, we will use the notation that 

X denote the representation in 'HM of the matrix X E M.) 

Let the space '}-{ be defined as 

(3.42) 
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The space it can be considered as a subset of 'HM, i.e., it C 'HM. At any point 

P E it, the tangent space, denoted by Til(P), is the collection of vectors tangent to 

any smooth curve passing through P. Since there are an infinite number of smooth 

curve that can be drawn through P, the tangent space at P is therefore just the Hilbert 

space local to the neighborhood of P. Now, let Til(P) be resolved into its horizontal 

and vertical subspaces Uil(P) and Vil(P) respectively, i.e., Til(P) = Uil(P) EB Vil(P). 

We endow Til(P) with a real-valued inner product such that for VI, v2 E Til(P), 

(3.43) 


Then, for any two M x M complex matrices A, BE Uil(P), we have 

(3.44) 


with the induced norm being IIAII 2 = Tr(AHA). 

We now relate Uil(P) to TM(P) by establishing an isometry between them so 

that we can let the inner product defined on TM(P) equals (A, Bhi£(P) in Eq. (3.44) 

yielding a natural Riemannian metric on M. We have the following lemma: 

Lemma 3.2 Let P E M be such that P = ppH and let A, B E TM(P). If the 

Riemannian metric on M is given by 

1
gp(A, B)= 2TrAK (3.45) 

where K is a Hermitian matrix such that KP + PK = B, then TM(P) and Uil(P) 

are isometric. 0 

The proof of Lemma 3.2 is presented in Appendix D. 0 

Let ~p be a vector on the tangent space TM(P) measured from P, then, the 

squared distance between two very close points (say P and P') in an infinitesimal 
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region on M can be approximated by the norm of t:.P , i.e., 

(3.46) 

where KP + PK = t:.P. In other words, the infinitesimal norm induced by t he 

Riemannian metric in t he Eq. (D.l ) repre ents a measure of the distance between 

two points in M being infinitesimally close to each other. 

Figure 3. 5: Illustration of horizontal lift 

Basically, t he manifold M and the space it are considered as the base space 

and the total space, respectively. The projection map 1r : it ---7 M associates each 

point P E M with 1r-
1 (P ) Cit constitut ing the fiber above P E M . (The rigorous 

definit ions of italicized terms in t his paragraph are given in Appendix B. ) A connection 

on the fiber bundle is a rule that pairs each smooth curve through a point P E M 

with a class of corresponding smooth curves in it, one through each point in the fib er 
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above P, known as its lifts. Let r(fJ) : [BI, B2] ---7 M with r(BI) =PI and r(e2) = P2 

be a smooth curve on M (i.e., r(B) traces a curve on M with the varying of e in 

[BI, e2]). Let r(e) : [BI, e2] ---7 H., with r(ei) = PI and r(e2) = P2, be a curve on 

il and PI, P2 E il being the representatives of PI and P 2 in the Hilbert space 'H.M· 

Then we say that r(e) is a horizontal lift of r(B) if r(e) is the image of r(B) under 

7f and the tangent vector to r(e) always lies in the horizontal subspace Uft(P) of the 

tangent space Tit(P) at each point along r(e). The concept of the horizontal lift is 

illustrated in Figure 3.5. 

Recall that a map 1r : H. ---7 M is called a Riemannian submersion at P E H. 

if the induced tangent map 7f* : U'R(P) ---7 TM(1r(P)) is an isometry, where Uit(P) 

is the horizontal subspace of Tit(P). That the map 7f : il ---7 M is a Riemannian 

submersion is guaranteed by the following lemma: 

Lemma 3.3 A fiber bundle with base space M, the total space il and the projection 

map 7f : il ---7 M defined by 1r(P) = P is a Riemannian submersion if the horizontal 

subspace Uit(P) is endowed with a metric defined in Eq. (3.43). 

The proof of Lemma 3.3 follows directly from the result of Lemma 3.2. 

From the above we can now conclude that the curve r(e) is the unique horizontal 

lift of the curve r(e) if we employ the map 1r : il ---7 M such that 1r(P) = P and 

7f-I(P) = PG with G being a unitary matrix. Furthermore, the induced tangent 
. . 

map 1r*IP : Uit(P) ---7 TM(P) such that 7f*IP(P) = P, P E Uit(P) and P E TM(P), is 

an isometry between Uit(P) and TM(P). (In this way we have made 7f : il ---7 M a 

principal G-bundle 6 and it is also a Riemannian submersion.) 

Once the Riemannian submersion 1r : il ---7 M is established, we can endow 

the horizontal subspace with the metric as defined in Eq. (3.43) so that if r(e) is a 

6Let G be a Lie group acting on it such that (P) is mapped to PG and PG =I P for G #I. A 
surjective submersion Jr: it-> M is said to be a principal G-bundle if {PG: G E G} = Jr- 1 (1r(P)) 
for any P E it. 
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geodesic curve on M (i.e., it has the shortest length), then its horizontal lift r((i) 

is the corresponding geodesic curve on 1i. This is given by Lemma 3.4 [41] in the 

following: 

Lemma 3.4 Let n : 1i ---+ M be a Riemannian submersion. Let r(B) [0, 1] ---+ i£ 

be a geodesic of M with r(o) = P. Ifi'(O) is horizontal, i.e., it lies in Uit(P), then 

r(B) is horizontal for any B, and the curve no r(B) is a geodesic of M, of same 

length as i'(B). Conversely, let P E il and r(B) : [0, 1] ---+ M be a geodesic of M with 

r(O) = n(P). Then there exists a unique local horizontal lift i'(B) ofr(B), and i'(B) 

is also a geodesic of il. Finally, the completeness of il implies the completeness of 

M. 0 

With the above results, we can now establish the geodesic distance between two 

points PI, P 2 EM by evaluating the geodesic distance in M with the corresponding 

geodesic distance between two point PI and PI on fl. Thus, we have the following 

theorem7 : 

Theorem 3.1 For PI, P 2 EM the geodesic distance between PI and P 2 is given by 

(3.47) 

Proof: Let r(B) : [BI, B2] ---+ M with r(BI) =PI E M and r(B2) = P2 E M be the 

geodesic connecting PI and p2 on M. Let r(B) : [BI, B2] ---+ il with r(BI) =PI E il 

and f'(B2) = P 2 E i£ be the horizontal lift of r(B). The fact that n : i£ ---+ M is a 

Riemannian submersion means that the length of f'( B) depends only on the metric 

7 Bures [21] had proposed a similar distance measure for the space of positive definite matrices 
with unity traces which is not applicable to EEG classification since PSD matrices of EEG signals 
are not under such a constraint. The Riemannian distance dR, developed in this thesis places no 
constraint on the trace. 
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associated with the horizontal subspace U;:Ji'(B)). Since TM(r(B)) and Uil(f(B)) are 

isometric we must have l(r) = l(f). Thus, the minimum of l(r) can be achieved by 

finding the minimum of l(f). 

From our construction of the space it, we immediately have Til(r(B)) = THM(r(B)). 

Furthermore, the metric endowed to Til(r(B)) is the unique real metric endowed to 

THM(r(B)) if the JiM is endowed with the Hilbert-Schmidt inner product. Thus, the 

shortest curve (geodesic) connecting two points P 1 and P2 in the space it must the 

straight line segment connecting P 1 and P 2 in the Hilbert space JiM· Therefore, we 

must have 

m_inl(f) = ~in_H II P1-P2II= m_in_)Tr(P1-P2)H(P1-P2)] 112 (3.48) 
r P1=P1P1 P1=P1P1 

PFP2Pf PFP2Pf 

Thus, writing P1 = P~12U 1 and P 2 = P~12V2 with U 1 and U 2 being unitary ma­

trices [14], we can define the squared geodesic distance between P 1 and P 2 on the 

manifold M as 

- - 2
min II P 1 - P 2 IIu1,U2 

min Tr((P1- P2)H(P1- P2))
u1,U2 

min [TrP1 + TrP2- 2iR(TrU2U{fPt12P~12 )] (3.49)
u1,U2 

where iR(·) denotes the real part of a complex quantity. Minimization of Eq. (3.49) 

is equivalent to the maximization of the quantity iR(TrU2U{fP~12Pt12 ) with respect 

to the unitary matrices U 1 and U 2. The result of this is well-known [52] 

~n(T U UHp1/2p1/2) _ Tr(P1/2p p1/2)1/2maxul,u2:n r 2 1 2 1 - 1 2 1 (3.50) 

if U 2U{f = V 2V{f where P~12P~12 = V1:EV~ with :E being the singular value ma­

trix, and V 1 and V 2 being the left and right singular vector matrices of P~12Pt 12 

respectively. D 
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Theorem 3.1 establishes a Riemannian distance between two points in M suitable 

for the measurement of distance of EEG signals represented by their power spectral 

density matrices. However, in applying this Riemannian distance to the classification 

of EEG signals, it is often desirable to weight the measured power spectral density 

matrices to enhance their similarity/ dissimilarity. To do that, we incorporate a pos­

itive definite Hermitian weighting matrix W to the power spectral density matrices 

and obtain the following corollary: 

Corollary 3.1 Let W be a positive definite Hermitian matrix which can be written as 

w = nnH. Let PI, p2 EM and let nHpln and nHp2n be the weighted matrices 

of P 1 and P 2, respectively. Then the weighted geodesic distance between P 1 and P 2 

is given by 

(3.51) 

0 

Proof: If we denote the weighted matrices of P 1 and P 2 by P 1w = nHP10 and 

P 2w = nHP20 respectively, then it is easy to see that P 1w and P 2w are positive 

definite Hermitian matrices, i.e., P 1w, P 2w E M. Let I\ = P~12U1 and 1\ = 
1/2 - H- - H­P 2 U2, where U1 and U2 are unitary matrices. Let P1w = n P1 and P2w = 0 P2. 

Then Pnv = P1wPf"w and P2w = P2wP~w and we have, 

- - 2
min IIP1w- P2wll 

u1,U2 

min [TrP1 + TrP2- 2~(TrU2UfP~12WP~12 )] (3.52)
u1,U2 

Proceeding as in the derivation of Theorem 3.1, the result of Corollary 3.1 follows. 0 

We will use both geodesic distances in Eqs. (3.47) and (3.51) for classifying the EEG 

signals in the ensuing sections. 
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In the following we will show that the Riemannian distance developed is a true 

distance, i.e., it satisfies all axioms of the definition of distance function. We first 

introduce a well-known inequality: Let Am(A) denote the mth eigenvalue of an M x M 

positive semidefinite A. We define the the p-norm of A as 

M ) l/p 

JJAJJP = 
( 
~,\~(A) (3.53) 

We note that for p = 2, this is the same as the Ftobenius norm induced by the inner 

product (A, A)= Tr[AAH]. It is well-known [52] that 

(3.54) 


Theorem 3.2 The geodesic distance given by Eq. (3.47) is a true distance, i.e., it 

satisfies nonnegativity, symmetry and triangle inequality. 

Proof. We need to show the nonnegativity, symmetry, and triangular inequality 

according to the definition of distance. 

a) 	 Nonnegativity: Let A= P 11
/ 
2

, B = P 2 
1
/ 
2 and F(P1, P 2 ) = Tr(P~12P2P~12 ) 1 12 . 

Then Since P 1 and P 2 are Hermitian, by Eq. (3.53), we have 

(3.55) 

and 

(3.56) 


By applying Eq. (3.54) we obtain 

(3.57) 


By using Eqs. (3.55) and (3.56) we have 

Therefore, dR1 must be a nonnegative number. 
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b) Symmetry: Let V m and Am be an eigenvector and eigenvalue pair of p~/2P2P ~ /2 . 

Then we have 

p~/2p~ /2 (P ~ /2p2p ~ /2)vm 

(P~/2 p ip;/2) (P~/2p ~ /2vm) (3 .59) 

Thus, Am is also an eigenvalue of P~12P IP~12 . Thus we have 

Tr (P~ /2p2p ~/2) I /2 

L A;e 
Tr (P~/2p ip~/2) I /2 

(3.60) 


Therefore, dR1 (P I, P 2 ) is symmetric. 

c) 	 'friangle inequality: Let P I, P 2 and P 3 be t hree points in M such that P 2 is 

not on the geodesic curve c3 connecting P I and P 3 . Let ci be a curve connecting 

P I and P 2 on M , and c2 be a curve connecting P 2 and P 3 on M , respectively, 

as is illustrated in Figure 3.6. Then the composite curve ci c2 must be different 

from c3 and must connect P I to P 2 and then P 2 to P 3 on M . Therefore, t he 

length of ci c2 must equal to the sum of t he lengths of ci and c2. Now, since c3 

is the geodesic curve connecting P 1 and P 3 , its length is the minimum between 

P 1 and P 3 on M . Let l(-) denote t he length of a curve on M. Then we have 

< 	 min l ( ci c2) 
C!C2 

minl (ci ) + minl (c2) 
Cl C2 

(3.61) 
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Figure 3.6: Illustration of triangle inequality 

Similarly, we can show that dR1w of Eq. (3.51) is also a true distance measure. D 

3.4.2 	 The Riemannian distance dR1 in the special case of sin­

gle sensor measurements 

In the case when only one channel of the EEG signals is available, then the normalized 

power spectra (at n frequency points) is usually adopted as the characterization of 

the EEG signals. Consider the set of normalized power spectra in the form: 

P = { P E JRn : L
n 

Pi = 1, Pi > 0} 	 (3.62) 
i=l 

We can apply the Riemannian distance dR1 to measure the dissimilarity between two 

normalized power spectral densities p, q E P. 

• Case 	1: Let 

(3.63) 

For another power spectrum q E P, we similarly form Q E M. Then, the 

85 



Ph.D. Thesis - Yili Li McMaster - Electrical & Computer Engineering 

Riemannian distance between P and Q is given by 

n 

2 - 2 z= y'jJiqi (3.64) 
i=l 

• Case 2: Let 

M = { p : p = PPH' p E en' TrP = 1} (3.65) 

Then, 

(3.66) 

Thus, we have 

Tr(P112) = Tr(P) = pH p = 1 (3.67) 

For another power spectrum q E P, we similarly form Q EM and we have 

(3.68) 


Thus, the Riemannian distance between P and Q is given by Similarly 

V2- 2Tr(Pl/2Qpl/2)1f2 

V2- 2Tr(PQP)1/2 

V2- 2Tr(ppHqqHppH)1/2 

V2- 2lpHqiTr(Pl/2) 

)2- 2lpHql (3.69) 

We noted that for Case 1, the second term under the square-root sign in Eq. (3.64) 

is the argument of the Fisher-Rao distance in Eq. (3.4), and that for Case 2, the second 

term under the square-root sign in Eq. (3.69) is the argument of the normalized 

Fubini-Study distance in Eq. (3.5). Indeed, the distance measures in both Eqs. (3.64) 
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and (3.69) are of the same form as the correlation distance in Eq. (3.6). Thus, the 

Riemannian distance dR1 can be viewed as a generalization of the correlation distance 

established for single-channel measurements. 

3.4.3 Alternative derivation of the Riemannian distance dR1 

In Section 3.2.1, we have introduced the Frechet distance between two probability 

distributions, more especially, for two zero-mean Gaussian distributions with covari­

ance matrices RI and R2 . In this section, we start from an analog of the Ftechet 

distance and apply to two PSD matrices, we obtain the following result: 

Theorem 3.3 The Frechet distance between two PSD matrices PI and P 2 is 

(3. 70) 

Proof. Since PI and P 2 are nonnegative, we have 

M 

PI= Lviiv~ 
i=I 

(3. 71) 

and 
M 

P2 = l..:.:v2iv~ 
i=I 

(3.72) 

for some vectors vii and v 2i. Now, following the definition of the Ftechet distance in 

Eq. (3.12), we define the distance between PI and P 2 as 

M 

2dFe(PI,P2) = min L II VIi- V2i 11	 (3.73) 
V!i,V2i 

i=I 

Let 
M 

PI2 = 	l..:.:vliv~ (3.74) 
i=I 
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Since 

M 

min L(vli- v2i)H (vli- v2i)
vu,v2i 

i=l 
M 

min l:::Tr(vli- v2i)(vli- V2i)H 
Vli,V2i i=l 
min Tr(P1 + P2- P12- P21) 

V}i,V2i 

Tr(P1 + P2)- max Tr(P12 + P21) (3.75) 
vu,v2i 

therefore, we need to solve the following problem 

M 

Tr(P12 + P21) = Tr L(vliv~ + v2iv~) 
i=l 

s.t. 
i=l 
M 

P2 = 	 l:::v2iv~ (3.76) 
i=l 

The Lagrangian for the above maximization problem is given by 

M 	 M M 

£ = Tr L(viiv~ + v2iv{D + Tr [ ( L vlivmA1J + Tr [ ( L v2iv~)A2J (3.77) 
i=l i=l i=l 

where A1 and A2 are the Lagrange multipliers. Taking derivatives and let the result 

equal to zero, we have 

(3.78) 

Noting that A1 is Hermitian, we have 

M M 

P2 = L v2iv~ = L A1v1iv~A1 = A1P1A1 (3.79) 
i=l i=l 

and 
M M 

P12 = L vliv~ = L vliv~A1 = P1A1 (3.80) 
i=l i=l 
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Thus, 

(3.81) 


Clearly P 1P 2 is nonnegative definite since P 1 and P 2 are nonnegative definite. There­

fore its square root exits and is nonnegative definite, i.e., 

(3.82) 

We also note that P 21 = P{'&. Thus 

M 

max Tr :l_)vtiV~ + v2iv{1") = 2Tr(P1P 2)1
/ 
2 (3.83) 

i=l 

Putting this in Eq. (3.75) and taking the square root we obtain the Fn§chet distance 

of Eq. (3.70). D 

It is interesting that the distance developed in Theorem 3.3 is exactly the same 

as the Riemannian distance dR1 , i.e., we have the following equivalence: 

Assertion 3.1 The Riemannian distance dR1 of Eq. (3.47) and the Frechet distance 

dFe of Eq. (3. 70) are the same. 

Proof. Comparing Eqs. (3.47) and (3.70), clearly, it is sufficient to show that 

(3.84) 


In other words8 , we only need to show that P~12P2P~12 and P 1P 2 have the same 

eigenvalues since the trace of a positive-definite Hermitian matrix is equal to the sum 

of its eigenvalues. Let ,\i and ui be the eigenvalue and eigenvector pair of P~12P2P~12 . 

Then we have 

P~12P2P~12ui = >.iui (3.85) 

8We note that Tr[(P1P2) 1I2] =I Tr[Pi12P;12] unless P1 and P2 are commutative. 
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Multiplying by P~12 on both sides we have 

(3.86) 

Therefore, P~12P2P~12 and P 1P 2 have the same eigenvalues, and Eqs. (3.47) and 

(3. 70) are equal. 


Remarks: Even though it is possible that the Riemannian distance dR1 can be ob­


tained by mimicking the Ftechet distance between covariance matrices, the derivation 


does not show that it is an intrinsic distance on the manifold M. More importantly, 


this alternative derivation of dR1 cannot be used to develop other Riemannian dis­


tances. By considering Riemannian metrics on the manifold as developed in Sec­


tion 3.4.1, different Riemannian distances can be developed as shown in the ensuing 


sections. 


3.4.4 Riemannian distance dR2 

In this section, we employ a parallel procedure to that described in the previous 

section and develop another type of Riemannian distances. 9 By endowing a different 

Riemannian metric, we are able to arrive at a different Riemannian distance for the 

manifold of PSD matrices M. First, let 1tH = {P: pH= P,P E MM}· we endow 

1tH with an inner product (X, Y) = Tr(XY), X, X E 1tH (Note that this is the 

induced inner product by restriction of the inner product endowed to 1tM), so that 

1tH is a Hilbert space denoted by (1tH, (-, ·) ). Let il = {P: P2 = P EM}. Then, we 

have il C 1tM. Since any P E M is positive definite Hermitian, the corresponding 

10P E il is also positive definite Hermitian. Then, we have the following theorem: 

9 The distance drr2 was initially a conjecture proposed by Dr. K.M. Wong. Here we show that it 
is also a Riemannian distance. 

10The space H here is in fact the same as M equipped with an inner product. Indeed, for P = P2 , 

P and P are in the same space since both are positive definite Hermitian matrices. Here, we show 
that the Euclidian distance between P 1 and P2 in M is equal to the Riemannian distance between 
P1 and P2 in the same space. 
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Theorem 3.4 Let (M, gp) be the Riemannian manifold having a Riemannian metric 

given by 

gp(A, B) = (A, K) (3.87) 

such that 

PK + KP + 2PKP = B (3.88) 

where P2 = P EM, A, BE TM(P). Then the geodesic distance between P 1 and P 2 

on M is 

(3.89) 


where P1 =Pi and P2 = P~. 

Proof. Let r(r) : ( -E, E) --) M be a curve in M such that r(O) = p EM and 

f'(r) : ( -E, E)--tit be a curve in it such that f'(O) = P E it with 

r(r) = r(r)r(r) (3.90) 

Taking the derivative of Eq. (3.90) with respect tor on both sides, we have 

. . 
i'(r) = i'(r)i'(r) + i'(r)i'(r) (3.91) 

Let P = i'(r)[r=O and P= i'(r)[r=o· Then, at r = 0 we have 

(3.92) 

Since P E TM(P) and P E Ti((P), for A,B E TM(P) and the corresponding A,:B E 

Tii(P) we have 

A =AP+PA (3.93) 

and 

(3.94) 

by applying Eq. (3.92). 
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For a given P E it, we define an operator Xp on Til(P) as 

x:PA = AP+PA (3.95) 

where A E Ti[(P). Then Eq. (3.93) and Eq. (3.94) can be rewritten as 

A=XpA (3.96) 

and 

B=XpB (3.97) 

For any P E it, T'HH (P) = Til (P) and the unique metric endowed to T'H (P) is the 

same inner product endowed to 1-lH. Since Pis Hermitian, the operator Xp must be 

Hermitian, so is its inverse Xp- 1
. Thus, we have 

(3.98) 

where Xp- 1 is the inverse of Xf>, and K = Xf:2B. 

On the other hand, we have 

B X~K = Xp(X:PK) = Xp(KP + PK) 

(KP + PK)P + P(KP + PK) 

PK+KP+2PKP (3.99) 

Therefore, the metrics for TM(P) and Ti[(P) are the same, i.e., TM(P) and Til(P) 

are isometric. Thus, the mapping 1r : it ~ M such that 1r(P) = P is an isometry 

between it and M. As a result, the length of a geodesic connecting P 1 and P 2 in M 

has the same length of the geodesic connecting P 1 and P 2 in it (it is also the geodesic 

in 1-lH ). Since the geodesic for two points in 1-lH is measured along the straight line 

between the two points, we have 

(3.100) 
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Since the PSD matrices P are positive definite Hermitian, P = P 112 for P E M. 

Then Eq. (3.100) can be written as: 

(3.101) 

If desired, it is straightforward to bestow a weighting for the Riemannian distance 

dR2 such that the weighted distance is 

dR2w(PI,P2) = VTr(Pll/2- p21/2)w(pll/2- p2I/2) 

1/2P 1
1/2TrWP1 + WP2- TrWP1 1/2P21/2 - TrWP2

(3.102) 

where W = f!H f! >- 0 be a real positive definite weighting matrix. 

The above Riemannian distances dR1 and dR2 have been developed from the isom­

etry of two spaces for the classification of EEG signals. As we mentioned before, there 

exist possibly an infinite number of Riemannian metrics. Some Riemannian metrics 

may similarly lead to explicit formulas for the Riemannian distances. The following 

is another well-known example [17]. Since the original development of the measure 

does not follow the geometric view proposed in this thesis, we include our own proof 

in Appendix E. 

3.4.5 Riemannian distance dR
3 

Theorem 3.5 Let M be the space of positive definite Hermitian matrices. If it is 

endowed with a Riemannian metric 

(3.103) 
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where Ap, Bp E TM(P), then the geodesic distance between P 1 and P2 in M is 

(3.104) 


where >.i are the eigenvalues ofP11P 2 . 


Proof. See Appendix E. 0 


The distance axioms can be verified easily for dR3 • We omit the verifications. An im­

portant properties of this distance is that it is weighting invariant, i.e., dR3 (P1, P2) = 

dR
3
w (P1, P 2 ) if P 1 and P 2 are weighted as in the previous sections. This fact has 

been shown in the proof of the theorem. Therefore, for enhancement of similarity and 

dissimilarity in EEG classification, dR3 is not an appropriate choice. 

3.4.6 Summary on the Riemannian distances 

The development of the Riemannian distances dR1 , dR2 , dR3 in Sections 3.4.1, 3.4.4 

and 3.4.5 follow a common course which can be summarized as follows: 

1. 	 We start with the space JiM (or JiH), the Hilbert space formed by all the 

M x M complex matrices (or theM x M Hermitian matrices) equipped with 

the Hilbert-Schmidt inner product, and M, a subset of liM (or JiH), containing 

all the PSD matrices {Pi}. 

2. 	 We create a mapping 1r(P) = P E M which maps the subset {P} E JiM (or 

{P} E JiH) toM. We denote the subset {P} by it. Note that it is equipped 

with the Hilbert-Schmidt inner product and is a subset of JiM (or JiH) not 

necessarily a complete space on its own. 
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3. 	 Since the mappings created in the three cases are different, the resulting subsets 

if are also different. Specifically, 

(i) 	 The mapping 1r for dR1 results in a Riemannian submersion such that a 

one-to-one mapping emerges from the horizontal lift of the tangent space 

TM(P) on M to the tangent space T}{(P) on if and an isometry between 

the two is established. 

(ii) 	 The mapping 1r for dR2 results in a subset if which is the same subset as 

P 112M of PSD matrices since P = is also positive definite. Here, the 

inverse mapping 1r-1 is unique, and P remains in M, we need not apply 

"the horizontal lift". Furthermore, if, equipped with the Hilbert-Schmidt 

inner product, is directly isometric toM. 

(iii) 	 The mapping 1r for dR3 results in a subset if different from, but isometric 

toM. The image P of Pin 1r-1 is also unique. 

4. 	 In each of the three case, the subset if resulted from the mapping 1r is either 

a Riemannian submersion or is isometric to M. This greatly facilitates the 

evaluation of the geodesic between two points in M since the geodesic between 

two points P 1 and P 2 can be evaluated by the equivalent Euclidean distance 

between the two image points P1 and P2 . This procedure establishes the three 

Riemannian distances and is illustrated in Figs. 3.7, 3.8 and 3.9 where c1 is the 

geodesic curve connecting two points P 1 and P 2 in M, and c2 is the Euclidean 

distance connecting P1 and P2 in if, where P1 and P2 are the lifts of P1 and 

P 2 through 1r-1 respectively. 
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- _____-, P, 
p ____-z,2 .'. -
'! : 

/ 1[ - 1 

p 1~ ~· p2v c, 

Figure 3.7: Illustration of geodesics in M and it for dR, 

Figure 3.8: Illustration of geodesics in M and it for dR2 
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,/ 1[ - 1 

p ~ , ) p2 
I v el 

Figure 3.9: Illustration of geodesics in M and il for dR3 

3.5 Dissimilarity measures 

After representing EEG signals as curves on t he Riemannian manifold , we are ready 

to define dissimilarity measure with the use of Riemannian distances (geodesic dis­

tances) : 

Power spectral density is a function of the frequency w. With t he variation of 

w, t he PSD matrix describes a curve on the Riemannian manifold M . Therefore, 

similarity/ dissimilarity between two curves of PSD matrices corresponding to two 

multi-channel EEG signals must be established . Now, in the previous sections, we 

have established geodesic functions de between two points for t he manifold M. For 

two curves on the manifold described by two power density functions P 1(w) and 

P 2(w), due to variation of the frequency variable w, de can be thought of as a non­

negative real valued function of w measuring t he distance between the two curves at 

the frequency w , i. e., 

(3.105) 

At each frequency wk it measures the dissimilarity between the two corresponding 

power spectral density matrices P 1 (wk) and P 2 (wk) on the manifold M . As the 
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frequency w varies, we can define t he distance between the curves P 1 ( w) and P 2 ( w) 

as t he integral of de with respect to w such t hat 

2 

d(P1 (w), P 2(w)) = 1wde(w) dw (3. 106) 
WJ 

It is easy to show this Riemann integral satisfies the axioms of a distance function, 

and can be approximated as 

d(P 1 (w) , P 2(w)) ~ L de(wi)~wi 

L de(Pl (wi) , P 2(wi) ) ~wi (3 .107) 

If equal frequency increment is used, i.e. , ~wi = c, a constant , t hen without loss of 

generality we can define the dissimilarity between the two PSD curves as 

(3 .108) 


Figure 3.10 is an illustration of t he geodesic distance between any two points P 1 and 

P 2 on the manifold M. Figure 3. 11 illustrates t he dissimilarity measure between two 

curves corresponding two EEG signals. Clearly, different geodesic di tance de gives 

M 


Shortest path 
(geodesic distance) 

••••••••• p
2 

Figure 3.10: Geodesic distance between two power spectral density matrices 

rise to different dissimilarity measures between PSD matrices . 
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Shortest path between 
two PSDs at same 

Figure 3. 11 : Dissimilarity measure between two EEG signals 
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Chapter 4 

Optimally Weighted Distances for 

Similarity/Dissimilarity 

In Chapters 2 and 3, we have seen that the EEG signals and their features can 

be treated as vectors in a linear space fitted with certain structure and a distance 

measure to describe the relationship between them. In particular, the PSD matrices 

which are the selected feature of the EEG signals, can be looked upon as describing 

a Riemannian manifold on which the geodesic is the distance measure. We have also 

seen that there are various approaches in formulating both the distance in a vector 

space and the geodesic on a manifold, resulting in different distance measures and 

geodesics. FUrthermore, these distances, whether they measure the distance in a 

linear space or the distance on a Riemannian manifold, may be weighted to enhance 

certain characteristics of the data so as to facilitate EEG signal classification. Here 

in the present chapter, we will examine the various ways of obtaining the weighting 

matrix to serve the final goal of classification. 
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4.1 Distance metric learning 

If the representation of an EEG signal is treated as an abstract object such as a 

point in a space, then a simple illustration of class separation is shown in Figure 4.1. 

The idea is that one might expect that the set of points representing different events 

d(p,xi) 

d(p,yj) ./ 

~ 

Ct Cz 

Figure 4.1: Illustration of class separation 

that belong to the same class would cluster in the space in the sense that distance 

between members of the same class would be small, and that members of another 

class would also cluster, but that the two clusters representing the two classes would 

remain separated from one another. Distance metric learning [69] essentially is the 

term given to the learning of a distance that brings similar points closer together 

while staying far from the dissimilar points. 

To facilitate the process of EEG signal classification, we have to establish a mea­

sure which leads to a short distance between similar power spectral densities (i.e., 

EEG signals of same state of sleep) and a large distance between dissimilar power 

spectral densities (i.e., EEG signals of different states of sleep). For data in the sim­

ilar class, since the distance metric characterizes how the like data are clustered, the 

mean-square distance between members of the class is a measure of the size of the 
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cluster so formed. For classification, such a mean-square distance should be as small 

as possible. There are various methods of choosing a metric, most involve a transfor­

mation of t he data, that minimizes the size of the cluster [77]. Figure 4.2 illustrates 

how a t ransformation applied to the data may change the distribut ion. On the other 

hand, distance as dissimilarity measure is also beneficial for data classification. How­

ever , in some cases because of the variations of t he data may be large, t he inclusion 

of the direct dissimilarity distance may not be too helpful in the classification. Again, 

suitable data transformation will enable the process of classification to be enhance by 

using the dissimilarity measure. 

T 

Figure 4.2: Illustration of class separation by transformation 

Linear data t ransformation can be achieved by incorporating a posit ive definite 

weighting matrix in t he distance measures. An optimally weighted distance could 

be obtained by optimizing a criterion of which the weighted distance is a factor. In 

the following, we examine the different criteria which concurrently apply both t he 

similarity and dissimilarity measures. We also examine how each of t hese criteria 

can be opt imized o t hat both t he similarity and dissimilarity measures are jointly 

employed for optimal classification of EEG signal. Since we have been t reating t he 

EEG signals as both vectors in a linear space or as points on a Riemannian manifold , 

we will examine optimal distance weighting in both cases. 
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4.2 	 Optimally weighted Euclidean distance for sim­

ilarity/dissimilarity 

Optimally weighted distances in a vector space [37] [68] have been studied for many 

years. An earlier treatment of finding an optimally weighted distance can be found 

in [77]. In this section, however, we would like to focus our attention on a more 

recent development of optimally weighted distance directly for similarity/ dissimilarity 

proposed by Xing, Ng, and Jordan [92]. We first review the idea in this section: 

Given a set of points {xi} [~ ~ JRM, one may form a set of pairs of similar points S =1 
{(xi,x1): xi xj}, and a set of pairs of dissimilar points 1) = {(xi,xJ): xi"" xJ}·rv 

The distance metric learning is then to learn a weighted Euclidean distance (weighted 

L 2 distance) of the form 

dw(x,y) = llx- Yllw = y'(x- y)TW(x- y) ( 4.1) 

where W is an M x M positive semi-definite matrix. According to the idea mentioned 

before, i.e., the weighted distance should minimize the distance between similar points 

and meanwhile maximize the distance between dissimilar points. For this purpose, 

one may formulate an optimization problem as: 

max 
w L llxi- xJII~ 

(xi,Xj )ED 

s.t L llxi- xJII~ ~ 1 (4.2) 
(xi,xj)ES 

w~o 

Although this optimization problem has a closed form solution, the solution always 

gives rank-one weighting matrix W. This can be shown as follows: 
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First, we formulate an optimization problem equivalent to Problem (4.2) so that 

max 
w 

s.t 

I:(xi,Xj)ED llxi- Xj~~~ 
I:(xi,Xj)ES llxi- Xj~~~ 
w:::o 	 (4.3) 

Let us sum the correlation matrices of the difference vectors within the similar and 

dissimilar sets forming two M x M matrices such that 

Mv = 2:: (xi- Xj)(xi- xj)T ( 4.4) 
(xi,Xj)ED 

and 

Ms = 2:: (xi- Xj)(xi- xjf (4.5) 
(xi,Xj)ES 

Then we can rewrite the Problem (4.3) as 

max 
w 

s.t 

which is equivalent to 

max 
w 

s.t 

Since W t 0, we can decompose Was 

Tr(WMv) 

Tr(WMs) 

w:::o 

Tr(WMv) 


Tr(WMs) = 1 (4.6) 


w:::o 

(4.7) 

where n 	 is an M X M square matrix. Thus Problem ( 4.6) becomes 

max Tr(nTMvn)
!1 

s.t Tr(f!TMsf!) = 1 	 (4.8) 

104 



Ph.D. Thesis - Yili Li McMaster- Electrical & Computer Engineering 

To solve Problem ( 4.8), we use the Lagrange multiplier method and form the auxiliary 

function such that 

(4.9) 

Taking derivative with respect to n and setting the result equal to 0, we obtain an 

eigen-equation 

(4.10) 

Let n = [v1 , · · · , vM]· Since,\ is fixed, we must have v 1 = v 2 = · · · = VM. Let us 

denote these vi as v. Then we have 

(4.11) 

which is a rank one matrix and will not serve the purpose of a weighting matrix for 

enhancing certain aspects of the data. 

The X-N-J Optimum Weighting: 

To overcome the rank one problem, Xing, et. al. [92] proposed to modify the constraint 

of the original optimization problem from 2-norm in ( 4.2) to 1-norm such that 

min L: llxi- xjll~w 
(x;,xj)ES 

s.t. L: II xi - Xj llw 2: 1 (4.12) 
(x;,xj)ED 

w t: 0 

Or, equivalently, 

max f(W) = llxi- xillww L: 
(x;,xj)ED 

s.t g(W) = L: llxi- xjll~ :S 1 (4.13) 
(x;,xj)ES 

w t: 0 
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This is a convex problem [29] which can be solved numerically: Let 'Vwg(W) be the 

gradient of g(W) and ('Vw f(W))j_ 'Vwg(W) be the projection of 'Vw f(W) onto the 

orthogonal subspace of 'Vwg(W). Let cl = {W: L(x;,Xj)ES llxi- xJII~ ::; 1} and 

c2 = {W : w ~ 0}. Then, denoting by II . IIF the Frobenius norm, the gradient 

ascent + iterative projection algorithm for solving the above optimization problem is 

shown in Table 4.1. 

Table 4.1: The gradient ascent + iterative projection algorithm 

(1) Initialize W(o) :=I, n := 0 

(2) Iterate 

(a) Project W(n) onto C1 and C2: 

(I) Initialize w~l := W(n), m := 0 

(J) Iterate 

(i) w~m+l) := argminwl{IIWl- w~m)IIF: wl E CI} 

(j) w~m+l) := argminwz{IIW2- w~m+l)IIF: w2 E C2} 

(k) m := m + 1 
(K) Until W p converges 

(b) W(n) := Wp 

(c) W(n+Il := W(nl + o:('VwcnJf(W(nl)h 'VwcnJg(W(nl) 

(d) n:+1 

(3) Until W converges 

The optimum weighting matrix so obtained is designated the X-N-J optimum 

weighting (X, N, and J being the first letters of the last names of the authors). The 

X-N-J algorithm leads us to a numerical global optimum solution of W. However, it 

does not find a closed form solution for Problem (4.12) (or Problem (4.13)). In the 

following section, we are going to generalize Problem ( 4.2) so that some closed forms of 

weighted distances can be achieved. The generalization involves putting W = fH1H 
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and allowing the factor n in the weighting matrix to be a full column-rank "tall" 

matrix. 

4.3 	 Generalization of optimally weighted Euclidean 

distance 

Let MK be the set of all K x K matrices over the field C. Recall that [62], for 

BE MK and r;, = 0, · · · , K, the function EK_,_(B) (sometimes called the (K- r;,)th 

trace of B) is defined as the sum of the (K- r;,)th order principal minors of B, i.e., 

EK_,_(B) 	= L det[Bi1 ,. .. ,i.J (4.14) 
p 

where det[·] denotes determinant and Bi1 ,. .. ,i" is the principal submatrix of B formed 

by deleting the i 1th, i 2th,· · · , i,_th rows and columns of B, and 8J denotes the combi­

nation set of {i1 , · · · , i,_}. We note that E0 (B) = 0, E 1 (B) = Tr(B), and EK(B) = 

det[B]. As an example, let 

b12 b131 
b22 b23 (4.15) 

b32 b33 
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Then, we have 

bn + b22 + b33 = 'fr(B) (4.16) 

L det[Bi1 ] 

det [ ~: ~: ] + dct [ ::: ::: ] + dct [ ::: ~:: ] 

(bnb22- b12b2I) + (bnb33- b13b3I) + (b22b33- b23b32) (4.17) 

and E3(B) det[B] (4.18) 

We can also write EK_,.(B) in terms of the eigenvalues )q, · · · , >..K of B, i.e., 

EK-K(B) = L (II >..i) (4.19) 
K-K 

where L:K-K (f1 >..i) denotes the sum of the products of the eigenvalues of B taken 

(K- /'\,) at a time. 

We now apply the function1 EK-K(B) as defined above to our problem of finding 

the optimum weighting for similarity jdissimilarity distance. Again, let 

Mv = 
(x

L (xi- xj)(xi­
;,xj)EV 

xj)H (4.20) 

and 

Ms = L (xi- xj)(xi­
(x;,Xj)ES 

xj)H ( 4.21) 

Let n E MMxK where MMxK is the set of all M x K matrices with K :::; M. 

Since the purpose of a weighting matrix is to enhance certain parts of the data and 

de-emphasize other parts, often, we require n to be orthonormal so that the total 

1The function has been applied in array signal processing for locating the direction of arrival of 
target signals [90]. 
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energy after transformation is unchanged. Thus, if EK-~~;(f!HMsf!) f- 0, then we can 

define the following generalized optimization problem: 

EK_"(nHMvf!)
max 

fl EK_"(nHMsf!) 

s.t. nHn = IK (4.22) 

with IK being a K x K identity matrix. 

Let us examine the geometric meaning [90] of the objective function in Eq. ( 4.22). 

We see that both the numerator and the denominator are of the form EK_"(f!HM0f!) 

where M 0 is an M x A1 Hermitian matrix representing either Mv or Ms. Let 

(4.23) 

where "'i is a K-dimensional vector. Then, it can be easily seen [16] that each of 

its (K- K)-dimensional principal minors (formed by deleting K of the corresponding 

rows and columns) is equal to the square of the volume of the (K- K)-dimensional 

parallelepiped whose edges are the K- K vectors { "'i} involved in the principal minor. 

Therefore, the maximization of the term EK-~~;(f!HM0f!) can be interpreted as the 

maximization of the sum of the square of the volumes of all the parallelepipeds whose 

edges are formed by taking all the possible combinations of K - K of the vectors 

{ "'i}, i = 1, · · · , K. Since the volume of a parallelepiped not only depends on the 

length of the vectors forming its edges, but also on the angles between them, we can 

see that the maximization of EK_"(f!HM0 f!) is to find a weighting matrix which also 

maximizes the angles between the vectors, that is minimizes the correlations. 

From the above geometric interpretation, we can see that maximization of the 

objective function Fobj =max ( ~:=:i~;~~~i) amounts to finding a weighting matrix 

that can minimize the correlation between the dissimilar vectors while concurrently 

can maximize the correlation between the similar vectors. This "ideal" weighting 
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matrix may be difficult to find. Hence, very often, instead of optimizing "the quotient 

of the functions", we may choose to approximate the objective function by "the 

function of the quotient" such that Fobj ~max EK-~< ([nHMsn]-I[OHMvnl) where 

of course, the "quotient" here is the inverse of the denominator matrix multiplied by 

the numerator matrix. While other values of K - "' may also yield very interesting 

results, in the following, we only limit our examination of the optimization problems 

to the two special cases of K-"' = 1 and K-"' = Kin which the function EK-~<(B) 

gives us respectively a trace quotient problem and a Rayleigh quotient problem. 

4.3.1 Case 1: K- K = 1 

As seen in the discussion of the function EK -~<(B), for K - "' = 1, EI (·) is the trace 

of the matrix, in which case, our problem becomes: 

Tr(S1HMv0) 
max 

11 Tr(S1HMs0) 

s.t. nHn = IK (4.24) 

which is also difficult to solve. However, as discussed above, we can form an approx­

imation to this problem such that 

(4.25) 


To solve this Problem 4.25, we need the following lemma [65]: 

Lemma 4.1 Let P be an M x M positive definite matrix with eigenvalues AI 2: · · · 2: 

AM and associated orthonormal eigenvectors vi,··· , VM. Then the problem 

(4.26) 


110 



Ph.D. Thesis - Yili Li McMaster - Electrical & Computer Engineering 

has the solution 2:~ ,\ with the optimizing matrix 1 

(4.27) 


D 

Now, let A E MMxK and let 

(4.28) 


and 

(4.29) 


Let E> and <I> be the eigenvalue and eigenvector matrices of M~. Then we have 

(4.30) 


Let A and 'II be the eigenvalue and eigenvector matrices of e- 1 /2 <I>HM~<I>E>- 1 12 . Let 

B = <I>E>- 1
/ 
2 '11 (Note that B is a nonsingular K x K matrix). Then, it is easy to 

verify that 

(4.31) 


and 

Then, we have 

(4.32) 


Let !1 = AB. Then, the Problems (4.25) has been transformed to the following 

problem 

s.t. nHMs!1 = IK (4.34) 
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Let Ms = HHH andY= HHn. Then, 

(4.35) 

and 

where Mv = H-1MvH-H. Thus, Problem (4.34) becomes 

(4.36) 

(4.37) 

By Lemma 4.1, if .\1 2: · · · 2: ).K are the eigenvalues of Mv associated with orthonor­

mal eigenvectors v1, · · · , vK, then the maximizing matrix is Yop = [v1, · · · , vK]· Note 

that if A= diag[.\1, · · · , .\K], then 

(4.38) 

(4.39) 

and 

(4.40) 

Finally, since Ms = HHH, we have 

(4.41) 

Therefore, nop is composed of the first K eigenvectors corresponding to the first K 

largest eigenvalues of M,51Mv, i.e., 

(4.42) 
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where lii, · · · , ux are the orthonormal eigenvectors corresponding to the eigenvalues 

AI 2:: · · · 2:: Ax of M.$IMp. It can be observed from Eqs. (4.38) and (4.41) that 

while Mv and M.5I Mv both have the same eigenvalues {Ai}, they have different 

eigenvectors, being respectively given by {vi} and {ui}, i = 1, · · · , M. 

We also note that for K = M, f!op will incorporate all the eigenvectors of M.$I Mv 

and Wop = f!opn~ = IM which will not do any weighting to the objective function. 

This, however, is not equivalent to the original problem of Xing et al in Eq. ( 4.8) 

since the constraints in the two cases are different. 

4.3.2 Case II: K - /'\, = K 

From the discussion of the function E K -~<(B), for K- K = K, EK ( ·) is the determinant 

of the matrix. In this case, the problem is reduced to a Rayleigh quotient problem: 

det[nHMvn] 
max 

n det[nHMsn] 

s.t. nHn = Ix (4.43) 

The solution of Problem (4.43) necessitates the following lemma [65]: 

Lemma 4.2 Let P be an M x M positive definite matrix with eigenvalues AI 2:: · · · 2:: 

AM and associated orthonormal eigenvectors vI, · · · , v M. Then the problem 

max det[QHPQ]
Q 

s.t. (4.44) 

has the solution 

(4.45) 


D 
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Let Ms = LLH be the Cholesky decomposition of M 5 . Let Z be an M x K 

matrix such that Z = Y~VH where~ = diag(O"I, · · · O"K) is a K x K diagonal 

matrix consisting of the K singular values O"I 2 

an M x K matrix consisting of the first K left singular vectors corresponding to the 

singular values of Z such that yHy = IK , and V = [vi · · · vK] is a K x K matrix 

consisting of the K right singular vectors of Z such that V H V = I K. Let n = L-HZ. 

Then, we have 

det[f!HMvf!] det[ZHL-IMvL-Hz] 

det[OHMsf!] det[ZHZ] 

det[V~YHL-IMvL-Hy~vH] 

det[V~~VH] 

det[YHL-IMvL-Hy] (4.46) 

where we have used the fact that det(AB) = det(A) · det(B). Therefore, the Prob­

lem ( 4.43) can be transformed to the following equivalent problem: 

(4.47) 


on which Lemma 4.2 can be directly applied. Let AI 2 · · · 2 AM be the ordered 

eigenvalues of L-IMvL-H with the associated eigenvectors ui, · · ·, uM. Then, the 

maximizing matrix to the Problem ( 4.4 7) is 

(4.48) 


Therefore, the maximizing matrix to the problem (4.43) is 

(4.49) 
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4.4 Optimum weighting for Riemannian distances 

In Chapter 3, we have seen that the features of EEG signals describe a manifold 

on which the distance between two points can best be measured by a Riemannian 

distance. In Section 4.1, we have further seen that EEG signal classification consists of 

characterizing each of the classes of signals and determining the class to which a new 

signal belongs, and the aim of metric learning is to find the optimum weighting matrix 

which minimizes the size of the cluster of similar signals while keeping the dissimilar 

signals at a prescribed distance. In this section, we apply some of the results of 

optimization introduced in the previous section to find the optimum weighting matrix 

W for the Riemannian distance developed between two weighted PSD matrices. 

4.4.1 Optimum weighting for dR1w 

Let Pi (w) and P j (w), w E [wmin, Wmax], be two separate sample curves of PSD matrices 

as the frequency w varies. We say that Pi(w) and Pj(w) are similar if they belong 

to the same class, and are dissimilar if they belong to different classes. Let Pik = 

Pi(wk) and Pjk = Pj(wk) represent two separate PSD matrices from the two sample 

curves measured at w =wk. Again, we denote the sets of similar and dissimilar PSD 

matrices by S and 1J respectively such that the set of pairs of similar PSD matrices 

isS= {(Pik,Pjk);Pi(w),Pj(w) E Ce}, whereas the set of pairs of dissimilar PSD 

matrices is 1J = {(Pik,PJk);Pi(w) E CepPj(w) E Ce1 ,fi =f. fJ}· The optimum M x M 

weighting matrix W may be found by maximizing the ratio of the sum of squared 

interclass distances and the sum of squared intraclass distances, i.e., 

L(Pik>Pjk)ED d~lW(Pik, pjk) 
max 

d2 (4.50a)
w "'""' R1w (Pkz P Jk)w(P;k>Pjk)ES ' 

s.t. W=WH >- 0 (4.50b) 
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where, from Eq. (3.51), 

(4.51) 

Direct optimization of the quantity in Eq. ( 4.50a) on the manifold M is difficult. 

However, from Chapter 3, we can perform the optimization equivalently using the 

inner product metric in the Hilbert space 'HM. To do this, we follow the steps in the 

development of Theorem 3.1 by letting P~k2PiC = vij1:Eijv~2 be the singular-value 

decomposition of P~k2Pi£'2 where Vij1 and Vij2 are respectively the left and right 

singular vectors, and let uik and ujk be two unitary matrices such that ujkufk = 

. . - 1/2 - 1/2 . ­
Vij2V~1 . Wntmg Pik = Pik Uik and Pjk = Pjk Ujk, let us now examme how Pik 

and Pjk can be optimally weighted: 

Following the procedure of Corollary 3.1, we let W be a positive definite weighting 
H - H- - H­

matrix SO that W = f!f! and let pikW = f! pik and pjkW = f! pjk, then pikW = 

PikwPfkw and PjkW = PjkwPJkw· Since TM(P) and Urt(P) are isometric, we have 

- - 2
min IIPikW- Pjkwii 


Tr [(PikW- pjkW)H(PikW- pjkw)] 


Tr [(i>ik- pjk)HW(Pik- Pjk)] 


Tr [nH(:Pik- i>jk)(i>ik- :Pjk)Hn] (4.52) 


Let 51= {(Pik,Pjk);Pi(w),Pj(w) E Ct} and j)1 = {(Pik,Pjk);Pi(w) E Cti,Pjk(w) E 

(4.53) 

and 

(4.54) 
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and substituting into Eq. (4.50), the optimization problem becomes 

Tr ( nHMv
1
n) 

max 
0 Tr (nHM81n) 
s.t. nnH >- o (4.55) 

As discussed in the last section, this problem may be difficult to solve and we turn 

to solve an approximation problem such that 

s.t. n E MMxK (4.56) 

which is in the same form as the Problem (4.25). Therefore, 

(4.57) 


where v1, · • · , VK are the orthonormal eigenvectors corresponding to the eigenvalues 

5.1 ;::: · · · ;::: .\K of M~1 Mv . Thus, the optimum weighting matrix Wopl is given by 
11

(4.58) 


4.4.2 Optimum weighting for dR2w 

Let S2 = {(P~k2 , P~~2 ); Pi(w), P1(w) E Ce} and i\ ={(PiC, P~~2 ); Pi(w) E Ceil P1k(w) E 

Cej, fi =/= £1}. Then, writing 

(4.59) 

and 

(4.60) 

117 



Ph.D. Thesis - Yili Li McMaster - Electrical & Computer Engineering 

and using the same reasoning as the previous section we can find the optimum 

(4.61) 


where v1, • • • , VK are the orthonormal eigenvectors corresponding to the eigenvalues 
- - - 1 ­
,\1 2: · · · 2: AK of M.$

2 
Mv2 • Thus, the optimum weighting matrix Wap2 is given by 

(4.62) 


In this chapter, we have examined the use of weighting in the signal classification. 

The principle established here is that an optimum weighting matrix, while keeping 

the data of dissimilarity to be as distant as possible, should keep the data of similarity 

to be within the vicinity. Using this principle, we have derived approximate optimum 

weightings for both dR1w and dR2w. (It has been shown that dR3 is weight invariant.) 

In the ensuing chapter, we will apply both the weighted and unweighted distance 

measures to the classification of EEG signals. The effects of optimum weighting will 

be apparent from those results. 
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Chapter 5 

Geometric EEG signal 

classification 

In this Chapter, we apply the optimally weighted Riemannian distance derived in 

Chapters 3 and 4 to the classification of EEG signals for the determination of a 

patient's sleep stage. Since our similarity/dissimilarity measure is defined by consid­

ering the geometric structure of the feature space, our classification method will be 

called Geometric EEG Signal Classification to emphasize this aspect. Specifically, our 

method is k-nearest neighbor (k-NN) rule coupled with the similarity/dissimilarity 

measures based on (both unweighted and weighted) Riemannian distances. In the 

following, we will describe each part of the classification method in details. 

5.1 Nearest neighbor classification methods 

As in any pattern classification problem, once the feature space has been determined, 

there are various choices of classifiers as mentioned in Chapter 1. Conceptually, 
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the simplest classifier is perhaps the k-nearest-neighbor rule [20, 25], which is a sub­

optimal procedure. It only requires a finite reference sample of N (N > k) feature 

matrices (feature vectors are special cases) labeled according to the pattern class of 

origin, and a dissimilarity measure in the space of feature matrices. For a given input 

feature matrix, the algorithm uses the given dissimilarity measure to first identify the 

k feature matrices from the reference samples which are closest to the input matrix 

and then assigns the input feature matrix to the pattern class that appears most 

frequently amongst the k nearest neighbors. 

5.1.1 k-nearest neighbor classification algorithm 

For our case of EEG signal classification, we take the feature PSD matrix of a test 

signal epoch not being part of the library, and compare the Riemannian distance 

of this test feature PSD matrix to its k nearest neighbors. Then we assign it to a 

class according to majority decision among these k neighbor matrices. Fig. 5.1 shows 

an example of 3-NN and an example of 5-NN in a two-class case. (In our case, the 

neighbors are the feature PSD matrices from the library signal sets.) 

•'• 

. x, 

(a) (b) 


Figure 5.1: k-Nearest Neighbor Decision (a) k = 3; (b) k = 5 


We can see that the assignment of the object x may vary with the choice of 

different values of k, regardless of whether the distributions of the objects are similar 
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or different. However, there is no general rule to choose the best value of k in the 

k-nearest neighbor algorithm. If the sample size is infinite, the larger k the better 

is the performance of the k-nearest neighbor classifier. In fact, for infinitely large 

sample-size, the performance of the k-nearest neighbor algorithm has been shown to 

approach the optimum Bayesian classifier with k ----> oo and kIN ----> 0 ( N being the 

sample size) [30]. 

In our tests, we first set up a library of epochs of EEG signals and categorize them 

into L = 6 classes, each representing a particular stage of sleep. Each epoch of EEG 

signals has been examined by clinical experts and classification agreements have been 

obtained. Using the procedure described in Section 2.4, the PSD matrices of these 

signal epochs in each of the categories are evaluated at each frequency point within 

the range w E [OHz, 30Hz] forming different categories of curves (sequences of points), 

{Pn(w), n = 1, · · · N}. These are the PSD matrix curves to which we apply the k­

nearest neighbor algorithm coupled with the Riemannian (or otherwise) distances for 

classification of the EEG signals. Since our sample size is finite, we found that, by 

choosing a small value of k, the results are very satisfactory. In the following, we 

summarize the classification of EEG signals using the k-nearest neighbor algorithm 

coupled with the weighted Riemannian distance dR1w. (For classification using the 

k-nearest neighbor with other weighted or unweighted distances, the procedure will 

be identical): 

1. 	 With all the PSD matrices of EEG signal epochs of the L states of sleep in the 

library, the optimum weighting matrix W of similarity Idissimilarity is evaluated 

for dR1w according the description in Section 4.4.1. 

2. 	 For the PSD matrix curve P 0 (w) of a test EEG signal, we calculate the dissim­

ilarity measures { dni = dR1w (Po(wi), P n(wi)), n = 1, · · · , N} at each frequency 
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wi according to Eqs. (4.52) and (4.57), and then calculate the total distance dn 

between the two curves according to Eq. (3.108). For a chosen value of k, the k 

nearest neighbors of Po(w) of the test signal (k PSD matrices at same w having 

shortest weighted distances from P 0 (w)) are then identified. 

3. 	 P 0 (w) is then assigned to class Ct0 if £0 = maj(£1 , · · · , Rk) where £1 , · • · , Rk are 

the class labels of the k-nearest neighbors of P 0 (w) among the members of 

the library, and maj ( ·) denotes the majority vote function, i.e., its value is the 

element which has occurred most in {£1, · · · , Rk}. 

5.2 Q-fold cross-validation method 

The above description outlines the procedure of applying the k-nearest neighbor al­

gorithm together with the Riemannian distance to classify an unknown signal to a 

particular state of sleep. In this section, we will examine the performance of our 

classification method. Ideally, the performance accuracy of our EEG classification 

algorithm should be measured in terms of its probability of error which necessitates 

the knowledge of the ground truth of the patient's state of sleep. However, since the 

ground truth of the state of sleep of a patient measured from the signal epoch is not 

really known, we will therefore treat the library of signal epochs classified by clinical 

experts as the ground truth. From the library of collected signal epochs, we will ran­

domly select some as training signals and some as test signals so that the validation 

of our classification methods is carried out as follows: 

i) 	 For each of the classes Ct, R = 1, · · · , L, containing Nt feature PSD matrix curves 

(being functions of w) of the same state of sleep, we randomly choose Ntr matrix 

curves as the test set and the rest (N£- Ntr) as the training (library) set. 1 

1In an actual clinical test in which a patient's EEG signal is under examination, the number Na 
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ii) As described in the previous section, for all the L states of sleep, the weighting 

matrix W is first evaluated using the training sets, each containing (Nt- Ntr) 

selected feature matrix curves. For each member matrix curve of the test sets, 

the dissimilarity measures from the library sets are calculated and its classifi­

cation is carried out according to the k-nearest neighbor algorithm. 

iii) 	 The above steps are repeated Q times ( Q-fold cross-validation), each time choos­

ing different sets of training and test feature matrix curves in Ct. The probability 

of correct classification in each state can then be estimated by PeR = ~ L~=l PcRq 
where PcRq denotes the estimated probability of correct classification of class £ 

at the qth trial, q = 1, · · · , Q, i.e. PcRq = ~NN with NRc being the number of 
tT 

correct classification for class Ct at the qth trial. 

5.3 Validation test results 

We now perform some tests using the collected sleep data to validate our classification 

algorithm employing the Riemannian distance developed in Chapter 3 and Chapter 4. 

The test results are based on the data collected from five patients. For each patient, we 

collect the multichannel recordings for each sleep state. The recordings were selected 

from channels (C3 - A2 ), (C4 - A1), (01 - A2 ), and (02 - AI) 2 for all patients. As 

described in the previous chapters, for our validation tests, the raw EEG recordings 

were first pre-processed by removing the DC values, and the frequency components of 

the signals were kept to within the range of 0.5- 30Hz by using a bandpass filter. We 

of test curves does not affect the test outcome since the epochs are tested one at a time against a 
library of reference signals. However, in our validation test here, taking away NPT signals from a 
group results in a depletion of the library reference signals. For a finite number of reference signals, 
the performance of the classification algorithm may well be affected by NPT as will be demonstrated 
in the next section. 

2Please refer to Section 1.1.1 for the positioning of these sensors. 
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sectioned the recording length to 30s epochs. Each epoch was examined by clinical 

experts, and upon agreement, classified into one of six states. For each sleep state 

we collected 75 epochs for a total of 450 epochs in all states and used them in the 

verification of the methods. Also, the power spectral density matrix of each epoch was 

estimated by the Nuttall-Strand algorithm [70,81]. In each trial, we randomly choose 

Na PSD matrices from each state as test signals while the remaining (75- Na) PSD 

matrices form the training data set so that the total number of the training feature 

signals in each trial is 6 x (75 - Ntr) for each trial. 

The following are examples of the tests of the effectiveness of various dissimi­

larity measures in the classification of EEG signals we carried out under different 

environments. 

5.3.1 Example 5.1 

We first examine the performance of our classification algorithm using either the 

Riemannian distances dR1 and dR2 or the weighted Riemannian distances dR1w and 

dR2w· Our experiments are carried out with Na = 1, 5, and 15, for each of which 

we employ the parameter k = 1, 3, 5, and 7 for the nearest neighbor tests. Each test 

is repeated Q = 75 times. Fig. 5.2, Fig. 5.3 and Fig. 5.4 show the performance of 

the methods using dR1 and dR1w under different parameter values. Comparing the 

results in the three figures, clearly, the weighted Riemannian distance outperforms 

the unweighted one by a margin of 8% to 10% in accuracy of classification. It is also 

observed that the cases of having the number of nearest neighbors being k = 5 and 

3 seem to have, on average, good performance in the three figures shown. As the 

number of selected test signals Ntr increases, we can see that the performance of all 

the cases deteriorate. In the case of the weighted Riemannian distance, the accuracy 

deteriorates from a high-90% for Na = 1 to a low-90% using k = 5 for Na = 15. 

124 




Ph.D. Thesis - Yili Li McMaster- Electrical & Computer Engineering 

OL_------~----~~----~J-~---=~====~~
Awake REM S1age 1 Stage 2 Stage 3 Stage 4 

Sleep states 

Figure 5.2: Classification results using dR1 (Na 1, k = 1, 3, 5, 7) 

A~Lak-e------~R~E~M~------S~~~gLe~1-------S~~~g-e~2------~S~~~g=e=3~====~s~tage4 
Sleep states 

Figure 5.3: Classification results using dR1 (Na 5, k = 1, 3, 5, 7) 
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oL-------~------~------~------~~~~~ 
Awake REM Stage 1 Stage 2 Stage 3 Stage 4 

Sleep states 

Figure 5.4: Classification results using dR1 (Ntr = 15, k = 1, 3, 5, 7) 

Other cases of k have similar drops in performance as Na increases. This is because 

larger Na depletes the size of the training (library) set and the ratio of k / N in the 

nearest neighbor test is no longer small enough. 

The performance using Riemannian distances dR2 and dR2w are shown in Fig. 5.5, 

Fig. 5.6, and Fig. 5.7. We also tested the performance of the classification algorithm 

using Riemannian distances dR3 . Since it has been shown in Appendix E that dR3 

is weight-invariant, the performance using dR3w is omitted and the performance of 

the classification using dR3 is shown in Fig. 5.8, Fig. 5.9, and Fig. 5.10 For these two 

other Riemannian distances, similar observations as for dR1 and dR
1
w are noted. 

We note that when the validation is performed in the cases with Na > 1, the 

classification is carried out on each individual member of the test signals, i.e., the clas­

sification is carried out as if Na = 1. The only difference between the case of Ntr > 1 

and Ntr = 1 is that the groups from which the test signals have been selected would 
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Figure 5.5: Classification results using dR2 (Ner 1, k = 1, 3, 5, 7) 
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Figure 5.6: Classification results using dR2 (Ner = 5, k = 1, 3, 5, 7) 
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Figure 5.7: Classification results using dR2 (Ntr = 15, k = 1, 3, 5, 7) 
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Figure 5.8: Classification results using dR3 (Na = 1, k = 1, 3, 5, 7) 
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Figure 5.9: Classification results using dR3 (Na = 5, k = 1, 3, 5, 7) 
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Figure 5.10: Classification results using dR3 (Na = 15, k = 1, 3, 5, 7) 
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have fewer members left as library reference. Therefore, from the above observations 

on the performance of the classification algorithm using the different Riemannian dis­

tances, we can conclude that their performance are all similarly affected by the choice 

of the ratio of the number of test signals to the number of reference signals, as well 

as by the number of nearest neighbors. Increasing the number of test signals taken 

from a class depletes the number of reference signals in that class and the evaluation 

of similarity will be affected. As well, the increase of the number of nearest neighbors 

in the algorithm may violate the condition k / N -----+ 0 for good performance of the 

algorithm. Since the performance using the different Riemannian distances are all 

similarly affected, we can see that the performance of the algorithm under the effect 

of choices in Ncr and in k does not depend on the definition of the distance, rather 

it depends on the relative size of Ncr and k to the total library size. D 

5.3.2 Example 5.2 

In this example, we carry out a direct comparison between the performance of the 

Riemannian distances dR1 , dR2 and dR3 and their weighted versions when applied 

to the EEG signal classification problem. Due to its weight-invariant nature (see 

Chapter 3), therefore, no weighting is needed for dR3 Figs. 5.11, Fig. 5.12 and• 

Fig. 5.13 show the performance with different Ncr and k. The test is repeated Q = 75 

times. Also, since from the last example, the cases of k = 3 and 5 show good 

performance for the Riemannian distances, we maintain the use of these two choices 

of the number of nearest neighbors in our tests here. For the unweighted Riemannian 

distances, we can see that dR1 and dR2 generally have better performance than dR3 . 

Comparing the results in these figures, we can see that for Ncr = 1, dR1 and dR2 have 

similar performance, both having accuracies in the mid-80% to high-80% while dR3 is 

generally around 3 to 5% lower. As Ncr increases, all the Riemannian distances yield 
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Figure 5.11: Performance of using Riemannian distances for Ner = 1: a) k 3, b) k 
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Figure 5.13: Performance of using Riemannian distances for Na 15: a) k 3, b) 
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deteriorated performance as observed in Example 4.1. Optimum weighting results in 

dR1w and dR2w having much enhanced performance, having accuracies both in the 

high 90% for Ncr = 1, and deteriorated to around 90% when Ncr increases. 

5.3.3 Example 5.3 

We now compare the performance of the classification algorithm using the unweighted 

Riemannian distance measures to that using various other unweighted distances. For 

comparison, we have chosen the following distance measures: 

a) 	K-1 divergence dKL- The K-1 divergence has been introduced in Section 3.2.2. 

We have seen that it does not satisfy the triangular inequality and is therefore 

not a true distance. Furthermore, the "measure" is invariant to weighting. 

However, it uses the power spectral density matrices as the feature and has 

been applied to the classification of EEG signals. Here, we also include this 

measure and examine its effectiveness in our study of EEG signal classification. 

b) Euclidean distance dE1 - The distance measure used here is the unweighted 

Euclidean distance between two vectors Vpa1 and VPa2 generated as shown in 

Eq. (2.64) by vectorizing the two PSD matrices P 1 and P 2 respectively. 

c) 	 Euclidean distance dE2 - The distance measure used here is the unweighted 

Euclidean distance between two vectors VpL 1 and VpL2 generated as shown in 

Eq. (2.85) by utilizing the parameters of the Lie vectors of the two PSD matrices 

P1 and P 2 respectively. 

The comparison of the performance of the classification algorithm employing the 

unweighted Riemannian distances with those using the above distances are shown 

in Fig. 5.14, Fig. 5.15, and Fig. 5.16 for various values of Ncr and k. The test is 
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repeated Q = 75 times. It can be observed that while the performance using the 

other distance measures performs well and cluster around the low-80% mark, the 

unweighted Euclidean distance dE1 is very much worse, its accuracy being around 

the high-50%. The inferior performance of the algorithm using dE1 is apparent. dE1 

measures the distance between two vectors formed by stacking up the elements of 

the PSD matrices. In other words, the information of the relationship between the 

elements is no longer available. In contrast, the other distance measures retain all the 

information of the PSD matrix, not only the element values, but also the structure 

and properties of the matrix. 

As Ncr increases and the number of reference signals in the library decreases, all 

the performance deteriorate as in Examples 1 and 2. However, among the better 

performance group of measures, dE2 appears to be more sensitive to the decrease of 

reference signals. Its performance accuracy drops to around 70% for Ncr = 5 and 

further to around 60% for Ncr = 15. Thus, the performance of the group using 

distances directly expressed as functions of the PSD matrices seem to be more robust 

against changes in statistical environments. 

Apart from the information of the PSD matrix elements and structures, the Rieman­

nian distances also explore the geometry of the manifold that is described by the PSD 

matrices. It is not surprising, therefore, to find the performance associated with these 

distance measures to be superior to those without utilizing the manifold geometry. 

However, we also observe that even though the K-1 distance is not derived using the 

manifold geometry, its performance is by and large, comparable to the performance 

using the Riemannian distances. This should not be so surprising either since an 

examination of the K-1 distance in Eq. (3.21) shows the similar employment of the 

traces of the matrices P 1 and P 2 as in dR1 and dR2 • 
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In spite of this similarity of using the traces of the PSD matrices as distance 

measures, the K-1 distance unfortunately cannot be weighted to enhance the measure 

of similarity and dissimilarity of different signal classes, making it not so useful in 

this application. 

5.3.4 Example 5.4 

Optimally weighted distances, in general, have superior performance to the unweighted 

ones in EEG signal classification. This has been clearly observed in the cases of 

weighted and unweighted Riemannian distances in Examples 1 and 2. Here in this 

example, we compare the performance of the optimally weighted Riemannian dis­

tances dR1w and dR2w derived in this thesis with other optimally weighted distances 

for the purpose of EEG signal classification. Now, since optimum weighting in EEG 

classification essentially enhances the measure of similarity j dissimilarity between the 

groups of signals, we will examine the two approaches addressed in Chapter 4: 

a) X-N-J optimum weighting of vectors [92] -This method of optimally weighting 

a signal vector has been introduced in Chapter 4. Here, we apply the X-N-J 

optimum weight obtained from Table 4.2 to vector representations of P as in 

Example 4.3, i.e., 

(i) 	 Euclidean distance between two vectors Vpa1 and Vpa2 generated as shown 

in Eq. (2.64) by vectorizing the two PSD matrices P 1 and P 2 respectively. 

(ii) Euclidean distance between two Lie vectors VpL 1 and VpL2 of the two PSD 

matrices P 1 and P 2 respectively. 

b) Weighted Riemannian distances - These are the same weighted Riemannian 

distances dR1w and dR2w which have been studied in Example 4.1. 
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Again, we apply the k-nearest neighbor algorithm through the Q-fold validation pro­

cess to all the tests. Our experiments are carried out with Ner = 1, 5, and 15 for all 

the methods and we choose Q = 75. We only show the performance comparison for 

k = 3 and 5. Again, Figs 5.17, 5.18, and 5.19 show the comparison of performance of 

the various methods under different parameter values. 

It can be observed from the figures that the performance of all the methods are 

greatly enhanced form that of their unweighted counter-parts in Example 4.3. For the 

two Euclidian distances dE1 and dE2 , their performance have been elevated respectively 

from high-50% to around 70% and from under 80% to around 85% for Ner = 1. 

For the two Riemannian distances dR1 and dR their performance have both been2 , 

elevated from around 85% to over 95% for Ner = 1. Judging from the results in 

Example 4.3 and 4.4, we can say that the performance using the X-N-J weighted Lie 

vector is only comparable to that of the unweighted Riemannian distances. On the 

other hand, the optimally weighted Riemannian distances yield a performance clearly 

superior to the optimally weighted dE2w by a margin of 8 to over 15% in accuracy of 

classification, and by an even greater margin when compared to dE 1w. As the number 

of selected test signals Ner increases and the number of reference signals decreases, 

we can see that the performance of all the methods deteriorate, however, the margin 

of superior performance for the weighted Riemannian distance over the optimally 

weighted Euclidian distances still maintains. D 

Many other examples with different parameters have also be tested and similar 

observations have been noted. 
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Figure 5.19: Performance using weighted distances for Ncr= 15: a) k 3, b) k =5 
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5.4 k-NN classification for large size data library 

The above experiments have been carried out when the available data is limited 

and the reference library is relatively small. The effect of such limited data is quite 

apparent from the deterioration of performance of all the methods when the number 

of reference signals decreases and when the ratio of k/N increases. Under ideal 

circumstances, we should have a very much larger library of signals which would 

render the statistics of classification more stable. However, when the experiments are 

performed using a large amount of library data, then in order to make a decision, the 

k-nearest neighbor algorithm would have to use all of the library patterns of a class 

as the class representation so that the distances between the pattern to be tested and 

every pattern of the class has to be computed according to a dissimilarity measure. 

Although the k-nearest neighbor algorithm is simple and reliable, when the sample 

size of each class is large, the number of distances to be calculated is very large as 

well. This leads to a fundamental problem of how to reasonably represent each class 

of the data. 

One way to overcome this difficulty is to divide the class of data into sub-classes 

and the mean of each sub-class is computed and used to represent the original class. 

In this way, the class can be reasonably characterized by its approximate data distri­

bution. We call this the multi-mean representation of classes. 

Since our training data are matrices on a manifold measured by a weighted Rie­

mannian distance, the mean should take into account the natural properties of the 

manifold. Hence, the usual definition of "mean" using Euclidean distance may not 

be appropriate. Instead, we may employ the Karcher mean [56] in our grouping of 

the power density matrices, i.e., we should solve the following optimization problem 

to find the Karcher mean of the sub-class Stj of the power spectral density matrices 
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belonging to Ct: 

argminPESej L d~w(P,Pji) (5.1) 
Pj;ESej 

Solving this problem, however, is not easy in general. 

Instead of trying to solve this problem exactly we choose the element Pjio in Stj 

such that 

io = argmin (5.2) 

and let Ptj = Pjio indicate the approximate Karcher mean of the sub-class Stj· 

The algorithm of finding the Karcher means in class Ct consists of the following 

steps: First, we randomly choose the elements Pj0 ;j = 1, · · · , J£ from the class Ct 

to form an initial set g~o) of Karcher means of J£ sub-classes of elements. Second, 

each of these initial sub-classes s;~)' ... s;~; is assigned elements closest to the jth 

Karcher mean P jO E g;o). Third, the approximate Karcher mean of each of the J£ 

sub-classes are recalculated from the elements assigned to that sub-class. Fourth, 

the second and third steps are repeated until convergence occurs and the proper 

sub-classes Sn, · · ·Sue and the group gf of Karcher means are established. 

We are now ready to carry out the classification using the k-nearest neighbour 

rule. The procedure is given as follows: 

1. 	 For each of the classes Ct containing Nt patterns of power spectral density (being 

functions of w) of the same state of sleep, we randomly choose Ntr patterns as 

the training set, while the rest are chosen as the testing set. 

2. 	 For all of the Na patterns representing the training sets of all the L states of 

sleep, the weighting matrix W is first evaluated. 

3. 	 For each training set in class Ct, we find the group gf of J£ approximate Karcher 

means using the weighted Riemannian distance. 
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4. 	 For each pattern of the testing sets, we find the dissimilarity between its power 

spectral density P 0 and the Karcher means in all the groups 9e, P= 1, · · · , L,. 

5. 	 Each P 0 is then assigned to class Ce0 if 

(5.3) 


where £1 , · · · , Pk are the class labels of the k-nearest neighbors of P 0 among the 

Karcher means, and maj(·) denotes the majority vote function, i.e., its value is 

the element which has occurred most in { P1, · · · , Pk}. 

For the same data set as introduced in the previous Sections, the rudimentary 

validation test results show that there are no significant deterioration in the the 

classification performance when 30 approximate Karcher means are calculated for each 

class as the class representatives. Therefore, this method has potential advantages in 

the case of large data size. 
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Chapter 6 

Summary, Future Works, and 

Conclusions 

6.1 Summary of thesis 

In this thesis, we examine the problem of the classification of sleep states of a patient 

by analyzing his/her EEG signals. We focus on the geometrical aspects in signal 

analysis and emphasize on the improvement of signal classification by exploitation of 

the geometry of the signal space. 

Following the practice of clinical experts whose judgements in sleep state classi­

fication are based essentially upon the power contents of the signals in the various 

frequency ranges, we propose to employ the power spectral density (PSD) matrix as 

the feature for the distinction between different classes of EEG signals. In so doing, 

we not only examine the power spectrum contents of the signal from each channel, but 

also utilize the the cross power spectra between signals collected from the different 

channels. To facilitate the classification, we argue that since the PSD matrices are 

positive definite and exhibit certain geometric properties in the signal feature space, 
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the use of the most widely accepted Euclidean distance between the signal features 

may not be the most appropriate for measuring their differences. Rather, we propose 

that the geometric properties of the feature space be exploited and appropriate met­

rics on the manifold of the PSD matrices be developed using Riemannian geometry. 

By characterizing EEG signals with their power spectral functions, the dissimilarity 

measure is defined based on the geodesic distances on the manifold of positive definite 

Hermitian matrices. 

A general form of geodesic distance on the Riemannian manifold is then derived. 

With the help of fibre bundle theory and a particular choice of the Riemannian 

metric, we develop a closed form, dR of the geodesic between two points on the
1

, 

manifold. This new distance measure is then related to the Fisher-Rao and Fubini­

Study distances in special cases. We then show that this geodesic distance can also 

be obtained by mimicking the Frechet distance between two covariance matrices. In 

addition, by another choice of the Riemannian metric, we show that a conjectured 

distance dR2 is also a geodesic distance on the manifold. We further provide a new 

proof following our own geometric interpretations for the geodesic distance dR3 which 

has been in existence in the literature. 

For the newly derived Riemannian distances, we also propose a weighting method 

to facilitate the enhancement of certain parts of the features. To obtain a suitable 

weighting so that the new metrics can be applied effectively to EEG signal classifi­

cation, we argue that the weighting should render the distances of similar features 

minimized while the distances for dissimilar features maximized. Pursuing along this 

line of thought, we develop a general formulation of the optimization problem of the 

weighting matrix. Focusing on the special case of this generalized problem formula­

tion, closed forms of the weighting matrix for the Riemannian distances have been 

obtained by solving an approximate convex optimization problem. 
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Using the k-nearest neighbor decision, we test the effectiveness of these new met­

rics by applying them to a collection of recorded EEG signals for sleep pattern classi­

fication. The results are compared to those obtained by using other metrics, and it is 

observed that the weighted Riemannian distances dRlw and dR2w yield an accuracy 

of approximately 10% higher than methods using other metrics. 

6.2 Further elaboration of work and future research 

6.2.1 Elaboration of research results 

To the best knowledge of the author, this thesis is a first attempt to exploit the 

geometric properties of the signal feature manifold for improving the decision of sleep 

state of a patient. On hindsight, there are parts of the research which could be 

improved. Some of these may be due to the limitation of time and man-power, others 

may be considered important but outside the focus of the thesis. These points, which 

have not been carried out as perfectly as could be and which may be elaborated 

further, are listed below: 

El. Artifacts removal: There are various sources from which artifacts arise in EEG 

recordings. These include line interferences, EOG (electro-oculogram) record­

ing, ECG (electrocardiogram) recordings, etc. Artifacts, which are a kind of 

interference, increase the difficulty in the analysis of the EEG signals and the 

extraction of clinical information, and thereby deteriorate the sleep classification 

performance. In this thesis, we have used a popular but rudimentary method 

to remove the artifacts embedded in the EEG signals. Even though this may be 

outside the scope of the thesis, to improve on the performance of any automatic 

EEG signal classification, a more sophisticated signal processing algorithm has 
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to be developed so that the artifacts are automatically recognized and removed. 

E2. Estimation of the PSD matrix: In this work, we assume that the EEG signals 

are samples of a wide sense stationary (WSS) process and estimate the power 

spectral density functions with the use of a multi-channel auto-regression (AR) 

model. Although this is an acceptable way to characterize observed time series, 

the estimation accuracy of power spectral density functions depends on the 

selected model. Therefore, even though this may lie outside the scope of the 

present thesis, it is desirable to further explore the estimation of power spectral 

density functions of multi-channel EEG signals so that the EEG samples can 

be more accurately characterized by their power spectral density functions. 

E3. Data collection for reference library: Due to the limitation of man-power, 1 the 

EEG sleep signals collected and the number of patients from whom the signals 

are collected are quite limited. The shortage of "clinical experts" to judge on 

the sleep state of the signals also raises doubt on the truth of the sleep state 

represented by the signal. The shortage of collected signals results in only a 

limited range of tests that can be carried out on the effectiveness of the k­

nearest neighbor decision algorithm. ( k is only limited to 3 and 5 in our tests). 

For a more thorough evaluation on the performance using the new metrics and 

on the effectiveness of the decision algorithm(s), a greater amount of reliable 

data have to be collected and tested. 

6.2.2 Ideas for future research 

Apart from improvements that can be done on the present research results, there are 

issues raised during the course of the research which are worth pursuing. These may 

1XLTEK, the company which agreed to supply us with test data has changed ownership in 2007 
and their division designing machines for sleep tests has ceased to exist. 
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be the foci for future research: 

Fl. 	The mapping n: In Chapter 3, we develop the two Riemannian distances dR1 

and dR2 from two different mappings of 1r resulting in two different represen­

tation points P of the PSD matrix P. The third Riemannian distance dR3 is 

arrived at from yet another mapping 1r. While the performance of the classifi­

cation algorithm using dR1 and dR2 are generally similar, the use of dR3 yields 

inferior results. We can immediately raise the following question: "How does 

the choice of the mapping 1r affect the performance and what 1r will yield the 

best results?" 

F2. Refining the weighting matrices: 

(i) 	 In the thesis, we have derived the optimum weighting matrix by considering 

the different classes of reference signals altogether and have applied the 

same weighting matrix to all the different classes. Suppose we derive a 

weighting matrix for each of the different classes of signals, would the 

classification results be improved? 

(ii) 	 In Chapter 4, we have formulated the problem of optimizing the weighting 

matrix in terms of a general ( K- K )th trace of a matrix, and we derive the 

optimum matrices for the Riemannian distances using only the simplest 

trace, i.e., K - K = 1. Is there any advantage if we derive the weighting 

matrices using a different value of ( K- K)? How would the performance of 

the corresponding classification algorithm be affected by a different choice 

of (K- K)? 

F3. Application of different classifiers: In this thesis, we have employed the k-nearest 

neighbor algorithm for classification of the EEG signals. There are other widely 
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used classifiers such as neural network (NN), support vector machine (SVM), 

Gaussian mixture model, etc. However, the practice thus far, employs these 

classification algorithms based on Euclidean type of distance measures. With 

the fundamental idea of thinking feature space as manifold rather than Eu­

clidean space, it deserves to explore the applications of using geodesic distances 

to these classifiers. 

F4. Quantifying the performance of EEG classification: In this thesis, we evaluate 

the performance of the classification by experimentally testing the algorithms 

on our clinically collected EEG data. A more challenging task is: "Can we 

derive a theoretic evaluation of the performance by deriving an expression of 

the probability of error of the algorithm?" 

F5. Application to other signal classification problems: The thesis opens up a new 

approach to the signal classification problem. It has shown that exploration 

of the geometry of the features space may lead to more reliable classification 

results. Many engineering problems involves signal classification similar to the 

one tackled in this thesis such as the testing of EEG signals for epilepsy, for brain 

damages, classification of ECG signals, or even signal classifications in radar and 

sonar systems. We can apply this concept to other signal classification problems 

each possibly having a different feature space. 

6.3 Conclusion 

In this thesis, we have proposed a new approach of exploiting the Riemannian geom­

etry in EEG signals and applying it to the determination of sleep state for a patient. 
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The results obtained are very encouraging. This shows that such an approach de­

serves further exploration. In the previous section, we suggested a few ideas which 

have arisen during the course of research. These are by no means exhaustive. Until 

these areas are fully explored, the research on signal classification using Riemannian 

geometry is far from complete, by which time, other ideas will certainly arise, and 

the frontier of research on the subject will be pushed still further and our knowledge 

in this area will yet be more sophisticated and refined. 
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Appendix A 

The N uttall-Strand Algorithm 

To describe the algorithm, we consider the forward and backward filters which are 

multichannel AR models [49] of order q, i.e., 

eq(t) = s(t) + L
q 

A(k)s(t- k) (A.1) 
k=l 

and 

bq(t) = s(t) + L
q 

B(k)s(t + k) (A.2) 
k=l 

respectively. The optimum forward and backward filters can be obtained by minimiz­

ing the expected mean-square values of eq(t) and bq(t). The minimum ofiE[e~(t)eq(t)] 

leads to the equation: 

(A.3) 

where 

(A.4) 

R fw - [Rfw] h Rfw - Rfw . k - 1 2 · · · d yfw - [Pfw 0 · · · O]T "th- ik , w ere ik - k-i' z, - , , , q, an - , , , WI 

pfw = IE[eq(t)e~(t)]. Similarly, the minimum of IE[b~(t)bq(t)]leads to the equation: 

(A.5) 
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where 

(A.6) 


Rbw = [R\k'], where R~k' = R%tl!_i, i, k = 1, 2, · · · , q, and Vbw = [pbw, 0, · · · , O]T with 

pbw = IE[bq(t)b~(t)]. To solve the Eq. (A.3) and Eq. (A.5), the forward and backward 

filters may be postulated as 

F(q) = [ F(q- 1) l+ [ 0 lcfw(q) (A.7) 
0 Bbw(q- 1) 

and 

B (q) = [ F (q - 1) lCbw (q) + [ 0 l (A.8) 
0 Bbw(q- 1) 

where Bbw(q- 1) = [BT(q- 1), · · · , BT(1), I]T. 

Let {st : t = 1, · · · , T} be a sample ofT consecutive observations of the EEG 

signal. Let 

(A.9) 


fork= 1, 2, · · · , N- q, q = 0, 1, · · · ,T- 1. Let 

and 

(A.10) 


(A.ll) 

Then, the algorithm is as follows: 

Algorithm A.l {Nuttall-Strand} 

{1} 	 Initialize the residual power matrices pfw(o) and pbw(O): 

pfw(o) = pbw(O) = ~ L
T 

Stsf (A.12) 
t=l 
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(2} 	 Calculate the forward and backward residuals fork= 1, · · · ,T- q: 

(a) 	 q = 1: ek(q) = sk+I, bk(q) = sk 

(b) 	q > 1: ek(q) = ek+I (q- 1) + (Cfw(q- 1)fbk+l (q- 1), bk(q) = bk(q­

1) + ( cbw (q - 1) f ek (q - 1) 

(3} 	 Calculate 
T-q 

1 """ TE = T _ L..t ek(q)ek (q) (A.13) 
q k=l 

T-q 

1 """ TG = T _ L..t bk(q)ek (q) (A.14) 
q k=l 

T-q 

1 """ TB = T _ L..t bk(q)bk (q) (A.15) 
q k=l 

(4) Solve cfw(q) from 

(5} Compute Cbw(q) by 

(6} Compute power matrices pfw(q) and pbw(q) by 

and 

(7) Update the filters coefficients using Eq. (A. 7) and Eq. (A. B). 

(8} If IIPfw(q)- pbw(q)ll < E, then go to (2}. 
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(9) Calculate the power spectral density matrix 

(A.20) 


where A(w) =I+ A(l)e-jw + ... + A(q)e-jwq_ 

The algorithms only involve manipulations of M x M rather than MT x MT 

matrices. For the detailed derivation of the algorithms and the implementation, 

see [70] [81]. 
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Appendix B 

Mathematical Background 

In this appendix, we only introduce concisely some related mathematical concepts 

which are helpful for the understanding of the development of geodesic distances in 

this thesis. For more details, we refer to [41] [55]. 

B .1 Notations 

For a manifold M, its tangent space at p EM is denoted by TM(p). The coordinates 

at p E M is denoted by x(p) = (x 1 ,x2 , • · • ,xn)· We use g to denote the inner 

product function defined on the tangent space as the Riemannian metric and ds2 

as the line element (arc element). The dual basis of (x 1 ,x2 , · • • ,xn) is denoted as 

(dx 1 , dx 2 , • • • , dxn). We adopt e as the exponential map in Lie group theory. 

B.2 Riemannian geometry - Riemannian distance 

A space is a set of points that satisfy a set of postulates. For example, the Euclidean 

space lEn is the set of n-tuples, in which a notion of distance and angle is defined and 
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it has no origin or special choice of coordinates. After imposing a coordinate system 

on !En we identify it with Rn, the vector space of n-tuples of numbers. Our intuitive 

understanding of space is the 3-dimensional Euclidean space R3 . In R3 , the distance 

between two points is defined as the length of the straight line connecting them. 

A space may not always be Euclidean in the sense that the distance between two 

points in the space is the same as the length of the straight line connecting them. For 

example, the distance between two points on a sphere is the arc length of part of a 

great circle passing through them. Thus, the concept of manifold, needs to be intro­

duced to study those curved spaces. A manifold is an abstract mathematical space in 

which every point has a neighborhood which resembles Euclidean space, but in which 

the global structure may be more complicated. In other words, manifolds allow more 

complicated structures can be expressed and understood in terms of the relatively 

well-understood properties of simpler spaces. Defining additional structures on man­

ifolds can lead to different kind of manifolds such as topological manifolds, differen­

tiable manifolds, Riemannian manifolds, symplectic manifolds, pseudo-Riemannian 

manifolds to name a few. In this work, we are interested in the distance measure on 

manifolds. Since we mainly consider the geometry of the real manifold of positive­

definite Hermitian matrices, we focus on the Riemannian geometry, which is the study 

of differentiable manifold by endowing the manifold a Riemannian metric. 

The key idea of investigation of surfaces presented by Gauss is that a point on a 

surface in ordinary Euclidean space is determined by two coordinates xi and x2, and 

the arc element is expressed in terms of a given positive definite quadratic form in 

the differentials of these coordinates, i.e., ds2 = 911 (dxi)2 + 29I2dxidx2 + 922 (dx2)2, 

where 911 , 9I2, and 922 are functions of the variables XI and x2. In his famous lecture 

at Gottingen in 1854 with the title "On the hypotheses which underlie geometry", 

Riemann extended Gauss's idea and developed a metric geometry of a manifold of 
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n dimensions, that is, a set of elements each of which is determined by n bits of 

numerical data, its coordinates x1 , x2 , · · · , Xn· Riemann's idea is linked to the mode of 

determination of the distance between two infinitely close elements (the arc element) 

given by 

(B.l) 

where the function F(x, y) is linearly homogeneous in y, i.e., F(x, ay) = aF(x, y), 

with a being a constant. An important special case is when 

ds2 
= F 2(x, dx) = L

n 

9iJ(x)dxidx1 	 (B.2) 
i,j=l 

It is important to note that this is not just an extension of Gauss's formula to an n­

dimensional manifold. Rather, it introduces the completely new idea of determining 

the metric on a manifold by specifying it in an infinitely small portion of that manifold. 

B.2.1 Differentiable manifold 

Roughly speaking, a differentiable manifold is a topological space with a differentiable 

structure. 

1. 	 Topological space: A topological space is a set M together with a collection 

of subsets of M, T, satisfying 

(a) the empty set 0 and M are in T 

(b) the union of any collection of sets in T is also in T 

(c) the intersection of any finite collection of sets in T is also in T 

The collection T is called a topology on M. 
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2. 	 Hausdorff space: A space M is said to be a Hausdorff space if for any x, y E 

M with x =1- y, then there exist neighborhoods U and V of x andy respectively 

such that U n V = 0, i.e., U and V are disjoint. 

3. 	 Continuous, Homeomorphism, and Diffeomorphism: A map f : N ---. 

M between two topological spaces is said to be continuous if f- 1
( U) is open for 

any open subset U of M. f is called a homeomorphism if it is a bijection and 

both f and f- 1 are continuous. f is called a diffeomorphism if, in addition, f 

and f- 1 are differentiable. 

4. 	 Dimension of a manifold: Let M be a Hausdorff space. If for any p E M, 

there exists a neighborhood U of p such that U is homeomorphic to an open 

set in JRn, then M is called an n-dimensional topological manifold. 

5. 	 Coordinate charts and Atlas: Let I be an index set, whose elements is used 

to index homeomorphisms. Let U C M. If Xa : U---. Xa(U), where a E I and 

Xa (U) is an open set in JRn, is a homeomorphism, then (U, Xa) is a coordinate 

chart of M. The coordinates of p E U is the coordinates of x = Xa(P) E lRn, 

I.e., 

(B.3) 

which called the local coordinates of the point p E U. The collection of all the 

coordinate charts forms an atlas A, i.e., A= {(Ua,xa)la E I}. 

6. 	 Differential structure: Suppose (U, Xa) and (V, Xf3) are two coordinate charts 

of M. If U n V =1- 0, then xa(U n V) and Xf3(U n V) are two nonempty open 

sets in JRn, and the map 

(B.4) 
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defines a homeomorphism between these two open sets, with inverse given by 

(B.5) 

These are both maps between open sets in a Euclidean space. Expressed in 

coordinates, X 0 o x~ 1 and Xf3 o x~ 1 each represents n-real valued functions on 

an open set of a Euclidean space (see Figure B.l). 

X 

Figure B .1: Differentiable manifold 

The manifold M is called a differentiable manifold if for all a, (3 E I the corre­

sponding transition maps 

(B.6) 


are differentiable. 
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B.2.2 Riemannian manifold 

A Riamannian manifold (M, g) is a differential manifold M in which each tangent 

space is equipped with an inner product g in a manner which varies smoothly from 

point to point. In other worlds, a Riemannian manifold is a differentiable manifold 

in which the tangent space at each point is a finite-dimensional Hilbert space (inner 

product space). The dimension of the manifold is the dimension of the tangent space 

at each point on the manifold. A Riemannian metric on M allows one to measure 

lengths of smooth paths in M and hence to define a distance function by taking the 

infimum of the lengths of smooth paths between two points. This makes M a metric 

space. 

1. 	Vector field and Tangent space: A vector field Von a given manifold M 

is an assignment to every point p E M a tangent vector to M at p. That is, 

for each p EM, we have a tangent vector v = V(p) in the space TM(p), which 

is the tangent space of M at p. Figure B.2 shows the tangent space of M at 

p. The tangent bundle T M is the disjoint union of the tangent spaces of the 

points of M, i.e., T M = upEM TM(p). The collection of all the vector fields 

on M is denoted by r(TM). 

2. 	 Riemannian metric: Let M be a differentiable manifold of dimension n. A 

Riemannian metric on M is a family of inner products 

(B.7) 


such that, for all differentiable vector fields X, Y E f(TM), the application 

M---+ JR, p ~ g(X(p), Y(p)) (B.8) 

is differentiable. 
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Figure B.2: Tangent space TM(P) and a tangent vector v E TM(P) along a curve 
through p EM 

In fact, Eq. (B.7) defines a metric tensor on M such that g(v, w), v, wE TM(P), 

produces a real number (scalar) in a way that generalizes the inner product of 

vectors in Euclidean space. 

Any differentiable manifold can be endowed with a Riemannian metric [55] . 

There are infinitely many Riemannian metric on M. A question raised is that 

given a compact differentiable manifold, does it carry a best, or a family of best, 

Riemannian structure? The most natural definition of a best metric is the least 

curved one (with the smallest curvature). However, it is generally difficult to 

find the Riemannian metrics best adapted to the given manifold structure. 

3. 	 Differential maps: Let (M, 9M) and (N, 9N) be two Riemannian manifolds. 

If ¢ : M ---+ N is a differentiable map from the manifold M to the manifold N, 

the induced differential map¢* : TM(P) ---+ TN(¢(p)) is called a push-forward 
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map if 

(B.9) 


for v E TM(P) and f E C (N, IR) , where C (N , JR) denotes t he class of smooth 


functions from N to JR. 


Roughly speaking, the push-forward t ransforms the velocity vectors of a curve 


1 : [0, 1] -+ M to t he velocity vectors of the t ransformed curve ¢(!) inN. 


A metric ¢* 9N on M is called t he pull-back metric if 


(B.10) 


where x , y E TM(p). 


The map <P : M -+ N is said to be an isometry if the following holds 


(B.ll ) 

for all x , y E T M. 


Let (U, ()and (V, ~ ) be charts forM and N around p and ¢(p). The meaning of 


t he map between manifolds and t he induced differential map can be seen from 


t he following diagrams [41]. 


U ----- V 


( Bu,(,p Bv,E,<I>(p) 

((U) ~ o ¢ o ( - 1 ~ (V) 

Roughly speaking, by introducing local coordinates the operations on manifolds 

can be done equivalently on the Euclidean spaces. 
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The map ¢ : M ---. N is called a submersion at p E M if the induced tangential 

map ¢* : Tp (M ) ---. TN(¢( p)) is a surj ective linear map. 

Let ¢: M---. N be a submersion. Let Tp (M ) = VP tB Up , where VP and UP are 

t he vert ical and horizontal subspaces of Tp (M ) at p E M respectively. Then, 

t he map ¢ from M to N is a Riemannian submersion if 

(a) 	 ¢ is a smooth submersion 

(b) For any p EM , Up and 'Tq,(p)(N ) are isometric 

4. 	 Line e lem ent: Let (U, (x 1, · · · ,xn)) be a chart of the manifold around p EM . 

Then the coordinate vector fields ( 8~ , • • • , a~n ) form a basis for the tangent1 
space TM( p). Let (dx1, · · · , dxn) be t he basis of t he dual space of TM( p ), i.e., 

t he cotangent space T.M (p). Then we have 

1 	 2 = J 
(B.l2) 

0 	 j =I j 

Let 

(B.13) 9iJ · ~ 9 (a:,· a:, )~ (a:,· a:,) 
where (·, ·) denotes inner product. Let 1 (t ) : [a , b] ---. M be a parameterized 

curve on M , then we have "Y (t ) E TM(! (t) ). Suppose p = 1 (c), a:::; c:::; b, and 

let v = ')' (c), t hen we have 

(B.14) 


by Eq. (B.13). Thus, 

2 =ds g(v , v ) =(v , v ) =g ( L dxi(v ) a~i' L dxj(v ) O~j ) =I: 9ij dXi 0 dxj 
t J 	 ~J 

(B.l5) 
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where 0 denotes tensor product. In other worlds , the metric tensor 9iJ de­

fines the differential metrical distance along any smooth curve in terms of 

(dx1 , · · · , dxn) according to 

ds2 
:= :2.: 9iJdXi 0 dx1 	 (B.16) 

i, j 

Let 
1 

dxidx1 = 2(dxi 0 dx1 + dx1 0 dxi) (B.17) 

then, Eq. (B.16) can be shorten as 

ds2 
:= :2.: 9ijdXidXj 	 (B.18) 

i ,j 

Eq. 	(B.18) is called the first fundamental form or element of arc length. 

5. 	 Distance: A connected Riemannian manifold carries the structure of a metric 

space. Let 1: [0, 1] ---+ M be a parameterized curve in M , which is different iable 

with velocity vector i = ift. The length of the curve 1 is defined as 

I!(! ) = r Jg(!(t), i (t))dt 	 (B.19) 
} [0 ,1] 

T he intrinsic distance d: M x M ---+ [0, oo) is defined by 

d(p ,q) = inf I!(!) 	 (B.20) 
I 

where 1 runs over all differentiable curves connecting p E M and q E M . 

6. 	 Geodesics: 

(1) 	Connection: Let 1 : [0, 1] ---+ M be a smooth curve. A smooth vector field 

along 1 is a family {vt , t E [0 , 1]} of tangent vectors Y t E TM(! (t)) such 

that if (U, (x1, · · · , xn)) is a chart near ! (to) and Y t = 2::::::~ 1 vi(t) a~i l1 (t ), 

for t in an interval around t0 , then vi(t) are smooth functions. 
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A linear connection in M is an operator \7, which defines a vector field 

\7x Y for any two smooth vector fields X, Y on M such that 

(a) 	Y'xY is smooth 

(b) 	 Y'ax1+{1x2 Y = aY'x1Y + f3Y'x 2 Y, a,(3 E JR.) 

(c) 	 Y'x(Y1 + Y2) = Y'xY1 + Y'xY2 

(d) 	Y'x(JY) = f\i'x Y + X(J) · Y, f E C00 (M, JR.), where X(J) denotes 

the directional directive of a in the direction of X 

(2) 	 Covariant derivation: The operator defined in the set of vector fields 

along a curve 1 
DV · 
dt = V = \7 it (V) (B.21) 

is called covariant derivation along I· 

(3) 	 Parallel transportation: A vector field V along 1 is called parallel if 

~'{ =0. 

A connection provides a way of "connecting" the tangent space at one point 

by the tangent space at another point on a given manifold M. Given a 

smooth curve 1 : [0, 1] ---. M, 1(0) = p and 1(1) = q, a tangent vector 

v E TM(P) can be parallel transported to a vector in TM(q) along 1 via a 

parallel transportation. 

(4) Geodesics: A C 2 curve 1 in a Riemannian manifold M is called a geodesic 

if the equation 

\7"y(t)'"Y(t) = 0 (B.22) 

is satisfied. This property reflects a property of straight lines in Eu­

clidean geometry. Let (U, X1, ... 'Xn) be a chart of M. Let l(t) = 

(x1(t), · · · ,xn(t)) be a given curve on M. Then its tangent field ')r(t) = 

2.:::~= 1 x;(t)a;, where 8; = a~i. Since \7aj8; = 2.:::~= 1 rtakl where rt : M ---. 
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lR are called the Christoffel symbols of the connection under the local co­

ordinates, the geodesic equation turns into 

n 

V'-r(tJi'(t) = V'-r(tl(L:ri(t)ai) 

i=l 


L
n 

xi(t)ai + L
n 

xj(t)xi(t)V'ajai 
i=l i,j=l 

n n

L (xk(t) + L rt(t)xi(t)xj(t))ak = o (B.23) 
k=l i,j=l 

Therefore, the curve 1 will be a geodesic if and only if 

(B.24) 

which is equivalent to the following system of first order ordinary differen­

tial equations: 

(B.25) 

By the fundamental theorem of ordinary differential equations (existence 

and uniqueness theorem) we have that for a given p0 E M and u 0 E 

TM(Po), there exists an E > 0 and a neighborhood O(u0 ) of u 0 in T M 

such that for any u E O(u0 ) we have a unique geodesic 1(t) defined for 

itl ~ E (E is a sufficient small positive real number) which satisfies the 

initial conditions 1(0) = Po, i'(O) = Uo. 

In the presence of a metric, geodesics are defined to be locally the shortest 

path between points on the manifold [55]. In the presence of a connection, 

geodesics are defined to be curves whose tangent vectors remain parallel if 

they are transported along it. We are interested in the finding of explicit 

formula for geodesic distance between any two points in the manifold M. 
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Although the geodesic equation under local coordinates is obtained, it is 

difficult to be solved due to the nonlinearity. 

B.2.3 Lie group and Lie algebra 

1. Matrix exponential: 

A2 A3 An 
eA = I+A+- +- + ··· +- + ··· (B.26)

2! 3! n! 

If 

(B.27) 

then 


1 1

C =A+ B + 2[A,B] + ([A, [A,B]] + [B, [B,A]]) + · · · (B.28)

12 

where A, Band Care nxn matrices and [A, B] =AB-BA is the commutator 

bracket. The matrix exponential satisfies the following properties 

(a) e0 = I 

(b) eAH = (eA)H 

(c) eGAG-1 = GeAG-1 

(d) leAl = eTrA 

(e) (eA)-1 = e-A 

• Group: A set G with the operation ·,denoted by (G, ·), is a group if 

(a) Closure: \fa, bEG, a· bEG 

(b) Associativity: Va,b,cEG, (a·b)·c=a·(b·c) 

(c) Identity element: :leE G, \fa E G, e ·a= a· e =a 
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(d) Inverse element: :Jb E G, a· b = b ·a= e if a E G 

2. 	 Lie group: A set G is a Lie group if 

(a) 	G is a differentiable manifold 

(b) G is a group 

(c) 	 the map (g, h) gh-l from the manifold G x G into G is differentiablef---+ 

3. 	 matrix group: A matrix group is a group G consisting of invertible matrices 

over some field F with operations of matrix multiplication and inversion. For 

example, a linear algebra is a matrix group. 

4. 	 Lie algebra: Let F be a field (usually lR or C). A Lie algebra over F is an 

F-vector space g, together with a bilinear map, called the Lie bracket 

g x g---+ g, (x, y) f---+ [x, y] (B.29) 

which satisfies the following properties: 

(a) alternating on g 

[x, x] = 0 \fx E g (B.30) 

(b) 	the Jacobi identity 

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \fx, y, z E g (B.31) 

For example, in linear algebra A, the Lie bracket is defined to be 

[X,Y]=XY-YX (B.32) 

for two elements X, Y E A. 
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5. 	 Lie algebra of matrix group: The Lie algebra of a matrix group C is the 

tangent space to G at the identity I, i.e., T1C = {i'(O) : 1(t) : ( -E, E) ~ 

C, 1(0) =I}. It is denoted by g = T1C. 

6. 	 dimension of matrix group: The dimension of a matrix group C means the 

dimension of its Lie algebra. 

7. 	 Unitary group: Let Mn(C) be the set of n x n complex matrices. The unitary 

group is defined as 

(B.33) 


8. 	 Lie algebra of a unitary group: The Lie algebra u(n) of U(n) is skew­

Hermitian, i.e., for any S E u(n), SH = -S. The dimension of U(n) is n2 [8]. 

B.2.4 Fiber bundles 

1. 	 Submersion: Let M and N be differentiable manifolds. A smooth map ¢ : 

M ~ N is a submersion at p E M if its differential map ¢* : TM(P) ~ 

TN(¢(p)) at pis surjective (onto). 

2. 	 Riemannian submersion: Let (M,g) and (N,h) be two Riemannian mani­

folds. A map ¢ : M ~ N is a Riemannian submersion if: 

(a) 	¢is a smooth submersion 

(b) 	the map ¢* : UM (p) ~ TN(¢(p)) is an isometry, where UM (p) = VM (p).l 

and VM(P) = ker(¢*) such that TM(P) = UM(P) EB VM(P) 

VM (p) is called the vertical subspace of TM (p) and UM (p) is called the hor­

izontal subsapce of TM(p). For example, let M and N be two Riemannian 
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manifolds. Then the projection map pr1 : M x N ----. M is a Riemann submer­

sion. 

3. 	 Fiber bundle: Let E, B, :F be smooth manifolds and 1r :E----. B be a smooth 

map. Let J be an index set. The triple (1r, E, B) is a fiber bundle with fiber :F, 

basis B, and total space E if: 

(a) 	 the map 1r is surjective submersion 

(b) there exists 	an open cover (01) (j E J) of B (i.e., B C u1E1 0 1), and 

diffeomorphisms 

(B.34) 


such that hj(7r- 1(x)) = {x} X :F for X E Oj (this is called local triviality 

of the bundle). 

4. 	 Principal G-bundle: Let E and B be smooth manifolds and G be a Lie group 

acting on E such that (p, g) E E x G is mapped to pg E E, and pg i= p for 

g i= e (e is the identity element of G). Let 1r : E ----. B be a smooth surjective 

submersion such that the set {pg : g E G} coincide with the fibers, i.e., 

{pg: g E G} = 1r-1(1r(p)) Vp E E 	 (B.35) 

Then 1r : E ----> B is said to be a principal G-bundle. 

Remarks: 

(a) for p E B, 1r-1(p) has a Lie group structure but not canonical since there 

is no preferred choice of an identity element 

(b) Around each p E B there exists an open neighborhood 0 such that 1r- 1 (0) 

and 0 x G are diffeomorphic. This is called a trivialization 

(c) 	 The vertical subbundle of E has null projection to TB 
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The principal G-bundle is illustrated in Figure B.3. 

p 

B 

Figure B.3: Principal G-bundle 

5. 	 Connections in principal G-bundles: Let 1r : £--> l3 be a principal G-bundle 

and let g be the Lie algebra of G. Let R9 : £ --> £ is the right multiplication 

defined by g, i.e., p ~---+ p ·g. A subset H C T£ in£ is called a connection if the 

following holds 

(a) 	The induced differential map satisfies (R9 )*HP = Hp·g for every p E £and 

g E G (this is called G-invariant) 

(b) For every p E £, Hp EB Vp = 1£ (p) (This is called direct decomposition) 

6. 	 Horizontal lift: A connection prescribes a manner for lifting curves from the 

base manifold l3 into the total space of £ so that the tangents to the curve are 

horizontal. Specifically, suppose that 1(t) : [0, 1] --> l3 is a smooth curve in l3 

through the point p = 1(0). Let p E £p be a point in the fibre over p. A lift of 
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1 through pis a curve i'(t) in the total space£ such that 

i'(O) = p (B.36) 

and 

1r(')'(t)) = 1(t), t E [0, 1] (B.37) 

A lift is horizontal if, in addition, every tangent of the curve lies in the horizontal 

subbundle ofT£, i.e., 

~(t) E 'H.;y(t), t E [0, 1] (B.38) 

Let 1r : £ --> M is a Riemannian submersion. If i' is a geodesic of £ such 

that ~(0) is horizontal, then ~(t) is horizontal for all t, and the curve 1r o i' 

os a geodesic of M of same length as I· The horizontal geodesics is shown in 

Fig. B.4. 

~ 
~~ 

E 

~ 

Figure B.4: Horizontal geodesics 

If P E £and 1 is a geodesic of M with 1r(P) = 1(0), then there exists a unique 

local horizontal lift i' of 1 such that i'(O) = P, and i' is also a geodesic of £. 

This is illustrated in Fig B.5. 

If£ is complete, so is M. 
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Figure B.5: Illustration of horizontal lift 
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Appendix C 

Proof of Lemma 3.1 

Lemma 3.1 is an original lemma which states that: 

For a point P EM, there exists a P in a Hilbert space HM such that P = ppH_ D 

We first introduce some fundamental concepts leading to the Gelfand-Naimark-Segal 

Construction [27] and then we present the proof of the lemma: 

Let (A, t) denote a set A associated with a map t :A--+ A which has the following 

properties 

• For all X, Y E A 

(X + Y) t = xt + yt (C.1) 

(XY)t = ytxt (C.2) 

• For every >. E C and every X E A 

(C.3) 

• For all X E A 

(C.4) 
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• For all X E A 

(C.5) 


Let ¢ be a linear functional on A. We say that ¢ is a positive linear functional on A if 

¢is such that ¢(X) 2: 0 for every A 3 X~ 0 (i.e., X is nonnegative). We may endow 

A with an inner product (X, Y)q, ~ ¢(XtY) (we use the subscript ¢to indicate the 

inner product is defined with the use of a given positive linear functional ¢) so that 

A is then a Hilbert space, which we denoted by H = (A,(-,·, )q,). For every X E A 

if we can define an operator Tx on H, then it can be shown that there exits a vector 

X E H such that 

(C.6) 


holds for any X E A. This is called the Gelfand-Naimark-Segal (GNS) Construction. 

Proof: Now, let MM be the set of all the M x M complex matrices. Then, it can 

be verified that the matrix Hermitian H on MM acts the same rule as t on A. We 

define a positive linear functional on MM, ¢: MM----+ lR by 

¢(X)= TrX, X E MM (C.7) 

The positivity of this functional follows from the fact that the trace of a nonnegative 

matrix is nonnegative. Let HM = (MM, (-, ·, )q,) be the Hilbert space forme by 

M x M complex matrices with the inner product defined by (X, Y)q, ~ ¢(XHY), 

X, Y E MM. For every X E MM, we define an operator Tx on HM by 

(C.8) 

i.e., the operator is of the left multiplication by X on HM. Then, by the GNS 

construction, there is a vector X E HM such that 

(C.9) 
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Let M c MM be the manifold of all the positive definite Hermitian matrices. 

Since for any P E M and any X E MM, we have PX E MM. Thus, applying 

Eq. (C.9) to PX we must have 

(C.lO) 

By the definition of ¢, we have 

(C.ll) 

holds. This is true if and only if P = :X:XHp. Since P is nonsingular we have 

:X:XH 	=I. 

For every X E MM and aPE M, we now define another operator on 1iM by 

(C.12) 

where Tx is the operator defined in Eq. (C.8). 

Then, applying the GNS construction again, there exists a vector X' E 1iM such 

that 

(C.l3) 

Since for fixed X E MM and P EM the Eq. (C.9) and Eq. (C.13) are the same, 

we must have 

(C.14) 


This holds if and only if X'(X')HP = :X:XH =I. Thus, we have P = (X'(X')H)- 1. 

Let P = ((X')H)- 1. Then we have 

P=PPH (C.15) 

Therefore, we conclude that P = ppH is a necessary and sufficient condition for 

the representative of P E M in the Hilbert space 1tM as P. We note that P is not 

unique. D 
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Appendix D 

Proof of Lemma 3.2 

Lemma 3.2 is also an original lemma which states: 

Let P E M be such that P = :f>pH and let A, B E TM (P). If the Riemannian metric 

on M is given by 
1

gp(A, B)= 2TrAK (D.1) 

where K is a Hermitian matrix such that KP + PK = B, then TM(P) and Ui£(P) 

are isometric. 

Proof: Let P E M such that P = :f>:f>H, where P E fl. First, we show that the 

tangent space Til at P E il can be decomposed as Ti£(P) = Ui£(P) EB Vi£(P) such 

that Uil(P) _i Vil(P). 

Let g = { G : GHG = I} be the unitary group acting on 1t by right multiplication 

such that PG =f P for P E 1t if G =f I. It is well-known that [8] the Lie algebra of 

g is g = 'Tg(I) = {S : SH = -S} (i.e.,the tangent space of g at its identity element 

I) and ers E g for any r E JR. and S E g. 

Let ( -E, E) C JR. be a small open interval in R For any r E ( -E, E), let A(r) = :f>er8. 

Then we have A(r)(A(r))H = :f>pH E M and A(O) = P. Therefore, the mapping 

A(r) : ( -E, E) ---> il defines a parameterized curve A(r) on il, which is through Pat 
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r = 0. It is easy to verify that the tangent vector at Pis d~A(r)r=O = PS E Til(P). 

Now, let f'(r) : ( -E, E) -+ il be another different curve on il through P at r = 0. 

We denote the tangent vector of this curve at P by P = fri'(r)ir=O E TH(P). 

Let PS and P be orthogonal. Then, we have that 

~Tr((PS)HP +pH (PS)) 

~Tr((PH:f>- :f>HP)S) since gH = -S 
2 


0 orthogonality (D.2) 


holds for any S E g if and only if 

(D.3) 

From Eq. (D.3), we have 

(D.4) 

- :..H 
where K = (PH)- 1P . Then, we can see 

Conversely, let P = KP and KH = K. Then we have 

- :.. - - - - :..H_
pHp = PHKP = (KP)HP = P P (D.6) 

which is exactly the Eq. (D.3). Since each :f> is the tangent vector of a curve of type 

r(r) at r = 0 and the curve is different from the type of A(r), the Eq. (D.3) is a 

necessary and sufficient condition that 

(D.7) 


Let 

(D.8) 
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Then, we have 

(D.9) 


with UitCP) .l Vit(:P). We call UitCP) the horizontal subspace and Vit(:P) the vertical 

subspace of Tit(:P) at P, respectively. 

Now, we show the isometric between TM(P) and Uit('P). In other words, we need 

to show that 

(D.lO) 

holds. 

Let r(r) : ( -E, t:) __. M be a curve on M such that r(r) = f'(r)f'(r)H and 

r(o) = p with p = ppH, Then, the tangent vector at pis 

. d d- - H !.-H _:._H 
p = dr r(r)lr=O = dr (r(r)r(r) )lr=O = pp + pp (D.ll) 

Different curves through P will have different tangent vectors P, which altogether 

form the tangent space TM(P) of M at P. Since P E TM(P) and P E Uit(P), we 

have, from Eq. (D.ll), for any two tangent vectors A, BE TM(P), there exist A, BE 

Uit(P) such that A= A:J?H + f>AH and B = :J3pH + f>:J3H. Now, Uit(P) ~ Tit(P), 

thus we can write the inner product between A and B as 

~Tr(AH:B + :J3HA) 

~Tr(AHKf> + f>HKA) by Eq. (D.4) 

~Tr((APH + f>AH)K) = ~TrAK 
2 2 

(D.12) 

and 

B :Bf>H + p:J3H 

KPPH +PPHK 

KP+PK 

by Eq. (D.4) 

(D.13) 
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By comparing Eq. (D.12) with Eq. (D.l), we can see that (A, B)yiJP) = gp(A, B). 

Therefore, UiiCP) and TM(P) are isometric. 
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Appendix E 

Proof of Theorem 3.5 

Theorem 3.5 states: 

Let M be the space of positive definite Hermitian matrices. If it is endowed with a 

Riemannian metric 

(E.1) 


where Ap, Bp E TM(P), then the geodesic distance between P 1 and P 2 in M is 

(E.2) 


where Ai are the eigenvalues ofP"[1P2. 


The classical proof of the above theorem can be found in [17]. In the following, 


however, we present a proof of the above theorem following the concept we have 


introduced for the derivations of dR1 and dR2 in Chapter 3. 


Proof. Let HH be formed by all theM x M Hermitian matrices with the inner 

product induced by restriction of the inner product endowed to the Hilbert space HM 

and is a Hilbert space in its owe right. In other words, we can endow HH with an inner 
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product (X, Y)HH = TrXY so that HH is a Hilbert space, denoted by (HH, (·, o)HH). 

Let 

it = {X : X = log P, P E M} (Eo3) 

Obviously, we have it C HH· For any P E it, we may let Tjt(P) = THH(P) with the 

inner product induced by the inner product endowed to the Hilbert space HH 0 

Let r(r) : ( -E, E)----> M be a curve on M such that r(o) =Po Let r(r) : ( -E, E)----> 

it be a curve on it such that .i'(O) = P and P =log Po We assume that 

.i'(r) =log r(r) (E.4) 

i.e., 

r(r) = i'(r) (E.5) 

when r E ( -E, E). Taking derivative on both sides we have 

i'(r) = .i'(r)r(r) (E.6) 

d ,:. d­0

Denotmg by P 
• 

= drr(r)lr=O and P = drr(r)lr=O we have 

(E.7) 

Therefore, for A, BE TM(P) we have 

A=AP (E.8) 

and 

(E.9) 

where A, BE Tjt(P). Thus, 

(E.lO) 

and 

(E.ll) 
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Therefore, we have 

(E.l2) 

which is exactly the same as Eq. (E.l). Therefore, we have show that TM(P) and 

Tit(P) are isometric. Since for any P, Til(P) and TrtH(P) have the same metric, the 

shortest curve connecting two points in it must be a straight line 'HH. This implies 

that dR3 (PI, P2) = II log PI -log P2ll2· 

On the other hand, let W = OOH and Pw = nHPO. Then, we have Aw = 

H H ­f2 AO and Bw = 0 Bf2, where Aw, Bw E Til(Pw) and A, BE Til(P). Therefore, 

we have 

Tr(OHAf2)(f2HPn)-I(f2HBO)(OHPn)-I 

f2H AP-IBp-In)-I 

TrAP-IBp-I = gp(A, B) (E.l3) 

This means that the Riemannian metric is weighting invariant. Thus, it implies that 

the Riemannian distances are weighting invariant, i.e., dR3 (Piw, P2w) = dR3 (PI, P2). 

As a result of this, we have dR
3 
(PI, P2) = dR

3 
(1, PI -I/2P 2PI -I/2). 

Therefore, we have 

JTr( log PI -logP2r 

Tr( log I -logP~I/2P2P~I/2r 

Tr( log p~I/2p2p~I/2r 

n 

:~.:)og2 .A;(P!IP2) (E.l4) 
i=I 

where A; are the eigenvalues of P!IP2. 
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