Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18506
Title: On Semi-definite Forms in Analysis
Authors: Klambauer, Gabriel
Advisor: Sabidussi, G. O.
Department: Mathematics
Keywords: mathematics;semi-definite forms;representation theory; positive definite sequences;additive number theory
Publication Date: Mar-1966
Abstract: Using the representation theory of positive definite sequences some propositions in additive number theory are obtained and H. Bohr's approximation theorem is deduced. A unified approach to theorems by S. Bochner, S, N, Bernstein and H. Hamburger is discussed and some operator versions of numerical moment problems are studied. The Appendix contains comments to J. von Neumann's spectral theorem for self-adjoint operators in Hilbert space.
URI: http://hdl.handle.net/11375/18506
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Klambauer_Gabriel_1966Mar_PhD.pdf
Open Access
52.99 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue