Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18986
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPelton, Robert Jr-
dc.contributor.authorLiu, Chang Jr-
dc.date.accessioned2016-03-24T14:28:36Z-
dc.date.available2016-03-24T14:28:36Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/18986-
dc.description.abstractThe challenge of demolding during the cast molding process of silicone hydrogel contact lenses can be addressed with the application of hydrophobic coatings on the surface of lens mold. In particular, the adhesion between silicone hydrogel and silicate substrates was minimized by applying silane modification on the surface of silicate substrates. Peel tests were conducted to measure the adhesive strengths between silicone hydrogel and surface modified glass substrates. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were utilized to characterize the surface properties of silane treated glass substrates.Silicone hydrogel was obtained by curing macromer mixture under UV for 6 minutes, with UV intensity of 95.0 mW/cm2. The obtained silicone hydrogel had a modulus of 0.87±0.09 MPa, within the same range of commercial contact lenses. And the hydrogel with a UV curing time of 6 minutes was unable to be peeled off from clean glass substrates. The effects of silane type and concentration on coating effectiveness were investigated and the most effective types of silane were found to be triethoxyphenylsilane (TEPhS) and octyltriethoxysilane (OTES), with an optimal concentration of 5 wt%. The peel strength between silicone hydrogel and silicate substrates was reduced to below 15.5 N/m with the application of TEPhS and OTES coatings. However, these silane coatings were not durable enough. Silane coupling agents need to be reapplied before each curing process of silicone hydrogel.
en_US
dc.language.isoenen_US
dc.subjectAdhesionen_US
dc.subjectSilicone Hydrogelen_US
dc.subjectSilicate Substratesen_US
dc.subjectSilaneen_US
dc.subjectSurface Modificationen_US
dc.subjectPeel Testen_US
dc.titleAdhesion of Silicone Hydrogel to Silicate Substratesen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
LIU_CHANG_201603_MASc.pdf
Open Access
Thesis22.41 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue