Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18566
Title: A Study of Bayesian Inference in Medical Diagnosis
Authors: Herzig, Michael
Advisor: Anderson, G. D.
Department: Statistics
Keywords: statistics;Bayesian inference; Bayes' formula;medical diagnosis
Publication Date: May-1976
Abstract: <p> Bayes' formula may be written as follows: </p> <p> P(yᵢ|X) = P(X|yᵢ)・P(yᵢ)/j=K Σ j=1 P(X|yⱼ)・P(yⱼ) where (1) </p> <p> Y = {y₁, y₂,..., y_K} </p> <P> X = {x₁, x₂,..., xₖ} </p> <p> Assuming independence of attributes x₁, x₂,..., xₖ, Bayes' formula may be rewritten as follows: </p> <p> P(yᵢ|X) = P(x₁|yᵢ)・P(x₂|yᵢ)・...・P(xₖ|yᵢ)・P(yᵢ)/j=K Σ j=1 P(x₁|yⱼ)・P(x₂|yⱼ)・...・P(xₖ|yⱼ)・P(yⱼ) (2) </p> <p> In medical diagnosis the y's denote disease states and the x's denote the presence or absence of symptoms. Bayesian inference is applied to medical diagnosis as follows: for an individual with data set X, the predicted diagnosis is the disease yⱼ such that P(yⱼ|X) = max_i P(yᵢ|X), i=1,2,...,K (3) </p> <p> as calculated from (2). </p> <p> Inferences based on (2) and (3) correctly allocate a high proportion of patients (>70%) in studies to date, despite violations of the independence assumption. The aim of this thesis is modest, (i) to demonstrate the applicability of Bayesian inference to the problem of medical diagnosis (ii) to review pertinent literature (iii) to present a Monte Carlo method which simulates the application of Bayes' formula to distinguish among diseases (iv) to present and discuss the results of Monte Carlo experiments which allow statistical statements to be made concerning the accuracy of Bayesian inference when the assumption of independence is violated. </p> <p> The Monte Carlo study considers paired dependence among attributes when Bayes' formula is used to predict diagnoses from among 6 disease categories. A parameter which measured deviations from attribute independence is defined by DH=(j=6 Σ j=1|P(x_B|x_A,yⱼ)-P(x_B|yⱼ)|)/6, where x_A and x_B denote a dependent attribute pair. It was found that the correct number of Bayesian predictions, M, decreases markedly as attributes increasing diverge from independence, ie, as DH increases. However, a simple first order linear model of the form M = B₀+B₁・DH does not consistently explain the variation in M. </p>
URI: http://hdl.handle.net/11375/18566
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Herzig_Michael_1976May_MSc.pdf
Open Access
28.99 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue