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ABSTRACT 

Bayes' formula may be written as follows: 

P(y.,X) = P(X!y.)·P(y.)
1 1 1 where (1)

J=K 
L: P(X!y.) ·P(y.) 


j=l J J 


X = · {x
1 

, x 
2 

, ••• ,~} 

Assuming independence of attributes x 1 , 

formula may be rewritten as follows: 

x 2 , ... ,xk, Bayes' 

p {Y . Ix )
1 

= p <xi IY . ) . p <x 2 IY. ) . . . . . p <xk IY. ) . p (Y . )
1 1 1 1 

J=K 
L P (x 11 y . ) . P (x2 ly . ) ..... P (xk Iy . ) . P (y .. )

j =l J J J J 

(2) 

In medical diagnosis the y's denote disease states and the 

x's denote the presence or absence of symptoms. Bayesian 

iriference is applied to medical diagnosis as follows: for 

an individual with data set X, the predicted diagnosis is 

the disease y. such that 
J 

p (y. IX)
J 

= max 
i 

P (y. IX) ,
1 

i=l, 2, ... ,K (3) 

as calculated from (2). 
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Inferences based on (2) and (3) correctly allocate 

a high proportion of patients (>70%) in studies to date, 

despite violations of the independence assumption. The aim 

of this thesis is modest, (i) to demonstrate the appli­

cability of Bayesian inference to the problem of medical 

diagnosis (ii) to review pertinent literature (iii) to 

present a Monte Carlo method which simulates the applica­

tion of Bayes' formula to distinguish among diseases (iv) 

to present and discuss the results of Monte Carlo experi­

ments which allow statistical statements to be made 

concerning the accuracy of Bayesian inference when the 

assLunption of independence is violated. 

The Monte Carlo study considers paired dependence 

among attributes when Bayes' formula is used to predict 

diagnoses from among 6 disease categories. A parameter 

which measures deviations from attribute independence is 
j=6 

defined by DH~(~ IP(xBlxA,y.)-P(xBIY·) ll/6, where xA and 
j=l J J . 

xB denote a dependent attribute pair. It was found that 

the correct number of Bayesian predictions, M, decreases 

markedly as attributes increasing diverge from independence, 

ie, as DH increases. However, a simple first order linear 

model of the form M = B +B ·DH does not consist~ritly explain0 1 

the variation in M. 
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Medicine is a science of uncertainty and an art of probabi­

lity. -Sir William Osler 

INTRODUCTION TO CHAPTER I 

The diagnosis of disease from clinical data (signs, 

symptoms, laboratory tests, etc) is considered by the medi­

cal profession as a subtle art which may be mastered only 

after years of study and extensive personal experience. 

The reasoning process, and associated complexities, by 

which physicians arrive at a diagnosis have been outlined by 

several authors. See, eg., Feinstein (1963), Ledley and 

Lusted (1960) ~ It has also been suggested that physicians 

could improve their utilization of clinical data if they used 

probability theory in the analysis of diagnostic problems. 

See, eg, Anderson and Boyle (1968), Crooks et al (1959), 

Gustafson and Throckmorton (1965), Hall (1967), Overall and 

Williams (1961), Wartak (1974). 

The theme of Chapter I may be stated as follows: medical 

diagnosis is a logical reasoning process that can be simu­

lated by Bayes' formula. 

Section 1.1 outlines the traditional diagnostic 

process. Section 1.2 presents Boolean algebra as a simplis­

tic mathematical model which parallels the physician's 

thinking process. Section 1.3 a develops Bayes' formula as 

a practic~ l mathematical model to simulate the diagnostic 
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process. Section l.3b demonstrates the application of 

Bayesian estimation to "diagnose" an individual described by 

a set of symptoms. 
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Let us weed through the old to discover 	the new. 

- Mao Tse Tung 

Section 1.1 

An outline of the diagnostic method 

Nash (1954) has described how a medical doctor 

arrives at a diagnosis: 

1. 	 The patient's history and physical examination may imme­

diately bring about recognition of the disease. The 

capacity of recognition diagnosis is usually a valuable 

possession of a physician who has had exposure to the 

disease in his medical practice. 

2. 	 The patient may present signs and symptoms that enable 

the physician to formulate some hypothesis which he can 

test by laboratory investigations. 

3. 	 The physician may recall from his practice or from text­

books some diseases which may be responsible for the 

patient's signs and symptoms, and decide which disease 

best explains the patient's· condition. Problems arising 

here are (i) the patient rarely presents a full set of 

symptoms described in a text (ii) the physician may 

temporarily forget some diseases which may be responsible 

for the patient's condition (iii) some diseases are not 

considered because they are not known to the physician 

(iv) the physician's diagnosis may be influenced by 

experiences with other patients in the recent past. 
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4. 	 The physician may choose a small number of signs or symp­

toms which he feels are particularly significant and, 

perhaps with the aid of texts, attempt to discover what 

disease occurs most frequently as a cause. Such a pro­

cedure is an unwieldly task with or without the aid of 

texts. 

The task of assessing the significance of all of the 

patient's signs and symptoms and relating them to a particular 

disease may prove to be far from trivial. Thus, motivation 

exists to find an aid to the physician which would improve 

his diagnostic capabilities. Nash (1954) and others (see 

Lipkin and Hardy (1958), Ledley and Lusted (1959)) proposed 

mechanical devices which return diagnostic possibilities for 

a given list of signs and symptoms. More recently, decision 

1rules based on small numbers of key attributes have been 

developed (see Teather (1974), Teather and Bilder (1975)). 



6 

If a man wiZZ begin with certainties he 	 shaZZ end in doubts. 

- Francis Bacon 

Section 1.2 

Boolean algebra as a mathematical model of the diagnostic 

process . 

Ledley and Lusted (1959), (1960) utilized symbolic 

logic to systemize the reasoning process that enables a 

physician to arrive at a diagnosis. For the purposes of 

medical diagnosis we consider attributes x and diseases y as 

shown in Table 1.2.1 below. 

Table 1.2.1 

Definition of Logical Terms 

Symbol 	 Name Interpretation 

x. 	 negation not x. 
l 	 l 

y. ·x. 	 logical product y . and also x. . J l 	 lJ 

y.+x. 	 logical sum y. or x. or both
J l 	 J l 

y.+x. 	 implies if y. then x. 
J l J l 

..._____ 

The concepts inherent in medical diagnosis are (1) 

medica l knowledge (2) attributes presented by the patient 

(3) the f i n a l diagnosis. Medical knowledge is information 

about rela t i onships between dise ases and attributes, while 
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attributes presented by the patient are information about 

that particular individual. A diagnosis is made with these 

two sources of information and by logical reasoning (formal­

ized in Boolean algebra). 

In general a set of k attributes {x ,x2 , ... ,xk} and
1 

a set of K diseases {y ,y2 , ... ,yK} will be under considera­
1 

tion. The relationships between attributes and diseases 

that compromise medical knowledge can be expressed as a 

Boolean function of the sets X and Y, 

The attributes presented by a patient can be expressed as a 


Boolean function of the set X, 


... , 

The final diagnosis can be expressed as a Boolean function 

of the diseases, 

F ly 1' y 2' . . . y KJ . 

,Once E and Gare specified the logical aspect of medical 

diagnosis is to determine the function F such that the fol­

lowing Boolean equation is satisfied: 

E -r (G -r F) • (1.2.1) 

In words, F represents the disease or diseases that a patient 

may have if we consider medical knowledge, E, together with 

wl1at is known about the patient, G. 
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For an illustrative example, consider the case of two 

diseases and two attributes. Suppose medical knowledge is 

defined by E, 

(1.2.2) 

In words, 

1. if a patient has y then he displays x 1 , also2 

2. if a patient has y and does not have y 2 , then he dis­
1 

plays x
2 

, also 

3. if a patient has both y and y 2 , then he displays x 2 , also
1 

4. if a patient displays either or x or both and x 2 ,x 1 2 x 1 


then he has y or y or both y and y 2 .

1 2 1 

Suppose the patient is described by G, 

(1.2.3) 

In words, the patient displays both x and x 2 .1 

A logical basis lists all conceivable attribute com~ 

binations and all conceivable disease combinations, as shown 

in Table 1.2.2 and Table 1.2.3. A zero indicates the attri­

bute does not occur, a one indicates the attribute does occur. 

Table 1.2.2 Table 1.2.3 
Logical Basis for xl and Logical Basis for yx2 and Y2·1 

co cl c2 c3 co cl c2 c3 

0 1 0 1 0 1 0 1x1 Y1 

0 0 1 1 
 0 0 1 1x2 Y2 

- 1 ­co -- xl·x2, C =x
1 

·x
2 

, etc. Co=y1·y2, C1=Y1"Y2' etc. 
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The columns in Table 1.2.2 and Table 1.2.3 represent an 

exhaustive and mutually exclusive list of all conceivable 

attribute combinations and disease complexes. For k attri­

butes and K diseases there are 2k+K conceivable attribute-

disease combinations, for the case of 2 attributes and 2 

diseases there are 16 attribute-disease combinations. They 

are listed in Table 1.2.4. 

Table 1.2.4 

Logical basis for x 1 , x 2 , y 1 , Y2 

cl c2 

1 0 

0 1 

0 0 

0 0 

c3 

1 

l 

0 

0 

0 

I : 
I 
I 0 

I 
I 

cl c2 

1 0 1 0 

0 1 1 0 

1 1 1 0 

0 0 0 1 

cl I 
i = 1,2,3,4, j = 1,2,3,4 will denote 

cl c2cl c3 

0 1 0 11 0 1 

0 1 1 0 0 1 1 

0 0 0 1 1 1 1 

1 1 1 1 l 1 1 

Ci·C. 
J 

The role of E is to reduce the logical basis for attributes 

and diseases from the set of all conceivable to all possible 

attribute-disease combinations. For example, the first item 

0 2 0of information in E(l.2.2) is y 2-+-x 1 , thus columns c2 , c2 , c3 , 

and C~ of Table 1.2.4 are inadmissible. E eliminates all but 

five attribute-disease combinations, as shown in Table 1.2.5. 
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Table 1~2.5 


Reduced Basis Includes Medical Knowledge 


coc1c2c3 coc1c2c3 coc1c2c3 coc1c2c3 

xl 0 0 1 1 1 

x2 0 1 1 0 0 

Y1 0 1 1 0 1 

Y2 0 0 0 1 1 

co cl c2 c3 

By inspection of Table 1.2.5, the function F which statisfies 

E-+(G-+F) when G = x 1 ·x2 is F = y 1 .y2 , ie, the final diagnosis 

is the presence of disease y only.1 

To summarize, the logical process by which a physician 

arrives at a diagnosis is susceptible to precise analysis, 

and the operations to obtain F, once E and G are specified, 

may be performed by a digital computer. However, the method 

presented here is not particularly suited for direct appli­

cation as medical texts (correctly) use words such as "frequen­

tly", "very often", or "almost always" to describe attribute­

d . . . 2
isease associations . The next step then is to consider 

a probabilistic analysis of medical diagnosis. 
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If a man will be content to begin with doubts he shall end 

in certainties. - Francis Bacon 

Section l.3a 

An exposition of elementary concepts in probability theory. 

Bayes' formula is developed as a mathematical model which 

simulates the diagnostic problem more realistically than the 

previous Boolean algebra model. 

Let Y define a set of K mutually exclusive and ex­

haustive disease entities which occur in a population. Thus 

an individual sampled from the population is assigned to one, 

and only one, disease category of the set Y. To allow for 

the exhaustive case a particular member of the set Y may 

identify (i) the normal health state, (ii) an undetermined 

disease state, or (iii) combinations of diseases. 

The event y. is the occurrence of a particular disease 
l 

of the set Y in an individual, and the probability of y. with 
l 

respect to a specified population of size N is given by 

P(y.) = N /N where 
1 y.

l 

N is the nTu~ber of individuals with disease 
Yi 

y. in the population.
l 

To illustrate, suppose a clinic has been collecting data on 

referrals for several years. Then these patients can (in a 

very non-rigorous sense) be assumed to be a random sample of 
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referrals to the clinic for past and future times. The num­

ber of individuals with disease y has been found to be m1 ,1 

the number of individuals with disease y has been found to2 

be m
2

, etc. Then if P(y.) is the probability that a new 
l 

referral to the clinic will have disease y., P(y.) can be 
l l 

estimated by 
A 

j=K 
p (y.) = m./ 2: m. 

l l • 1 JJ= 

P(y.) is termed the a priori or prior probability of disease y .. 
l l 

Returning to the first paragraph of this section, 

p (y.) > 0 i = 1,2, ... ,K
l 

The exhaustive case implies 

i=K 
l: P(y.) = 1, 


i=l l 


the mutually exclusive case implies 

y.n y. = ~ i,j = 1,2, ... ,K i t j
l J 

A patient may be described by a set X consisting of 

attributes which quantify or qualify symptoms, signs, labora­

3tory findings and other data which aid in assigning a patient 

to a particular disease category. It is convenient to assume 

that attributes occurring in a profile are independent; for 

the moment we may think of independence to mean that the 

occur rence of any ,attribute in a profile does not influence the 

occur rence of any other attribute in the profile. Suppose 
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there are k attributes in a profile, and the event x. is 
l 

the occurrence of a particular attribute: then 

The probability of profile X occurring in an individual in a . 

specified population is given by: 

P(X) = Nx/N where 

NX is the number of individuals with profile 

X in the population 

N is the number of individuals in the population. 

The probability of profile X occurring in an individual who 

is known to have disease y. is given by
l 

P(X!y .) = N where 
1 Xy. /Ny.

l l 

N is the number of individuals in the popula-Xy.
l 

tion having.both disease y. and profile X 
l 

N as defined previouslyo
Yi 

It follows . that: 

P(X!y.)= P ( X, y. ) /P (y. ) where (1.3.l)
l l l 

P(X,y.) = NX /N
l y.

l 

Simila~ly, 

p (y. IX) -· P(X, y.) I p (X) (1.3.2)
J_ l 
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If y consists of mutually exclusive and exhaustive events, 

then 
j=K 

P(X) = L: p (XI y . ) • p (y . ) (1.3.3)
J Jj=l 

Substituting (1.3.1) and (1.3.3) into (1.3.2) we arrive at 

an expression of Bayes' Theorem: 

j=K 
P(y.!X) = P(X!y.)·P(y.)/ L: P(Xjy.) .·P(y.) (1.3.4)

l. l. l. J Jj=l 

If X consists of independent events then 

P < x IYi ) = P <x 1 IYi ) · P < x 2. IYi ) . · · · · · · P < xk IYi ) (1.3.5) 

and (1.3.4) may be rewritten as 

p <Y . Ix) = p <xi IY . ) . p <x 2 IY . ) . . . . . p cxk IY . > . p <Y . >
l. l. l. l. l. (1.3.6)j=K 

L: P (xl Iy.) • P (x2 Iy.) . . . . P (xk Iy.) . P (y.)
j =l J J J J 

P(y. IX) is termed the a posteriori or posterior probability
l. 

of y .. Further reference to Bayes' formula implies (1.3.6).
J. 
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There is no more common error than to assume that, because 

prolonged and accurate calculations have been made, the 

application of the result to some fact of nature is 

absolutely certain. - A.N. Whitehead 

Section l.3b 

An example illustrating the application of Bayes' formula, 

assuming attribute independence. 

Suppose a population of 1000 individuals is examined, 

and it is found that the number of individuals with diseases 

y 1 , y 2 , and y are 300, 200, and 500 respectively. Prior3 

probabilities are: 

p (yl) = N /N = 300/1000 = . 3 

Y1 


P(y2) - N /N = 200/1000 = • 2 

Y2 


P(y3) = N /N = 500/1000 = . 5 

Y3 


During the course of medical examinations various symptoms 

are noted and entered into the patient's medical record. 

Hypothetical data obtained for our population of 1000 is 

sununarized in Table 1.3.1. The information available from 

Table 1.3.1 is used to construct Table 1.3.2. 
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Table 1. 3 .1 

Number of Individuals with Indicated Sign or Symptom, 

By Disease Category 

Sign or Symptom 	 In Disease In Disease In Disease 
Category y Category y Category Y31 	 2 

1. 	Age * 

Under 21 240 20 48 

21 to 50 30 40 384 

Over 50 30 140 48 

;2 . Sugar Level 

I Normal 30 160 400 

Abnormal 	 270 40 100 

3. 	 Weight, during 

past 3 months 


gain in excess 
of 7 lbs. 30 40 150 

loss in excess 
of 7 lbs. 30 140 350 

no weight change 
in excess of 7 lbs · 240 20 0 

' 	 *4 • 	 Kinetic movements 

Present 175 20 50 

Absent 75 180 450 

*some individuals in the indicated disease category were 
not examined for the indicated sign or symptom. 

Probability values in Table 1.3.2 are based upon the relative 

frequencies with which attributes are found among the patients 

in each disease category. For example, 
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P(x
1 

jy1 ) = 240/(240+30+30) = .8 

P(x jy ) = 175/(175+75) = .78 1 

P(X5IY3) = 100/ (400+100) = .2 

Table 1. 3. 2 


Hypothetical Data of Table 1.3.1 Expressed As 


Conditional Probabilities 


Characteristic* Attribute Attribute P(xilYj) 

Set Number j=l j=2 j=3 


Age 1 x : 	 <21 . 8 .1 .11 

x 2 : 21-50 .1 • 2 • 8 

x : >5 0 .1 • 7 .1
3 

Sugar level 2 x : 	 normal .1 • 8 • 8 
4 

x : abnormal .9 .2 .2
5 

Weight 3 	 gain in ex­
cess of 7 
lbs during 
past 3 
months .1 .2 • 3 

loss in ex­
cess of 7 
lbs during 
past 3 
months .1 • 7 • 7 

Kinetic 
Movements 4 x 8 : present • 7 .1 .1 

x 9 : absent .. 3. 
• 9 • 9 

*a sign, symptom, laboratory test, etc. 

Some attributes (x1-x3 , x 4 -x5 , x 6-x7 , x 8-x ) form9 

groups which describe a particular characteristic. Such 

arrangements of attributes differ from profiles and will be 
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referred to as "attribute sets". Thus,Table 1.3.2 presents 

nine attributes distributed among four attribute sets. 

Typical patient profiles are: 

= . {X2 Isl X41 x6, x8} 


82 = {xl, XS' x8} 


= . {x4, x9}
83 x7' 

Before utilizing Bayes' formula to predict a diagnosis for 

an individual with profile s 2 , let us consider the following: 

1. 	 While members of an attribute set are mutually exclusive 

they are not necessarily exhaustive. Attribute sets 1, 

2, and 4 (see Table 1.3.2) consist of an exhaustive 

description of events for each disease category - for ex­

ample, a~ individual whose age has been determined must 

be assigned one of the attributes of set i, similarly, 

information about sugar level is described by x or x 5 ,4 

and information about kinetic movements is described by 

x or x 9 . However, since an individual may remain con­8 

stant in weight, attribute set 3 does not describe an 

4exhaustive set of events . An attribute set is ex-
i=Z. 

haustive for a particular disease y. if l: P (x ·-1 y.) =l,
1J i=l J 

where l is the number of attributes in the set describing 

a particular characteristic. 

2. 	 We wish to enter as much information as possible into 

Bayes' formula when such information helps to discrimina~e 

among disease categories (see Section 3.3a).Letting x 10 

represent the attribute "no weight change in excess of 
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7 lbs during past 3 months", 

P(x10IY1) 	 = 1 P(x6IY1) -P(x7IY1> 


= 1 - .1 - . 1 


= • 8 


Similarly, 

P(x10IY2) = .1 


0
P (xlO IY3) = 

Profile s2 should be replaced by S4 = {xl,x5,x8,xl0}. 

To summarize, attributes describing a characteristic 

should define an exhaustive set, and should be mutually 

exclusive. 

3. 	 An individual may not be examined for every characteris­

tic, thus a profile may consist of fewer attributes than 

there are attribute sets. For example, age was not 

determined for the patient with profile s3. 

The application of Bayes' formula, assuming attribute 

independence, is as follows: replacing s2 by s4' s4 = 

{xl, xS' x8, xlO}, 

= (.8)(.9)(.7)(.8)(.3) 
[(..8) (.9) (.7) (.8) (.3)+(.l) (.2) (.1) (.1) (.2) 
+(.l) (.2) (.1) (O.) (.5)] 

= .9997 
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Similarly, 

P(Y2IS4) = .0003 

P(Y3IS4) = 0 

The pre sence of attribute in profile s logically (asx 10 4 

well as mathematically) eliminates y 3 , and the disease with 

the highest a posteriori probability, y 1 , is the predicted 

diagnosis. 
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SUMMARY OF CHAPTER I 

Chapte r I has identified the problem of medical diag­

nosis: a physician is confronted with a set of symptoms, 

he considers the symptoms singly or in groups, and arrives 

at a diagnosis. Alternatively, he may wait for additional 

data such as laboratory tests, surgical procedures, or con­

sultation before arriving at a diagnosis. Boolean algebra 

has been demonstrated to be particularly suited to analyze 

the logical process by which a physician arrives at a diag­

nosis, but unsatisfactory as a practical diagnostic aid. 

Bayes' formula has .been -developed as a mathematical model 

which parallels medical decision making, and a hypothetical 

example has been included to illustrate the type of data 

necessary to apply Bayes' formula. 
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CHAPTER II 




To prepare biscuits: For one serving: l/2 cup of ready 

mixed biscuit flour. Follow directions on the package for 

mixing the dough. - Boy Scout Handbook~ l959. 

INTRODUCTION TO CHAPTER II 

We have established, from theoretical considerations, 

that Bayes' formula is applicable to the problem of medical 

diagnosis. Chapter II marks a transition from theoretical con­

siderations to issues associated with the practical appli­

cation of Bayes' formula. 

The theme of Chapter II may be stated as follows: if 

Bayes' formula is to serve as a practical diagnostic aid, 

then (i) probability values appearing on the right-hand side 

of (1.3.6) must be valid for the problem at hand, assuming 

attribute independence (ii) the digital computer should be 

used as a labour saving device. 

Section 2.1 discusses properties of a priori and 

conditional probabilities used for diagnostic prediction. 

Section 2.2 considers the problem of obtaining data to esti­

mate probability values, and introduces the computer as a 

valuable aid in storing and manipulating data. Section 2.3 

discusses the methodology of research investigating the 

feasibility of Bayes' formula as a diagnostic aid. 

- 23 ­
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It is never possible to step twice into the same river. 

- ·He r a c l i t us 

Section 2.1 

Properties of a priori and conditional probabilities used 

for diagnostic prediction. 

An attribute-disease (or S-D) matrix of the form 

shown in Table 2.l.l is a convenient representation of 

statistical information concerning the occurrence of attri­

butes and diseases in a specified population. 

Table 2.1.1 

The Usual Form of an S-D Matrix 

Disease A Priori Attribute List 
List Probabilities ........x1 x2 xk 

Y1 p (y1) P(x1IY1)* P(x2IY1) P(xkjyl) 


Y2 P(y2) P(x1IY2> P(x2IY2) P(xkjy2) 


YK P(yK) P(xljyK) P(x2jyK) P(xkjyK) 

L---~~~~~~~--
*P(x.ly.) i=l,2, ... ,k, j=l,2, ... ,K are referred to as con­

1 J 

ditional probabilities. 


The·diseases listed in a S-D matrix usually identify 

sub-categories of a principle disease, eg., types of bone 

cancer, types of liver condifions, etc. A priori probabilities 
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take account of environmental aspects - geographical loca­

tion, seasonal influence,occurrence of epidemics, community 

hygiene standards, and so forth. Operationally this means 

that for a specified disease y., P(y.) values estimated from. 
J J 

large random samples of geographically separated populations 

may be quite different from one another. Documentation 

supports this view. See, for example, Kendrick (1974), Van 

Zwanenberg (1974). Some data illustrating the influence of 

environmental factors on prior probabilities are presented 

in the following tables and charts. 

Table 2.1.2 

Urban-rural difTercnccs in incidence of cancer of se­
lected sites. Denmark. l~M8 to 1952. and Iowa, 1950 t 

Denmark Iowa 

Site and sex 
Copen­
hagen 

ProYincial 
towns 

Rural 
areas 

Urb::1.11 
area 

Rural 
areas 

Lip (l\J) 2.9 4.7 8.l 17 .3 15.7 

Tongue (\I) I .4 l.O 0.3 1.6 1.1 

Pharynx (\1) 1.9 0.8 0.3 4.3 1.5 

Esophagus (M) 8.0 5.1 3.8 3.9 2.l 

Stomach (i'd) 37.0 43.4 41.8 24.7 24.7 

Stomach (F) 23.6 . 26.7 29.8 13. l 14. l 

Rec.tum (:'II) · 25.2 22.5 17A 16.3 12.4 

Rectum (f) 13.9 12.2 11.2 10.0 11.0 

Lung (l\l) 13.6 15.3 8.3 29.0 10.2 

Kidney (:\1) 8.8 4.4 3.7 4.8 3.5 

Kidney (F) 5.2 3.0 3.4 3.3 2.8 

Bladder (:\I) 15.3 7.7 5.G 20.2 12.9 

Bladder (F) 4.1 2.4 2.1 6.6 3.2 

Leukemia! (ivf) 8.4 7.0 6.6 14.1 11.4 

Leukemia! (I) 6.0 5.0 4.5 10.9 7.2 

Cen·ix uteri (f) 38.4 31.9 20.2 43.1 23.6 

Corpus uteri (F) 14 .·1 10.9 7.9 11.0 10.9 

Breast (F) 57.4 49.3 40.9 78.0 62.4 

All sites (:\!) 28'1.8 22'1.7 185.7 350.6 250.2 

All sites (F) 272.5 241.5 208.6 351.6 261.5 

t Annual incidence rates per 100,000, standardized to the :i1;t: distribution of the 
.total United Stales popul:ition in 1950. 

! For Iowa, these rates include other car~cc:r~ . of the he111opoieti_c__ system:.. ________________ _ 

From MacMahon and Pugh, (1970). 
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Figure 2.1.1 


Seasonal and Yearly Variation in the Occurrence of -Typhus 


During Epidemic Years in Russia, 1918-1922 
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From Rodenwaldt (1952) 

Figure 2.1.2 

Monthly Variation of Bed Disability Due to Acute 

Disease in the United States, July .1957-Feb. 
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Ledley and Lusted (1959) suggest that conditional probability ~ 

values in a S-D matrix are relatively invarient to environmen­

tal factors and depend primarily on the physiological-patho­

logical aspects of the disease. Operationally this means 

that for a specified disease y., P(x. !y.) i=l,2, ... ,k values 
J l J 

estimated from large random samples of different populations 

are not expected to vary significantly. Documentation which 

supports or refutes this view is rare; s~ch conditional pro~ 

bability values have not been calculated for most diseases 

(although this view is implicitlyaffirmed in medical texts 

describing symptom-disease associations). Winkler et al (1967) 

defend the supposition put forth by Ledley and Lusted (1959) 

on the basis of Table 2.1.3. 

Table 2.1.3 

Conditional probabilities for attributes associated with 

hyperthyroidism. Comparison of Florida data and Florida data 

combined with Bonn, W. Germany data. 

P(xilhyperthyroidism) 
Florida data, Bonn, W. Germany, and 

Attribute, Fitzgerald and Florida data combined. 
x. Williams (1964) Winkler et al (1967)

l 

Nrrvousn\ '-' S 0.!115 (IO~/ll8) 0. ll':..'5 (1!1;> /'2 10) 
llrnt ::;cnsitivity 0 . 7Vl ('l':..' t l7) O. HG (wnj1:1i) 
l'crspirntiP~1 o. r.1 s (!i!> /s7) O.H7 (10!1 / 110) 
Appetite pin O.!iO;i ((i!l/lH) 0.:)7!J (lH / H!i) 
"'eight loss 0 . s:w (lJ '!I 1:H) O.!HG (lt>7 /'N I) 
Ilyperkinct ic movements 0. 75;, (1<~/1 lO) O.!iHH (117 / lill) 
'\'arm, moi~t skin 0.708 (80/110) 0.7UO (l!Hl/171) 
Li ght finger tremor 0.871 (108/l 'H) 0 .8!!8 (10!! / 1'2.'i ) 
J.etlwrgy 0.001 (0 / 1]!)) o. 10'.l (Hi/107) 
Cold sen~i'!i\·it~· 0 . 051 (!i /!lS) O. O!H (t:l/l!IH) 
Jkcrcnscd pcrspira tion 0.001 (O /!ls) 0 . 001 (O / l.'i7) 
Appetite lo.<s 0 . 1:13 (1:)/l:l:l) 0. J(i() (25/ l!i(i) 
""eight gain 0. 0 '23 (:3/l '.l:l) 0.0:12 (7 /'-2 18) 
Sl owe r rnon·rncnts 0. 018 ('?/ Hl !l) 0 .01'2 ('2 / 171) 
Dry, rol!gh skin 0.00!) (1/11':2) 0 . 011 (2/ IH;'i) 

F :1 cC rdrrnn 

l·:yc symptoms 
o . rnrn (1 / 1 ·rn 
o_:mo (:rn /1 no) 

0. 0 2G (.'i / l!l:;) 
0 .4 Hl (87 / 1%) 

From Winkler et al (1967) 
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Comparison of the results obtained when data gathered in 

Bonn, W. Germany, were combined with data obtained in Florida 

do not show any great changes in most clinical signs and 

symptoms. One notable exception is in lethargy, which 

went from .001 to .102. Winkler et al (1967) suggest that the 

Florida workers took lethargy to mean apathy, while the 

German workers understood lethargy to mean general tiredness. 

Zero values for conditional probabilities are usually inter­

preted to mean that the population sample was not large 

enough to include attributes which may possibly occur 

together with a given disease. Such zero values for con­

ditional probabilities are often replaced by small finite 

values, .01 or .001. For example, refer to "lethargy" and 

"decreased perspiration" in Table 2.1.3 (also see Boyle 

et al (1966)). Table 2.1.4 is a S-D matrix developed by 

Lodwich (1965) as an aid to diagnose bone tumors. In this 

case, zero probability values exercise a Boolean function 

in eliminating certain categories of disease. For example, 

a tumor falling into Grade III cannot be a giant cell tumor, 

chondroblastoma, chondromyxoid fibroma, or parosteal 

sarcoma. 
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.-. 
Table 2.1.4 

~ ' 

An S-D Matrix for Predicting Bon~ Tumors 

'oc : , ., !Cl'- SI/I11 :\IOK ·1 \ l ' I ALI \I YI RIX l.KA[)F. 

I ong l\011c·~ 

~ 
a:: "' "C u"' ;....t! VIt: t:.o;....~· ~ c...t: "' E §g 

0 

b.o5=; o. tJ v:ig c: ~ ~ 
.~ 

f? + r; ~ <"l·o.. ~ ~ u 
c:'-? + -:. l? .... ­c - ....,­ v; ,_) i..:..; ;::::C'l ...:.. - -­tr. - -

!J(j Ill JOO !,!() F1 1-. r,(J (I() (l(IF1 20 RO:w 3:"1 ·1!"1 40 GU 01 OUCiant cell tumor 

0) 90 . JO !"10 3:"1 Fi or1 00 

Chondromyxoid 
fibroma 

100 !10 75 00 00 30Chondroblasruma 7:1 20 0) 20 RO 

8!i 1:; 01 00 (J(I 

Chon<lrosarcoma 

30 70 00 0203 !iO ~l.'i ]!) 8.'J Jl'i30 20 JOO 2!i 

25 2:'") :,o I r1 20 2:1 2'i l'.i 

Fibros:ncoma 

17 35 65 40 01 8'i 6r1 20 80 0:1 G:I 

JO 20 20 60 0:1 95 2'i 02 00 JO 40 30 20 

Ostcosarcoma 

!l!i 00 90 6r, 20 80 
2!i G.I 2!i IO IO 90 00 00 10 30 GO 

)'arostcal sarcoma 

15 85 98 0530 05 9:1 75 
();; 20 35 4'i 00 100 30 01 100 50 25 ?!i 1:1 2:; 5!"i O.i 00 

Ewing's tumor 

JOO O.ri 
(){) {)()l:'i 70 2!'i 05 3!i G.'1 20 05 85 90 15 85 00 05 JO 20 c;;, 

Reti culum cell ]!i 850:1 JO 2:1 6S 20 RO 50 OJ 85 80 00 00 00 00 20 30 :.o 

From Lodwich (1965) 
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One 	 of the disturbing, and at the same time fascinating, 

features of our human existence is the pervasiveness of 

uncertainty. - J. Aitchison 

Section 2.2 

Considerations in Data-Collecting 

Digital computers are particularly suited to th~ task 

o~ Bayesian inference by reason of their: 

1. 	 capacity to store large masses of information, 

2. 	 ability to use all pertinent information in its memory, 

3. 	 ability to perform calculations rapidly, 

4. 	 flexibility in displaying information, 

5. 	 availability. 

At present Bayes formula is advocated as an aid to the 

physician in the same sense as stethescopes or laboratory 

tests; the final diagnosis remains the responsibility of 

the physician. The performance of Bayes' formula in cor­

rectly predicting a disease category for an individual may 

be undermined by: 

1. 	 inaccurate and/or non-representative data regarding a 

priori probabilities, 

2. 	 inaccurate and/or non-representative data regarding 

conditional probabilities, 

3. 	 inaccurate data regarding an individual's profile, 

4. 	 the superficial use of attributes, 
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5. 	 non-independence of attributes occurring in a profile. 

These pitfalls may be circumvented by: 

1. 	 ensuring that a correct diagnosis is actually established. 

This is usually possible (i) through follow-up information 

(ii) by laboratory tests (iii) through agreement among 

several physicians (iv) at surgery (v) at autopsy. 

Assuming that a correct diagnosis can be established, 

prior probabilities may be based on a random sample of 

the population for whom posterior probabilities are 

required. The question of how large a random sample, n, 

is required may be discussed as follows: suppose a 

hospital or clinic has treated N individuals (say N = 

10,000) and each of these individuals has been assigned 

to disease category y 1 or or ... or yK. Suppose YKy 2 

denotes the least common disease and N /N is thought 
YK 

to be about .10. It is reasonable to assume that we 

will be content if the final estimate of N /N, based on 
YK 

random sampling of n records, is correct within + d 

(say 	d = .01) in the sense that if the sample shows 

n /n =a, then the interval a-d, a+d is l-a%(say a= 
YK 

.05) sure to contain N /N. The following formula 
YK 

(Cochran (1963)) may be used to solve for n: 

2 	 2 
n = za/2 ·P (yK)·(1-P (yK)) /d 	 where 

1+ 1 /N [ ( za2I 2 • P ( y K) • ( 1-P ( y K) ) / d 2 ) -1J 
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is the or~ginal estimate of N /N (. 10)
YK 

is the risk (.05) we are willing to incur 

that the actual error is larger than d. 

That is, a = [ P ( In In - N /N I ) ~ d]
YK YK 

d is the allowed margin of error in the 

estimated value of N /N, after random 
YK 

sampling (. 01) 

is the abscissa of the N(O,l) cumulative 

distribution curve that cuts off an area of 

a/2 at each tail (1.96). 

In this example, 

n = (1. 9 6) 2 (. l) (. 9) / (. 01) 2 

1 2 	 2
1 + 10000 ( (1.96) (.1) (.9)/(.01) -1) 

= 2569 

In practice n may be constrained by cost and time con­

siderations. 

2. 	 Conditional probability values are usually based on the 

same random sample of the specified population used to 

calculate prior probabilities. The motivations for 

doing so are (1) such values are theoretically ideal in 

the sense that they are known to apply to the specified 
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population (2) since these individuals have already 

been examined for attributes in order to arrive at a 

clinical diagnosis they form a readily accessible data 

base on which conditional probabilities may be estimated 

(3) objective conditional probability values do not 

exist for most diseases, hence the alternative is to 

subjectively supply their values. To summarize, con­

ditional probability values are usually based on (i) 

values known to apply to the specified population 

(see 	Figure 2.2.1, Option 1), (ii) literature values 

which are hypothesized to apply to any population 

(see Figure 2.2.1, Option 2), (iii) subjective estimates 

(see Figure 2.2.1, Option 3), (iv) combinations of 

i, ii, iii. 

3. 	 Only the most objective, readily recognizable and easily 

obtained attributes should be included in the attribute 

list. In practice a trade-off is made between detailed 

information associated with high costs and less precise 

but accurate information associated with low costs (cost 

as measured in time and dollars). Several authors have 

discussed the feasibility of using computer technology, 

with a minimum amount of physician involvement, to elicit 

and analyze the medical history of an individual. See 

for example, Payne (1963),(1964), Collen et al (1964), 

Slack et al (1966) . 
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4. 	 Attributes that are useful for discriminating among 

disease categories should be •-'chosen, and in the case of 

measured (continuous) characteristics, intervals that 

best discriminate among disease categories should be 

131defined. For example, 6-hr I uptake is a measure of 

high validity in distinguishing among thyroid diseases; 

131low, moderate, and high 6-hr I uptake values are 

associated with hypothyroidism, euthyroidism, and hyper­

thyroidism respectively. Overall and Williams (1963) 

chose the intervals shown in Table 2.2.1 (Scheme 1) 

when applying Bayes' formula to predict thyroid .diseases. 

Table 2.2.1 

131Cutting Intervals for 6-hr I Uptake Chosen by Overall and 

Williams (1963) 

Disease list, 	 Characteristic: 6-hr 1131 uptake % 

v . 	 Interval: <2 2-7 8-27 27-35 >35 ... J 

Attribute: xl x2 X3 X4 XS 

Y1: 	 hypothyroidism Scheme l* .33 .57 .10 .00 .00 

y2: 	euthyroidism .01 .10 .85 .03 .01 

hyperthyroidism .00 .01 .04 .16 .79Y3: 
-

*Table entries are P (x. Iy.) , i=l,2,3,4,5 j=l,2,3
l J 

Other schemes are possible, as shown in Table 2.2.2. 
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Table 2.2.2 

131An Alternative Scheme for Describing 6-hr I Uptake 

IDisease list, Characteristic: 6-hr 1131 uptake, % 

y.
J 

Interval: < 7 8-27 > 27 

Attribute: xl x2 X3 

hypothyroidism Scheme 2 .90 .10 .00Y1: 

y2: euthyroidism .11 .85 .04 

hyperthyroidism .01 .04 .95Y3: 

To the extent that such intervals are not optimally 

chosen, spurious a posteriori probability values may 

result (a topic beyond the scope of this project). 

5. 	 Equation 1.3.6 is valid if attributes appearing in a 

profile are independent. -Of course, posterior proba­

bilities may be calculated directly from equation 1.3.4. 

However, such a procedure increases data requirements. 

For example, consider a profile consisting of data on 20 

characteristics with each characteristic reported as 

20either present or absent. There are 2 (ie,1,048,576) 

possible combinations of attributes (profiles) ; several 

million cases of each disease category would be required 

to obtain reasonable estimates of the frequencies for 

each of the possible profiles. Data requirements for 

combinations of attributes may be lessened by (i) 
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considering groups of dependent attributes (see Section 

3.3c) or (ii) excluding dependent attributes from 

profiles (see Section 3.3a). In short, although the 

assumption of attribute independence is often inappropriate 

(see Section 3.3b), the assumption of attribute inde­

pendence reduces data requirements and complications in 

calculating posterior probabilities. 

Arrow diagrams are useful for describing the essential 

steps in computer-aided Bayesian diagnostic procedure. Re­

ferring to Figure 2.2.1, full lines represent completed 

activities and dashed lines represent uncompleted activities. 

At least one option must be completed before posteriori and 

conditional probabilities can be determined. It is assumed 

that a computer has been programmed to handle the incoming 

data. 



Figure 2.2.1 	 Activities in a computer aided Bayesian diagnostic scheme represented in 
an arrow diagram. 
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Egad, I think the interpreter is the hardest to be understood ... 

- R.S. Sheridan, The Rivals 

Section 2.3 

The essential steps in a Bayesian diagnostic scheme are 

discussed in order of earliest completion, with reference 

to Figure 2.2.l. 

Activity 1-2 

In studies to date, the specified populations have 

consisted of individuals referred to a specialized department 

of a clinic or hospital. There are several reasons why 

specified populations have been restricted in this way: 

1. 	 a patient for whom a predicted diagnosis is required 

will be a member of this restricted population, 

2. 	 a high proportion of these individuals will present data 

on disease and attribute occurrence, 

3. 	 the organization to record and file medical data is 

operative at a medical center, 

4. 	 researchers investigating the applicability of Bayes' 

formula to medical diagnosis are usually associated with 

a medical center, 

5. 	 a specialized department is chosen as Bayes' formula is 

used to distinguish among sub-categories of a single 

disease entity, rather than among divergent disease 

categories. 
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Activities 2-3, 3-7, 7-8, 7-9, 8-9 (Option 1) 

Most researchers have chosen Option 1 as the means 

to construct an S-D matrix. A "random sample" of the speci­

fied population usually consists of (i) individuals whose 

medical records have been on file for several years (ii) 

consecutive referrals to a clinic from some arbitrary date. 

The sample of the specified population on which a priori and 

conditional probabilities are estimated is referred to as 

the data base. 

Activity 2- 4 

The information necessary to predict diagnosis for 

a new arrival from a specified population consists of (i) 

data organized into a S-D matrix (ii) the profile of the new 

arrival. Individuals for whom diagnoses are predicted, bu~ 

who are not part of the data base, are referred to as a "trial 

group'. The physician's clinical diagnosis for each member 

of a trial group is usually recorded and may be compared with 

Bayesian prediction. 

Activities 9-10, 10-11, 11-12 

Accuracy and sensitivity are two measures commonly 

used to measure the effectiveness of Bayesian prediction: 

overall number of cases corre ctly id.enti f ied b y Bayes' formula 
accura cy total number o f case s 
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accuracy = number of cases of y. correctly identified 
J(in predicting by Bayes' formuladisease y.)

J 	 total number of cases of y.
J 

sensitivity = number of cases of y. correctly identified 
J(in predicting by Bayes' formuladisease y.)

J total number 	of Bayesian predictions for 
disease y.

J 

Accuracy measures the proportion of disease cases correctly 

identified, sensitivity is a measure of confidence that a 

particular prediction is correct. 



SUMMARY OF CHAPTER II 

Chapter II explores the reality represented by probability 

values appearing in Bayes' formula. It is emphasized that 

Bayes' formula is applied to restricted (specified) popu­

lations, and that information which is valid for one popula­

tion may be invalid for other populations. Procedures ior 

obtaining valid and useful data have been outlined. Finally, 

an overview of a computer aided Bayesian diagnostic scheme 

and the motivations for assuming attribute independence were 

presented. 



CHAPTER III 




busy, busy, busy - Ku:rit Vonnegut, Cat's Cradle 

INTRODUCTION TO CHAPTER III 

Chapter III reviews applications of Bayes' formula in 

medical literature. 

Section 3.1 briefly describes Bayesian prediction of 

heart, thyroid, abdomen, and liver disorders. Applications 

of Bayes' formula in other diagnostic areas are listed in 

Appendix A. Section 3.2 describes an ongoing application 

of Bayes' ·formula as a diagnostic aid in a clinical setting. 

Section 3.3 discusses how some medical researchers have taken 

non-independence of attributes into account in Bayesian 

prediction procedures. 

- 43 ­
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Attempt the end, and never stand to doubt; 

Nothing's so hard but search will find it out. 

- Robert Herrich, Seek and Find 

Section 3.1 

Literature review. Applications of Bayes' f ormula to 4 

diagnostic areas - heart, thyroid, abdomen, an d liver. · 

Heart 

Warner and his colleagues (19 61), (l ~) 64) were among 

the first researchers to give serious consi deration to pro­

bability theory as a diagnostic aid. They use two characteris­

tic lists to distinguish among 33 types of heart disorders. 

One list consists of 26 easily recognized characteristics, 

the other list includes 4 additional chara cteristics of a 

highly detailed nature - the type and location of heart 

murmurs. The researchers find that infor mation on heart 

murmurs do not consiste.ntly help to ident ify disease 

categories. Their findings illustrate the general dilemma of 

(i) using as much information as possible and (ii) the 

limitations in accuracy with which highly detailed information 

can be obtained. Throughout ~ their wor k attribute indepen­

dence is assumed. 

Hirschfeld and Judge (1965) c ompare Bayesian diag­

noses- of heart disorders to diagnose s arrived at by experienced 
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cardiologists. Each of 3 experienced cardiologists inde­

pendently estimate S-D matrix entries, a fourth S-D matrix 

is constructed on the basis of a literature review. Diag­

noses are then predicted for 28 patients by (i) each of the 

3 physicians (ii) Bayes' formula using probability values 

provided by each physician (iii) Bayes' formula using data 

provided by a literature review. The three procedures 

achieve similar results, as shown in Table 3.1.1 below. 

Attribute independence is assumed. 

Table 3.1.1 

Summary of Findings by Hirschfeld and Judge (1965) 

Number of Correctly Identified Cases, Using 20-30 Characteristics 

Physician: 

Bayes' formula 
using S-D matrix 
provided by: 

Bayes' formula 
using S-D matrix 
provided by: 

First ranked 
Diagnosis Correct 

A 14 50% 
B 18 64% 
c 19 68% 

A 12 43% 
B 12 43% 
c 11 39% 

liter­
ature 14 50% 
review 

One of 3 Highest Ranked 
Diagnoses Correct 

21 
22 
19 

75% 
79% 
68% 

20 
19 
21 

71% 
68% 
75% 

20 71% 


Templeton et al (1966) examine the occurrences of 20 

common roentgenograph characteristics associated with 9 

heart conditions for 231 cases of confirmed heart disease. 

The researchers are unsuccessful in isolating independent 

attributes. Their treatment of non-independence is discussed 
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in Section 3.3b. 

Reale et al (1968) attempt to distinguish among 94 

heart disorders using 25 characteristics. An overall ac­

curacy of 82% is achieved in predicting diagnoses for a data 

base group of 1184 patients, 60% accuracy is achieved for a 

trial group of 125 patients. When diagnoses are calculated 

using a quasi-Bayesian approach in which all prior probabili­

ties are arbitrarily made equal, it is found that the ac­

curacy in predicting less common diseases increases. Columns 

5 and 6 of Table 3.1.2 illustrate how prior probabilities may 

overwhelm incoming data (represented by patient profiles) 

in Bayesian prediction. 

Table 3.1.2 ­

Comparison of clinical and calculated diagnoses for a data 

base group of 1184 patients. Diseases are divided according 

to those represented by 12 or more cases, and less than 12 cases. 

Number of Number of Correct Diagnosis, 2- by:Category 0' 
Diseases Patients Physician Bayes' quasi-Bayes' 

(1) (2) (3) (4) (5) ( 6) 

trotal _group 94 1184 73 82 70 

Diseases with 
12 or more 
cases 

14 967 81 85 68 

Diseases with 
less than 
12 cases 

80 217 37 69 82 

"--­· 

When prior probabilities are made equal (column 6) the 
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predicted diagnosis is no longer weighed in favour of the 

more common diseases (as in column 5), and the less common 

diseases are correctly predicted more often, ie, prior 

probabilities are of no account, and predictions are based 

on profile data only. Attribute independence is assumed. 

'.!1hyroid 

Boyle et al (1966) compare Bayesian, quasi-Bayesian, 

and clinical accuracy in distinguishing among 3 types of 

thyroid conditions on the basis of 30 attributes. Criterion 

for a correct diagnosis are more stringent than those of 

other workers. For example, a first ranked calculated 

diagnosis may arbitrarily be deemed "incorrect" if its 

posterior Bayes' probability does not exceed the posterior 

probability of the second ranked diagnosis by at least a 

factor of 3. The three diagnostic methods achieve similar 

results - 83% (Bayes'), 85% (quasi-Bayes'), and 77% (physi­

cian) accuracy for a trial group of 88 patients. Other 

workers who apply Bayes' formula to diagnose thyroid dis­

orders include Billewicz et al (1969), Fitzgerald et al 

(1966), Gustafson et al (1971), Overall and Williams (1961) 

(1963), and Winkler et al (1967). In all cases these workers 

assume attribute independence. 

Abdomen 

Rinaldo et al (1963) apply Bayes' formula to dis­

tinguish among 6 types of abdomen disorders. The 
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characteristics (8 in all) are highly subjective and depend 

upon the patient as a witness. The authors ascribe poor 

Bayesian accuracy (52% for a trial group of 96 patients) to 

unreliable information obtained from patients. Scheinok 

and Rinaldo (1967) re-examine the data gathered by Rinaldo 

et al (1963) in an (unsuccessful) effort to identify subsets 

of characteristics of high diagnostic accuracy. Their study 

illustrates the subset concept as a generalized "attribute 

filter" to use medical data efficiently. Other workers who 

attempt to predict diagnoses with a minimum number of attri­

butes include Knill-Jones et al (1973), Teather and Bilder 

(1975), and Templeton et al (1966). Here again, these workers 

apply Bayes' formula assuming attribute independence. 

Horrocks et al (1972) and her colleagues (see De Dombal 

et al (1972), (1975)) have reported on the use of Bayes' 

formula as an ongoing diagnostic aid in a clinica~ setting. 

Their work is summarized in Section 3.2. 

Liver 

Lincoln and Parker (1967), Began and Dhumeaux (1971) 

and Knill-Jones (1975) apply Bayesian estimation to predict 

liver disorders. Lincoln and Parker (1967) take account of paired 

dependence; their work is discussed in detail in Section 3.3c. 

Th~ study by Began and Dhumeaux (1971) is unique in that 

only data from laboratory tests appear in a profile; the 

authors state that the attributes appearing in a profile are 

independent, but give no quantitative evidence to substantiate 
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their claim. Knill-Jones {1975) {also see Knill-Jones et al 

(1973)) considers 102 characteristics and out of these 

identifies subsets of high diagnostic accuracy. 

Others 

Applications of Bayes' formula to other medically 

related areas are listed in Appendix A. 
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We must look at what we are seeking to nourish~ and by the 

exercise of our thoughts seek for the proper aliment. 

- I Ching 

Section 3.2 

A summary of Computer-aided diagnosis: description of an 

adaptable system~ and 6pe~~tional experience with 2~034 cases, 

Horrocks et al (l972). 

Horrocks et al (1972) and her colleagues (see De 

Dornbal et al (1972), (1975)) initiated a system which pro­

vided computer technology and Bayes' formula as practical 

diagnostic aids to the clinician on the ward. Several 

measures were taken to accommodate the use of Bayes' formula 

5in a clinical setting

1. 	 Specialized forms were created in which information from 

th~ patient's physical examination could be formalized. 

An example of such a form is shown in Table 3.2.2. 

2. 	 Each possible attribute was allocated a three digit code. 

Thus, the physician need play no other role in the system 

besides examining the patient and reading the computer 

output. 

3. 	 The computer output was as close as possible to colloquial 

English. The patient's attribute list (profile) was 

also printed to allow the physician to check possible 

errors in coding. An example of computer output is 

shown in Table 3.2.3. 
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4. 	 The physician received computer output within a few 

minutes after completing the patient's physical examination. 

A summary of the findings by Horrocks et al (1972) 

is presented in Table 3.2.1. 

Table 3.2.1 


A Summary of the Findings by Horrocks et al (1972) 


Diagnostic Area 

Number of 
Cases 

Forming 
Data Base 

Number of 
New Cases 
Forming 
Trial Group 

Accuracy, %, of 
Bayesian Predic­
tion for Trial 

Group 

acute abdomen 

lower Go I. Tract 

dyspepsia 

all areas 

estimates* 
(acute abdomen) 

600 

642 

175 

1417 

376 

82 

50 

508 

376 

91 

88 

64 

88 

85 

*Conditional and a priori probabilities are based on subjective 
estimates by 6 clinicians. 

Figures 3.2.1 and 3.2.2 present detailed information 

concerning the performance of Bayes' formula in distinguishing 

among 7 diseases associated with acute abdomen _patients. 



52 

Figure 3.2.1 . 

Accuracy of Diagnosis in 304 Patients: Comparison of 

Bayesian Prediction Versus Diagnosis of Most Senior 

Clinician to See the Case 

100 
100 

0 Sen.Clin. 
ICO 

Computer 
100 100 

90 

1J 80 
er 
0 

~ 70 
lJ 

~ bO 

50 

0 ~~i...:.,._.l.W.;.1,--~~~~t-.......-.iia--i.o......a.IL-...r;..i;..;......_.......i;..~1-.1 

Appx ! Div ert.j Perf.DU.; N.S poinl (hole - IS .Bobs t;Poncreot. 
cyst. 

From De Dornbal et al (1972) 

Figure 3.2.2 


Sensitivity of Diagnosis in 304 Patients: 


Sarne Comparison as in Figure 3~2.1 


CJ Sen .Clin • Computer 
10'.l

ICO 

90 'lO 

80 
v

2 70 
c 

- ~ -66 

50 

40 

From D'e Dornbal et al (1972) 

Overall, the error rate of Bayesian prediction (25 

cases out of 304) . compares favourably with that of the 

physician (62 cases out of 304)' and this · difference is 
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statistically significant (a < .01). After 3 years of 

operational experience, the Leeds researchers have come to 

the 	following conclusions: 

1. 	 Computer-aided diagnosis of acute abdominal pain is 

feasible, using simple, inexpensive desk-top equipment. 

2. 	 Computer-aided systems in this sphere of clinical medi­

cine appear to have an error rate about half that of the 

unaided clinician. 

3. 	 Addition of a computer-aided system to routine diagnostic 

practice appears significantly to improve the clinicians' 

own diagnostic performance. 

4. 	 The same considerations appear to apply also to decision­

making. 

5. 	 The benefits of introduction of such a system are only 

realised after a training period of 4 to 8 weeks. 

6. 	 Equally, the benefits are seen only if the clinician 

receives regular feedback about his performance from the 

system~ 

7. 	 There is no evidence that comparable benefit can be 

achieved using simple systems not aided by a computer. 

8. 	 It remains to be seen whether the system can be transposed 

from Leeds to other areas, though preliminary studies are 

modestly encouraging. 

The 	Leeds workers assume attribute independence. 
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Table 3.2.2 


Part of a Specialized Work-Sheet Used by Physicians 
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Table 3.2.3 

An example of the Computer Priptout 

Case ref-234 

Female 
~ 

. l 

Age 70+ No previous abd. pain 
Site onset-Central Prov. abdominal surgery 
Site present-Central Not taking drugs 
Aggrav. by nil 
Relieved by vomiting · lfood-distressed 
Pain getting worse Colour - pale 
Duration over 48 hrs Abd. mvt. normal 
Onset pain colicky Abd 6minal scar present 
Pain now colicky Distension pres ent 
Moderate pain Te nde rnes s -G e ne ral abdomen 
Nausea No rebound tenderness 
Vomiting Guarding absent 
Appetite de creased Rigidity ab sent 
No indigestion S·,•1e ll i. ng absent 
No jaundice Murphy's sign .negative 
Bowels-Cons tipation Bowel sounds hype ractive 
Micturition- Dysuria Normal rectal exam 

Append 
.00 

Divert Perfdu 
.00 .00 

Nons a p 
.00 

Chole 
.00 

Smbobt Pancre 
99.99 .00 

Computer error analysis follows:­

Current position: 	Computer diagno s is-Small bowel 
obstruction 

During 1971-3 computer made 	 21 such diagnoses 
19 right, 2 wrong 

Ca ses misdiagno s ed a s Sm. bowel obst. 

Pancreatitis 	 1 
Ischaemic colitis 	1 

From de Dombal 	et al (1975) 
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Things either are what they appear to be; or they neither are 3 

nor appear to be; or they are 3 and do not appear to be; or 

they are not 3 and yet appear to be. Rightly to aim in all 

these cases is the wise man's task. - Epictetus 

Section 3.3 

Treatment of non-independence of attributes in applications 

of Bayesian estimation to medical diagnosis. 

Section 3.3a 

A summary of Probability theory in the diagnosis of Cushing's 

Synd!ome. Nugent et al (l964). 

Nugent et al (1964) apply Bayes' formula to predict 

the presence (y ) or absence (y ) of Cushing's Syndrome. Their1 2 

data base consists of 211 patients examined for suspected 

disease presence. Conditional probability values on 19 

characteristics considered in the study are shown in Table 

3.3.1. Prior probabilities are: P(y ) = .25, P(y ) = .75.1 2

Differences in the incidences of attributes between 

patients in the two diagnostic categories are examined by use 

of the Chi square test statistic (with Yates correction 

factor) . The incidences of attributes differ significantly 

(a = .05) from one another only in the case of characteristics 

1-13, hence characteristics 14-19 are omitted from further 

consideration. The Chi square statistic is also used to 



57 

identify dependent pairs in each disease category. Pairs 

4 & 12, 4 & 13, 10 & 12, 10 & 13, 12 & 14 are found to be 

significantly (a = .05) associated. Since characteristics 

12 or 13 are included in each of these combinations, they 

too are omitted from further consideration. Thus, the maxi­

mum number of attributes which may possibly appear in a 

profile is 11. 

In order to further examine the question of inde­

pendence of the remaining characteristics (1-11~ the contin­

gency coefficient, which has a range of 0 - .707, is calcu­

lated for each pair of characteristics. Of 108 possible 

attribute pairs6 in the two groups of patients, three have 

an absolute value for C greater than ~3 and none is greater 

than .4. On this basis, independence of characteristics 1­

11 is assumed. 

Diagnoses are calculated for a trial group of 111 

patients suspected of disease presence. The authors define 

a confident diagnosis as P(y ) ~ .99 or P(y2 )~ .99. They1 

calculate 54 confident diagnoses, all correctly identify the 

patients' disease category. 
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Table 3.3.1 


Characteristics considered and conditional probabilities 


x. 
l 

). 0~1 Mporoc; i~1 
2. C1'ntrnl nhc~iity 
:J. (;p111;rnli7.cd nbesiLy 
·I. '\'rakncs8 
5. !'let hora 
Ii. 	 \\"BC 11,000 per mm~ 

or more 
7. J\rnc 
R. ~f . rinc (rC'd or p11rplt~) 
9. Diastolic Bl' JO;} or 

ribo\'C 


Ill. Ed<'ma (pilling) 

II. llirnutism 
12. Effh\'In 0SC8 

11. 	Srrurn J< :J.G mEcul 

nr lcs>i 


11. Ol igomcnnrrlwa 

Vi. I lr.arhchc>i 

It.. \'J>HC 49 or nbovc 

Ii. Frrn:i lcR 

!~. 1\bnorm:il <_;TT 


, i!I. J\gc 35 or less 

() . Ii\ 
() . !H) 
() .0:1 
0 .(i!i 
0 . 8~ 

O .!iR 
() .f'1'l 
0.4\. 

() . :1~l 
() .:1~ 
() . !"ill 
0 . ;,~~ 

() . ~;.,. 

() .1'2 
() . 41 
o.:n 
() ,(;;, 
0.88 
0.55 

O.!i:I 
II.:~!) 
() .() '.! 
0 .07 
0 .:11 

() .:If> 
0 . :~ I 
o .:n 

() .17 
O . 17 
{I . :~!) 

O.OG 

(l . (\.I 
{I.;, l 
() .:17 
0.:1:2 
0.77 
0.77 
0.52 

From Nugent et al (1964) 

http:p111;rnli7.cd
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Section 3.3b 

A Summary of The Computer Evaluation and Diagnosis of Congenital 

Heart Diseases~ Using Roentgenographic Findings. By Templeton 

et al_, (Z966). 

Templeton et al (1966) examine the occurrences of twenty 

common roentgenograph characteristics (see Table 3.3.3) asso­

ciated with 9 heart conditions. Conditional and a priori 

probabilities are based on 231 cases of confirmed heart disease 

(see Table 3.3.4). Bayes' formula is used to predict diagnosis 

for each member of the data base group. Some findings of the 

study are summarized in Table 3.3.2. 

Table 3.3.2 

Number of Correctly Identified Cases Using All Information 


Available From the Work-Sheet 


Number Number Correctly Number Correctly 
Disease List of Cases Identified by Identified by 

Radiologist Bayes' Formula 

Primum IASD 15 
Secondum IASD 44 
IVSD 49 
PDA 30 
Tetrlogy of Fallot 38 
Coarctation 11 
Pul. Valve 
Stenos is 14 
Aortic Valve 
Stenos.is 14 
Complete rr·rans. ­
Position 16 

TO·I1AL 231 

10 12 

41 38 

35 3l 

17 18 

35 35 

10 11 


11 12 

11 11 

15 15 

185 ( 8 0%) 183 (79%) 
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The authors discuss attribute independence as follows: 

suppose a large number of cases are predicted, and in each 

case the posterior probability assigned to disease y. is about 
l 

.7. We would expect about 70% of the cases to be actual cases 

of disease y.. Similarly, we expect the number of cases cor­
1 

rectly predicted to be about equal to the average of posterior 

probability values assigned to the most likely (first ranked) 

disease for each case. As the number of cases, N, becomes 

large the probability that the quantity t, 

i=N 
t = IP -f I· N/( L pi (1-Pi).) l/

2 where 
i=l 

f - fraction of correct diagnoses 


N = number of cases 


P. = the highest posterior probability assigned to 
l 

any disease for a particular case i 

i=N 

p = ( 
 I Pi)/N 


i=l 


will exceed some value v is given by P(t > v), 

v 2 - u 

P(t > v) = 1 - ( l/J2TI) e du


J 
-v 

In practice the value of t is calculated and the area under 

the N(O,l) cumulative distribution curve between -t and t is 

found from tables. This area represents the confidence 

level at which H
0 

(H
0 

: the attributes appearing in a profile 
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are independent) may be rejected. The authors test various 

subsets of the 21 characteristics. The best indication of 

attribute independence is associated with characteristics 

1, 2, 3, 4, 12, 14, 16. They are given an 11% chance of 

being independent. 
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Table 3.3.3 

cm~GENITAL E C.:l .. l\T WOi-"J_Z-SEE£T 

~~-~~~----------~-.---------------.----~-------~-

AGE____.vears, ____months I SEX 1 Mole CYANOSIS 1 Pres entI 
_ 2 Female 	 2 Absent 

1. HE.V. RT SIZE: 12. Mi\IN PUJ__.MONARY ARTERY 
l h'orrnal l Small 
2 - Large I 2 Normal 
3 Large II 3 Large I 
4 Large III 4 La r g e II 

5 Large III 
2. LEFT VENTRICULAR SIZE -

1 Norma 1 13. RIGHT PULMONARY ARTERY 
2 Large I 1 Small 
3 Large II 2 Normal 
4 Large III 3 Large 

------- ··---·-------------·----------------------------­
3. 	 R tGlIT VEHTRICUI...l\R SIZE 14. PERIPHJ:R.AL VESSELS 

l l'-:ormal 1 Decreased 
2 Large I 2 Normal 
3 Large II 3 I;-.creased 
4 Large III 

·-----------------------.i 	15. PtJLMONARY VEINS 
4. 	 LEF T ATRIUM 1 Srr.all 

1 Normal 2 Normal 
2 Enlarged 3 Enlarged 

0 Not 	Seen 
S. 	RIGHT ATRIUM 

1 N9rrnal 16. PERI PHE RAL VESSEL DISPARITY 
2 Enlarged 1 Present 

2 Absent 
6. 	 BOOT SHAPED HEART 

1 Present 17. RETICUL~R PATTEIU~ 
2 Absent 1 Present 

2 Absent 
7. 	ASCENDING AORTA SIZE 

1 Small 18. KYPHOSCOLIOSIS 
2 Normal l Present 
3 Large 2 Absent 
0 Kot Seen 

19. RIB NOTCHING 
8. 	AORTIC ARCH SIZE 1 Present 

1 Small 2 Absent 
2 Normal 
3 Large 20. HYPEREXPANSION 
0 Not Seen 1 Present 

2 Absent 
9. 	 COtNEX OR NOTCHED 

DESCENDING AORTA RADIOLOGIST'S DIAGKOSIS 
1 Present 1 Primum IASD 
2 1'.bsent 2 Secundurn IASD 
0 	 tfot Seen 3 Int erventricular Septal Defect 

4 Patent Ductus Arteriosus 
10. 	 INFln\'JJI BULUM SIGN 5 Tetralogy of Fallot 

l Pre~ nt 6 Coarctation 
2 l\bscnt 7 Pulmonary Valvular Stenosis 

8 Aortic Valvular Stenos is 
11. 	t{ARROW BASE OF HEART 9 Complete Transposition 

1 Present 
2 1'.bsent DEFINITIVE DIAGNOSIS 
0 Not 	Seen 

(Same code as above) 

From Templeton et al (1966) 
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Table 3.3.4 
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S-D Matrix Used by Templeton et al (1966) 

PAR;1•'..ETER I I I - [IETMLOGY II PUL. I AORTIC I~O:·lPLE 'l' i.: 
BEr::G PARJ\M.ETER PRIMUM SEC U!-WUM ·"- _ ___ COARC- VALVE VALVE T R,\ ~ J SF,.o-F~,Lrvn

EV;>.LUNT'ED GR1\D r: L:'>.SD IA S D rvcn PDA ,~ ,n_ T.1'\TIQ~i ,..TfTO<'I S S"'"'IOSIS pn_ 0 ~ 

=~= =~==~==~= --=~==~=~==~==~= L ~ ~-= -~~~[1=- 1=~==i ~=~-===~=~= =;:==~f~~!- -r1f~ 

?'o' 45 yr QQ 04 oo oo2~ oo 0 0 0 0 0 0

I ~~~~, 1, ~g ~g 1 ~~ ~g ~g l ~~ g n 1 ~~SEX p 

CYANOSIS I Presc::t !! 07 11 06 10 82 00 07 07 T 106­

---~,~~~:~ I ~~ ~~ ~: ~~ ~~ l~~ 9393 00 


HF.ART l+ I 13 34 39 34 I 29 18 ~g ~~ 
II 

~~ 

. SIZE 2+ 27 37 27 24 29 09 00 00 ' 25 

~~~~~~-+-· ~_3+ 60 20 16 14 os oo 07 07 I 31 


Normal 

LEFT 
 l+ 
VE~ITRICLE 2+ 

3+ Ii ~r l~ l~ fi ~~ g ~~ fi 
l
I ~~ 

1Norrnall1!! 00 03 0 6 2 3 10 91 oo 93 06 
RI GET l+ 13 31 4 5 3 7 61 09 79 07 I ~~ 
VENTRICLE 2+ 60 57 45 33 26 00 21 00 44 

1~=-=-:-=-~~-r-~i~+~~~-n-~~.21-:--r~ll~~~~1--~Q~l1..~--+~~~Q~~-1-~o~~~~~~o~o~-+~~oo oa-----1 oG 
LEFT Nor:r.al 33 95 40 46 92 91 100 100 ,~-7-

_..,,..l'..uS.._.Il..._I..._,l....fP....._,____..l_-'Lilrce 67 05 60 54 08 09 00 00 ! 13 
RIGHT Norr.:<11 j 27 95 96 100 100 100 100 100-----,l-U-7 
ATill UM .Lg_--c-: e :1_3 0~5=----1--=0-'-4--+---=0..o:O__--+---=O::....:O:___--+--O=-O.::__-J-_OO 0 0 13 
Boar r pres c n t 0 0 00 0 0 0 0 4 0 0 0 2l I 0 0 l 3 7 
SHA PE I .n..bs ent 100 lOO 100 100 60 100 7 9 I 100 G31 

~·~-~-~-~-~-~~~D~-I~N~TG-- _ . -._ 1- . -~-----+-_-- - .~-- -- . -~---'--o-;_~____._J ~-. . -.-]-_ _ __-_-_-tt_~---------~- . - · __-~- . - .------1---~-~---t--~~~~~~~~--~-~---'-'--~-~---'---~-i-~m-~-~-:-:- ~-
ARCH - r-Sir~;:-11-·-·--·H---85 

SIZE j i~~~;~l ]~ ~6 

NarCHED I P.re:::; cnt 00 

AOfrI'l\ I Absent 100
1 

i

59 40 12 06 5:> 54 

~~ ;~ ~g ~ci ~~ ~~ 
00 
67 
33 

64 
36 
00 

00 00 00 00 100 00 00 00 
1001 0 0 100 100 100 00 100 100 

O-J . __ ­I NF Lr~;o ID u..:1- Pr c s en t 'i--O-O--+--- ___...__0_6__~-4-4----1--0-0---+---0-0----t--0-0-__..___0_0 --+--0-0---­

L UM s I GN .l\bs t".'n t ~___1_0._o·_--1__9_7__-t-__9.__4____5_6____1_0_0___+--_1_0_0___-+-_1_0_0____1_0_0__-t__l_G_O__ 

Nl\R...'\O\'i I Prcscr.t ,-· 00 00 00 00 05 00 00 00 61 
HEART DA SE I Abs cnt l 00----i------....._100 100 _________ 95 100 100 100 19· 100 _________.. -t-----+-------t--=--c---·· 

s~all OG oo oo oo 55 09 oo oo 38 
MAIN Norn10.l 07 11 35 30 42 91 14 100 38 
PULl·iONA RY l+ 13 36 37 33 03 00 21 00 2~ 

ARTERY 2+ 73 28 22 34 00 00 36 00 I O·:J 
3+ o7 2s 06 o3 oo oo I 29 oo oo 

~-~-UL-IG A-R-Y-+-~~-~-~-~-,;-J-.--n-~-g'-g--+---i - --­--M-tIT-O-~~- -~~-~-+---'~-~'----+-~~~-'------11--~~-~~---+-l-g-~~~-i,i1---~~~~--+i-l--~~~~ 

ART ERY LarGc 100 04 72 57 03 00 · 00 oQ_____l_j_6
-------+--D-c_c_r~c-·o._s_c l__o_o-'---+---'-oo---+--o-o---+-o-o----+-_.;_7-'-7---+--o-o---+--4-3---+--oo I cc;-·­_d__,. ­

PE RI PH EM L 
VES SELS Normi11 00 03 06 23 18 100 50 HJ25 

Increased 100 97 94 77 05 00 07 G9 
.--~-~---t-~-s-m-a--1-1---t!-~o-o--~-o-o---+---0-0---+-~o-o~--+-~6-6~---1~-o-o-~-+-~-4-s-~-- -· 12~

P UL1·10Nt\ RY 
VEINS Norrnal 00 00 31 39 31 100 46 38 

Lar_g_e 100 1 0 0 69 61 03 00 09 00 50 
VES SEL Present I 13 1.1 68 7 3 05 00 00 07 13 
DI SPARITY Abs~nt ~·~-8_7_~+---89 32 27 · 95 100 100 93 87 

1RETICUL!\R !' Present ! 00 00 00 00 26 00 07 00 001PATTERN Abs~nt 100 10 0 100 100 74 100 I 93 100 100 
KY PHO- t----P-r_c_s_e_n_t_--tt---'-o-o--+--'o·-'--s---+-~o-'s---+~o'-o'-----1--2-6----+---''-'-o-'-o---+--1'-4'----+.......:...:..-'-o-7---+--=....:.o-=-o-· ·-

scoLios rs Absent 100 95 95 100 74 100 86 93 10 0 
-~-~---~-~--------tt-----+---'-'----+---':_.::._--+-=--'--'-----~-------'--'--'--~-l-~----+--~--~---~----

RI B Present 00 00 00 00 00 55 00 00 00 
NITTCHING Absent 100 1 0 0 100 100 100 45 100 100 100 
HYPER- Present 40 0 5 45 60 05 00 00 07 5U 
EXPAN.S_I_ON Absent 60 95 55 40 95 100 100 93 50 

=======:::=.::==:::::t:===.::=-:========:ft=========*============i=========*===========~=========*========::::!=========~========::::I=======~ 

Probabilities in per cent , eg, P(heart size 3+jIVSD) = .16 

http:Nor:r.al
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Section 3.3c 

A Summary of Medical Diagnosis Using Bayes' Theorom. Lincoln 

and Parker~ ( l96?). 

Lincoln and Parker (1967) use 16 characteristics to 

distinguish among 10 diseases associated with the liver (see 

Tables 3.3.5, 3.3.6). Paired dependent relationships are 

taken into account in the application of Bayesian prediction. 

Attributes describing a particular characteristic 7 S. 
l 

are defined as follows: 

x. 
.l 

= 0 (normal) if L. · 
l 

~ s. 
l 

< u. 
l 

x. 
l 

- 1 (abnormal) if L. 
l 

> s. 
l 

or s. 
l ~ u. 

l 

x. 
l 

= -1 (unknown) if no information available on s. 
1 

For example, a patient having all characteristics outside their 

normal ranges is described by X = { 1, 1, .•. , 1 }. Attribute 

dependence is taken into account as follows: 

= P(x1 jyj) ·P(x2 jx1 ,yj) · . ... ·P(x16 jx15 ,yj)·P(yj) 
p (y. IX) {3.3.1)

J 
}: P(x1 jy£) ·P(x2 1x1 ,y£) · ... ·P(x16 jx15 ,yJ.) ·P(y,Q,) 

£=1 

Probability values appearing on the R.H.S. of (3.3.1) are based 

on data gathered over a ten year period at The Department of 



65 

Medicine, Yale University. It was found that some probability 

values could not be estimated directly from frequency counts. 

For example, if no patients in a particular disease cate­

gory y. have an abnormal reading for S. accompanying an ab-
J 	 l 

normal reading for S. 1 , then P(x. = llx. 1=1, y.) cannot 
i-	 l i- J 

be calculated. Probability values that could not be cal­

culated because of lack of data were estimated subjectively. 

Typical conditional probability values are shown in 

Tables 3.3.7 and 3.3.8. The authors report: 

1. 	 . .. it became clear that a priori weights negated a 

portion of the usefulness of the program as an automated 

consultation, namely, to bring into consideration less 

conunon disease entities or less usual symptom-disease 

relationships. It was often more medically useful to 

consider an artificial population where all possibilities 

(prior probabilities) are made equally likely.­

2. 	 The· choice of order of the symptoms was not as critical 

as initially presumed, 

3. 	 In 22 of 40 cases the program ranked the proper diag­

nosis correctly. The success of the program is con­

sidered sufficiently encouraging to warrant a more inten­

sive study. 

No other quantitative information is given to support their 

, .C...1..a1ms. 
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Table 3.3.5 

Disease List and a Priori Probabilities 

Disease Categories Prior Probabilities 

\ i1 1i L· r atiti' 
\11!1 ili1o11.d • ir1 Ln,i·. 
l11:1.tlll'p.ili1· 1>11,ln1d1P 1 1 
i-:,11.tll\'p .• :i, Pl•,ln1, ti1111 
1'. ,,11 .. ·1 ·r1 •l i,· L·irrl 1• "j, 

( :.11di.w , 1n l111,j, 
l'ri111.11-.· l•ili:uy 1 i1rl1,.,i, 
J".:tly jj,, I 

1.r.1!1:1!111111 
I ~ , · ! i ,_1 i l1 I l · t tr ! · • : I 11 · I1 ~ ! .... • 1 ~ ' I t · \ 1 ' -. l 1.. t i4 ' ' '1 r ~ 

.26 

.10 

.04 

.OG 

.18 

.Ill 

.OG 

.07 

.I~ 

.ll-l 

Taple 3.3.6 

Characteristics Considered and Intervals for Defining Attributes 

l' 11il' 

s, 
s.. 

-­ s1·n11n hili111hi11 

- serum I1il iru 11in 

( l lllilf. ) 

(tol:t}) 
1., 
I... 

11.0 

II.II 

l I 

l'. 

11.) 

I :) 

111'...'. 

111·~ 

\till 

11111 
1111 

11il 

S:1 - - serum H.S.P. 

s =serum ccpl1. !liw. 
I 

s .• -- .~l'f1tlll tl1~ · mol tml1idil\ 

S1: ... Sl'flllll :ilk. p]10,, 

L: 
I., 
I ..~ 
I.,, 

()_() 

ll.CI 

0 () 

II .fl 

l' 

l I 

1' .. 
l "1: =­

"';" .(•', I• 1111!!1111 

2 .fl I l.111•:1 ·r·, 
.j(} \l.1t L::..: : tll 

.'-,(i SLit11J\\ .tLl 
0 

' 

s, = -.1·n1m I Ll!l,.llll i.11 :t'l' 1., -= ()_() L -­ -!fl .I) t..:.111111 ·11 ' 

s·' - "''l"lllll tnt:d pn11<-i11 I., (i ..) .. .S.1 '-!:tJ\ j()I) 11:1 
~ 
s~, ='-t'l'lllll all111111i11 1.,1 -­ :).() t':· . - .i . l ~~1 t I ltlll int 

S 111 =~L·n1m o:_o:lol11tli11 

S11 ="Tlllll ((Ital ·d1ok,t1T•il 
(. l t1 = .') .') 

I. I I = 1.111.:2 
l'1 .. 
I -ll 

·­

-
-I.I) 

:2 .'50.0 

•:111 

111·.: 

1111> 
\11(1 

1111 
11il 

Si:: = "t'rt !Ill. In ·1· t !1n!.-,t.-1nl 1.,:: -­ :2S.ll l " I:: - l~.ll lll'..!. llHI 11d 

S1:;= Ii\ er 'i l.l' 1.1:; = :2.0 l' 1:· -­ :;.o 

S11 -- Ii \"t ·r finr1111·" I. I I = 2.0 l. I I -· :} () 

s,:; -- -.plt 0 ("l1 p:dp.1hilit~ L1~. = 1.0 l' 1:. · - :2.0 

S11; - :,ttJul t ·11lor !.],; .:..::: 2.i1 l",,; = .).0 

http:l'ri111.11
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Table 3.3.7 
... 
J ; 

Conditional Probability Values for y 1 , Viral Hepatitis 

P(x.=ll P(x.=ll
l lCharacte­

xi-l=l,yl) xi-l=O ,yl)ristic 

',; frcl' c l111l.-,tn11l 
.') I .in-r p;ilp;1liilit~· 

.) I . i,·1 ·r rin111H ,-; 

J, B.S.l'. 
.') ., .t' ,l lt'.1111 it• .l'l . ( SCO !'\ 
() Sc ri.c111 l1ili111lii:1 t T1•!:dl 
- S1•nt111 l1ili:·11!ii11 I 111i11.) 

~ Splr ·1·11 p.1l11. 1 l1ili1~ 

<) :\ll ll llllill 

Jll .\Jl. pf,,,,_ 

11 S!o11l L·nlnr 

12 T111.tlp111f..i11 

t :) Ctpl1. lh ·. 

14 <:l1.!ndi11 
j .) Tl.~ J1111I t1 :1l ,;clih· 

](i Cl1r1k-'.· ,.., '! 11l.il : 

I 

J. 
. ~II 

.hi 

Nl 
..sn 
.\ :) 

.<n 
~ .) 

.7CJ 

.)I 
.~-

. I'·> 

.1<1 

..·11 

JilJ 

. II 

. ~.~ 

F: 

.s-:­
· )..~· 

.\.;7 

I. 
. :)(; 

.Sfi 

. I.} 

.:32 

.21 

.<n 
,)(j 

"i\l 

. ) . ) 

.O<) 

..)fl 

. lJ~ 

II. 

.>I 
. ..}<) 

..I''· ) 

.<m 
·'S'' . ) 

:'l:'l 

.'.30 

.71 

.~.') 

Ji7 
,(i() 

Table 3.3.8 


Conditional Probability Values for y 5 , Postnecrotic Cirrhosis 


P(x.=ll P(x.=ll
l lCharacte­

x. =0, Y-)ris t:Lc x~_ .. 1=l,y5) i-1 .J 

'., .frl't' t·lt11lnll'nil .7.'5 
.') I .l\ t'l . p;tlp . tl1ilit~· HJ .S<i .·r3 
-~ I .i' · ·r rirn11w~<;,) .fill :; :) . .()() 

..} H.S.I'. _.') .') ...1-t .70 
.') Tr;111, ;1t:ti11,1,1· ( SCOT1 .<i:l Ji() 0. 

() "' 111111 liilirnJ.in ( Tt•t!ll ( i.) .';'~) .·I'. ) 

-; S1· rnfll l1ili r11l 1i11 ( l 111i11. ..... 2 .<n .<i7 
<-; '>pl1..-1.1p.tlp.1hili!~ . .:,(~ ..=>7 .17 
\I :\ 1l 11 1111i11 :M i . .I-ii .k-1 

)fl .\ lk. pLo·;, (i:) .<n I .-1 ­1 

11 St1111l l·•1.l11r . >S .:38 .33 
12 .T••t .•l111• .•l1i11 .!l-1 .71 .:2S 
I; ( ', pl1. ll11v . .<i2 1. -:,

·'­
1-l (;j,,f11ili11 .Id .CiG •.::>G 
I .i ·111\1!111! I 111 ' 'i' Ii~~ . i .'-; .G3 .en 
JI, ( : j,, ,J,., ,,.,,.j !qt.if ) 

. " 
,.., ..., 

.- ) · ) ..so 
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SUMMARY OF CHAPTER III 

Many researchers have investigated the premise that 

Bayesian procedures may be useful diagnostic aids; Chapter III 

has briefly reviewed a substantial portion of such research 

to date. Most investigators have conveniently assumed 

attribute independence; research papers which attempt to 

deal with non-independence of attributes have been presented 

in detail. The work of Horrocks et al (1972) is included 

as an example of an ongoing application of Bayes' formula 

in a clinical setting. 



(
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' 1 
{ 

CHAPTER IV 




All nature is but art~ unknown to thee; 

All chance~ direction~ which thou canst see. 

- Alexander Pope 

INTRODUCTION TO CHAPTER IV 

Literature concerning the application of Bayes' 

formula to medical diagnosis has had little success in ex­

plaining why accurate predictions are often possible in 

spite of non-independence of attributes. Chapter IV examines 

the accuracy of predictions under various deviations from 

attribute independence. The study looks at paired dependence 

among 6 attributes when Bayes' formula is used to predict 

diagnoses from among 6 disease categories. 

Section 4.1 describes a Monte Carlo method for 

simulating the usual Bayesian diagnostic process. Section 

4. 2 establishes 500 as· a reasonable sample size (per 

disease category) on which to predict diagnoses. Section 

4.3 illustrates decreasing Bayesian accuracy as deviations 

from independence increase. Section 4.4 presents a sum­

mary of the stu~y. 

- 70 ­
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Statistics? I can prove anything by statistics except 

the truth. - G. Canning 

Section 4.1 

Computer simulation of Bayes' formula as applied to 

medical diagnosis. 

Introduction 

A computer simulation for the Bayes' process of 

diagnosis was written for the CDC 6400. In the first 

portion of the program, P(x. IY·) v~lues and dependent
l J 

relationships (ie, for the "true" state of nature) are 

specified. Profiles are then generated according to 

this actual probability distribution of attributes among 

diseases. The number of individual profiles (sample size) 

generated in each disease category is an input· parameter 

denoted by LN. P(x. jy.) values are then estimated by the 
l J 

frequency with which attributes occur in the generated 

random sample of the disease-attribute universe. A Bayesian 

diagnosis is calculated for each possible attribute profile 

according to (i) estimated P(x. !y.) values, assuming
l J . . 

attribute independence and (ii) actual P(x. !y.) and joint
l J 

probability values, ie, taking into account non-independence 

of attribute pairs. The resulting number of matches is 

denoted by M. For each value of LN, 5 "random samples" 

of the population are generated at a specified level of 

attribute dependence; thus, the computer program simulates 
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the process of predicting diagnoses on 5 distinct random 

samples of a disease-attribute population (see Tables 4.2.1, 

4.2.2). 

1. Describing the disease~attri~ute universe. 

(i) prior probabilities, P(y.). 
. J 

The frequencies with which diseases occur in the 

population are made equal in order to facilitate the inter­

pretation of effects of deviations from independence on 

Bayesian accuracy. That is, 

P(y.) = l/K, j = 1,2, ... ,K where 
J 

K is the number of disease categories (6). 

(ii) probabilities conditional on disease categories, 

p <x. 
1 
IY.

J 
> • 

Each characteristic i is defined as present (x.) or absent 
1 

(x.). Thus, P(x. !y.) is the probability of attribute 
1 1 J 

x. being present in an individual having disease y. and 
l. J 

P(x. !y.) is the probability of characteristic i being absent 
1 J 

in an individual having disease y .. Of course, P(x. jy.) = 
J 1 J 

1-P(x. !y.). P(x. !y.) is defined for each i,j combination. 
1 J l J 

Values of P(x. !y.) read into the program are chosen so that 
1 J 

(i) they are between .01 and .5 in the majority of cases, 

conforming to literature values of P(x. !y.), (ii) posterior
1 J . 

probabilities do not exceed .5 in the majority of cases. 

This ensures that Bayes' formula is being applied to non­

trivial problems of diagnosis, ie, it is unlikely that 
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• 


correct diagnoses can be made by considering subsets of 

key attributes, or without recourse to mathematical 

computations . 

In each disease category the appearance of one characteris­

tic, denoted by xB, is made dependent on the appearance of 

another characteristic, denoted by xA, ie, P(xBlxA,yj) is 

specified for each yj, j = 1,2, ... 6. xA and xB may, and 

usually do, identify different pairs in different disease 

categories. This is done to conform with the nature of 

symptoms and diseases - different groups of symptoms occur 

jointly for different diseases. For a specified yj, P(xBlxA,yj) 

= 1-P(xBlxA,yj)• P(xBlxA,yj) may be determined from pre­

viously defined values as follows: 

from 

(4.1.1) 

it follows 

Of course, 

Two constraints are imposed upon assigned probability 

values, · as suggested by (4.1.2): 
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The 	first constraint ensures P(xB!xA,yj) is non-negative, 

the 	second constraint ensures P(xBlxA,yj) is not greater 

than 	unity. 

To summarize, the following values are read into 

the 	computer program and form a complete probabilistic 

description of a disease-attribute universe: 

p (y.) j = 1,2, ... ,6
J 

P (x. ly.) i = 1,2, .•. ,6 j = 1,2, ... ,6 
1 J 

P(xBlxA,yj) j = 1,2, ... ,6 

A subroutine identifies the xA, xB pair in each disease 


category. The program returns an error message if con­

straints (a) and (b) are not satisfied. 


· 2. 	 Simulating simple random sampling of the disease-

attribute universe. 

In the second portion of the program attribute profiles for 

individuals are generated according to the actual distribu­

tion of attributes among diseases. For example, suppose 

we wish to generate a profile of an individual having 

disease y .. A random number generator8 return s a fraction 
J 


Z ~ U(O,l) for each x. except xB. x. is assigned to the 

1 	 1 

individual if z. < P(x. !y.), otherwise x. is assigned to the 
J.. .... 1 J 	 1 
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individual. XB is similarly assigned according to the 

presence or absence of characteristic A and the value of 

the random variable Z: 

A present (ie, xA) 

xB otherwise 

A _absent (ie, xA) 

xB otherwise 

The number of individual profiles to be generated in each 

disease category is an input parameter denoted by LN. 

3. Calculating M. 

The individual profiles generated in the second portion of 

the program are used to estimate P(x. !y . ) values. For example,
1 J 

suppose of the individuals in disease category yj havea 1 
A 

present, have present, etc. Then P(x1 !yj) =x 1 a 2 x 2 

a 1/LN, ;(x lyj) = a 2/LN, etc. Prior probabilities are2 

taken to be l/K, according to the actual distribution. After 

a population of size LN has been generated for each disease 
A 

category and P(x. !y.) values determined, a diagnosis is cal­
1 J . . 

culated for each possible attribute profile9using ~(x. ly.)
1 J 

values and assuming attribute independence as follows: 
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A k "' , n. "' 1-n. 
1 1 p (y. IX) = [rr (P(x.[y.)) ·(1-P(x.!y.)) ] ·P(y.)

J i=l l J l J J 
(4.1.4) 

where n. = 1 if x. 
l l 

n. = 0 if x. 
l l 

k = number of attributes in profile (6) 

K = number of disease categories (6) 

Diagnoses are also calculated according to the actual dis­

tribution of attributes among diseases (4.1~5): 

k n. 1-n. 
P(y. [X)

J 
= [ 11 (P(x. fy.))

i=l l J 
1 (1-P(x. jy.)) 

l J• 
1 

] ·F. ·P(y.)
J J 

i~B (4.1.5) 

where P(xBlxA,yt) if xB,xA 

Ft = 
P(xBlxA,y.Q.) 

P(xBlxA,y£) 

if 

if 

-
xB,xA 

xB,xA 

F. 
J 

= F £ when £ ·- j 

\ p ( XB IxA 'y Q, ) if -
xB,xA 

For each profile X the disease category with the highest 

posterior Bayes' probability is chosen as the predicted 

diagnosis. The number of matching predictions is denoted 

by M. Sections 2 and 3 of the program are repeated 5 times 

for each value of P(xB[xA,yj) j = 1,2, ... 6, and Mis the 

average number of matching predictions for these 5 trials 
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( refer to Tables 4.2.2, 4.2.5). 

4. Defining levels of dependence. 

In the fourth section of the program P(x. !y.) values remain 
l J 

unchanged while P(xBlxA,yj) values are altered. As 

IP(xBlxA,yj)-P(xBIYj) I increases for each yj, the disease­

attribute system may be said to be increasingly deviating 

from independence. The program resumes execution by 

ensuring constraints (a) and (b) are satisfied. 

Further reference to Bayes' formula in. the sections 

which follow imply (4.1.4). 
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It is my feeling that the chief duty of a statistician is 

to interpret data in such a way that they convey knowledge 

for the purposes of prediction. - W. Edwards 

Section 4.2 

The sample size, LN 

The effects of sample size on the accuracy of 

Bayesian prediction were investigated for varying departures 

from attribute independence for two disease-attribute popu­

lations. Table 4.2.1 below shows the true distribution of 

attributes among 6 disease categories for the first population 

considered. The results of computer simulations are tabu­

lated in Table 4.2.2 and presented graphically in Figure 4.2.1. 

Table 4.2.1 

Data Set 1. The True Distribution of Attributes Among 

Diseases. xA and xB Identify a Dependent Attribute Pair 

xl x2 XJ X4 XS x6 XA XB 

Y1 

Y2 

Y3 

Iy 4 

Y5 

y6 

.OS* 

.22 

.13 

.10 

.19 

.16 

.10 

.10 

.22 

.16 

.OS 

.13 

.13 

.13 

.16 

.19 

.22 

.OS 

.16 

.19 

.19 

.22 

.13 

.10 

.19 

.16 

.OS 

.13 

.16 

.19 

.22 

.OS 

.10 

.OS 

.10 

.22 

·x 
1 

X2 

X3 

xl 

x2 

X3 

x6 

XS 

X4 

XS 

x6 

x6 

*Table entries are P(x. !y.)
l J 
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Table 4.2.2 

Data Set 1. The Number of Correct Predictions for Sample 

Sizes of 50,250, and 1000 for Different Levels of Dependence 

and for Independence 

j=l,2, ... ,6 

'number of correct predictions, 

LN = 50 M 

M max 

LN = 250 M 

M = 64 

-
LN = 1000 M 

Independence* 

.2 

• 6 

.99 

I 
29,33,34(39~45!36.0 

I 

25,30,33,36,41,I 33.0 
I 

21,21,21,22,28122.6 
I 

17,17,18,18,19 1 17.8 
. I 

l 
53,54,5-0,57,64156.8 

I 
47,48,49,50,55149.8 

I 
27,27,28,29,31128.4 

I 

19,21,21,22,22121.0 

r 

58,58,60,60,63:59.8 

I 
51,52,53,53,58153.4 

I 
26,27,28,28,30127.8 

I 
17,19,19,20,22119.4 

J 

*P(xBlxA,yJ.) = P(xB!y.) j = 1,2, ... ,6
J . 

We would quite naturally expect Bayes' formula to perform 

best when the attributes are independent or when P(xBJxA,yj) ­

P(xBIYj), j = 1,2, ... ,6. This question will be addressed 

in Section 4.3. In this section we investigate the ef£ects 

of sample size, LN, on the accuracy of predictions. For 

example, suppose we wish to test the null hypothesis H :
0 

Bayes' formula performs no better with LN=lOOO than with 

LN = 250 when the attributes are independent. The Mann-

Whitney U test is useful as a substitute for the unpaired 

t-test v.,;hen assumptions underlying the t-test (normally 

distributed populations with equal variances) are not 

satisfied. The number of matches is a discrete random 

variable and hence does not follow a normal distribution; 
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since the data sets are small but do have ordinal measurement 

level, the Mann-Whitney U test is appropriate to analyze 

the data in Table 4.2.2: 

u 	 = min (Ul,U2) where 

= n1·n2 + [n (n +l) /2] -Rul 1 1 1 


u2 = n1·n2-u1 


= -size of one sample
nl 


= size of other sample
n2 

= sum of ranks assigned to sample 1Rl 

= sum of ranks assigned to sample 2R2 

-
MLN=250 = MLN=l~OO 


Sample 1, LN = 250 Sample 2, LN ~ 1000 ! 

M Rank M Rank 

53 1 58 5.5 

54 2 58 5.5 

56 3 60 7.5 

57 4 60 7.5 

64 10 63 9 

R =201 
R =35 .
·2 

U = 5, DO NOT REJECT H
0 

u	 =20
1

u2=n1·n2-u1 

=5·5-20 

=5 

U=min(20,5) 

=5 

The critical value of U at a= .05 is u. 05 , 5 , = 4 for5 

a one tail test. Since the calculated value of U is greater 

than the critical value we do not reject H in favour of 
0 

better performance with larger sample size. Table 4.2.3 
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sununarizes the results of several such tests. 

Table 4.2.3 

Data Set 1. Comparisons of Bayesian Accuracy (assuming inde­

pendence) for Different Sample Sizes 

LN = 50 u LN = 250 u LN = 1000P(xBjxA,yj) 

-Independence M = 36.0 5 M = 59.8O* M = 56.8 

-.2 M = 33.0 4 I .M = 53.4O* M = 49.8 

I M.6 M = 22.6 10 = 27.82.5* M = 28.4 
i 

I 
!-.99 M = 17.8 6 M = 19.4M = 21.0-. 5* 

t 
*indicates significant difference between adjacent means, 

a = .05, one tail test. 

We conclude that a sample size of 250 is preferable to a 

sample size of 50 and that variations in the number of 

correct predictions between sample sizes of 250 and 1000, 

at specified values of P(xBlxA,yj), are not significant. 

Similar computer simulations were performed with the 

population described in Table 4.2.4. Tables 4.2.5, 4.2.6 

and Figure 4.2.2 sununarize these results of computer simula­

tions on Data Set 2. 
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Table 4.2.4 

Data Set 2. The True Distribution of Attributes Among 

Diseases. xA and xB Identify a · Dependent Attribute Pair 

xl .x2 X3 X4 X5 x6 XA XB 

.47 .37 .33 .34 . 4 6 .50Y1 xl x6 

.13 .29 .39 . 34 . 34 . .18Y2 x2 XS 

.13 .31 .37 .45 .61 .09Y3 X3 X4 

.15 .37 .58 .38 .44 .45Y4 xl XS 

.73 .20 .22 .34 .lS .28 x2 x6 

.47 .18 .45 .S4 .08 .S3 X3 x6l:: 
Table 4.2.5 

Data Set 2. The Number of Correct Predictions for Sample 

Sizes of 50, 250 and 1000 for Different Levels of Dependence 

and for Independence 

IP(xBlxA,yj) number of correct predictions, M max M = 64 

j=l,2, ... ,6 LN = 50 M LN = 250 M LN = 1000 M 

Independence 

.OS 

.45 

.99 

4S 48 51 

34 34 3S 

46 51 51 

24 29 30 

52 

36 

53 

31 

I 

ss'so.2 
I 
I 

3913S.6 
I 

53150.8 
I 

34 1 29.6 
l .. . 

l ____._ 

so 54 SS 57 

34 3S 35 36 

50 Sl 51 54 

29 30 31 32 

r 

57:54.6 
I 

38 135.6 
I 

I
55 152.2 

I 
33131.0 

l 

53 59 61 61 

35 38 40 40 

52 55 57 S7 

29 29 30 31 

I 

63 1 59.4 i 
I 
I 

43139.2 
I 

S9!S6.0 
I 

34130.6 
l 

I 
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Table 4.2.6 

Data Set 2. Comparisons of Bayesian Accuracy (assuming inde­

pendence) for .Different Sample Sizes 

. P (xB IxA ,y.) 
. J-­
Independence 

LN = 50 
.. .. «2' 

__ ...,.... 

-
M = 50.2 

.n 
_..._ •. 

4 .5 

LN = 250 

-
M = 54.6 

u 

4.0 

LN = 1000 

-
M = 59.4 

.05 M = 35.6 11.5 M = 35.6 3.5* M = 39.2 

.45 M = 50.8 a.s M = 52.2 2.5* M = 56.0 

.99 -
M = 

-
29.6 9.5 -

M = 31.0 10 
-
M = 30.6 

*indicates significant differen9e between adjacent means, 
a= .05, one tail test. 

From 1able 4.2.6 we note that increasing the sample size does 

not consist~ntly result in increased Bayesian accuracy. 

To date, applications of Bayes' formula to medical 

diagnosis have rarely taken LN above 300. The remaining 

computer runs are based on LN = 500 (i) since we wish to 

simulate practical applications in restricting the sample 

size (ii) since . the performance of Bayes' formula when 

LN = 250 and LN = 1000 are not too different at extreme 

levels of dependence, it is expected that a sample size 

between 250 and 1000 is satisfactory. 
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GO . LN=IOOO 
Lf\1=250 

....,,.
M4o 

LN=50 

20 

.0IND 

FIGllAE 4~.2.2~ DATA SET 2 -
Pnr..OT OF rr~ \~~ P{~tt1 lt,&& y.Jao 

~ 
LN::IOOO LN:;250 

·LN=50 

. LNr.2{~0 
LNr:IOtlO 
LN=50 

.4~.-4-5-~.G----~.S-----..OO· fND .05 .2 
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Quoth she, I've heard old cunning stagers 

Say fools for arguments use wagers. - Samuel Butler 

Section 4.3 

Effects of Non-Independence of Attribute Pairs on Bayesian 

Accuracy. 

Introduction 

In this section the effects of non-independence of 

attribute pairs on Bayesian accuracy are examined. A disease-

attribute (D-A) population is defined by P(x. [y.) and 
l J 

P(xBlxA,yj) values, i, j = 1,2, ... 6. The Monte Carlo prog­

ram then generates 500 individual profiles in each disease 

category according to the actual probability distribution 

of attributes among diseases. P(x. !y.) values are estimated 
l J 

from the frequency of attribute occurrence within each 

disease category. Bayesian predictions are calculated (i) 

from actual P(xi!yj) and P(xB!xA,yj) values, accounting for 

attribute dependence (ii) from estimated P(x. ly.) values, 
l J 

assuming attribute independence. In each case the pre­

dieted diagnosis is the disease category with the highest 

posterior probability. The average number of matching 

predictions for a specified value of P(xBlxA,yj) is denoted 

by M. 
A parameter, DH, which measures deviations from 

attribute independence is defined. A visual inspection of 
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plots of Mversus DH suggests that M may be a linear 


function of DH, however, this hypothesis is not consis­

tently supported by the data. 


Notation 

A word or two concerning notation may be helpful 


for the discussions which follow. Three distinct D-A 


populations are examined, they are referred to as Dat~ Set 


3, Data Set 4, and Data Set 5. Mi is the average number of 


correct Bayesian predictions (ass-urning attribute inde­


pendence) when P(xBlxA,yj) = i. Similarly, a~ is the 


variance of Mi values. For example, refer to Table 4.3.2 


of Data Set 3: when P(xB!xA,yj) = .4, we note M. 4 = 30.80 


2
and e.4 = 2.70. 

Defining DH 

Figures 4.3.1, 4.3.2, and 4.3.3 are plots of M versus 

P(xBjxA,yj) for three distinct disease-attribute populations. 

While the shapes of the plots differ markedly, we may expect 

M to decrease with increasing deviations from attribute 

independence. Referring to Table 4.3.4 of Data Set 4, we 

note P(xBjyj). values are .50, .34, .45, .. 44, .28, .53 for 

j = 1,2, .. e,6 respectively. If deviations from attribute 

. independence are to occur, then we may expect Bayesian 

prediction to perform best when .28 ~ P(xBlxA,yj)~.53 since 

this range of P(xBlxA,yj) values minimize · (in a very non­

rigorous sense) deviations from attribute independence. 

http:P(xBlxA,yj)~.53
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Figure 4.3.2 indicates that Bayes' formula predicts equally 

well at P(xBlxA,yj) = .4 and .5, and that M decreases 

significantly as P(xBlxA,yj) assumes values outside the 

range .4 to .5. 

Similarly, in Data Set 5, Table 4.3.7 indicates 

P(xBlyj) values are .22, .16, .19, .13, .10, and .22 for 

j = 1,2, ... ,6 respectively. We may expect Bayes' formula 

to perform best when .10 ~ P(xB!xA,yj) ~ .22. Figure 4.3.3 

indicates that this- is so. While ~. 1 , and ~. 2 do not differ 

significantly, both are significantly greater than other 

M values (except ~IND' when the attributes are independent). 

We wish to define a parameter, DH, which measures 

deviations from attribute independence such that plots of 

~ versus DH will have similar configurations for any disease-

attribute population. Defining DH by: 

DH where 

K is the number of disease categories in the population 

DH measures an average deviation from attribute independence, 

0 ~ DH < l~ DH = 0 implies attribute independence. As DH 

increases, a disease-attribute population may be said to be 

increasingly deviating from attribute indepen dence. 
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M as a linear function of DH. 

Figures 4.3.la, 4.3.2a, 4.3.3a show M plotted 

-against DH for Data Sets 3, 4, and 5 respectively. M in­

dicates the central tendency of repeated observations of 

M at various values of DH. These plots suggest that the 

response variable M may be a linear function of the inde­

pendent variable DH. Since repeat observations of M are 

available at each value of DH, an estimate of pure error 

may be calculated, and this estimate may be used to judge 

the adequacy of the following model: 

where (1) 

B0 ,B1 
are independent parameters in the model 

£..
l.J 

are assumed to be independently and identically 

distributed N(0,0 2 
) 

i = 1,2, ... ,p pis the number of distinct points 

in the design space 

j = 1,2, ... n. 
1 

n. 
1 

is the number of replicates at 

each distinct point in the design 

space 

The estimates of B and B shown in Figures 4.3.la, 4.3.2a,0 1 

4.3.3a are obtained using standard . least squares procedures 

(refer to Draper and Smith (1966)). 

A detailed analysis of Data Sets 3, 4, and 5 follows. 
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Data Set 3 

Table 4.3.1 

Data Set 3. The True Distribution of Attributes Among 

Diseases. xA and xB Identify a Dependent Attribute Pair 

y. xxl x2 X3 X4 XS x6 XA BJ 

.06* .09 .11 .18 .29 .36Y1 X3 X4 ­

.04 .07 .13 .19 .so .3S X'
Y2 xl 2 


.. 03 .08 .14 .40 .26 .34
Y3 x6 X4 


.04 . 0 7 .lS .21 .27 .48
Y4 X3 x6 


.OS .10 .11 .22 .28 .32
Ys xl x2 


.06 .11 .12 .20 .24 .31 Xe
y6 XS 0 

*Table entries are P <x. 
l 
IY.J > 

Table 4.3.2 

Data Set 3. The Number of Correct Bayesian Predictions, M, 

(assuming independence) at various levels of dependence 

and at Independence 

Dependence Levels, P(xB!xA,yj) 

Run IND* .1 " 2 . 3 • 4 .s .6 . 7 . 8 .9 

1 32 15 20 27 32 27 2S 24 23 22 

2 39 31 26 30 32 24 23 . 22 19 18 

3 so 40 32 34 29 25 23 22 19 19 

4 52 38 29 32 29 22 21 20 20 18 

5 32 21 30 30 32 23 26 24 21 23 
-ean M 41. 00 29.00 27.40 30.60 30.80 24.20 23.60 22.40 20.40 20.00 

""2
0 92 ~ 0 116.50 21. 80 6.80 2.70 3.70 3.80 2.80 2.80 5.SO 

DH 0 .167 .14 0 .140 .170 .243 .343 .443 .543 .643 ____. 

*Inde pendence, ie, P(xB ixA,yj) = P(xBiyj) j = 1,2, .... ,6 
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Referring to Table 4.3.2, we wish to examine for 

significant differences among M ·values at different levels of 

dependence. 5 observations of M are available at each 

P(xBlxA,yj) valueo Assuming Mare normally distributed at 

each P(xBlxA,yj) value, we first establish homogeneity of 

group variances which is required before comparing Mvalues. 

The L (see Croxton et al (1967)) and Q (see Anderson and 

McLean (1974)) statistics may be used to examine for homo­

geneity of group variances. If there is any difference 

A2
between cr values, L will be less than 1, approaching 0 as its 

lower limit. L = 0 represents a condition of maximum non-

uniformity which would not be approached in actual practice. 

The Burr-Foster Q test is also used to test the assumption of 

homogeneity of population variances which is required in 

the ANOVA technique. Large values of Q lead to rejection of 

the hypothesis of equal population variances. Both tests can 

be applied to groups of unequal size. 

Hypothesis testing 

' "'2 "'2
Inspection of Table 4.3.2 suggests that o_ 2 , o_ 3 , 

A2 A2 
... , o. 9 may not be significantly different, while oIND' 

~~l may differ significantly from other group variances. 

These suppositions are examined for the following tests of 

hypotheses: 
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H ( 1) : 
0 

L TEST: L = p ( h ~~ )l/p I ( ~ ;~) p = number of groups (8) 
i=l l i=l l 

= 8(21.80·6.80· ... ·5.50)118 / (21.80+6.80+ ...+5.50) 

= .620 = .76 COMPARE TO CRITICAL VALUE, L .05,5,8 

DO NOT REJECT H (1)
0 

p p...... 4 ""2 2Q TEST: Q = ( E cr • ) I ( l: 0.)
l li=l i=l 

. ? 2 2 2 
= (21.80-+6.80 + .•. +5 . 5 ) / c2i.ao+6.80+ ...+5.5) 

= .24 COMPARE TO CRITICAL VALUE, Q = .232.05,4,8 

DO NOT ACCEPT H (1) AT a = .05 
0 

COMPARE TO CRITICAL VALUE =Q .01,4,5 
.274 

DO NOT REJECT H (1) AT a = .01 
0 

· ""2 ""2 A2
H (2) : cr = a = = cr 

0 .1 .2 .9 

L TEST: CALCULATED L = .36 COMPARE TO CRITICAL VALUE 
L = .626.05,5,9 

DO NOT ACCEPT H (2)
0 

Q TEST: CALCULATED Q = .51 COMPARE TO CRITICAL VALUE 
Q = .206

.05,4,9 

DO NOT ACCEPT H (2)
0 

""2 ""2 ""2 "2H (3) : = 0 = 0 ::::::: = 0 
0 

0 IND . 2 . 3 .9 

L TEST: CALCULATED L = .42 COMPARE TO CRITICAL VALUE 
L.05,S,9 = .626 

DO NOT ACCEPT H (3)
0 

Q 'TEST: CALCULATED Q - • 45 COMPARE TO CRITICAL VALUE 
206Q.05,4,9 = • 

DO NOT ACCEPT H (3)
0 

http:c2i.ao+6.80
http:21.80-+6.80
http:21.80+6.80
http:8(21.80�6.80
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Referring to H (1) , the L tests accepts the null 
0 

hypothesis at .a = .OS, while the Q tests accepts H (1) at 
0 

an a level slightly greater than .OS. Both tests agree in 

rejecting H (2) and H (3). These results are interpreted
0 0 ' 

A2 A2 A2 
as follows: a. 2 ' a_ 3 , ... , a. 9 do not differ significantly, 

and ~~ND' ;~l differ significantly from other group variances. 

Having established homogeneity of group variances at 

P(xBlxA,yj) = .2, .3, ... , .9 we may proceed to examine for 

differences between M: 

Ho: M • 2 = M. 3 = . . . = M. 9 

ANOVA TABLE FOR DATA SET 3 

SOURCE DF SS MS F F.os(CRITICAL) 

between groups 7 631.17S 90.168 14.4S6 2.32: REJECT H 
0 

within groups 32 199.600 6.238 

Since the calculated F = 14.4S6 exceeds FCRIT = 2.32, 

we conclude that at least two Mvalues are significantly 

different. One test that allows investigation of all pos­

sible pairs of means in a sequential manner, and keeps the 

a level constant for each comparison, is the Newman-Keuls 

test (refer to Anderson and McLean (1974)). 

The upper right triangular portion in Table 4.3.3 

contai ns differences between Mvalues, the lower left 

triangular section contains critical values for a = .OS. 

The calculated difference is compared to its corresponding 
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critical value, and a calculated difference greater than 

its critical value implies a significant difference between 

two means. For example, .40 is the first value in the first 

row of Table 4.3.3: M. 8-M_ 9 = 20.40-20.00=.40. Since 

.40 < 3.22, H : M. 8 = M. 9 is accepted. Similarly, 10.80 is 
0 

the last value in the first row of Table 4.3.3: M. 4 -M. 9 = 

30.80-20.00=10.80. Since 10.80 > 5.12, H : M. = M. is 
0 4 9 

rejected in favour of M_ > M_ 9 . The last column in Table4 

4.3.3 and Figure 4.3.1 summarize the findings of the mul­

tiple comparisons. 

Table 4.3.3 

Data Set 4. Newman-Keuls ·Multiple Comparison Test for 

Significant 	Differences Between Group Means. 

Groups, Ascending Means Left to Right 

Groups having 
• 9 .8 . 7 . 6 .5 . 2 .3 . 4 no sign._diff . 

for M 

. 9 . 40 2.40 3.60 4.20 7.40* 10.6* 10.8* • 5 f • 6 f • 7 I • 8& • 9 

. 8 3.22 2.00 3.20 3.80 7.00* 10.2* 10.4* .5, .6,. 7&.8 

. 7 3.89 ~.22 1.20 1.80 5.00* 8.2* 8.4* .5,.6&.7 

.6 4.29 3.89 3.22 .60 3.80 7.0* 7.2* .2, .5&.6 

.5 4.57 4o29 3.89 3.22 3.20 6.4* 6.6* .2&.5 

.2 4.79 4.51 4.29 3.89 3.22 3.2 3.4 .3, .4,&.2 

.3 4.97 4.79 4.57 4.29 3.89 3.22 .2 .4&~3 

.4 5.12 4.97 4.79 4.57 4.29 3.89 3.22 

* 	indicates significant difference between group means, 

a = .OS. 


In Figure 4.3.la, M indicates the central tendency of 

repeated observations of the dependent variable M at 7 

http:30.80-20.00=10.80
http:20.40-20.00=.40
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10
distinct values of the independent variable DH. The fitted 

model is 

M . . = 31 . 5 9 0- 2 0 . 0 0 8 DH . . 
1] 1J 

The ANOVA Table is shown below. 

ANOVA TABLE 

Data Set 3, Model (1) 

Source DF SS MS F FCRIT(a=.05) 

Model 2 25373.756 12686.878 

Mean 1 24850.225 24850.225 

Model (CFM) 1 523.531 523.531 

Residual 38 307.244 8.085 

Lack of fit 5 82.044 16.409 2.404 2.515 

Pure Error 33 225.200 6.824 

Total 40 25681.000 642.025 

Mean 1 24850.225 24850.225 

Total (CFM) 39 830.775 21.302 

R2 = .988 R2 (CFM) = .630 

Since the calculated F = 2.404 is less than FCRIT= 

2.5151 we conclude that the data supports the model at a= .05. 

2 2
Values of R and R (CFM) c ·lose to 1 " indicate that the model 

is doing a reasonable job of explaining the variation in the 

data. 

http:FCRIT(a=.05
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FIGURE 1..3,I, DATA SEI 3 
·PLOT OF Mvs P(x 0 / xA, Yj ) 
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30 
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25 
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20 
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H 
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30 

M 
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Data Set 4 

Table 4.3.4 

Data Set 4. The True Distribution of Attributes Among 

Diseases. xA and xB Identify a Dependent Attribute Pair 

y. xl x2 X3 X4 XS x6 XA XBJ 

y 
1 

.47* .37 .33 .34 .46 .so xl x6 

Y2 .13 .29 .39 .34 .34 .18 x2 X5 

Y3 .13 . 31 .37 .45 . 61 .09 X3 X4 

Y4 .15 .37 .S8 .38 .44 .4S xl XS 

Y5 .~ .73 .20 .22 .34 .15 .28 x2 x6 

y6 .47 .18 .45 . . 54 .08 .53 X3 x6 

*'rable entries are P(x. !y.)
l J 

Table 4.3.5 

Data Set 4. The Number of Correct Bayesian Predictions, M, 

(assuming independence) at various levels of dependence and 

at independence 

Run IND 

Dependence Levels, 

.1 .2 . 3 

p ( x Bl x A ' y j ) 

. 4 .5 . 6 .7 • 8 .. 9 

1 60 

2 56 

3 60 

4 60 

s SS 

Mean M S8.20 
"2 6.20(J 

DH 0 

39 

39 

41 

39 

42 

40.00 

2.00 

.323 

44 

44 

45 

44 

46 

44.60 

.80 

.223 

52 

54 

53 

50 

S6 

S3.00 

5.00 

.130 

S4 

57 

57 

55 

56 

S5.80 

1.70 

.083 

56 

S7 

S7 

55 

56 

56.20 

. 70 

.087 

51 

S6 

52 

SS 

S4 

53.60 

4.30 

.177 

43 

4S 

42 

43 

43 

43.20 

1.20 

.277 

41 

38 

37 

38 

37 

38.20 

2.70 

.377 

39 

36 

3S 

36 

35 

36.20 

2.70 

.477 
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Hypothesis Testing 

Inspection of Table 4.3.5 suggests homogeneity of 

all group variances. As befor~the Land Q tests are 

applied to the data. 

"'2H : = a.90 

TEST STATISTICS: 	L TEST 

BURR-FOSTER Q TEST 

L TEST: L = p( ~ ~~)l/p I ( ~ ;~) p = number of groups (10)
i=l l i=l l 

= l0(6.20·2.oo· ... ·2.10) 1110;c6.20+2.oo+ ...+2.10) 

= .79 COMPARE TO CRITICAL VALUE, L = .631.05,5,10 

DO NOT REJECT H 
0 

p p
"'4 "'2 2Q TEST: Q = ( E 0.) /( L a.) 

i=l l i=l l 

2 2 2 	 2 
= (6.20 +2.00 + ... +2.70 )/(6.20+2.00+ ... +2.70) 

= .142 COMPARE TO CRITICAL VALUE · o. = .284
0514110 

DO NOT REJECT H 
0 

Having established homogeneity of group variances, we 

proceed to test 

-H : MIND -- M.1 = M.2 	= 0 

http:6.20+2.00
http:1110;c6.20+2.oo
http:l0(6.20�2.oo
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ANOVA TABLE FOR DATA SET 4 

SOURCE SS DF MS F F.os(CRITICAL) 

between groups 3111.310 9 345.701 126.645 2.12: REJECT H 
0 

. within groups 109.188 40 2.729 

The large value of the calculated F statistic indicates 

that at least two M values differ significantly (a = .OS). 

As before, the Newman-Keuls procedure examines for signi­

ficant differences between all combinations of M pairs. 

Table 4.3.6 

Data Set 4~ Newman-Keuls Multiple Comparison Test for 

Significant Differences Between Group Means. 

Groups, . Ascending Means. Le.ft to Right 

Groups havin 
.9 .8 .1 .7 .2 .3 .6 .4 .5 IND no sign.9iff 

for M 
.9 2.0 3~8* 7.0* 8.4* 16.8* 17.4* 19.6* 20.0* 22.0* .8& .9 

.8 2.11 1.8 5.0* 6.4* 14.8* 15.4* 17.6* 18.0* 20.0* .l&.8 

.1 2.54 2.11 3.2* 4.6* 13.0* 13.6* 15.8* 16.2* 18.2* 

.7 2.80 2.54 2.11 1.4. 9.8* 10.4* 12.6* 13.0* 15.0* .2&.7 

.2 2.99 2.80 2.54 2.11 8.4* 9.0* 11.2* 11.6* 13.6* 

~3 3.13 2.99 2.80 2.54 2.11 .6 2.8* 3.2* 5.2* • 6& • 3 

.6 3.24 3.13 2.99 2.80 2.54 2.11 2.2* 2.6* 4.6* 

.4 3.34 3.24 3.13 2.99 2.80 2.54 2.11 .4 2.4 IND&.4 

.s 3.42 3.34 3.24 3.13 2.99 2.80 2.54 2.11 2.0 .5&.4 

IND 3.49 3.42 3.34 3.24 3.13 2.99 2.80 2.54 2.11 IND&.5 

*indicates significant difference between group means at a=.05 

The findings in Table 4.3.6 are summarized in Figure 4.3.2. 

Referring to Figure 4. 3 .. 2a, M indicates the central tendency 
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of repeated obs~rvations of M at 10 distinct values of the 

independent variable DH. The fitted model (1) is: 

M.. = 59.556 - 54.115 DH .. 
1J 1] 

The ANOVA Table is shown below. 

ANOVA TABLE 

Data Set 4, Model (1) 

Source DF SS MS F FCRIT(a=.05) 

Model 2 117636.658 58818.329 

Mean 1 114720.500 114720.500 

Model (DFM) 1 2916.159 2916.159 

Residual 48 304.341 6.340 

Lack of fit i3 195.141 24.393 8.935 2.180 

Pure Error 40 109.200 2.730 

Total 50 117941. 000 2358.820 

Mean 1 114720.500 114720.500 

Total (CFM) 49 3220.500 65.72449 

R2 = .997 R2 (CFM) = .906 

The calculated F = 8.935 exceeds FCRIT = 2.180. The pro­

posed model (1) is clearly inadequate. 

http:FCRIT(a=.05
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FIGURE .32, TA SET 4 
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FIGU 
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Data Set 5 

Table 4.3.7 

Data Set S. The True Distribution of Attributes Among 

Diseases. xA and xB Identify a Dependent Attribute Pair 

xl x2 X3 X4 XS x6 XA XB 

Y1 .OS* .10 .13 .16 .19 .22 xl x6 

Y2 .22 .10 .13 .19 .16 .OS x2 XS 

Y3 .13 .22 .16 .19 .OS .10 X3 X4 

Y4 .10 .16 .19 .22 .13 .OS xl XS 

Ys .19 .OS .22 .13 .16 .10 x2 x6 

y6 .16 .13 .05 .10 .19 .22 X3 x6 

*Table entries are P (x. Iy.)
1 J 

Table 4.3.8 

Data Set 5. The Number of Correct Bayesian Predictions, M, 

(assuming independence) at various levels of dependence and 

at independence 

Dependence Levels, P(xBlxA,yj) 
Run IND .1 .2 . 3 • 4 . s .6 . 7 • 8 .9 

1 S3 S2 S3 44 37 33 29 27 23 22 

2 62 S4 SS 49 38 30 28 2S 21 19 

3 62 S3 S4 48 39 31 28 2S 21 . 19 

4 61 SS 61 52 41 33 32 28 22 21 

s SB 54 55 so 39 30 27 25 22 21 
-Mean M 59.20 S3.60 55.60 48.60 38.80 31.40 28.80 26.00 21. 80 20.40 

A2 
Cf 14.70 1.30 9.80 8.80 2.20 2.30 3~70 2.00 .70 1.80 

DH 0 .07 .043 .128 .228 .328 .428 .528 .628 .728 
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Hypothesis Testing 

Inspection of Table 4.3.8 suggests homogeneity of 

group variances. As before, the L and Q statistics are cal­

culated from the data and compared to their critical values. 

"'-2 A2
H 

0 
: 0 rND = 0 .1 = 

p 
L TEST: L = p( IT 

i=l 

1110
= 10(14.70·1.30· ... ·1.80) /(14.70+1.30+ ... +l.80) 

= .65 COMPARE TO L = .631.05,5,10 

DO NOT REJECT H 
0 

p p
"'4 -'2 2Q TEST: Q = ( ~ 0.) ( l: a . ) 

1 I 1i=l i=l 

2 2 . 2 2 
= (14.70 +1.30 + ... +1.80 }/(14.70+1.30+ ...+l.80) 

= .189 COMPARE TO = .284Q. 0514110 

DO NOT REJECT H 
0 

Both tests support the null hypothesis. Having established 

homogeneity of group variances, we may proceed to test 

http:14.70+1.30
http:14.70+1.30
http:10(14.70�1.30
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ANOVA TABLE FOR DATA SET 5 

SOURCE SS DF MS F F. 05 (CRITICAL) 

between groups 9791.000 9 1087.890 230.013 2.12 

within groups 189.188 40 4.729 

Since the calculated value of F = 230.013 exceeds the 

critical value of F = 2.12 the null hypothesis H : MIND = 
0 

M.l = ••• = M. 9 - is rejected. As before, the Newman-Keuls 

procedure allows for comparisons of M pairs. 

Table 4.3.9 

Data Set 5. Newman-Keuls Multiple Comparison Test for 

Significant Differences Between Group Means. 

Groups, Ascending Means Left to Right 

Groups having 
.9 	 . 8 . 7 . 6 .5 . 4 . 3 .1 .2 IND no sign.diff • 

for M 
• 9. 1.4 5. ~ 8 . .111.o* 18.tf 28.:t 33.2* 35.2'" 38.gk • 8&. 9 

• 8 2.78 4. 2*' 7. o*' 9 . 6* 11 . o* 2 6 . 8* 31 . 8* 3 3 . 8* 3 7 . 4* 

.7 3.35 2.78 2. ~· 5 . 4* 12 . 8* 2 2 . 6* 2 7 . 6* 2 4 . 6* 3 3 • L;k 

• 6 3.69 3:35 2.78 2.6 10.0* 19.8* 24.8* 26.8* 30.4* .5&.6 
· ' 

.5 3.93 3.69 3.35 2.78 7.4* 17.2* 22.2* 24.2* 27.~ 

• 4 4.11 3.93 3.69 3.35 2.78 9.8* 14.8* 16.8* 20.4* 


.. 3 4. 2·7 4.11 3.93 3.69 3.35 2.78 5.o* 7.rf l0.6* 


.1 4.40 4.27 4.11 3.93 3.69 3.35 2.78 2.0 5.6* .2&.l 


.2 4.50 4.40 4.27 4.11 3.93 3.69 3.35 2.78 33.6* 


IND 4.60 4.50 4.40 4.27 4.11 3.93 3.69 3.35 2.78 


*indicates significant difference between group means at a=.05 

The findings in Table 4.3.9 are summarized in Figure 

4.3.3~ In Figure 4.3.3a,M values indicate the central ten­

dency of repeated observations of M at 10 distinct values 
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of the independent variable DH. The fitted model (1) is: 

M. . 
1] 

= 5 5 . 6 6 5 - 5 5 . 2 2 0 DH .. 
1] 

The ANOVA table is shown below. 

ANOVA TABLE 

Data Set 5, Model (1) 

Source DF SS MS F FCRIT (a=. 05) 

Model 2 83040.081 41520.041 

Mean 1 73804.820 73804.820 

Model(CFM) 1 9235.261 9235.261 

Residual 48 744.919 15.519 

Lack of fit 8 555.719 69.465 14.686 2.180 

Pure Error 40 189.200 4.730 

Total 50 83785.000 1675.700 

Mean 1 73804.820 73804.820 

Total(CFM) 49 9980.180 203.677 

2R2 = .991 R (CFM) = .925 

Since F = 14.686 exceeds FCRIT = 2.180, the hypothesis of 

model adequacy is rejected. 
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FIGURS. 4.~.3a 1 Dt\TA SET_? 

M AS .. A !.JN~AR FUNCTION OF [!1 


M = 55.665 - 55 .2 20 DH 

model inadequate at a = .05 

M.g 
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Ce que nous connaissons et peu de chose, 


ce que nous ignorons est immense. - Lap lace 


Section 4.4 

Summary Section. Overview, conclusions, recommendations 

for further work. 

1. Overview 

This report begins with a description of the diag­

nostic process, and reference is made to the desirability of 

an analytic tool which would aid the physician's diagnos tic 

capabilities. Bayesian estimation is presented as a mathe­

matical model which parallels the physician's decision 

making process. Several applications of this new mode of 

disease differentiation are discussed. A review of the 

literature reveals that many researchers are aware Bayes' 

formula is inappropriate to disease populations which ex­

hibit attribute dependence. However, attribute independence 

is often assumed to lessen extensive data requirements which 

are necessary to estimate joint occurrences of signs and 

symptoms. 

Monte Carlo experiments simulate past applications 

of Bayesian diagnosis. In these experiments, disease­

attribute populations are altered from independent attribute 
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structures to various levels of paired attribute dependence. 

Diagnoses are predicted according to the actual distribution 

of attributes among diseases, and also according to the false 

hypothesis of attribute independence. This strategy allows 

investigation of the robustness of Bayesian procedures under 

the false assumption of attribute independence. 

2. Conclusions from the Literature 

(i) 	 It is desirable to develop an analytic tool to aid 

the physician's diagnostic capabilities. 

(ii) 	 Medical personnel regard Bayesian estimation as 

(a) conceptionally valid (b) sufficiently non­

esoteric to rec~ive wide acceptance (c) relatively 

easy to initiate, if attribute independence is 

assumed. 

(iii) 	 A major problem may arise in the area of data col­

lection when Bayesian estimation procedures are 

applied to medical diagnosis. It is for this reason 

that Bayes' formula (which assumes attribute indepen­

dence) is introduced as a surrogate approximation 

to Bayes' Theorem (which requires extensive data on 

profile occurrence) . 

(iv) 	 The present state of Bayesian diagnosis is considered 

to be useful as (a) a feedback instrurnent which 

sharpens the physician's diagnostic capabilities 

(b) a teaching aid in medical schools. 

(v) 	 Experiences" with ,Bayes' f;formula are \~sUff'icie-ntly 
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encouraging to warrant further investigation. Re­

f inements to the present state of Bayesian diagnosis 

may lead to a valuable diagnostic aid. 

3. Conclusions From Monte Carlo Experiments 

(i) 	 Monte Carlo experiments indicate that Bayesian 

accuracy (under the false hypothesis of attribute 

independence) decreases 
,.. 

markedly as disease-attribute 

populations diverge from attribute independence. 

(ii) 	 The data from Monte Carlo experiments suggest that M, 

the number of correct Bayesian predictions under the 

false assumption of attribute independence, decreases 

linearly as DH increases, where DH is a parameter which 

measures deviations from attribute independence. A 

simple first order linear model of the form M. . -­
1 J 

B0+B ·DH+Eij was fitted to the data provided by Monte1 

Carlo experiments. It was found that the model does 

not consistantly explain the variation in M. 

2(iii) 	 Since R2 and R (CFM) are close to 1 for all three Data 

Sets, it is unlikely that increasing the number of 

terms in the proposed model (by adding B2 ·DH~.,B3 ·DH~.,1] 1] 

etc) will provide an adequate explanation of the varia­

tion in M. It may be that the variation in the data 

itself (M values) precludes curve-fitting. 

4 . . 	 Recommendations for Further Work 

If the goal of further research is to improve the 

prese nt state ~f Bayesian diagnosis, then the following 

course s of action are reconunended: 
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(i) researchers may identify attributes which are indepen­

dent in each disease category for which posterior 

probabilities are required. Of these, only those 

attributes which help to distinguish among disease 

categories should be considered. This strategy is 

used 	by Nugent et al (1964). 

(ii) 	 researchers may identify small subsets of dependent 

attributes, and modify Bayes' formula to account for 

attribute dependence within these subsets. Such a pro­

cedure requires estimates of joint occurrences of 

signs and symptoms. If the number of attributes in 

such subsets are small, then data requirements are 

managab1e. For example, suppose a profile is defined 

by S = {x ,x2 , ...xk}, and it is found that x 1 ,x2 ,x1 3 

are not independent of each other, but are independent 

of other attributes in S (for a specific disease y.).
J 

Then 	P(y. !s) may be estimated by:
J 

P(y.!S)
J 

- · 	 (4.4.1)
K 
l: P(SIY~) ·P(Y9)

.Q,=l 

Of course, this principle may be extended to include 

more than one subset of dependent attributes, and the 

denominator in (4.4.1) allows for different subset 

groupings in each of the disease categories y 1 ,y2 , ... yK. 

Such a procedure is seen as a refinement to the 

present state of Bayesian diagnosis, and is within the 

practical limitations of data collection. 
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FOOTNOTES 

1. 	 An attribute quantitatively or qualitatively describes 

a sign, symptom, result of laboratory test, etc. 

2. 	 y. ~ x. is interpreted as: if y. then always x ..
J l 	 J l 

3. 	 Such a set of attributes is referred to as a "profile", 

and is denoted by the letter S in Section l.3b. 

4. 	 Attribute Set 3 describes an exhaustive set of events 

for disease category y 3 , but not for y or y 2 .1 

5. 	 At The University Department of Surgery, The General 

Infirmary, Leeds, England. 

6. 	 Attributes x (central obesity) and (generalized2 x 3 

obesity) are mutually exclusive. Thus, the number of 

possible attribute pairs in the two groups of patients 

11is 	 2 <. c 2 -1) = 108 • 

7. 	 Here S. denotes a characteristic, not a profile. The 
l 

change in notation is made to conform with the nota­

tion used by Lincoln and Parker (1967) in Table 3.3.6. 

8. 	 Subroutine GGUl of The IMSL Library, Volume 1. (1975). 

International mathematics and statistical libraries 

Inc., Houston, Texas. 

69. 	 There are 2k = 2 = 64 possible profiles, where k is 

the number of characteristics considered, and each 

characteristic is described as present (x.) or absent 
l 

(xi). Hence, k is also the number of attributes 

appearing in an individual's profile . 
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10. 	 M. 2 and M. 3 values correspond to DH= .140. MIND 

and M.l values are not considered in Model (1), 

according to the inferences from H (2) and H (3).
0 0 

Hence the distinct points in the design space are 

DH= .140, .170, .243, ... , .643, with 10 observa­

tions at DH = .140, and 5 observations for the 

remaining DH values. 
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