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INTRODUCTION

In the spectral resolution of self-adjoint operators in Hilbert
space it has proved very advantageous to émploy the integral
representation of the resolvent. When this approach is taken
certain theorems of ciassical analysis play a prominent role,

In this connection we mention the following theorems andi their

authorss

I ( S, Bochner): Let k denote a continuous function on (-A,A),
0<A <00, In order that the: representation

SO ixt
k(x) = § e do(t) (-A < x < A)
- 0O '

holds, where ¢~ denotes a nondecreasing function of bounded:
variation on the interval(-00,%), it is necessary and
sufficient that k be a positive definite function, i. e.,
foi' any numbers O £ X. & .e0. 4xn<A (n,< o0 ) and any

1
complex numbers z\l, cos )\n we- have

n
z k(xj-xm) )\J )\m | > 0.
Jym=1 |

( .
II (F. Riesz & G. Herglotz)s In order that a finite function

f defined on the disk |z | < 1 have the: representation



BT

£(z) = 1 Im £(0) + (2m)~L J’ ° *? apte)

it
-7 e =2z

where e 1s a non-decreasing function on (-, T), it is
necessary and sufficient that f be holomorphic in |z| < 1
and its values have non-negative real part for |z |< 1.

It is clear that 'o has bounded variation for f£(0) is finite,

evanli ¢ In order that a finite function g defined:
on Im z >‘0 have the representation

P 14tz
glz) = /u.z: + VvV 4+ j " d 2z (t),
-z
- 0o

where M 2 0 and v are two real constants and % is a non-
decreasing function on the entire numerical line, it is
necessary and sufficient that g be holomorphic in the half-
plane Im z > O and its values on this half-plane have non-
negative imaginary part. From the finiteness of g(%) follows

that the function " is of bounded variation on (- co,00).

In this thesis there will be occasion to exhibit. instances
where the relationship between spectral resolution of self-
adjoint operators on the one hand and classical analysis _
theorems on the other hand is to a certain degree mutual,
A detailed description of the efforts of the author of this
thesis will be found further om in the INTRODUCTION.

|
{
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In the course of proving the foregoing theorem II G. Herglotz
established a proposition concerning the Fourier - Stieltjes
integral representation of positive definite sequences. For

a wording of the proposition in question the interested reader
is refered to page 23; the notion of a positive definite

sequence is defined on page 1.

A famous theorem due to C. Caratheodory and O. Toeplitz has
cohtributed substantially to ensure a place of distinction
in analysis for positive definite sequences. This theorem
offers another solution to the problem underlying theorem II
and thereby gives a characterization of an important class

'of functions ocecuring in the interpolation theory of analytic
functions as well; the theorem of Caratheodory and Toeplitz

states that the function f holomorphic in |zl < 1,

oo
£(z) = Z akzk,
k=0
maps |z| < 1 to Re w > O if and only if the sé'quence with

—

terms ¢ (n= ..y-1,0,1,...), where ¢y = a, + 3, c, =8,

n
Cop = @y for m =1,2,... , s positive definite.
The author of this thesis uses the Fourier - Stieltjes intégral
representation theorem for positive definite sequences in
chapter II to offer a new proof of a well-known theorem in

the theory of almost périodic functions of Harald Bohr.
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The theorem in question is stated as proposition I on page 4l.
The method of proof yields also another proposition, stated
on pp. 53-54; the author believes that this proposition is

newe.

As a point.of interest the author wishes to mention that he
avoided the customary practice of using limit periodic

functions in deducing Bohr's approximation theorem from the
theorem concerning almost peri;ds and instead made suitable

estimates (see pp. 67-71).

In the author's quest for self-contained presentation of these
matters he was obliged to line up a lot of material in
chapters I and II which belongs to the'past~of the: subject.

The main result aimed at in chapter III is a unified approach
to theorems by S. Bochner, S. N. Bernstein and H. Hamburger.
The theorem of Bochner we have stated already further above;

we shall quote now the remaining two theorems we have in mind.

Theorem of S. N, Bernsteins Let k be a continuous function
on the interval (AI’AZ)’ vhere - oo ¢ A. <& Az < 00 and

l
‘ P

In order that

el g &
k(x) = { e d g(t) (4, 2x <A)
- 00



hold, where O is a certain non-decreasing bounded function

on (- 00,00), 1t 1is necessary and sufficient that for X3

oo < L L. <L £ 00
» X where A, < x; xn< Az (n ) and

any complex numbers >\l’ aes g >\n the relation

n
+ A >
> kxy+x) A NN 20
jym=1
hold.
Theorem of Hamburger: Let (am)moio be a sequence of real

numbers. A necessary and sufficient condition that
0 n
am = S t d O'(t) (m _—'-o‘,l,z,ooo)
- OO .

where ¢ denotes some non-decreasing bounded function on

(- 00, 00) is the requirement

n
Jrk=0 . . '

The author would like to describe briefly how he treats the
-problem at hand.

Let V denote a vector space consisting of complex-valued

continuous functions on (- 00, 00); the algebraic operations
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are defined as usual, Let W denote the linear hull of the set
of functions of the form f g, where f,g &€ V. Let \J be a
positive linear functional acting on W, i. e., P is an
additive homogeneous mapping such that ‘P (f ) 2 0, The
problem posed now is to get a sufficient condition that a

given positive linear functional \PP on W have an integral

representation of the form

o0

F(d) = [ b)) da(t) (be W

- 00

where ¢~ is some non-decreasing bounded function on (-~ 00, 00),

If one has Hamburger's theorem in mind the set of all polynomials
must be taken as domain of definition of the functional J .

To use the spectral theory of operators on our problem we need
| a Hilbert spaée in terms of our problem. But a suitable Hilbert

- space is available. It can be seen that

L8> =P B

is an inner product on V if we identify in V any two vectors f
and g for which <f-g,f-g> = 0, Completion of V with respect
to the norm induced by this inner product gives a Hilbert Space
Y 1in which V is dense.

Given g € V, let é\ be the function defined by



w YII s

g(s)-_—.sg(s) ~-00 4L s <00,
We impose on V the additional requirement that the set F of
all g € V for which g € V,be dense in V with the norm

Ilf||=(‘f(f.f))% (f € V).

Under these circumstances we can introduce in "5 the operator
of multiplication by the independent variable s, having
defined it initially on the set F. This operator is symmetric
and can be closed. This closure we denote by the operator D.
It can be seen that D is well-defined by observing that
: AN

{£,£> =0 implies { £,f ) = O.

Suppose for ‘a minute that our problem wé.s solved and that for

any fyg € V we had

00 -
lf,gD = 5’ £(t) g(t) d a (¢t).
-0

The functions f and g appear here in two roles: firstly, as
elements of the space “5 and, secondly, as elements of Li_ .
If we suppose for example that V. consists of all polynomials
and if by abuse of symbolism we signify by f£(t) that f¢€ L02~
and by f(s) that £ € V and if u = u(s) denotes the unit.
polynomial (identically equal to 1) we can see that

f(s) - £f(t)u = (D-tE)gt(s),
where E is the identity operator in "5 , D is the operator of
multiplication by the independent variable introduced above
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and gt(s) is an element of "5 and depends on the parameter t;
evidently we have simply used the familiar elementary fact

that s-t factors s™-t" for m = 1y2500¢ o

The foregoing is a heuristic guidé to the formulation of our
theorem (see p. 118):
Let D be a closed symme’cfic operator in some Hilbert space *g y
and let Et be a spectral function of D. Suppose: that giVe|n any
elements f,h € “% there exists a function g:(-o00, 00) —> &D
and a. differentiable function ¢ on (- 00,00) such that

f-9 (t)h = (D-tE)g(t).
Then

w 3 m /
£ = QW ash md <5e> = |9 2 alennd,
- 00 ’ - o0 |

Since g~ is assumed to be only some non-decreasing bou.nded
function on (- 09, 00 ) the foregoing theorem is strong enough i
to get us within range of the solution of our problems:
A sufficient condition that a given positive linear functional
J’ defined on W has an integral representation of the form

Pr= [ d)dac(t) (Pe W

— : ,

with non-decreasing bounded function ¢ on (- 00,00 ). is that
the following threefold requirement be satisfied: The function
1 belong to V, the set F of all functions g € V for which g€ V
be dense in V with the norm: '



Nel = (P (r )t (£ € V)

and from £ € V it follow that for any real t the function of s
(£(8)=£(t))/(s=1%)
belong to V,

The theorems of Bochner, Bernstein and Hamburger are deduced

in terms of this result.

The proof of the theorem quoted on page VIII is made dependent
on certain facts known from operator theory. Central among these
is a theorem of J. von Neumann (see p. 95). The author gives his
own proof for thie theorem and in this conneetion introduces

the notion of fractional-linear transformation of a linear
operator and establishes several proposition (for detail see

pp. 86-91). As additional evidence for the usefulness of this
notion the author employs it in proving a theorem of M. H. Stone:
K.0. Friedrichs and H. Freudenthal (see p. 130). On the basis

of the latter theorem the author offers an operator version ’
of a classical analysis theorem of T. J. Stieltjes on page 145,
Another operator-valued theorem of this sort is given on page

141,

Since the spectral theorem for self-adjoint operators in

Hilbert space enters on numerous occasions in chapter III
the author felt a heed to offer a proof in the appendix.
This proof is based on the theory of vector lattices. The
author makes the observation that every strongly closed ring



Ut of bounded self-adjoint operators is a complete vector
lattice in the usual operator-theoretic sénse of partial
ordering and that if OT contains the unit operator, one can
take it as unit of the vector lattice and that the basis of

the vector lattice in this case consists of all projection
operators contained in UU . This observation allows the use

of H. Freudenthal's integral representation theorem of elements
of a complete vector lattice with unit; the spectral resolution
of a bounded self-adjoint operator is then a direct con-
sequence of Freudenthal's theorem. To obtain the spectral
resolution of an unbounded self-adjoint pperator, the author
uses the vector lattice theoretic union of complete vector
lattices of bounded self—adJoint operators. This approach
succeeds with only a modest amount of information from operator
theory. The author refrained from writing out proofs for the
vector lattice theoretic part as he has prepared a set of

notes which contain all the necessary detail some time ago.



Chapter 1

POSITIVE DEFINITE SEQUENCES
l.1 Definition and Basic Relations

A sequence (finite or not) whose terms are the complex

numbers ¢, (n= ... =1, 0y 1, ...) is said to be

Dositive definite, if for any finite

set of complex numbers %l, cee 9 )\N the inequality

2_—_ %3 Ak_ya

holds; A 3 denotes the complex conjugate of A g

(1)

v
o

From the above definition we deduce at once the following

basic relations for a positive definite sequence:

(1) c 2 O
o s
(i1) | c_n = -c;
(111) e | & e
(iv) 'cn - °n+m‘ 2 < 2co(co - Re{cmi Y

Here Re { cm} is to signify the real part of c.



Indeed, substituting N = 1, >‘1 = 1 into formula (1), we get
inequality (i).

To obtain equality (ii), we let N= n+1l, X\
say = )‘n= 0, )~n

1-: 1y >‘2= e

A = N in formula (1). Evidently

np

0 Z_ Z_ ey )~k’_ )\J = eo+c_n>~+ch)~+cp)~ N

h: d’:\

Since ¢ s 2 0 by inequality (i), we have that
N+ X
c_n)\ +e A

is real for any choice of the complex number X\, Taking A =1
- and X\ = i, successively, we see: If c_;)—\ + cnk is reall
for any complex number N, then e¢_ = ©_ 1is true. The
converse of the latter statement obviously holds.

Next we: verify inequality (iii); from it will follow in
particular that ey = 0 implies e = O for all n. Suppose

now that co = Oa Theh from

X \ >
co+c_n)\+cn)\+co)\>\ 20

= 2¢ ¢ = - O.‘

we get, putting A c_» that 2¢ ¢ = Oor e

Suppose, on the other hand, that ¢, > O, then substituting
-c / int

» c /e o

o)
0

g BN
e, +c_n)~»+ cn)\ + ¢, XX 20,
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we obtain by equality (ii) that

c -c O.

ry
0 n n

WV

Hence |c | £ ¢, holds in both cases.

Finally, we show that inequality (iv) is true. For this

purpose we take N = n+4+m+1, )\lz 1A )\2-.: e = = 0
n .
=t = eee — = 0 —
>‘ni—l N >\n+2 >\n+m : >\n-Q-m+1 >"'
We obtain

miyraat+l  Aan A+

0% Z_ Z_ ck-.‘l )\k—;\; =
=\

= d

= ¢ . 4+ ¢ )\-c >\+c>\+c>\_):-c >\_>_:
n 0 -m

0 =N e e

-C >\-cm>\—x+co>\—>-\ = ‘

n+m
= ¢ +2Re {(c -c ))\3+2(0-Re{c'i)|)\\2
- 0 tn n+m 0 m
which holds for any complex number N\ . If we let
- (c_=c )

n n+mn
A 2(30- Re {cm} )

2
then we obtain 0 £ 2¢o(co Re {cmg) ' €% im| ? vhich
gives inequality (iv).



1.2 Representation Theory

In this section we discuss two types of realization of positive:
definite sequences. The first type is geometric in nature., It
is based on a proposition of E. H. Moore concerning -Hermitian
positive semi-definite matrices and reduces the study of
positive definite sequences to the consideration of stationary
sequences in complex Hilbert space. The second type of réal-
ization is analytic in nature. It is due to G. Herglotz and:
gives the representation of positive definite sequences in
terms of'Fourier-StieltJes integrals. We commence with the
geometric representation theory, stating first Kolmogoroff's

definition of the notion of stationary sequence.

A_sequence whose terms u (n=1, 2, «es) belong to a Hilbert
space H is said to be s t a t i onar y, if the inner

product <uh,uk) depends only on the difference h-k.

PROPOSITION (E. H. Moore & A, Kolmogoroff)s A necessary and
sufficient condition for the existence of a complex Hilbert
space and a set of elements Wy uz, eee in This space which

satisfy the conditions

u4,u =20 (hyk =1,2y eee)
h’ k hk ? t Ak |
is that the matrix (chk) Hermitian positive semi-definite,

that is



(2)

Q
B

>
=

>|
~
v

o

for any finite set of complex numbers >‘l’ cee >‘1;.

Proof: It is easy to see that the condition (2) is

necessary because

n
, E <uh,uk> )\h-;\; —

h,k=1

. : 2
= || )~1ul+ >~2u2+ S +)\nun“ > 0.

Next we show that condition (2) is sufficient as well. We
define a complex linear space L as follows. Each element
of L consists of a sequence of complex coordinates, of
which ohly a finite number of terms are different from
zero, Multiplication by a complex number of an element of
L and éddit%on of elements of L we define as usual, namely

coordinate-wise.

We define a function P on L X L by

v @
é(Xﬁ’) - § chk xh?f;r

hyk =1

where x = (xl,xz,ooo)’ Yy = (Yl,}'z,...).



It is easy to see by (2) that

l§ (x,y)l > & § (x,x) @ (¥y¥) ' .(3)

and consequently

l V& (x,x) - Jé'(y,y)‘ = \[§(xi'y,xi'y)i <
= \!§(x,x) + dé(}’,}')

hold, We also have that

‘{S‘i(ocx,«y) = |x] 6§(x5y)

for any complex number oK . The set of elements for which

(31)

§ (X,X) = 0

is a linear subspace M. If the element x belongs to M, then
it does not necessarily follow however that all. its ;

coordinates are zero. Therefore we consider the quotient spacs
o
L =L/ M

The elements of L are the subsets X C L with the property
A
that with x €X all other elements x of X have the form

/N
x=x + z

with an arbitrary element z from M, The multiplication of an



element of i by a complex number o« is defined so that the
product o X 1is that element Y of ‘E' which as subset of
the linear space L contains the element «x (x € X).

Analogously we define the addition. Furthermore we define

¢ &0 = $xy) (x €X, v € Y.

This definition is independent of the choice of the
representatives x and y because of the inequality (3'). It
is therefore well-defined. It can be seen that it acts as
an inner product for the space i? by either verifying
directly the relations an inner product has to satisfy, or
by simply showing that the "parallelogram law" holds, for
it is clear that if is a normed linear space with respect

I uz\]?fg( y Je

Completion of ’f’ with respect to the above norm gives us.

to the norm

the required Hilbert space.
Finally, if un is that elemeht of the Hilbert space whose

n-th coordinate is 1 and all others are 0, we see that

qé(uh?uk) == <Luh’uk:> = ¢

The proof 1sucompleté.
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By comparison of formula (1) in the definition of positive
definite sequences and formula (2) in the foregoing
proposition, we obtain the following Geometric Representation

ore or Positive Def te Sequencess

- THEOREM: In order that a sequence whose terms are the complex
numbers ¢ , n = o,*1,*2, ... , be positive definite, it is
necessary and sufficient that there exist a stationary

sequence whose terms u,n =1y 2y eee 9 belong to some
bert space H s that :

<uh,uk> = ch-k (h,k = 1’ 2, ceelde

At this point we wish to make a brief digression and consider
the "parallelogram law" mentioned further above in the
construction of a suitable Hilbert space; we are refering

to the Jordan - v, Neumann theorem concerning the character=-
ization of an inner product space. After proving this

theorem in a manner which is free from the usual limit
argument, we shall return to the representation theory for

positive definite sequences.



THEOREM (P, Jordan & J, von Neumann): Let X be a normed
linear space, If the norm on X satisfies the "parallelogram
law"
2 2 2 2
NXAYN HUx-yR = 20xh + W yn ),
then there exists an inner product on X, <X,y> (x,y € X)

such that V'(_xj;} = || x|| for every x €X, If {x,y> gan
be so fined, this b 0 o) on .

Proofs Define
2 2 2 8
dxyyd>= (WM Ux+y) = Ix=yII ) +1(x+ 1y = 1x-1y) ) § »

First we show the following equalities: <ix,y>= 14x,¥),
L xy1y)= =1 (X7, J <xyx) = xlly and {¥,x> = { X35,

dx,y) =
: 2 2 2 2
= (/W) (Uix+ yi'= Wix=y )+ 10(Lx+ 17N = ix-2y)) ) §
= (/%) (iCx=1y)0 = NL(x+1y) )+ 1L +PIN = 12Gx=3)) ) §
' 2 2 2
= (/W) {1Ux+ 3N Nx=3 1 =0x +17) = N x=23 (1 )3 = 1 <xp¥)e
Cxyly) =
2 2 2 2
= (1/l+){ (Nx+1y) = hx=1yy ) +1Ux=yN = WX+ ¥} ) §
2 2 2 2
= (WS -1Qx+ 7= N x=y10 )+ G+ 471 = 1x=17 0 )F = =2 {xy7D

; 2 2 2 2 2
dxyxy= WWTHNx+101+1) = [1-1)) yx) f=pxy



w0 -

<Y7x>=
2 2 2 2
= (W { Oy+xll = ly=xl )+ 10y +ix|l = Ny=ixl[ ) § =

, 2 2 | 2 2
= (1/%) { (Mx+y ) = Nx=yll )=iQix+ iyl = lIx=-iyl| )} = {Xy¥) o

Next we show that for any complex number X
INZyyD) + {xy Ay ) = (X + X)) dx,yd
holds.

<>\x,Y> + <X’>‘Y>=
2 2 2 pr

= (/W) { Qrx+ 30 = Wrx=y 1)+ 1M hx+1yll - N Ax-iy| ) § +
2 2 2 2

+ (1/h)f(ux Ayl =lUx=Ay|| ) +ilix+iXyll - ix-iX yll )}'.

By the "parallelogram law":

. 2 -, 2 2
Whx+yll + llx+ Ayl = (1/2) [ll(x+;>x+(x+1>y||2+
£l =Dx=(N=Dy I~ ]

2
X z-ylIl +II x—)\yu = (1/2) [\\ (N +1)x=(X +1)y|l +
3 SO =D + (3 =Dy I ]

\\>\X+iy|| +\|x+1>\Y“ (1/2) [_\\(X+l)x+1(>\+- 1)yu +
| +ll(>\-l)x-1(>\-l)y\\ 1

2
WA x-iy|) +\lx-i>\yu (1/2) [\l (A +L)x=i( N+ 1)le +
+1Ov=1)x + 101 =Ly It

We therefore obtain



- L

a3 > + (xy Ay =

= WD NN Dx+ Ok Dy(f= O Dx-Ont Dy
LN O DX FL1ON+ DyI- 1 A+ 1)x - 10\"'1)3”!2

+ W OneDx = (N=DFIE = HON=D)x 4+ (A =Dy |
F1NO-Dx = 20Dy = LN =Dx+ 117 |

2 2 2 2 2
= (1/8) [( | M—l\ - i)\-1| Y(Ix+ ¥l = Nx=y)| +1 | x+iy)
-1 x-17i® ] .

But
2 2 -
IN+L) = [N-1] = 20X+ N)
holds for any complex number N

The relation ¢ Ax,y) + <{x, >\y> = (AN+N)<x,¥y) gives,
putting X\ = ir, where r is any real number,

LTy 7> = {xyTYY &
Thus '
2Lrx, 7> = Ixy70 + <XyTY) = 20 {x,¥)

and hence ' :

{rx,7) = v{x,7)>

for every real number r.

It 1s clear that
(1/2) < x+y522) = {X+7y2 ).



We now show that _
£xy2) + T4z = (1/2) < x +y, 2z o

<I,Z> + <Y,Z> =
' ‘ 2 2
= (/%) { O x+z||2 -1 x-z||2)+ i(lx+1iz)| = | x=iz|
' 2 2 2 2
+ (Wy+z\ = Wy=2) ) +10 y+1z) - | y-iz|| ).
By the "parallelogram law":
2 2 2 2
Nx+z|| + \v+3z| = (/2 || x+y+2z) + (1/2) ) x=¥)
2 2
0 x-210 +1y-210 = (1/2) |\ x4 y-22)( + (1/2) I\ x=¥)|
2 2 2 2
Nx+iz) + \y+iz) = (V/2) || x+y+12z) 4 (1/2) |\ x-y|
2 | 2
\\ ::-i.z“:2 + “y—izﬂz = (/2)|| x+y=-12z| 4 (/2) || x=¥|| »

Therefore { Xyz) + <¥,2) =

(1/8) [N X+y+ 2z||2- || x+ y=-22 "2+ 1(x+y+ 12zu2- | x+y-12z"2):]

(1/2) {x+7y2z)

I

This establishes the additive condition
Lx+7y2) = X320+ {7y2) « .
Finally, the additive condition combined with ix,y) =i<{x,y)
and {rx,y)» = r<x,y), for all real r, yields
INT YD = X<x7D

for any complex number )\ .
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Consequently, the "polarization identity"
2 2 2 2
{xyy> = (/W) § Nx+yI = Nx=yI "+ ilx+1y|l - ux-1yy )

defines an inner product on the space X. Since any inner
product (x,y) satisfies the "polarization identity"'(for
replace in the identity llx%—Y“z ==IIXIF-+IIYl$‘+-(X,Y)

+ (yyx) the term y by -y, iy, and -iy), it is clear that
{xyy)> 1is unique. This completes the proof.,

We now réturn to the representafion theory of positive
definite sequences; by way of preparation for the proof

of the analytic representation theorem, we take up certain
propositions first.

THEOREM (E. Helly): Let f be a continuous function on [a,bl].’
§ypng§g_§gg§'1hh s N = 1,2y eee 9 are the terms of a sequence:
of functions which converges to a finite function h at each
point of [a,b]. If the total variation satisfies

&
V B)g Kigea

for all n, then

k> L

lin  ( £6) b (@ = § £(x) dn(x).
NA —> OO a i a



- 1Y -

Proof:s If we split the interval [a,b]| in an arbitrary way,

we have for n = 1, 2y <

YV | ’
- P
&;O h (x ) hn(xk)\ <

Passing to the limit as n —>00o , we-get

Ann A
&2‘_‘/ ‘h(xlu-l) - h(xk) l <
-0

Since the splitting of [a,b] was arbitrary, it follows that

This shows that the limit function is of finite variation also.

We now pick an arbitrary €> O and split [a,b] by means of the
points x , k=0, 1, «ce , m, into subintervals [xk’ﬁ:+1]
in such a manner that the oscillation of f is less than

€/3K on each subinterval [x.k,xk +1]. We see that

£~ rma-t o Xaay
S am= 2 § fx dax =
=N k=0 Xh
A=l Xg ‘ A= | Xez +1

Z S (f(x)-f(xk))dh(x)-i- Z t(x) [ anto.
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But
xfa.-\-\
dh = - a
,_(S' (x) h(xk-i-l) h(xk)
&
Since

| £x) - £(x) | & E/3

fo:g any x € Exk’xk-!-l , we have
*R4\ | g1
S @ -t Na | £ g3 NV w.
X& x&{
Thus
A= &h+| y 4
S -t | £ e/ V my £ €/3.
- (=¥
k=0 @ )
Therefore
R ‘ A - '\9—
S @ = S )bz, )-h(x )+ N (E/3)

&k=o0

vwhere | n.9’l_é L. S:Lmilarly we get

- Aaa =1 .
§ £, = &Ezo £(x ) (a (x  )-h (x )+ & (€/3)

where "S-n' & X
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Since

lim hn(x) = h(x)

n — 60

foor all x € [a,b] , there is a natural number n, s'uch that

m-1 m-1 :

| E f(wk)(hn(x“_ l)-hn(xk)) - § f(xk)(h(xk+ 1)'h(’5:))

k=0 k=0

is less than &€ /3 for all n > n,. Hence we have that
& A
‘ 5’ f(x)dh (x) - ;( f(x)dh(x) | < €

for all n > n0 and the theorem is established.

00

be _a sequence 6f real-
n=1l

valued functions defined on some set E such that

THEOREM (D. Hilbert): Let (gn)

sup \gn(x)l < K for all n.
X€EE

Then given any countable subset D of E there exists a

subsequence (gn ):‘_’ which converges at every point of D.
4 i=

d

00
Proof: Let D= {xl’ x2, ooo} « Then (gn(xl))n':l is a
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bounded sequence of real numbers; hence, by the Bolzano-

' (1) (Ve
Weierstrass theorem, we may choose a subsequence (g )
n an=1l
(1) g

such that the sequence (g  (x.))°°
n

00
of (g )
gn n= l n=1

1

(1)
Next we consider the sequence (g (xz)) °°l. Again by
n n=

the Bolzano-Weierstrass theorem we can select a subsequence

(2) oo (1)
(g ) of (g )°° such that
n n=1 n n=l
1i (2)( ) .A
im g X =
2
n —»00 B 2
exists.,

Continuing this process indefinitely we obtain a sequence

(m) oo
of subsequences (g ) s M =1,2y000 9 Of (g )oo
n n=1 nn=1
such that
(m)
lim g (xm) = A
n—> 60 .

existsy, m = 14244+« « We then consider the diagonal sequence
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(n) o0 (n)
(g ) . For fixed k, (g (x)) is a subsequence
n n=1 n kK n2zk
k . v '
of (g (x)) » and hence converges to A . Therefore
n k nzk : . ‘
(n) o0 ’
(g ) . converges at every point of D. QED
n n=

'Let X be a Banach space and let X* denote its adjoint space.
If X is separable, then every 'closed sphere is sequentially
compact in the weak * topology of X*, that is from any
sequence of linear functionals (g ) - with bounded norm
one can select a subsequence which converges weakly to a
functional &g We consider the space V ['a,b__l of functions

of bounded variation on [a,b], with norm defined by

&
Negll = V (g).

By the F. Riesz representation theorem, the space V fa,b]
may be identified with the adjoint space of the separable
Banach space C [a,b] of continuous fu.nctlons on [a,bl in
the following way. For each @ €(C [a, b]) there exists a
unique g € V [a,b] such that 5

() = [ f£(t)ag(t)

a.
for all £ € C fa,b] « Moreover, ||| =Ilgll .+ Making use

of these observations, it is easy to prove the following
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THEOREM (E. Helly)s Let (g )., be a sequence of functions

of bounded variation defined on [a,b], and suppose that
£

s:p : lgn(x)\ £ K < ©0 , and Y(%)gx < 0o

a< x £

for all n, Then there exists a subsequence (gni) :|.°:l which

converges pointwise in [a,b] to a function of bounded
variation,

Proof: Without loss of generality we can take [a,iﬂ = [0,1],
and since every function of bounded variation is the
difference of two non-decreasing functions we may assume
that every gn is non-decreasing. Let 3>n’be the linear
functional on C [0,1] associated with g,) that is

{
£) = £(t)ag (t
Pp(f) = § £(t)dg, (%)
\
for every continuous f on [0,1]. Since \/ (gn) £ K, the
o

sequence (?n)::: , 1s bounded in norm, hence we can select
a weakly convergent subsequence of the 3>n's, which we still
call (§ ) °°1. Let 9 be the weak limit, g the function

n=

of bounded variation corresponding to ¢ . The function g

has at most countably many points of discontinuity xl,xz,... o
" Let x be a point of continuity of g, and define functions

hm, m =l, 2’ eee by
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1; 0£t<x
hm(t) = -m(t-x)+ 1;

x &
0; x+(1/m) &

£ x+ (1/m)

ct
N ot
’—l

Since hm is continuous the weak convergence an . S

implies
) ! :
{ h (t)dg (8) —> [ h (t)dg(t), n —» 00 ,
(o) o

From the continuity of g at t = x and the boundedness of

hm it follows that

|
X AAa

hm(t)dg(t) —> 0 as m —>» 00 ,

xi—~ +

Consequently |
| " X+ oo
{ n(t)dgt) = § n (edagt) + § b (t)ag(t) —>
o 1 o =& o

— g(x) - g(0).

~

But g, is non-decreasing and hm(t) = 0 so that
X

' ‘
6{ h_(t)dg (t) 2 é’ h (t)dg (t) = g (x) - gn(O).

We therefore get

lim sup (gn(x)-gn(O) £ g(x) - g(o). "
n



On the other hand, since h  1is non-increasing,

0 A
§ h(t+(W/m))dg (t) = § h (t+(1/m))dg (t) &
m n o n n

(=

% .
Z
& £ hm(t)dgn(t) = gy(x) - g,(0),

whence

!
L
g h (€ +(1/m))dg(t) = l:l.mninf (g (x) - g,(0)).

By the continuity of g at x:

T

5‘ hm(t+(1/'m).)dg(t) = hm(t+(1/m))dg('t) +
o

o

A
+ § B (t+(1/m)ag(t) =

!
X= 3

% ;
= g(x-(1/m)) - g(0) + § h (t+(1/m))dg(t) —> g(x)-g(0).

g |
* =

Hence
g(x) - g(0) & ‘lim inf (g (x)-g (0))e
n n n
We can therefore conclude that
Lin (g,(x)-g,(0)) = g(x)-g(0).

By assumption | gn(o)l £ K, \gn(xk)l £ K for all n and k.
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Hence by the theorem on page 16 there exists a subsequence

(g ) ®®  such that for i. — co
Dy 1=1 "

gni(O) —> a, and gni(xk) —> a,.
"~ From this and the relation
lim (g,(x)-g,(0)) = g(x)-g(0),
n
established further above, we get convergence for every
x#xk, k= 1,2’ eee 3

g (x) — g(x) - g(0)+a, asi —> C0
ni 0

The function
r~ when x =
g(x) = *x i
g(x)-g(0) ta, vhen xF x

for k = 142y ees is of bounded variation, where for each

x € [0,1] we obtain
gy, () — "g(x)

and the proof is complete.

After these preparations we are in a position to establish
the Analytic Representation Theorem for Positive Definite

Se CeSe
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THEOREM (G. Herglotz): A necessary and sufficient condition
for a sequence to be positive definite, is that its terms

(c ) i oo have the representation

n'n= -

T inx
c_ = 5‘ e dg(x) (n=0,1,£2,004)y

-
where g denotes a non-decreasing function of bounded variation.

. Proof: The condition is sufficient. Indeed
f s, A

B

N N
Z 2 ey ™ M T

k=1 j=1
N N ™ sk
i(k=3)x
e, Z f e : dg(x)} A ) 3 =
=11 . k ]
k=1 j=1
s N N
ikx -1jx
=_S- (Z e XB(Z e‘J >‘j>dg(x):
" k=1 k =1 )
™ - 2
ikx
:f\Ze ))dg(x)ko.
-1 k=1
The condition is necessary. Since (c ) 0 ' 4is positive

n n== o0
definite, we have in particular that

N N : -i(k=-j)x "
R T’ W A
k=1 j=1 ,
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We observe that

N~

N b -1(k-J)x [l -inx
Z_ Z °k..3 ° = K 2: (I-T)cne
L=\ 9=\ mz=-N+I
We let

N-1|
1) =inx
QN(I) = Z_ (1- 'T\T)cn e .
' M =-N+1
Since
W
-i(n-m)x 0 for nz¥mn
e ar =
- 27 for n=m

we see that

o
\ inx \ml
ow § Q@ e ax = @-TPe.
-1 .
We put
w T >
\ Cinx inx
ey _( QN(x) e dx = g e dgN;(x).
-7 I
Then

X
gN(x) - j QN(y) dy;
-

gN is a non-decreasing function with total variation
'W /
S dgn(x) - coo

-
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By the theorem on page 19 we can find a subsequence (& ) ™=
k k=1

which converges pointwise to a limit function g which is
again non-decreasing and of bounded variation.

By the theorem on page 13 we finally obtain

™ AL
inx inx
lim { e dg, (x) = S e dg(x)
4 —> Co - ke -Tr

and the theorem is proved.
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Chapter 2,

ALMOST PERIODIC FUNCTIONS

2.1 Basic Definitions and Properties

A complex-valued continuous function f defined on the entire
real line R is said tobe uniformly almost
periodic (UAP for short), if to every & > O there
corresponds a number L = L(E ) > O such that in each
interval on R of length L is situated an € - a 1 mo s t
period of f, that is to say a number ¥ =7T(E) so
that for all x € R ye have:

|ex+) - £(x)| < €

It is customary to use the symbol E {E ;f} to denote the set
of & -almost periods of the function £ and to use the symbol
E {& ;£} to signify the set of all integers of E {& ;£§ .

It is well-established usage to refer to a set E of real
numbers as relatively den se, if there exists
a number T > O such that any interval of length T contains

at least one element of E,

In terms of these conventions the definition of a UAP function
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reads as follows: A complex-valued continuous function f

. defined on the entire real line R is a UAP function if for
any € > 0 the set E { € ;£{ is relatively dense.

UAP functions were invented and thoroughly studied by
Harald Bohr. In this section we shall look at some basic
propositions in the theory of UAP functions,

I, A UAP function is bounded on the entire real line R.

Proof: Let f be a UAP function and take & =1, Since f is
continuous, the function |f| has a maximum M on the closed
interval [0,L(1)] , where L(1) is obtained through the
definition above. Suppose that X, is an arbitrary real
number. We select an almost period ¥ = (1) in the interval
+L(1), Thus 0 £ x

-xoé X & =X + 7% £ L(1) and we have

0 0

|2z )| £ |r(xo>-f§xo+~c)) + |t + )| £ 14M

and the proposition is proved.

II. A UAP function is uniformly continuous on the entire
Ieal line R.

Proofs Denotev by € an arbitrary positive number and‘ take
a number L = L(& /3), The UAP function f is uniformly
continuous on the closed interval [—1,1+ L] « Hence we can
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find a positive number § <1 such that for any ¥ and Y5 in
(-1,1+L], for which |y,-y;) «& holds, the inequality

l£(y,) - 23| < &/3

is satisfied. Suppose that X,
real numbers for which \xz- l\ < § . Denote by ® an & /3~
almost period of f included in the interval [-x;,-x;+L].
Since \xz-xll 4§ and 0 £x, +¥ £ L, we easily see that

1

A <xz+‘t < 1+L., Therefore

and X5 is an arbitrar'y pair of

| £x)-£(x)) | £ | £(x)-2xy + %) | + | £0xy 42 )20+ )| +
+ex yX)-£(x )| < E/3+ &/3+E/3 = €

and since we have chosen & arbitrarily, the proof is finished..

III. Let f be a UAP function, For any positive number g it
is possible to select numbers L = L(€) and 3 =5 (&) s0

that in each interval on the real line R of length L we can
find a subinterval of length iy all points of which are & -

almost periods of f.

Proof: Denote by T = T(&€ /2) a positive number possessing
the property that in each interval on the real line R.of
length T there is at least one &/2-almost period of f.
Furthermore denote by § =$( €/2) a positive number such
that
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sup |£(x+n) - £(x)| < &€/2
-00 £ x & 0O

if \nl| < A‘: « The number S exists by proposition II.
| Let  be an (€ /2)-almost period of f contained in the
interval (o +';F g X+ T +€F). If lh\ég, then the
number T+ h is in the interval (&, X+T +2 :F) and: is
an & -almost period of f; the latter follows from the

estimate

| tx+%+n) - £x)| £ lex+n+%) - £(x+n) | +
+|f(x+h) - £(x)| < €.

Hence the numbers L =T+23 and § = 2 & satisfy the

claim made above.

IV, Let f and g be two UAP functions, Then for any © >0
there exists a number M( &) such that every interval on
the real line R of length M(& ) contains at least one
number ¥-(& ) which is a common & -almost period of both
functions f and g. | :
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Proof: For &€ >0 let J° be as in proposition III. Let the
positive infeger M be so large that every interval of

length L = M§ contains an ( € /2)-almost period of -f as

well as an (€ /2)-almost period of g. Divide the real

line into intervals I = [(n-1)L,nL). Then for each

integer‘ n, In contains a G;LG E{E/Z;f} and a ’tnéE{E)Z;g?.

Divide the interval [-L,L) into 2M intervals Jk of length [ .

Since o, ¥ € I we have |g— - ~ | £ L, hence
n n n n n

crn - 'tn (4 Jk for some k. This k may be called the index

of n. Since only finitely many indices are available, there
exists a positive integer N such that every possible index
is attained as n runs from =N to N. Hence there exists an

m o, =N < m < N, such that n and m have the same
index k, i.e., crn - hcne Jk and T, - "Cm € .
n n
let ¢ =0 -q¢ , £ =T - ,
n n n

m n m
n n

Clearly T € E{{E;f? , T_eB{ese].
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Since '6-'-n € E{E;f? it follows from proposition III that
_'gn € E{E ;f} y leesy En is a common & =-almost period of

f and g. It is easy to see that the set {Fn:n .—_-O,il,...}

is relatively dense: for any n

R I - (om0 | g

n+l
n+l n
zlo-' -cr'\+‘cr -q—|< oL + (L + 2NL).
= n+l n m m

n+l n

Since each _'fn differs from the corresponding 0—';1 by less

than & the set {;C‘n:n = 0y %01, ...} is likewise relatively

dense.

Remark: We see that proposition IV holds for any finite

system of UAP functions.

V. The set of integral € -almost periods of a UAP /function

f is relatively dense.

Proof: Let g(x) = sin 2wx. Taking 8148 s by proposition
III there is a §~ >0 such that all numbers whose distances
from E{El;f} are less than § belong to E{& ;fz. Take an

€, >0 such that the elements of the set E{E,3g} differ
from integers by less than § . Pick 83 = min ( El, Ez). ‘Then
the E3-almost periods common to f and g, E{£3;f,g} y is by
IV a relatively dense set and the elements of E{E3;f,g} _
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differ ffom integers by less than.J because g is periodic with
period 1. Let J denote the set of integers nearest to each
number of E{£3;f,g} . Then J is relatively dense. But
E-{&3;f,g} c Eszl;f} and therefore the distance of each
number of J from the set E<{El;f§ is less than § and
consequently each number of J belongs to E{€;f§, and clearly
to B §€;f§ . Thus J being relatively dense, E{E ;£3 is alao
relatively dense. The proof is finished.

Consider the complete metric space M ,, of bounded complex-
valued functions on (- ©0, 00 ), where distance between two
'elements f and g is defined by

F(f’g) = sup ‘f(X)""g(x) \ .
—00 € X <00

By propoéition I each UAP function belongs to Moo .

We shall call a set Q in a metric space X sequentially compact
if every infinite subset of Q contains a.canergent sequence

with 1imit in X (but not necessarily belonging to the set Q).

VI. A set S of UAP functions is sequentially compact in M,

if and orly ifs: 1) the functions of the set S are uniformly

bounded and equi-continuous and 2) the functions of the set S

are equi-almost periodic, that is for every "l> 0 there

exists an L = L(") such that each interval of length L

contains a number p which is a ™) -almost period for all

functions of the set S.
Proof: Necessity. Consider condition 1) first. Let S be
sequentially compact. The uniform boundedness of the function
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in S follows the fact that every sequentially compact set S
of a metric space is totally bounded. We show that S is an
equi-continuous set of functions. For given & > 0 we: construct
a finite &/3-net Wy eoe y U for the set S, Since the u 's
of the €/3 - net can be taken as belonging to S, it is clear
from proposition II that the uk's are uniformly continuous:

on (- bo,00 ), For each w_we select a dj such that

)uk(xl)-uk(xz)] < &/3 holds for |x;-x,|<d. Let

ST L n I
it \xl-xz | <& 5 then for each function u € S we have
lu(xl)-u(xz)l £ . Ls:i nl [u(xl)-uk(xlﬂ + \uk(xl)-uk(xz).‘
+ | |
e 43;24 Iy a)-uiy ) < 2 P (uyu,) + €73,
If we: pick from the net that function w for which
f’ (uk,U) < E./3a >

then
] u(x1)4u(x2)‘ <&,

Since € 2> 0 was arbitrarily chosen and since the above
estimate does not depend on the position of the points

X, and X, nor on the: choice of the function u. of S, we
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get that the set S of functions is equi-continuous.

Now we consider condition 2). Since S is sequentially compact,
there exists for each M >0 a finite /3 - net for the set S
aF: all these functions we
can consider as belonging to the set S, By the remark .

consisting of elements vl, eee 93 V

following proposition IV there exists a number L > O with the
property that each interval (X, X+ L) contains a number t
which is for all v, (1 =1, eee yn) a common ™/3-almost
period:s

|Vi(x+t)-vi(x)\ < "7/3, 1i=1) eee ynj =00 £ X <00 ,

M
1)1 =1 constitutes anm/3 - net. Thus for

each function v € S there exists some v, for which

On the other hand (v

|v(x)-v,(x)| « M/3; -00 < x<L00,

From the iast two inequalities follows that

'v(x-&—t)-v‘x)\ < lv(xl+t)-vi(x+ t)| + )vi(x-g-t)-vi(x),
+ \vi(x)-v(x)l 4£3m/3 =™ for - 00 <4 x 400,

Hence t is an m -almost period for all v € S and the necessity
of condition 2) is shown.

Sufficiency. We assume that a set S of UAP functions
satisfies conditions 1) and 2) and we: select an ™ > 0,
Furthermore let L = L( ’?) be so determined that each
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interval of length L has an m -almost period for all w € S.
For each function w € S we define a function W by
w(x) for -L £ x £ 1L

w(x) = :
. I]L(Xé_(n"’l)L n =1,2,oo‘o

w(x-r_) for
M | nL £x < (n+1)L n ==2,=3y¢00

Here rn is an M -almost period for all wé&S which is in the
interval (nL,(n+1)L).

We denote the set of all functions W by S,.,1 « The functions
W in 8, satisfy on the interval [-L,L] the conditions of
AScoli‘s theorem, namely: If Q is compact, then a set in C(Q) .
is sequentially compact if and only if it is bounded and
equi-continuous. Thus S,\Q is sequentiaily compact in the
sense of uniform convergence on this interval. Since

x-r € [-L,L], by the definition of W, a sequence of these
functions, which converges uniformly on the interval [-L,L_l ’
also converges uniforﬁly on the entire real line. Hence

the set S~i is sequentially compact in the sense of uniform
convergence on the entire real line, that is in the sense of
the metric of M 4 . For arbitrary wé&S and the correspond-
ing w € Sm we have

'  w(x) - W(x) =0 for -L4£x<l

and

wi(x) - W(x) = w(x) - w(x-rn)
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nL‘-er__(n"'l)L n=1,2,3, XX
nL é X & (n+l)L n = "'2,"'3, ees o

for

. Since rn is an M -almost period of w we have for arbitrary xs
| w(x) - W) | < m.

Thus the sequentially compact set S,,,I forms an ”L- net for S
in the space M oo ¢ Hence S is sequentially compact and it is
verified that conditions 1) and 2) are in fact sufficient.
This ends the proof of the proposition,

For N € R the translate f% of the function f is defined by

f%(x)= f(x+XM).

VII. A _continuous function is UAP if and only if the set

0 ts translates is sequenti ompact Moq.

Proof: Let f be UAP. Evidently the set of translatés satisfies
both conditions of proposition VI.

Conversely suppose: that the: set { f% DN GRL} is sequentially
compact. Then it contains a finite & = net f )\1, eee 9 > S

We order the f 5 according to rising index A < M e SN
i 1 2 n

For each f)\ there exists an f 7‘1 such that

P (£, of )\1)’-: S BURD | £y (x)-f hi(x)\ < .E
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or
|£(x +X)=£(x+ XN)|< & for all x.

If we put x + >\1 = x', we get
| £Cx'+X - )\i)-f(x')\éé, - 00 <L xte0Q ,

Thus for an arbitrary real A\ one of the numbers X - )\1,
1 =1,2y eee yny is an g =-almost period. It follows that
each interval (aja + A, = A,) contains an & -almost period.
For if we put a + >‘n =N , We obtain as & -almost period
one of the numbers a+ N, - Ay, 1 = 1,2, ... ,n. Since

B
N £ N EN wehave a + N - )xiél:a,a—\—)\n- %l—-\

and the proof is complete.

Remark: The proposition VII can serve: as an alternate
definition for UAP functionsj; this was done by S. Bochner.
Using this definition of UAP function we easily obtain that
the sum of two UAP functions is again a UAP function.

Indeed, if f and g are two UAP functions, then by proposition

VII any sequence (f +g) 7\1_—_- : ),‘14. g . has’ . m_ = %in

such that (£ and (g are both uniformly convergent.
| f e n\ i /“‘n\

Th (f = (£
us ( +g)/*n), ‘(/“n+ g/*n

convergent and by VII f+g is a UAP function as well,

) is also uniformly
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It is trivial that with f, the functions af, f, and |f|,
where a is a complex and ¢ is a real nﬁmber, are UAP also.

Since

(P -2 = e +£@)] | S(x4+t)-£(x))

and '

£(x)glx) = (/W) {(£(x) +8x)? - (£(x)-g(x))? § .
we: see. that the product of two UAP functions is UAP as well,

VIII. The uniform limit f of a sequence (f,) -, of UAP
functions 1s again a UAP function.

Proof: Given any & > 0, pick N = N(& ) such that

sup |£(x)-£(x) | < €/3,
~00 £ X < 00

Let t be an &/3-almost period of f .. We have

N

|f(x +t)-£(@)] £ | fx+t)-£ (x+t)] + | £ (x +t)-rN(£)|
+ | £ -1 < 38/3

proving the proposition because E { &/B;fN} is relatively
dense, and because of the above inequality each & /3-almost
period of f_ is an € -almost period of f, E{€;f{ is

relatively dense.
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Remark: We may summarize some of the above results in the
following statement:

/

The set of UAP functions forms a complex Banach space under

the norm

el = sup )£(x)| .
—-00 £ X L£00 :

An important consequence of proposition VIII is the following.
Consider the set of all exponential polynomials

i'%kx

s (x) = éE: e ’
n = %k

where >k are real numbers and a, are complex numbers for
k =1y see yne BEach summand in the above expression is a
periodic function with period 2T/ \>~k\ if >l: #+0, or
constant, and therefore a UAP function. Thus the sum s is
~a UAP function as well, Looking at the class of all-
possible uniform limits of exponential polynomials, we get
by force of proposition VIII that all the functions thus
resulting are UAP also.

In the: remainder of this chapter we occupy ourselves with
establishing the converse result, namely that each UAP

function is the uniform limit of exponential polynomials.
This result gives a deep characterization of the space of
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UAP functions and is the content of H. Bohr's

APPROXIMATION THEOREM: Every UAP function f can be

approximated uniformly for - OO0 < x< 00 by finite sums
of the form

iN X
s(x) = 2 a, e ’
that is, for each & > O there exists a sum s such that

| £(x)-s(x)| £ € for all x.

In conclusion of this section we mention the following:
If

o ;
§ |ak| < 00 (the a 's are complex numbers)

-
=\

A

and (N )k 1 is a set of real numbers, then

s i x
S a e
£ =4 L

is a UAP function. The foregoing statement is an immediate
consequence: of proposition VIII and will be used in the

next section,
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2.2 On a Theorem in Additive Number Theory

In this section we employ the representation theory of
positive definite sequences to derive some propositions
of number theoretic character. We shall call a set E of
positive integers r el a tively dens e if
there exists a number T > O such that any interval of
length T on the positive part of the real line contains
at least one element of the set E, We prove first the

following proposition:

I. For any relatively dense set of positive integers E
it is possible to exhibit real numbers )\l’ cee )h‘
such that all integers n, for which the numbers

An-

_k_ (K =1y eee o m)

2T
differ from integers by not more than 1/4, are representable:
in the form

B=Dp+ 0y "™ %

, . et E,
where np, nq, n_, and ns belong to the set

The foregoing proposition will be used in the next section
to show that the almost periods of a UAP function coincide:
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with the solutions of a system of inequalities of the form
l)\kt|<<\‘(mod2'n'); k=1 eee 9 W,

These inequalities signify that there exist integers 1'1k for
which the ordinary inequalities l >‘kt - 21rnk ' £, cr ’

k= 1, eee g Iy ar.e satisfied,
We now turn to the proof of proposition I, stated on page UYl,

Suppose that E 1s a relatively dense set of positive integers
and let X signify the characteristic function of the set E.

Z— X (n)

N (0< n<N)

We denote by

and for all integers n we 1et'

?N(n) =2 (0451'1—41\1) 'XE(n+nl) XE(nl)'
N 1
In the sequel we consider only those natural numbers N!' for
which the foregoing fﬁnction j’N is defined, that is for
which Ao F 0.

We note that

o£P (£l

By the theorem on page 16 we see that from the sequence (SDN')
we can select a subsequence (TN' ,) which converges pointwise,

that 1s for each integer n, to some limit function 33._0 .



Moreover we haves

0 &3, (m<1.

We observes If &, (n) > O for some n, then this n can be

represented as difference of two elements of the set E.
Indeed, if Spw(n) > 0 for some n, then there exists an N
for which ?N(n) > 0., Thus for one of the numbers.

n1= l’ see N-1 we have 'XE(n+n1) XE(nl) > 0 and
consequently n+n, = n, € E and ny ¢ E; but n= ny-n ..

We now verify that ?w(n) is a positive definite sequence
for n= 0,+1,*+2, ... ; we show that for any complex
numbers Fo, Fl, eee 9 Fm (m < OO) we have that

T e ;/E; = A Y Fnl (onz = O

m
0<%£n m

2
Consider an approx:l.?mafing sequence ( SDN') for wa o Then

s g = Kl

I\

TN

?N'(nl-nZ) Fnl {onz ©

But.



Nt -n24n34N"-
( Oénlém
0O£n, &m

| ' 2
o E \ 5 XE(n+n3) fn o JEN'- <
T A (0L n, <N*) (0<£n<m) '
Nt 3 , =
where i
R = > Xgtey+d Symprny) (o fo)
N¥ AN'- -n, z._.n3 £0 '
. 0O£n <n
0% n, £m .
\ . e 4
- — 2 - X my+n) X (ny+n,) foq Pos *
Nt N,'-n2 é—_ n < Nt
: ) = :
< <
0= nl =
( 0&n; &£m )

Since AN' —> 00 as N' — o0 we have that \?N‘ s
as N' —» 00 , Therefores E > 0,
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In view of the analytic representation theorem for positive

definite sequences (see page 23) we can write

T int

R = 5 o as®),

(n = 0~,il’ tz, ooo)
- .

where g is a non-decreasing function whose total variation is

v
‘_12 dg(t) = P, (0) £ 1,

Decomposing the function g into iits monotone: increasing

jump=function g 4 8nd its monotone increasing continuous

part gc, we: define

™ int :
Pm= [ e dgg(t) and’
-T0
e )
int
Pm= § o ag (v
-T0

We note that }P (n) represents an absolutely convergent series

with non-negative coefficients:

i
P = S c e K,

We also see that f(n). possesses the following asymptotic

behaviour:
§(n)——> 0O ass n—>» 0o,



The latter assertion is a conseqﬁence of the Riemann-Lebesgue
theorem; ¢ (n) represents Fourier coefficients of a summable

function,

We now show that ‘P’ (n) is non-negative.

The proof conveniently splits into two steps; firstly, we show
that the assumption ‘P (no) < 0 for some n, leads to a cqntra-—
diction and secondly, we show that the case Im( ¥ (n,)) F 0

for some n, is impossible as well.

Assume that for a certain n, we have ‘P (n,) < 0. Then we can
find a real number § > O such that the set

\co‘r :{nz P (n) < -A“}

is not empty. Since o | ¢ | <00 , the function PP 1is UAP
by what was said at the end of the last section (see page 40).
Put €= ~( P (no) +§ ). The set € of integral & -almost

periods of PP is relatively dense by proposition IV on page 3l.
Take any m € & . Then ,\_E‘(no-t— m) - T(no)' < &€ so that
\j?(n0+ m) <__,i’(no) +& = -§ . Hence n
since % is relatively dense, so is f r X We can find a number
n € 'fcr such that l§(;), < J°/2 on account of the
asymptotic behaviour of < (n).as n —> 00 , Therefore we

~ ~ ~

have @ @M< @+ | (n)li -§/2 < 0. But this
contradicts the fact that 0 £ fPN (n) £ 1 (see page 43),

+m€kgd~,a.nd

In a similar manner we convince ourselves that j’:‘ (n) in not
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complex, For, if there was a number n, such that ‘P (no) was

a proper complex number, then we could find a disk in the
complex plane with center at the point ‘P(no) such that

all points of this disk would be at a distance, say S 2 O

or more, from the real axis, The set of numbers n for which

¥ (n) are located inside the mentioned disk would constitute
a non-empty set which would in fact be relatively dense..In
this relatively dense set we could pick an element 7 such that
l@ (;)l 4 & /2 holds. Therefore the sum P () +$Em) = jfu(g') :
would have to be a proper complex number and we once again

have reached a contradiction,

Next we want to show that the average

Co = lim e Z P (n)

K —o00 K
(0 <€ n< K)

is strictly positive.,
From the asymptotic behaviour of § (n) we have

A § §(n) Sty O as N — OO.

N
(04 n<« _N).
Thus
- ( E
C - ld.m Sy (n)o
0 K—>o00 K F

(0 £ n< K)

On the other hand ’



Z Pyn) = Z (n+ n,) XE(nl) =

(0< n<K) 04ni< N
0<n <K

]

5 % L) {__ ’chn?_)},

H‘ (0<n1<N) (nl<n <nl+K)

Since E is a relatively dense set of positive integers, one
can find numbers a > 0 and Ko > 0 such that the number of
elements of the set E situated in any interval of length K,

where K 2 K , will be larger than akK.

0 » ]
Consequently,

\
£y E XE(nz) .ﬁ_ a
(n1< n,<n, +K)
and therefore

.1%- > Py 2 s

(0 £ n < K)

Passage to the limit as N —» OO gives

| |
= 2 $m=a

(0 £ n<K)

/

so that we get the desired result, namely: CO Zza >0,
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We consider the convolution .

A )=
ey o :>: F,,o+0) (0
(0« n, < N)
Since 39m(n) =P(n)+ § (n) and making use of the 'asymptoticf
behaviour of (n) as n —> 0o , it is seen that the following
limit exists:

/\( = N = i _l_.
m= Un Agm= ua o D> Plsa) Py
(0<¢n;< M)

we obtain _
2 1An
Amy= c®+ 2 ¢ e o
}\&#O ‘ |
If for some n, we have the inequality /\(no) > 0, then we can

0
find a number n, such that

Tw(noi— nl) >0 and me (nl) >0

holds. In this case however the numbers no-i-nl and n, can be
represented as difference of two elements of the set E (seé
page 43). Thus every n, for which /N(n) > 0 is satisfied, has
a representation of the type
Il = np“" nq" nr - ns,

h .
where np, nq, Dy and n, belong to the set E
The series

P 2 i >\‘n ,
N\ (n) = Cp + E . e

A&* o



converges absolutely; we also know that C_ > 0, C __?__ 0

0 k

and A(n) = 0 because P (n) Z 0. We write

m [o%%)
2 2 2
= _E PN §
/\ (n) Co + C, cos Amn + Ck cos )\kn,
k=1 k=m+1
where it can be assumed that
oo : .
§ ° An| < ¢’/
C cos n Cc 2
k k 0
k=m+1

upon suitable choice of the number m. This then means that
m
2 2
/\(n)>C/2+§ C cos>\n.
0 k k
k=1

The quantity on the right side of the last J'Tnequality is
larger than zero provided
m : >
Z Ck2 cos >\kn = 0.
k=1 _
This will be the case when cos >\kn 2 0; the latter

condition amounts to the requirement that
\ >\kn\ < T/2 (mod 27).

The foregoing thereéfore answers the question, when is /\(n) > 0,
considering the series expansion for N\ (n).
Evidently we are now done with the proof of the proposition

‘stated on page u4l.
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In the foregoing proof we established that gxu(n) > 0 implies
that n permits representation as difference of two elements
of the relatively dense set E of positive integers. We wish
to find out next what analogous claim can be made relative to

the expression P (n). We commence with a definition.

If S is any set of positive integers, let TTA(S) denote the

number of elements of S less than the natural number n,

We say that a relatively dense set E of positive integers:

satisfies a certain property P for mnear ly all

elements of E, if the subset E;CE of elements not

satisfying property P is negligible in the sense that the

ratio TTn(El) / Ttn(E) tends to zero as n —> 00 ,

We show that if &> O is a sufficiently small fixed number,
then nearly all n for which P (n) > § can be represented

as difference of two elements. of the relatively dense set E

of positive integers.:
Consider the set of positive integers
Ol.={n: n) > "
s={n1 @ >§]
That the set Oly is infinite for some J > O follows from

1im L E \P(n)-:co)o.

K —>o00 K

the fact that

I}
. Let (Jar denote the subset of <Jla.whose elements are not



.

representable as difference of numbers in E, then by what
we know about 39\“ ’

/
.

= Ot
3°w(n) O if and only if n € Ul

Whence
2 $ @) = - 2 Pn) < - :Tl’N(uzdh
(04n4N> (O<n<N '
/ /

and therefore

S lEwly o VEw|> ST,
(0<n<N) (o<n<n

n € OLJ\ n & U'L:r )
Thus we get

Ty (00) | o &

= T m < N

But for any sequence of numbers converging to zero, the
sequence of consecutive arithmetic means converges to zero.
Since Ul{ is infinite, the asymptotic behaviour of § (n)

as n —> 00 implies
| |§(M)l———>o as N — 0o

TrN (LJIJ) (o LGM(); N)
m € Oty
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and therefore
e '
T, (Otg)

T, (U5

But this is what we set out to do.

—> QO as N.—» ©00.

By an argument completely analogous to the one giveh on page:

50, we observe that the consideration of the series

iXn
\P(n)-—‘—-co-}- Z Cke k
N F O

leads to the following statement: It is possible to exhibit
real numbers Xl, b g >~m, M>0, &> 0 such that
P (n) > g for any positive integer n, for which all.

numbers

.__I.E——-‘ (k:’l, 2’ o.o,m) {

differ from integers by not more than /Vl °

It is now easy to see the validity of the following propositions

For any relatively dense set E of positive integers we can
find real numbers )\1, " )\m and M > 0
al integers n, for ch th TS



X n
(k-——'l’ eeoe ’m)

27

differ from integers by not more than nz y 8re rgpggéggtab;g

s rence of two ments of - the ven s t E.
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2.3 Theorem Concerning Almost Periods

Using the results of the last section we prove a theorem
concefning the almost periods of a UAP function; this
theorem gives a deep characterization of almost periods.,
In the next section we shall derive from it Bohr's
approximation theorem without the use of limit periodic ‘

functions.

THEOREM CONCERNING ALMOST PERIODS: If f is a UAP function,

then for any given & >0 we can find a §>0, and reals
P >~1, eee 5 X such that all solutions t of the
system of inequalities

D\ktl < & (mod 21); k=10, 1, eee o m

are & -almost periods of the function £

The proof of the foregoing theorem conveniently decomposes

into two lemmas.

LEMMA 1: Let {tl, t,y oo} be a relatively dense set of
positive reals, Moreover, suppose that there is a positive
real o« such that for any distinct indices n, and n,

t -t 03 = L L4 san
lnl n2l>°‘> i Ban, ) Sy

holds, Then for any given {57 O we can find a >0, and
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reals >\0’ >‘l, eee )m so that all solutions t of the
system of inequalities

|>\kt' < 3 (mod 2w); k= 1, 2y ees y m

satisfy as well an inequality of the form
- - - <
Jt- vt -t -t <[®

with suitable elements tp, tq, tr, and ts, dependent on t
and belonging to the relatively dense set § ti, t,y ees § o

Proof of the lemma: We first determine a natural number M
so large that

(I/M) <  and (/M) < ([2/5)
holds. Next we select natural numbers ny by the following
rule:

ni:'[M ti]’ i:—l, 2, ooo‘,

where [ ] signifies the integral part of the number so
enclosed. We now observe that for i3 k and t; > %, we have

n-mo= (M) -[Mg )2 [ue-e)] 2 [ Lol =1

Thus the numbers n, form a relatively dense set of distinct

positive integers and we can apply the proposition I.of: the
last section (see page 41); there are reals >‘1, Shi g >‘m
so that all numbers n which solve

l%knl < '|T/2 (mOd 2T|’); k-——l, 2, see 9 m
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are of the form n = n,+n g~ Pp = Bg Since we operate with

- residue classes mod 2 W, we may assume that the reals N
vee )xm lie in the interval [O,ZT\'). We put

1’

)\o'-‘- 2wM and § ='“'/(1|-M)'

and show that the numbers %0, )‘1, cee >\'m and [ are

such as lemma 1 asserts. Let t be a solution of
‘ >‘kt, < F(mod 2m); k =0y Ly eoe 5 M
Then there exists a number n such that
|2wut - 2wn| 2 /)
or |

| t-2 |« v < frs.

In addition, there exist integers Dy eee y B such that

AA

']%k_%“,\-a-zn%\:é__ l>~kt+2w%{+ Nt - ,—\,\—l<

LT /080 + 2T/ (8MD) £ T/ (2M)

holds for k =1y 25 eee y me Therefore the number n satisfies

for k = l‘, 2, cee 9 m the meq:uﬁlitie&

| %kn' £ T /2 (mod 27T).



s B

Butn=n +n -n = n_ and we have
p q r 8

[+ - (G, +t =t - %) | £

A AA Aq AA AN
é"'n‘«‘*lﬁ"mﬁ*%'ﬁ‘%s’ Fe
AA AA M Pal)
b ,ﬁ-t)_‘.'*- __i-tl
+lm P‘\+’n7\ I S B e R T

SE/sro+P/sH[P/5 ¥ R/5H B,

This means that we have what we set out to do.

Remark: In lemma 1 we can delete the condition: "suppose tha{. |
there is a positive real oK such that for any distinct indices

nl_ and n,

, tnl - tﬂz’ > o >0; n,n, =1, 2, .o holds",

This condition is a bonus of the fact that the set 3 tl,tz,...}
is relatively dense. Indeed, if { t3tpyeeed is relatively
dense, then we can select a T > O such that every interval

of length T/2 contains an element of the set {tl,tz,... 3 . -
If we pick from each interval (((i-1/2)TyiT), 1 =1,2, 5. »

an element tni, then

’tni-t#k|>r/z> ) 1+ k.
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In view of the preceding remark we have:

LEMMA 2: Let E ={ tl’tz""} be a relatively dense set of
positive reals. Then for any given [?>>O we can find a
& > 0 and reals )\O, P )\m so that all solutions t of

‘%kt\ <J (mOd 2."); k :0’ l, see g Il
satisfy as well an inequality of the form
[+ - (6 +t =t - ts), <3

with suitable elements tp,- tq,’ tr, ggx_g.ts dependent on t and
belonging to the set E.

Before we start with the verification of the theorem concerning
almost periods stated on page 55 we insert the following two
observations. Firstly, it is not necessary to get into a sepagéte
discussion of positive and negative almost periods because if

t is an & -almost period of a UAP function f, then so is -t..;
Secondly, if t, and t2 are &€,- and Ea-almost periods of a
UAP function f, respectively, then tlt ty, are (& + 52)-
almost periods of f.

We select some relatively dense set E.z{tl,tz,...} of &/8-
almost periods of the UAP function f and apply to it lemma 2,
First of all we pick (3 to be arbitrary., We get that the

solutions t of the system of inequalities

-



- 60 =

l>“ktl<é“ (mod 27TW); k =0y 1y eee 4y m

P
with the numbers My, «.. , ,>\m and p dependent on (3 also
satisfy an inequality of the form

t-(t+t -t -t ' :

|t - IR NI RN

Since the elements of the set E are & /8-almost periods of f,
we have that |

<
.tp—f‘tq-tr-ts— t(z)

is an € /2-almost period of f. The mumber t( ) differs

from t by at most F’ o The function f is uniformly continuous
on the entire real line by proposition II on page 27. Thus we
can take (-’s so small that every number t which differs from an
almost period t(% ) of f by less than [3 )

&
| t -t )l <. 3
is an € -almost period of the function f. Thus, if & > 0 is
given, we select (3> O so small as was just explained. Then
by lemma 2 we choose the nmbers g >\0’ >\1, cee 9 >\m
and note that these numbers are precisely those whose

existence is claimed in the theorem concerning almost periods.
This finishes the proof.
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2.4 Proof of Bohr's Approximation Theorem

Keeping in mind that our problem is essentially’'the construcs-
ion of Fourier series for UAP functions, we are obliged to
look first at a theorem which is the key to all these

considerations. 2

THEOREM CONCERNING MEAN VALUE: For each UAP function f there

exists t m a v a (=}

M{fx)§{=  1lim

T .
ale f£(x) dx.
: 5% § 3

Moreover, th imit

lim

a+t
L £
- - £ £(x) dx = M{ (x+a)}

xists uniformly for a.

.

Proofs Let €% O be given. We put ' \

L=1L(E/2) and A= sup £
—~00 & X < 00
’ Denote by ® an arbitrary real number and by t an &/2-almost
period of f situated in the interval (o,*+L). Then
. x+T

,-;—- gf(x)dx- -;-—;[ £(x)dx

<
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t+T

-
! Lk
g,—i—gf(x)dx- . ;tff(x)dx’-f

x* £4+T
| -i—ff(x)dx]a-] LT { f(x)dxlg
o A+T .
T + <+ T
< £ A S\f(x)-f(x+ t)| ax+ e f\f(xﬂ x+ -~ S | £(x)| ax
To T x T !

< &/2 + (2AL)/T (1)

because

and

4T T

( tnay = § fx+t)ax | i
x o

when we set y= x+ t.

Considering the arithmetic average of the n differences

-
T AM

A ff(x)dx- ‘s f f(x)dx; m =1y2y ese ,n
T o T (am-1)T

T

l L (rmax - — f foax |< €2+ @/ (2
T ot nT o , :
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Let Tl and T2 be positive numbers such that mlTl =m,

m, and m, are integers. From (2) it follows that

‘1'2, where

| T
‘—- { f(x)ax -
T. o

TZ
©L
: B( £(x)dx ' <E+ LT . ()

L]
T2

The last inequality carries over to arbitrary positive

numbers Tl and T'2 by continuity consideration, If Tl and Tz

are strictly greater than (4AL)/ &, then we see from (3) that

L T2
| = § tax- L (rwax) < 26
Tl © T?_: o

which proves; the existence of the limit

.
n
lim - f(x)ax = Myf .
s é( x) $£(x)§ |

Taking n —> ©© in inequality (2) we get:

- . :
‘ ':F § £x)ax - u §f(x)} ' £ & /2 + (2aL)/T. ()
o

To get the second assertion of the theorem, we note first

that for a constant a:
M{f(xa—a)}: M{f(x)} A

because:
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a+T

p
- Sf(x+a)dx =L _f f(x)ix =
T o T o
o - a+T
L (e + L (rwa+ - § feoax,

where for T — ©© the second term on the right hand side
of the last equation tends to M {f(x)} , whereas the other
two terms tend to zero because the absolute value of each
is £ |a| A/T. |

It remains to show that for each € ? 0 there exists a
number T = TO(E) independent of the number a such that

0o
for T > nro the inequality

T
l L ff(x+a)dx - M{f(xi—a)} , < &

T o
holds. But this follows directly from inequality (&) because

the numbers A and L are independent of the number a, Taking

in particular a = =T we get

i 7
ufrd=  1m L (feax= | um - j ‘
T Soe T 3 ?—So0 2T £(x)dx.

=T £
The proof of the theorem is complete.
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iXx

In the interval - 0o £ x < OO  the systeni -{ e A real}

is an orthonormal system in the sense:

-ixx
a(N) = M{f(x) e ?
The non-zero a( A)'s are at most countable and are called the
Fourier exponents of the function f.

Indeed, let >~l, eee y Ay be distinct real numbers and ¢;; eee

ees cN arbitrary complex numbers. Then

N 2
uflee - S o o 0| 3=
AN =)

:M{lf(x)\z -2 la( M+ & e -a( %n)\ .
A =) AA=) .

First of all it is clear that the mean values appearing in
the foregoing equality exist because the functions involved
are UAP. The equality is verified as follows:

Ncnei?\anZS:
{

M3 £~

—
—

N irnx — N dinx
M{(f(x),-é‘cne 17y (£ (x) -'A?_;_‘cne 2y § =



. N -
M{r@IGS - & T u{r e Lhx 3

N -
-é' c M{f(x) ei %nx}

NN i
+ >3- S ¢ TM{ei%nlxei%nzx}:’

N R i
= M{lf(x)l j' 22 cial ) - S cpal ™) + N iy =
A= Aq = AN

N
2 N
= 312 §- & (epralmdemaln))- S alla(d) =

2 i 2 N 2
= MIlE@| T - S |alr))T + S5 e -alr)] .
A=) A= '

Taking in particular c, = a( 7\n), n=1, ees 9 Ny and since

N i 2
M{\f(x) - é: L )\nx‘ } > 0, we get Bessel's
AN =)
inequality
~N 5 o
S a1 ™ £ ujle) 3.
Ax =)

From it we see that the number of A for which |a(Z\)| > 4
is less than M{li‘(x),zj/ d2. Taking dn =1/n (n=1,2ye00)

we consider the sets B, = {)\: fa(>™)) > l} and

B={ N td >al>)>d. .3,0=2 3, «eo , we get that
the set of N for which a(X\) 3 O is at most countable,
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We now turn to the proof of Bohr's approximation theorem.

Let £ be a UAP function. By M_, we genote the vector space

4
over the rationals generated by Al’ >\2, eee 9 the Fourier
exponents of f. M, has a basis Pl’ Fz, .+«  and each ﬁk

PN '
may be chosen from the set 17 Py eee s Since the (ék s
form a basis there exist positive integers m = m( )\1,..., /\n)
and q = q( IERLEE n) such that ] (Sjl ,31+ oot s Fm)/q,

is an integer, j =l,o.o’n; k=1,ooo’mo

J = 1,...,11, where Sjk
We put
& = 1/(lm  max \sJk\
l£j<%n
l€kx<mn

Then it follows that every t which satisfies the inequalities
l(bkt/q] < § (mod 2T); k=1y,ese,m (5)
also satisfies the inequalities
ixjtl < /2 (mod 21r); §=1,eeeyne (6)

Let N be an arbiltrary natural number. We consider the Bochner-

Fejér kernel defined by

E (of §) = X (_'<sm<No< t)/2)/(sin( « t)/2ﬂ2=
k N k k

N
=iV o t
2 1 - L‘g—' e k )

v <N

v
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where ‘Xk = Fk/q, k= lyeeeym. If lo(kt] 2§ (mod 27w)
(3 <), then | sin (o4 t/2)| 2 |sin (8/2), o Thus for

such t

K (%8 < (N sin®(g/2))70 (7)

We note two properties of the Bochner - Fejér kernel: It is
never negative and its mean value equals 1 because it is

equal to the constant term of KN

We consider the composite Bochner - Fejer kernel:
= “ “ LK L ]

B8 = K(%,8) K(Xpt) see K (K 8)

It is again seen that it never is negative and its mean value

is
N .
M{K (t)} — 5 W . (8)
Let .
E 1{1:3 ‘o(kt\ “S (mOd 2“), kzl’ooo,m}
Ek= {t:‘“kt'<€ (mOd 2'") } ’ k-—l, see g Iy
where °(k= Fk/q, k:i,ooo,mo ThenEzElf\ XX (\Emo

(T) (1)
For T> 0, put E = E n ("'T,T)’ Ek b %: n (-T’T)’ k:l’QOO’m.
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Let g be any non-negative UAP function and A = s%p g(t).
Then by (7):
-
L gt B(t)at =
2T o

L +
==J5 K ()dt

(T)
!
: | 4
+ 5o S - B(BIK (% 0K (G800 oK (¢ t)dE
(-T,T)-E;

< E"' S e Foas +

T
(1)
5
P k: |
(BIK (%) eeeK (% £)dt <
N sin®(§/2) . (T) e N IS‘ n i

(=T, T)-El

L8 e Fmas +

£ o0
| T -
N sin?(§ /2) Sg(t) %E:)w —n
T L

(T
Separating the points of the set E2 from the set E_{T) we get
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O

|

—2—1:‘ f g(t) KN(t) at £ 515- S g(t) KN(t) dt +
=T EiT)f\ g™

| A |
+ .
N sin®(§/2) 2T

T N N '
+) €]
Klx, £) K (xa%)
=

Continuing this process and passing to the limit as T—> o0,
we obtain, using the fact that E=E N «ee N E s

u{g(OKN (6} € 1im — f g(t) K (t) at +
G N —-200 21 E(T) |
(9)
o |
N sin®(g/2)

Now we invoke the theorem concerning almost periods (see

page 55): Every t € E 1s an & /2-almost period of i";

| £x+4) - £x) | £ E /2, (10)

We consider the Bochner - Fejer polynomial

T

P(x) =  lim L f F(x+t) K (t) dt.
T—>00 2T :
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Applying (9) to the UAP function g(t) = |f(x -\-t)-f(x)l we get

—r

|p -] 1w L § Jraro-re)] £ as

1im S | £+ )20} K (8) at+
T =00 2T (1)

\l\

2Cm
N sin?(J>/2)-

+

where ¢ = sup | f(t)l . Hence by (10)
y

e £ .
[Pye0-£G| £ - o - SKN(t)dt +

2Cm
N sin®(g/2)

+

= (&/2)+ (20m)/(N sin®($/2)). (11)

For fixed m and & 4 N can be taken so large that the inequality

2Cm Z
N sin?( §/2)

=
- (12)

is satisfied. We see therefore that the estimate (11) holds
uniformly in x and Hohr's approximation theorem is proved.



w72

The Bochner-Fejér polynomial PN is seen to be of the form

E B - . ) i(lel-.- .o +Vm°‘m)x
ee TtV &
l,oo,ma lul d m m ©
Ex
L

|vn1|4.N
where
~
B = (1"-——]-'—'-) LX) (l" ‘.._v_m_‘)
1yee,m N N

and a( ) = M{f(t) e-i‘xt}

From page 39 we recall that the class of UAP functions forms
a complex Banach space under the supremum norm. Using
convolution multiplication we can define a product of two
UAP functions:

| (f # g)(x) = M {f(x-t‘)g(t).f

(here the mean value is evaluated with respect to t); we
note that we again get a UAP'function. The Banach space of
UAP functions turns out to be a commutative Banach algebra
under convolution multiplication. Bohr's approximation
theorem can be interpreted as follows: Every closed ideal
in the Banach algebra of UAP functions is the intersection

of the regular maximal ideals containing it.
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Chapter 3
HILBERT SPACES WITH POSITIVE DEFINITE KERNELS

3.1. Extension of a Symmetric Operator

A linear operator A in a Hilbert space "5 with domain of
definition %A and range \RA is ca;;ed Hermitian
i ‘

{Af,g) = {f,Ag) (f,g € 2A)

and is called s ymme tr i ¢ if it is Hermitian and
& is dense in 4.
A s !

Ir '§ , and 9 , are Hilbert spaces and A is an operator from
A is dense in 31?

the space ‘51 into the space ‘5 o? where &
a representation of

it can happen that for certain h € 5

the form
{Af,g) =<{£,h)
holds for all f € ‘%A' By a theorem of F, Riesz (see Neumark's
book on normed algebras, § 5, section 3) this is the case -
if and only if
<Af’,g> = Fg(f)

*
is a bounded linear form in o‘bA. Let oD ba ths sollection

of all such g. By
' ' *
Ag=nh _
e ,
we define an operator A  from ‘32 into "5| whose domain of
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*
definition & is 2 « The element h is uniquely determined
bygandA 1s called the a d joint operator
of A.

An operator A in a Hilbert space ‘% is said to be s e 1 f =

-adjoint if it is symmetric and A = A,

An operator U in a Hilbert space ‘% is called unitary

if it is isometric,_ that is

Lut,ur)> = L£,8> (f,g € «%U),

and _if gz;U-_-_sRU =‘5.

An omrator?:is said to be an e x t en s i on of an

operator A in a Hilbert space ‘5 if &N ) S and
or = Af for all f € @ ; we shall sometlmes write AC? to

indicate that A is an extension of A.

w“

An operator A in a Hilbert space "5 is called c 1l o s e &

if £ € & lim £ =1, lim Af_ = g implies that
A" n — o0 n—»oco =1

£ € @Agg_gAfzg.

If there exist. closed extensions of the operator A, then there

is a unique minimal closed extension A of the operator A which
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we shall call the ¢ 1l o s uxr e of A; ali other closed

extensions of A are extensions of _I. We note that symmetric
operators always have a closure and the closure is always a
Hermitian operator; if A is symmetric, then A & £ s but A*

is closed.

Bythe or t hogonal sun ‘5 of two Hilbert spaces
"5 1 and “'5,23

% - '5 i} ® % 2
we mean the set of all ordered pairs (fl’fz)’ £, € 5 19

£ & ‘% o for which the algebraic operations and the inner

product are defined as follows:
o (£1,£,) = (£, &f,)

<(fl,f2),(gla82)> = (f1:81\7 + <f2’32> .

"‘é is then a Hilbert space and 3 | and ‘5 , can be viewed as
mutually orthogonal subspaces of ‘% 9 provided one identifies
them with ‘51_® {04 and {0} @® \3 o3 Tespectively.

Let A be an operator from ‘Sl to ‘52. The set{(f,Af); £ € %A} .*
in "5].@"52 is called the gr a p h of A, The operator A
is closed if and only if its graph in ‘51® '62 is a closed set.
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By the opending of two linear manifolds in a Hilbert

space 4% we mean the norm of the difference of the projection
operators which map: "5 onto the closure of these linear

manifolds.

Denoting the opening of the linear manifolds Ml a.nd’M2 by
Q(MlﬁMZ) we therefore have

where Pl and P, are the projection operators which map‘ia onto
the subspaces-ﬁl and-ﬁ;, respectively. By definition

Qi ,Mp) = QUM M) = QG OM;, G OM,).

Let E denote the identity operator. For any h &‘5 we have
(P2-P1)h = P,(B~-P{)h - (E-P,)P;h.

Since the vectors PZ(E-Pl)h and (E-PZ)Pih are orthogonal, we
see that

2 2
I\ (P,-P1 DBl = Il Py(E-PyIRI| + Il (B-Pp)Pohll &
2 2 2
£ N (E-PRI + IP;hll =|(hy| (1)
holds. The inequality (1) shows that
0 £ (M ,My) £ 1.

The opening of two linear manifolds is actually equal to 1 if
one of these manifolds contains a non-zero vector which is

orthogonal to the other manifold.
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We consider some propositions.

I. If the opening of two linear manifolds M; and M, is less

then 1, then

dim Ml = dim M2.

Proof: By the remark made above it suffices to show that the
inequality dim M2 > dim Ml implies the existence of a non-zero

vector in-fvl_2 which is orthogonal to 1e To see that this is

actually the case we pro;]ect-ﬁ; onto .}72_. We obtain the sub-

-space G =P‘2-17/II whose dimension of course does not exceed

the dimension of M, and therefore is less than the dimension
of Ez.. Hence there is inﬁé@ G a non-zero vector, which means

that in M2
This vector will also be orthogonal to ﬁ; because—l"l_l@e is

there is a non-zero vector that is orthogonal to G.
oi'thogonal to —ﬁ;. This proves the proposition.

The next object for consideration is the formula

QUM ,Mp) = max{ sup |l (B-P) 1], sup’ W (e-P,)eg } :
£EM,, I£l=1 geMy, Ngli=1 (2).

We note first of all that the quantity
N (E-P)EIl = aist [f,Ml]

represents the distance between the element f and ﬁ;:

dist [f,ﬁ'l].—: inf |l £-g\l
g €M

and therefore we can express (2) in the form
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Q(Ml,Mz)':-_ max{ __sup dist [f,ﬁi] ’ __sup dist [8,-171.2]}-
feM,, If=1 gEM, llgll=1

We now turn to establishing equation (3).
I (P,=P1)R 1|

Q(M ) = sup
1% neg IRl

.
2
Vi, @erpmi? + (E-P,)P hif

It hi

(3)

—- sup.
h €

Therefore

o\

\f Po(E-P )R] + lI(E-P,)P;nIP

Q(Ml,Mz).?-_ sup —
h&@ Il b

H(E-Py)n

= sup =z,

In the same manner we obtain

Il (B=P)n |l
QM ,M,) = sup e =T
h €M, jrag

Consequently
Q(M]_’Mz) —Z_ max{rl,rz-i .

We show next that the inequality sign in the last relation can
be inverted.
By the definition of the number T, We have
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2 2
Il B-PIPoh* £ = I Ppnlf %)

On the other hand

2
|| P, (E-P)n)| = <P2(E-Pl)h,P2(E-Pl)h>= { P,(B~P))h; (E~P)h) =
= {Pp(E-P)h, (E-P1)?n) = {(B~P;)P,(E-P )n,(E-P)h) &

< [ &-P)P,(E-P)h || * || (B-P)n ||

and hence by the definition of Ty

2 2

| Po(E~PDh|| & 7, || Po(E=P 0 || - |] (B=P) )R || .

.Therefore

Il P(E-P, ) | £ =, WE=PRI|. » (5)
Using (&) and (5) we gek

2 2 2 2 By B\
| (E=P,)P k|| + || Po(E=P)h|| & T, || Pihl| 4 7 || (B-P)n]| <

W

ma {r,”m,” §[ynil + la-ppnll = nnf max £, "2
so that by (3):
QM ,M,) < max{rl,r2}

and we have what we set out to verify.
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Let A be a linear operator in a complex Hilbert space "% and
suppose that @A is dense in “5 3 let E denote the identity

operator in ‘6 .

A point XN of the complex plane will be called a po int
of regular type for the operator A if there

is a positive real kx such that .
Wa-2Exell 2k, igll (f€ 5DA). | (6)

‘The points of regular type for an operator A form an open

~ set. Indeed, if )sois of regular type for the operator A,
then for | N=X |< k, we have
o o :

Na-xell 2 Na=-Nmel - | x-N | uen 2 &, utu,

vhere f € $A and k, = k, - I)‘-)‘o\’-

o

Any point N of regular type will be called a re gular
point for the operator A if the set JZ( - coincides
with the entire space "% "

REMARK: If A is a self-adjoint operator in ‘§ , then

\(R(A * i) = "% o If A is a symmetric operator in ‘5 and

\?A = ‘%, , then A is self-adjoint.

We verify the first assertion as follows. Let A be self-adjoint
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in ‘g , then for £ € & we have
| A

llas + 1f||2 = dar,ar) ¥ 1an,e) £ 1 dear) + 5,2 ) =

2 2
=WALfll + I £fWN . . O7
Thus Af X if = 0 only for £ = O, R is dense in"s.
(A £ iE)
If g is orthogonal to R y then 0O =<g,Af+if> =
(A+1iE)

= {g)At) - {ig,f) , thus g€ @A* = &3; and Ag = ig. But
as we have just seen this can only be if g O, To see that

KR ="% wetakeanhé"%.smce R is .

(A+1iE) (A +1iE)
dense in ‘5 y there is a sequence (h ), n =1,2, o.. such that

\

h = Af +ify —> h. (8)

By (7)
2 2
b ~h n “A(f -£ ) +1(f-£ ) || ._\\A(f DR ISR A S| I

Thus (fn) and (Af ), n =1,2, w.. , converge to certain vectors

f and g. Since A is closed, £ & &)A and g = Af. By (8)

h=ar+ir € R . Thus R =Y . In the same vay
(A+iE) (A +iE)
we obtain that R = ‘% .
(A-iE)

To verify the second assertion we only have to show that
¥*
QA* < @A. If h & ‘QA* and g = A h, then, using the
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assumption that SRA = kS s we have a vector h'€ O(ZA for

which g = Ah' . From this we get for arbitrary f € QA'
daf,nd = 1,800 = {£,a0' D = {Af,n'D

and { Af,h-h'> = 0. Since \?A =%, we have h-h' =0,

that is h = h' € o‘Z)A ;

We recall fiom page 80 that points of regular type form an

open set in the complex plane; we shall refer to this set

of points as the domain of regularity

of the operator.

ITI. Let D denote a connected region of the complex plane

consisting of points of regular type for the operator A,

Then the orthogonal complement 7¥T s of KR in "5 will
(A- \E)

have the same dimension for all X\ €& D.

Proof: We shall show that for each point )\O(. D we can
find a neighborhood W such that the dimension of ’B’Z)\ and
the dimension of Ao Vill be equal for all A¢ W; from
this the'proposition will follow by the Heine-Borel theorem.
Let W be a neighborhood of the point PN o with radius
(l/3)k)\o. Then by (6) for W we get

WA= XEXE I Z 1 (A= NBIEN = [N =X [NE1 > (2/3)ey Nzl
for all £€ @, and g
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(= XEXE = (A= ) EX || = \x-xo\ NEW < (@/2) || (a-aE)ell,

- NE)E - (A= X EDEN| < (/3) ll a- X Bdt I

This shows that the opening of the subspaces \(R( ; and
A- N E
o

JQ(A gy 15 mot larger than 1/2 for all N\€ W by formula

(2) (see page 77). Hence by proposition I (see page 77) the
dimension of ’Xl)\( NE W) equals the dimension of the

subspace IXZ)‘. This completes the proof of the proposition,
o

The foregoing proposition lends meaning to the following
definition:

The dimension of the subspace 'XZX for A\ €D will be called
the deficiency numberr of the operator A
in the connected region D.

Let A be a symmetric operator and A\ =a+ib (b 3 0), then
- 2 2 2 3 2
Na-xEXel] = W @a-aB)ell + o )l = b |l £l

for £ € &,. We see therefore that the upper and the lover
half-plane of the complex plane are connected regions for
the domain of regularity of the operator A, If one of the
points of the real axis in the complex plane is of regular
type for the operator A, then the deficiency numbers of A
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are equal. Thus symmetric operators can have no more than twoo

distinct deficiency numbers.

The pair (myn), where m is the deficiency number of the

symmetric operator A in the upper half-plane and n is the

deficiency number in the lower half-plane of the cémglex

plane, .is called the def iciency index:
of the operator A.

From the remark on page 80 it is seen that the deficiency
index of a symmetric operator A is (0,0) if and only if
A is self-adjoint.

The domain of regularity of an isometric operator U with
dense domain of definition also contains two connected
regions: The region inside and the region outside the unit
circle in the complex plane because for | M| < 1
Ww-xExell 2 Nzl = IM iel = @- IND |2
and for IN{> 1
Neo-Xedell 2 [N Wl =noefl = AN-=D £l

~

Let V denote an isometric opérator which maps the entire
Hilberf space % onto a proper part of "5 o« As we have just
seen, all points situated inside and outside the unit circle
of the complex plane are points of regular type for V.
Suppose now that the element f, € “% q]] £4 N=1) is
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orthogonal to K . Then
| (V-X\E)
IM =UNE = min UNE-gll £ INE-ONES-VED| = 1
ge R
(V= N\E)
Hence for | X| >1 the set R coincides with the entire
. (V= XE)

space ‘% « For A= 0 by assumtion \(RV does not coincide with

‘% ; therefore by proposition II above for all X, IX|< 1,

the set \(R is a proper subspace of ‘% « The orthogonal
(V- \E)

complements ’37)\ have dimension n equal to the dimension of

% o 9 the orthogonal complement to N . We see therefore
\')
that the operator V has two deficiency numbers, namely O and n.
Since the deficiency numbers of the operator V cannot be equal,

V cannot have points of regular type on the unit circle.
We call an operator V which maps the entire Hilbert space ‘%
onto a proper part of “% isometrically a s em i =

-unitary operator.

/

The deficiency index for an isometric operator with dense
domain of definition is given in terms of the region outside
and the region inside the unit circle in the complex plane.
A unitary operator has deficiency index (0,0).
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We wish to obtain some information about the Cayley trans-
formation of a linear operator. Following a suggestion in
M. H. Stone's book on linear transformations in Hilbert
space (see ch. VIII, § 2), we commence by studying a more
general situation which is analogous to the fraction'alj
linear transformation in complex analysis, namely

w = (az +b)/(cz+d), ad-be # 0.

Suppose that A is a linear operator in a Hilbert space G .
Assume that for some complex numbers ¢ and d the operator

cA+dE is one-one (i.e.,, h € o‘Z)A and cAh+dh = O implies
h = 0). For any complex numbers a and b such that ad-bc 1: 0

we _define a linear operator B on KR by

| cA +dE

Bf = aAg+bg e - (9)
where

f = cAg+dg (g € a%A). | T (10)
That is,

B = (aA+DbE)(cA+dE)"T, (11)

and we shall call Ba fractional-1linear

transformation of A,

Without loss of generality we can assume that ad-bc = 1j

we shall do this.
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We now solve the system of equations
cAg+dg =f
aAg+bg = Bf

for Ag and g. We get

f d
‘Bf b
Ag = = dBf - bf
c d
|a b
(12)
¢ £
la Bf
g = = -cBf + af
c d\
a b

for g € ‘QA and f € o@B. Moreover, the operator -cB+aBE is
one-one, because if g =0, then O = Ag = dBf - bf and

W

O = g= =-cBf + af; hence 0 = (ad=-bc)f = f. We sum this up

in proposition

III. If the operator B is expressed in terms of the operator
A as indicated in formula (11), then the operator A is given

by the formula

A = (dB - bE)(-cB + aE)~T. (13)

Iv, If the operators A and B are fractional-linear trans-

formations of each other, then from the fact that one is a

closed operator follows that the other is a closed operator

as well.,
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Proof: Suppose that the operator A is closed. If the
sequences fné 33 and Bf , n=1,2, «ss 4 converge to fo
and ho, respectively, then the sequences

gn = -chn+afn

Agn = dBfn-bfn
converge to &g and ko, respectively, and gne @A. Since-
the operator A is closed, & € ogA and ko =Ago. By (10)

and (9):
fn = cAgn+dgn

Bfn = a.Agn+ bgn.
Passing to the limit as n — 00 we get

fo — cko+dgo = cAgo +dgo

ho — a.ko-l—bgO = aAgo-l-bgo

and hence £, € 553 and h. =Bf.. But this means that the

0 o°
operator B is closed. The proof is finished.

From proposition IV it follows that if A is a closed operator

and A 1is a point of regular type for A, then ‘R e
A- NE

subspace. In fact, the operator (A- )\E)-l, acting on \(QA 5
- E

is bounded and by proposition IV closed; therefore it is
defined on a closed manifold.
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V. 1If the numbers a, b, ¢, and d are real and the operator A

is Hermitian (resp. self-adjoint), then the operator B will
be Hermitian (resp, self-adjoint) also.

Proof: If A is Hermitian, then for any g,g, € QJAs'
{ahg, +bg ychg,+dg, ) = ac g ,he,) + ad{Ag),8,) +
+ be {g1,88,) + bd (g 18,) =
= ac (g ,A8,) +ad {8),A8,) +De {Ag,8, ) + bd &5 g,) =
= <chg, +dg,,ahg, +Dbg,)
so that by (10) and (9) for £ ,f, € k%)
B
<Bfl,f2> = (fl,sz} *
Next, let the operator A be self-adjoint, We verify that for

any X vwhich is not real the set \:RB - coincides with the

space ‘6 and therefore the Hermitian operator B is self-

adjoint, :

By (10) and (9) the set N4 . is made up of vectors of the
B- \E
form:
aAg +bg- N(cAg+dg) = (a- Ac)Ag +(b=-Nd)g (g € o‘bA>.

Since a, b, ¢, and d are real, then for non-real X\
a=xc F0 and m = =(b-rd)/(a- Xe)

are non-real as well and therefore

R =R -9,

B~ N\E A- }.AE
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- In particular, if the operator A-l exists, then it is self-
adjo.into

VI. If c=a, d= b and the operator A is Hermitian (resp,
self-adjoint), then the operator B is isometric (resp,

unitarvy).

Proof: If A is Hermitian, then for any g ,8, € QA:
(aAgl+ bgl,aAgz+bg2> = aa <Agl,A32>+ a b<Agl,gz> +
+ 3 vepshe,y + b 5<e8,) =

= cc <Agl,Ag2> +dec <gl,Ag2>+ c d<Agl,g2> +d.d <gl,g2> —
= (cAgl+ dg, » °A82+d82>
which means

<Bfl,Bf2> = {£r8,) (£],£, € o‘DB);
therefore the operator B is isometric.
Let the operator A be self-adjoint. Then the domain of

definition of B, 2D = \?_ — _y and the range of B,
B (2 A+ b E) .

\SR = \(R coincide with the space 5 and the
B (aA+DbE) ' ‘

isometric operator B is unitary. This proves the proposition.

Analogously one shows the converse statement:
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VII. If c=3 , d= Db and the operator B is isometric
(resp. unitary), then the operator A is Hermitian (resp.
self-adjoint).

From the definition of fractional-linear transformation

we get directly:

VIII. Suppose that the operator B is a fractional-linear

transformation of A:
-1
B= (aA+DbE)(cA+dE) .

S
If A is an extension of the operator A and if the operator

land

¢c A+dE is one-one (i.e., C Kf + df = O implies £ =0
for f € 37{), then the fractional-linear transformation of

= ~
the operator A

B=(a%+bE)cE+ ap)L

is an extension of the operator B.

A fractional-linear transformation of a Hermitian operator
A for which ¢ = a , d=b holds we call a__Cayley-

transformation of A; if we put M= -d/c

we get it in the form:

U (A =XNE)A -XE)TL (Im N % 0). (1}4)

S
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In view of the propositions VI, VII, and VIII the Cayley-
transformation ‘reduces the problem of finding self-adjoint
extensions of a symmetric operator A to the problem of

finding unitary extensions of the operator

U, = (A - %NE)A - XE)"T.

PN
Let A be closed, then the operator U>\ has as domain of
definition the subspace
U, (A=%E) ~
and as range the subspace '
& = & —_— - Il__. °
U% (A= 2E) PN
The orthogonal complements to L>‘ and L—X we denote by ’XZ)\

. and 'XZ—; 9 Trespectively. To assume that A is closed, is no
essential restriction because a symmetric operator A has a

* %
closed symmetric extension A = (A%*)%,

Keeping in mind that isometric operators map orthogonal
elements into orthogonal elements, we can see that any closed

isometric extension ’I}d of the operator U_ can be obtained

» A

in the following manner.

Choose in J{_ and ¥ — orthonormal systems (3’ ) and
N A v YeéN

Y~
(\YV )V& . of the same cardinality and on the subspace L N

being the orthogonal sum of L ~ and the closed linear hull of


http:orthonorma.JJ
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the system (S>y )V&N’ let for f € L>\

NI

U(f-!-z ) =T f+2 ; (15)
& NEN 5.5 Ll VR

where gv( VY& N) are arbitrary numbers satisfying

S 5 <00 -

YEN
'Y
In this way we get an isometric operator which will map: L N
Y,
onto L.X s the orthogonal sum of the subspace LX and the

closed linear hull of the system (Y » )V cx’

If the subspaces 'b'l,\ and ’b’Z-i have distinct dimensions
(this corresponds to the case when the symmetric operator
A= (AU, - NE)U, - B)7}
has distinct deficiency numbers), then we select in the
subspace of smaller dimension a dense orthonormal basis and
in the second subspace a basis of the same cardinality and
we extend the isometric operator Uy, up to semi-unitary.
Such an extension is usually called maximal isometric extension

because it does not admit further isometric extension.

If the dimensions of ‘JC N and ’at—x are equal (this correéponds
to the case when the symmetric operator has equal deficiency
numbers), the isometric operator U% can be extended up to

unitary which will be a maximal extension.
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If the dimensions of ‘3, and ’3'2-; are equal and finite, then,
besides the unitary, there is no other maximal isometric

extension of the operator U

 °
If the dimensions of ‘A sand ,XZ‘X are equal and infinite, then,
besides the unitary, there can be constructed other maximal
isometric extensions. For example, to get a semi-unitary
extension ’t?; of the operator U,)\ s Select in ’bz-}-\- an incomplete
orthonormal system (‘{ 2 ) whose cardinality equals the
dimension of IXZ_X and select in U a complete orthonormal

A~
system (P B ) and define the operator U, by the formula (15)

PN
given on the last page.

~~
To be able to proceed from the isometric extension U% ’

by inverting the fractional-linear transformation, to the

7~
construction of the symmetric extension A of the operator A

T =0 - REX T -7t
& = N - REX T - B)

it is necessary and sufficient according to proposition VIII
that

U ¢ -P=0 imly §=0 for gaeﬁ)ﬁ; :

Let A be a symmetric operator. We show now that for any
Py .
isometric extension U)\ of the operator

Fry -l
U, = (A= XNE)(A = X\E)

A

the condition of proposition VIII is satisfied. Let

~J
U

)\be
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an isometric extension of the operator U>‘ and

<U)\39-5?,h> = 0 € g ).
In particular, then, we have for all h = ,U\;\ g = U>\ g, where
g€ 2{} ’ .
A
N ~Y
U%?-f, U>\ g> =<3> '8 = U)\8> = 03
hence by (13), <53,f> =0 (f¢€ QA). But @A is dense

in‘% and we get P = O,

In view of what was said about isometric extensions of the
operator U% and recalling the content of propositions VII

and VIII, we have arrived at a theorem of J. von Neumann:

THEOREM: A symmetric operator has self-adjoint extensions
if and only if its deficiency numbers are equal.

/

If a symmetric operator A has deficiency numbers which are
not equal, then - as was just shown - extension of A in the
space "5 to a self-adjoint operator is impossible. However,
it is possible to extend a symmetric operator A to a self-
adjoint operator by passage to'an enlarged Hilbert space.
The following theorem is due to M, A, Neumark:
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THEOREM: Any symmetric operator A defined in a Hilbert
space ‘5 and with arbitrary deficiency index (m,n) can
be extended to a self-adjoint operator A+ which is defined
in a larger Hilbert space "5"- o ‘"5 .

Proof: Given two Hilbert spaces ‘5 ; ‘5" we form

[
50 %

in the manner as was explained on page 75. Suppose that the

operator A acts in ‘5 and the operator B acts in ‘%' . Using

these two operators we define a new operator C, denoting it

by A ® B, acting‘in ‘5@ "5' as follows:
c(f,f£') = (Af,Bf')
where (f,f') is an element of ‘s ® 5| s TE @A, fre @B.

We observe the following properties:
1l: If the operators A and B are symmetric, then the operator
¢ is likewise symmetric.
2. If the operator A has deficiency index (m,n) and the
~ operator B has deficiency index (m',n'), then the operator

C has deficiency index (m+m',n+n').

Property 2 is seen as follows. Since for fe &0, f'¢ @
: : Y > B
(C=-NE)(£,£') = ((A=- ME)T, (B~ NE)f")

holds, we get



R =R &K

C- AE A- N\E B=-A\BE

and consequently

) /
%@‘%: @Wz,\@%)\

C- AE

where

N, =% o KR

A- N\E

and

! = ‘fg e KR
A ~ B- AE
Suppose that the symmetric operator A, acting in "% s has
deficiency index (myn), where m#‘—n. Then we can find a
symmetric operator B, acting in some Hilbert space %’ y with
deficiency index (n,m); In fact the following choice will do:
let B= -A and §'="5. men the operator ¢ =A @B, acting
in ‘% ) "%’ will be symmetric and its deficiency numbers
will be equal. By von Neumann's theorem the operator C has a
self-adjoint extension. But any self-adjoint extension of C
"is also a self-adjoint extension of the symmetric operator A
originally given and it goes outside the given space ‘6 and
into the space ‘5@‘%' « This completes the proof of the

. theorem, -
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If B is a syinmetric extension of a symmetric operator A, then
A SB and BE B*, It follows therefore that B< B¥ < A¥; this
means that any symmetric extension of a symmetric operator A

is contained in the adjoint operator A*. If A is self-adjoint,

then A =A* and A cannot have a symmetric extension.

We say that a subspace M in a Hilbert space r e duc e s
an operator A if for f¢€ &)A we also have Pf € % and |
APf = PAf, where P is the projection operator onto M.

If a symmetric extension A" in ‘6 of an operator Ain g,
where \%- "5 y 1s reduced by a subspace G < % (O] ‘% ’

+
then we shall exclude this subspace G from “% (i. e. we
+ +
substitute for the space ‘% the space % e G.+ and the
+
operator AV is replaced by its component in ‘5 ) et

If A+ is any symmetric extension of a symmetric operator A,
then 0 € &, n ‘5 c 4+ obtains. This permits a

A i A .
classification of propér symmetric extensions into:

els - b o =
0 o4y g At K A"
Type 23 D = D m
A At 5 ¥ Q)A*'

B F D, NG F R,

Type 3

According to this classification, symmetric extensions not
leading outside the space are of Type 1 and maximal symmetric
operators have only symmetric extensions of type 2.
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3.2 Extension of a Symmetric Operator (Continued)

Byan orthogonal resolution 6;‘ the

i tit an _a -parameter fa E
identity wemean a one-parameter family ( t)te[a,b]
of projection operators on a Hilbert space ‘% , where [a,b]
is a finite or infinite interval and

(a)s Ea = 0, Eb = E,

where O and E denote the zero and the identity operator,

respectively;

- < b))
(b): E, o = B (a £ £t £b);

(): EE =B (s= min$u,v} ).

If the interval [a,b) is infinite, we put

E = lim - E, and E = ~ 1lim E
- 00 t —>-00 o0 t — oo

From the foregoing definition we have that for an arbitrary
element f in "% the inner product

<Etf,f> = @1
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is a continuous function from the left; in addition this
function is non-decreasing and of bounded variation. Indeed,

G'f(a) = 0, G’r(b) = f,f) and for s £ t we have
2 & 2 '
-— — L — .
<Esf,f> = NEfI" = IEE LN £ ([E £ = BT )

We denote by E , the difference Et" - Et' s Where
D = f_t',t"] - [a,b]. For any two intervals Al’ Az

we get by condition (c¢):

If &, and &, are disjoint intervals, ‘then

EA EA = 03
1 2
this means that the subspaces of the projection operators E A
and E A are orthogonal. &
2

SPECTRAL THEOREM for self-adjoint operators:

For each self-adjoint operator B in a Hilbert space \5therg
is one and only one operator function E, (- 00 < t < O9)
such that

1) E, is a projection operator;

t
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2) EtEs ] Et for t

i

S5

3) E, permutes with each bounded operator which permutes

t
with B;

4) lim Ef =0 lim E.f = £ for all f € 3
t —» — 00 "t —> 00 © % s

5) E.f is a left-continuous function for all f € % 3

6) f € $B if and only if

2
-a{o t d{Bf,f) <& 00

In this case
oo
Bf = ( tdB.f
— 00
and

2 o 2
neen = " a (B f,£) .
—00

The operator function E, satisfying 1) to 6) is. called the

spectral function ofBandthelsecondlast

formula the s pectral resolution of B,

- For convenience we recall that a linear operator A is said to
permute with a bounded linear operator C if CA = AC
on the domain of definition of the product CA, i.e. on 3%.
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We note in passing that in the APPENDIX we shall consider a

method of proof for the foregoing Spectral Theorem.

Bya resolution of the identity

we _mean a one-parameter family of self-adjoint operators

Ft which satisfies:

a) For t. » t, the difference F, = F is a bounded

2 1 ts tl

positive operator, that is for every f € fs we _have

#

<Ft2f,f> > <Ftlf,f>;

(B): F = F 3

(¢)

!
]
o
!
1!
o}

In contrast to the orthogonal resolution of the identity it

is no longer required that the F 's be projection operators.

t
The corresponding requirement of orthogonality (condition (c¢))
is dropped because from condition (c) and condition (A) above

it would follow that F, is a projection operator.

t

We agree. to denote by F, the difference F, - F, , where
AN to T

o = [tl,tz] « We permit thg case that tl ==t2.
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Let S be an arbitrary set, § a complex-valued function on
s Xgs, If

§ (fyg) e § (g,f)

for all f,g € S and

for f.y eee 3 £ (n <€ OO ) belonging to S and any complex
1 R

numbers >i, eoe )\n, then we call $ a Hermitian
=positive funcection.

Given a Hermitian-positive function on an arbitrary set S,
+

it is possible to imbed S into a Hilbert space § in such

a.manner that for any two elements f and g of S the inner

product is defined by

<f,g> ot é (f,g).

Thé details of the construction for the separable case were
carried out on pages 5 to 7. It remains to consider here the
case when S is an uncountable set. For each s € S let Cs be
a copy of the set of complex numbers and let L be the (weak)
direct sum of the family of vector spaces (C) . For

fyg € L define

s &S

L£g) = S5 &syt) £(s) glt)e

s,t € 8
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As on pp. 5-7, we put M ={f € L: {f,£>= 0§, and denote
the completion of L/M by %, S can be imbedded in 5+ by
mapping s € S to s € L/M, where 'g(t) = d; " (Kroenecker
delta) for all t € S. Then

By = 5 Bsht) 5s) T = syt

s'yt' € 8
For convenience we will always identify S and s.

We say that the Hilbert space ‘%*'h_gs positive
definite kernel &.

The following theorem is due to M. A, Neumark:

THEOREM: Let F & be a resolution of the identity of the
space ‘% « Then there exists a Hilbert space ‘51' which

contains ‘S as subspace and there is an orthogonal
resolution of the identity E:' of the space %" such that
for each f € "% the relation

+ 4
" Ff =P E f
t t

+ , +
holds, Here P denotes the projection operator of ‘%
onto "% .

Proof: We introduce the set S of all pairs wo of the fo;'m

w =(4,r)
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where & denotes a subinterval of I = [-00,00] and f is
in “é . On § X S we define a function &P by

§(wl’ ‘*‘2)=‘ <F

Ar\a. 1’f>

where w =(& ,f ), j= 1,2,
J 3’37 ?

We show that the function § is Hermitian-positive:

$w,w) = <Fbl R A21'1,1'2> = {£F 5. Azr?_ N =

1> §<m,w).

- < F
A a) A
Moreover

n -
5 RMpe) RA =

Jyk=1

2:—_ <F5r\A j,f>)\ >~ > 0. (1)
Jyk=1 .

If the intervals A p (J =1y ees 5 n) are pairwise disjoint,
then

s <an%j,f>>\ N =

Jrk=1

=2_E. <FA fj,fj> )%J:‘z > o, (2)
j=1 J -



If the intervals .A3 (J = 2,3, eee yn) are pairwise disjoint
and the intervals &, and A.z coinéide, then the sum on the
right hand side of equation (1) splits into two summandss
The first summand, containing the indices from 3 to n, is of
the form (2); the second summand, containing the indices 1

and 2, is of the form

2 _
> L Akf:l’fk NNy =

1k=1 J ,
2
=5 P fpfy 2y X =
S Jhk=1

Now we note that regardless of the manner in which the
intervals A (j= 1,2, «es yn) are situated, we can reduce
the considera%ion to the cases already looked at by .an
additional splitting of the given set of intervals into a
system of disjoint or coincident intervals and by using
aditivitys If A N A =0, then '

<F( s ua)N A3f’g>=<F( 8. NAYV B, A A3)f’g> o

- <FA1 A A3f’8> + <FA2 - A3f‘y8>.
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This shows that :§ is a Hermitian-positive function on S X S,

Now we imbed S into a Hilbert space ‘%*' as described before.
If we denote the inner product in the space ‘%+ with the

subscript + , then we have
'-*3 y O w.),
< > $ (w0, W)

Clearly the subspace {(I,f)z f € "%} of ‘5_-'- is isomorphic
to % (as a vector space) under the correspondence

f ¢« (I,f). Since

((I,f),u,g>)+ = <FIf,g> = {£,8")

this isomorphism preserves inner products and hence is an

isometric embedding of ‘5 in “%+., Thus \5 may be regardeé

/

as a subspace of ‘%+.

The problem is to find the projection of the element ( & ,f)
of ‘%-‘- onto the subspace ‘6 . If this projection is denoted
by (I,g), then for each h in “% we must have

<( D ,f) - (I,g),(I,h)>+=

or
D )83, (L,h)y - <(I,g),’(1,h)>+

.___,<FA f,h> - <g,h> =<Fo'f - gh) = o,
From this it follows that

=Fr £
e
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which means that

+

P (A,f) = (I,F, 1) (3)
Now we define the operator E:; by

EA(ALD= (0 nALD, (aynegh.
Then for any f é'fé
P+EZf ='P+EZ (I,f) = P a0 I8} = PT( O,1) = (I,F, ) =

= FAfo

Hence the proof of the theorem is complete if we verify thgt
the operatorsiEZ; form an orthogonal resolution of the
identity of the space %%*:

But E 1is an additive operator function on intervals. From

ER)2(AHN =Ea(ANAHYD) = (AnARALE) = EL (A",

and

(Epan 0, el = Lannahn), e, =

| -
= FAI’\A"r\d'f’g>=<F 'nAr\A"f’g>;<(A.’f)’EA(A"’g)>+

it follows that EZ; is a pfojection operator, It is also clear
that

E:(A',f) = (a'£)

holds. Since the set of elements of the form (A',f) is dense
in 13*} each EZ; can be extended to a continuous operator on

the entire space fa+; In view of all the properties we have
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established, the extended operators EZ form an orthogonal
resolution of the identity of the space %+ and the proof
is finished. |

Let A be a symmetric operator in a Hilbert space ‘5 . Suppose
that A has been extended to a self-adjoint operator NS (by
passage from the space “‘é. to an enlarged space \5+ )e. Let
E+ be the spectral function of the operator AT and Pt denote

a +
the projection operator of ‘% onto ‘5 . Let us put

+ +
F =PBE .,
JAY

. <+
Then for any two elements f € %A 4and g € ‘% we have

oo
(2,8 = —Bfo t d(E:f,g>
and

el = 5+ agst
aells =0 d<Etf,f>.

If £ € & and g € ‘% , then these two formulas can be
written in the following way

oQ
{agg) = S tadF red (5)
- %o .
2 0 2 .
| Af )| =-.-£° ¢ d(th,f>.. ' (6)
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By comparing formulas (5) and (6) with the corresponding
formulas (see page 10l) appearing in the spectral theorem
for self-adjoint operators, it is natural to make the '
following definition:

If A is a symmetric operator and Ft a resolution of the

identity such that for each f € &A and each g €& ‘% the

formulas (5) and (6) hold, then we refer to F. as
a_ _spectral funbt;on of the symmetric

operator A.

THEOREM: FEach spectral function of a symmetric operator A
defined in a Hilbert space ws is of the form

+
F =P E+_

t t
In this forinu_J,a E: denotes the spectral function of a self-
adjoint extension A+ of the operator A which one obtains by
passage from the space "g to the sgace ‘5 *5 and pt stands
for the projection operator from "% onto ‘5

Proof: Using the theorem stated on page 104+ we form the space
‘%+ and determine in it an orthogonal resolution of the
identity E: such that

+ +
F.= PE, (7)

holds. We show that the operator A+ » whose domain of



- 111 -

. +
definition consists of all f € “% for which
0 2
{ t d<Etf,f> < 00

- 00

and which is defined by the formula

. -
+

fr= (tarer,
~00 t

is actually a self-adjoint extension of the operator A,

+
First of all the operator A 1is self-adjoint; this is seen
from the spectral theorem for self-adjoint operators. Next,

if £ € 0D, then £ € & _ because
A A

Q2 + ocQ 2 2
) _— Fl —_— w °
.5 t d<Etf £) :go t d<th £ Nag) <

Moreover, for f é’éqA and g 6'15 we: have

Grey= T vadane) = T vadsne = (e

and therefore

At = pa'r (f € o‘bA). (8)

On the other hand, if f & éZ>A, then

2 % ® 2 + 0P
)l ALN —_B(ot d(th,f>--6§°t d<Etf,f>=uA £)l”.

(9
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From (8) and (9) we get that

Af = AT (f € QA).

In the foregoing we can assume that A+'is not reduced by any
subSpace of ”g o \5 . For, if there was a subspace G of
‘s ©) \5 which reduced the operator A+-, then it would
likewise reduce the orthogonal resolution of the identity E:-.
In that case the deletion of G from %5 would force the

deletion of the component in G of the operator E+_. That

t
however does not affect formula (7) and the proof is complete,

If a spectral function Ft of a symmetric operator is

represented in the form (7), where E*. is the spectral

function of a self-adjoint extensionéﬁk of the operator
A, then we may say that the spectral function Ft is
generated by the self-adjoint extension A+ o« In this
manner then every self-adjoint extension of a symmetric
operator A generates a spectral function of this operator
and, conversely, every spectral function of the operator

A is generated by its self-adjoint extension.

The spectral function associated with a self-adjoint
operator in the spectral theorem for self-adjoint operators
is in the sense of our present terminology the only spectral
function; a self-adjoint operator has no self-adjoint

extensions.
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- By the spectral theorem for self-adjoint operators every
orthogonal resolution of the identity is the spectral function
of a self-adjoint operator. This kind of claim cannot be

made for symmetric operators and non-orthogonal resolutions

of the identity.

For non-orthogonal resolutions of the identity the passage
from the "weak" representation (5) to the "strong"

representation

o0
ar = t 4 F £ (10)

- 00
is impossible; the equation (10) is only a symbolic way of
writing formulas (5) and (6). The representation (10) holds

in the "strong" sense for self-adjoint operators.

From the orthogonality property of the spectral function Et
of a self-adjoint operator B it follows that for each finite
interval & of the real line the vector E f (f€ '§ )

belongs to éijana that for each g 6.15 we have

(BE,T)E) =2§; t a (B 1)8) .

This statement does not carry over in its entirety to integral
representations of symmetric operators. However the following

is true:
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IX. If A dis a symmetric operator, F, its spectral function,
A a finite interval on the real line, and h an arbitrary

vector of ‘% s then for every g € ‘% we have

FAgé%*

(A*FA ghy = (¢ d<th,h>.
)

+ .
Proof: Let A be the extension which generates Ft and P+be

the projection operator of ‘%+ onto "5 « Then for each
f & QA we have

(At,F g) = <A+f,P+EZg = <A+f,EZg> = g t d(E:f,g> =
= é;‘t d<E:f,p+g> = g t d(th',g> . (11)
The integral i
453 t d<Fth,g>

is a bilinear functional of h and g in "% and has therefore
the representation( h,Dg> with a bounded operator D. Thus

(aeFe) = L8e*)
and therefore
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Hence by (11) we get the representation
-
&HAF, gy = (¢ d(th,g) .
a

But %A is dense in ‘5 and therefore one can put instead of

£ € % an arbitrary vector h € "% . This ends the proof.

The content of the foregoing proposition is sometimes used
to define a spectral function of a symmetric operator Aj
by a spectral function of a symmetric operator A one then
means any resolution of the identity Ft satisfying the
following condition: for any g € “’a and any finite
interval A = [t',t"} the vector F AE= (Ft" - Ft')g

belongs to %A* and

(£F, gn) = g t d(th,h> i

where h is an arbitrary element of ‘S .
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X. Let A be a self-adjoint operator in a Hilbert space

‘5 and E. be its spectral function. Suppose that given

any elements f,h € 9 there exists an interval (a,b),
a function g:(a,b) —> §DA, and a differentiable ction

P on (a,b) such that

f- @ (t)h = (A-tE)g(t) (12)
for every t € (a,b). Then
) tll
(Et"-Et')f w= S P (t) d Eth (13)
tl

is valid in any interval (t',t") € (a,b).

Proof: We consider the vector-valued function
‘ tn tn,
w(s)‘-—-"j d E.f - 5 39('9) dEth (t' £ s £ t")
'S s
which is zero for s = t". We verify that for any s € (t',t")
the following two properties hold: (a) w is continﬁbus
relative to the norm and (b) the relation

lim (W& wisxgp -wis)l||=o0
&S—>0

is satisfied for any J >O. From this will follow that w has

at each.point s€(t',t") a strong derivative, equal to zero,

and thus w is seen to be independent of s.

By the definition of the function w and by (11) we obtain
a+rE S+ §g

w(s) = w(s +g) = S dBL - j P(t) aBh =

T8 S
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s+¢& : S+§
= [ a B emels) - [ (g®-ptndEh =
S S
st+e st&
= [ (-9) a Bl - [ (gw-gen azn.
S S
Therefore

wis)-wis+e)l £ |g| (B -E)els)]] +
s+g& s
(1)

+ )€l Ijs'(s+ei)| II(Es+a-Es)h”

where 0 < ©< 1, The statement (a) follows directly from the
foregoing inequality. Moreover, taking €= - §& £ 0, we write
(14%) in the form

W) lhwis=&)=wi]l £ Il - el +
S

=4
+| @' (s-6p)| B -8 Hnll
g st e
from which, because of Et = Et’ follows the second relation
-0

in statement (b). For the verification of the first relation
in statement (b) we use the continuity of the function w and
we write (14%), taking €= & > 0, in the form

Q/&) I wls+H)-wis)|| & & -E +
F I Guts+p)-wi)|| € I e S*_o)g(ss)ll

'(s+ 6 B - .
+|? ® | J)I li¢ s+§ E.0.1-0)%1”

The right side of this inequality tends to zero with 3
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In view of what has been established, we have that w = O and

the proposition is proved.

The foregoing proposition can be extended to the following

THEOREM: Let D be a closed symmetric operator in a Hilbert
space ‘5 , and let E, be a spectral function of D. Suppose

that given any elements f,h € ‘g there exists a function
g : (-00, 0O) — 91) and a differentiable function ¢ on

(=00, 00) such that
£- P (t)h = (D-tE)g(t).
Then

o0 :
e 2
f = f P(t) dEh and dE, 2> =S Iy’(t)l d(Eth,h>.
- 00 - 00

Proof: If D was self-adjoint, the theorem would at once
follow from proposition X by taking a = - 00 and b = 0O ,
In (13) we would let t' —> =00 and t" — 00 . Since the
E,'s are orthogonal when D is self-adjoint, it wouid be

t
immediate that {f,f) is of the form claimed in the theorem.

We assume that D is a closed symmetric operator. In this case
D has a self-adjoint extension of type 2 (see page 98). By
the thebi'em on page 110 for every spectral function Et of D
we can construct a self-adjoint operator D+ in some enlarged

+
Hilbert space § D ‘5 such that

+ 4+
Df=Df (f€ Q)D) and B, =PE, (-00<t < oa),
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+
where Et is the spectral function of D+'and P+'denotes the

+
projection operator of 15 onto ‘g .

By what has been proved already, we have

00 . o 2 .
={ ¢ a E:h and (f,f>=j \?(t)\ d<E:h,h>.
- 00 - 00

. + .
Applying the operator P we can write these two equations in

the form

£=Pf= jf(t)dPEh fg(t)dmh

and

d£,2) = }o[ P (t)\2 a (B hyhy

because

<E h,hy = <E h, P h> <P+E+h h> {E hh>

This completes the proof of the theorem.
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3.3 Extension of a Positive Symmetric Operator
We commence with a lemma on norm-invariance.

LEMMA I: Anv bounded Hermitian operator A such that. QA < %
has at least one self-adjoint extension T whose norm equals

the norm of A.

Proof: Since A is bounded, we may assume without loss of
generality that Al = 1. For any f € "% and g€ QA we
have

| Lag,£)| £ WAl Nell gl =gl (I£]]

and therefore (Ag,f) is a linear continuous functional on

O%A' By a theorem of F. Riesz (see § 5, section 3 of

Neumark's book on normed algebras) to any f € “5 there
corresponds uniquely a certain element h€ % such that

{hg,t) = (&) for g€ %.
Forfé“% s h€ @A'weput
h=A°f.

The operator A® is linear and ||A°fI| £ I£1| for all f € ‘5

bécause
2
I8%20 = {a%,4%) = {ua°r, 1) £H12%1] Nz

forallfé‘%.
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We denote by P the projection operator onto the closure of

)
% Then

{a%;,n)y = eyan) = {ag,h) = { PAg,h )
for g,h € % and | '
A°g = PAg for ge€ SA. | (1)

We introduce in "s a new inner product:

ety =<Lef) - {1%;A% > for g,f € G .
The corresponding norm is then given by
2 2 G B
HfH1 =I£ll - ATl .

The new inner product satisfies all reqirement associated
with an inner product except perhaps that from [I£1] = O
it may not follow that f = O, We say that the elemen%s
g,fé‘% are equivalent, gn~s f in notation,
if | g-f ”1 = 0. The transitivity of the relation ~v
follows from the inequality '

le-n I, < | g-f “1 + Hf—h”l ot

It is easy to see that we are dealing with an equivalence
relation;l the elements of ‘6 are split into equivalence
classes. We denote by g the class of elements equivalent
to the element g € "% . The set of classes of equivalent

elements forms an incomplete Hilbert space if we define in it
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o('g\-\-ﬁ ? = ?1 (h= L g+ ﬁf) and give the inner product
as ‘
@ ’ ?> = <g,f>l o
We observe that Il g |l = Nglll. The completion of the set of
all classes of equivalent elements relative to the metric
induced by the introduced inner product we shall denote by

A
‘% . The completion of the set of classes g for all gé& %
: A A

forms a subspace 0O < \% .
On %A we define the operator B =A-A°; hence by (1) we have
Bg € YU for g€ %, where I = ‘% e @A' Since
2 2 2

IBe| 2= NAg(l 2 - 1% %< 1 gll® - A%l
we get for g€ @Az

I Bgll £11g]|_. | (2)

1

By the foregoing inequality we have that g ~ h (g;h € ébA )

' A
implies Bg = Bh. Thus we can define on a dense set in & an

operator B':

N

B! g = Bg <ge%, B' £ € )
for which inequality (2) assumes the form

W' Bl 2l gl (g€ %’x)' (3)
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From (3) we have that the sequence

N
1 — _—
B'g = Bg, (g € £>A, N=1,2y eee)

converges in “% to a certain element from YL < 5 as the
A . A

sequence /g\n converges in “% to a certain element from 2 .
Closing the operator B! we get the operator B 9 defined on
all of o% { € ‘% ) with values belonging to UL ( < ‘5 )3
hence by (3) we will have

8
UBEI £uEll (2e D). )

A e
Let P denote the orthogonal projection operator onto 0
A

in the space “% « Define on the entire space ‘% the operator.
%= BPf (fé€ ‘%
Then inequality (4) gives
Nesll = N3P 2N ENPENcuTll= el
vhich means that for £ € ‘% :
BTN & (e 2 - nalen? . (5)

We now consider the operator Al— A® + B , From (5) we get

that || A; || £ 1 and therefore || A | < 1.

A A
Since P g = g for g€ &, ve have that B% = Bg (g€ )
and from the definition of the operator B it follows that
Ag=4g (g€ D).
1 S A"
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For all f 6‘5 , 2€ D we have
A

(A’: ) = <g,Alf> = (&% +B%).
since B°f € UL and (g,B°f ) = 0, we obtain

(A:' gy = <g,A°f> = Lkt
We therefore conclude that

s =ap . tat 5.
1 A

*
We have shown that the operators Al and Al are extensions

of the operator A which preserve norm. Hence the self-adjoint

operator

T=(+ a%)2
= WAk &
~S :
is an extension of A and (| A ||== l. The lemma is proved.

-

A Hermitian operator H is called positive (H >O
in notation) if {Hf,f» = 0 (f €& QH) and if for at least

Let S and T be two bounded self-adjoint operators; we will
write S > T and say that S is larger than T if the operator

(S=-T) is positive.
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Let H denote a bounded self-adjoint positive operator. Then
there exists one and only one bounded self-adjoint positive
operator B such that B2::IL We denote B by H%.

Indeed, if Et is the spectral function of H, then Et:= O for
t < 0 because H is positive. We denote by §DB‘the set of all

vectors f for which

g 2
f tdalle fI1° < ©0
5 %

and put for such f

'é' o0
Ht=8= [Vt ag ¢,
s t

The operator B is positive, self-adjoint and satiséies B2:=.H.
The uniqueness of B follows from the uniqueness of the spectral
function Et' From the construction of B it is also clear that
it commutes with all those bounded operators with which H
commutes. In the Appendix (see page 179) we consider another
method of proof which makes no use of the spectral theorem

for self-adjoint operators.

Let A denote a bounded Hermitian operator with WA £ 1 and
closed domain of definition ﬁ)A =+ “% « We denote by & (B)
the set of self-adjoint extensions of the operator A whose
norm does not exceed 1. By Lemma I thé set &5 (A) is not

- empty.

The difference C of any two self-adjoint extensions of the

"~ operator A is a self-adjoint operator vanishing on J?A.
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The range of the operator C will be contained in the ortho-
gonal complement YL of g)A because {Cg,£” = 0 (g€ gA’
£e “% ) implies that (g,Cf> = 0 and the latter means
that cf € YL, Thus, if A is one of the operators of the
set o3 (A), then all operators of the set will have 'the

land
form A + C, where C has values in AL and the condition

(Xt vee,ed]| ede,ed (e %)
holds. The foregoing condition is equivalent with
-LE+D,e) ¢ or,r)y £ (B -Dr,e)  (£€9)
or |
-(E+%) ¢csE-1L, (6)

We note that the operators E - A and E + A are positive.

LEMMA II: Let U be some subspace of “% and H a positive

operator. Then the set AL of self-adjoint operators ¢

satisfying the condition C £ H and @C < U has a

largest element H s that is an operator larger than any

Yt
other operator C of the set.

Proof: The set WYL is not empty since at least the operators

O and P belong to it; P’X’L' denotes the orthogonal

<18
projection operator onto AT .

We denote by ® the orthogonal complement of “¥T in ‘5 .
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Then {Cg,g» = 0 (g € D ) and {Cfyg> = 0 (f 6'\5 g€ D)
and therefore (Cf,f> = <C(f-g),f-g> . Since the operator C

is not larger than the operator H, we get

Z ¥ 2 '
{ofyey £ LH(f-g)yf-g) = Il H(£-g) |l (re fe€ed)
and

{ee,£) = inf |l e - H%g H2 . (7)
geED

We denote by I the set of all elements h which are ortho-
gonal to H‘}@ and by PJE the orthogonal projection
operator onto &£ . From (7) we get for f € "% :

2 A,
<Cf,f) < Py e )|” = {H P H 258 % (8)

However h € & if and only if (h,H%g> =0 (g€ D), that

is <H%h,g > — 0, and therefore Hh € L. It follows that

- ot 3
Hyy = B Py E

belongs to the set YU and is the sought for largest

operator, The lemma is proved.

Using the notation of Lemma II, from relation (6) on the last

page we see that

* - % < ..~ =
(E+A)&§__c < (B A)m (L ‘5@ 2,) (10)
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and that all self-adjoint extensions of the operator A which
belong to the set o& (A) contain the smallest extension, A,

and the largest extension, AM’ where

Am = A - (E+ szz
(11)

A A+ (@E-1)
M v

We have therefore shown the necessity of the condition in the

following

LEMMA III: In order that a self-adjoint operator Al belong

to the set 34 (A) it is necessary and sufficient that the

following condition be satisfied:
- L L ) .
A n = Al 3 AM . (12)
Proof: It remains to establish the sufficiency of the
condition (12).

From (12) we get that |l Ay |l £ max Cllay Iy MA.M”) < 1 and

that the operator (Al - Am) is not larger than the operator
(A, = A_), Thus for g € &
g = 0

0% <(A1-Am)g, g> = ((AM-Am)g,g> =0

and therefore
¥ 2
NOUWENYER| (A-A ) gll =0

and
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The lemma is established.

From what has been discussed and considering relatic;n (10) it
~J

can be seen that some self-adjoint extension A of a bounded

Hermitian operator A is the unique self-adjoint extension with

<. 1 if and only if (E + 1) (E - D) 0
. norm < an 0O ot - —_— ®
= " e 2174

LEMMA IV: Let an operator A be a fractional-linear trans-

formation of a symmetric operator R:

A = (aR + bE)(cR + aE)~L

where a, by ¢y d are real numbers and ad-bc = 0. IThen given

any self-adjoint extension K _of A there is a self-adjoint
N
extension R of R given by "

N ~J ~v _1
R = (dA - DbE)(-c A +aE) .

Proof: By propositiohs III (see page 87), V (page 89), and
VIII (page 91) it is enough to show that ¢ A £ - af = O
implies £= O, Now let ¢ A £ - af = 0, then {cAf-af,hD = O
for h € ‘% . In particular we have { cAf-af,w) = O, where
w € %. Therefore <f,czw-aw> = { fycAw-aw » = O which
means that { f,g» = 0 for g€ %R' But %R is dense in ‘%
as R 1s a symmetric operator. It follows that £ = O and the

~lemma is proved.


http:symmetr.ic

- 130 =

Let a Hermitian operator S satisfy the condition: S > 0, Then

for any a > O we have
2 2 2 2 2 2
lst+aEll = [stl] + 2adst,ey+a (£l = a el .

Thus for positive symmetric operators the set of points of
regular type is connected (containing all non-real and
positive numbers); it therefore follows that the deficiency
numbers are equal. In section 1 of this chapter we have seen
that a symmetric operator has self-adjoint extensions if and

only if its deficiency numbers are equal.

Our aim is to establish an interesting theorem concerning
the extension of positive symmetric operators due to

M. H. Stone (see his book, Thm. 9.21), K. 0. Friedrichs
and H. Freudenthal which reads:

THEOREM: Each positive symmetric operator S has at least

one positive self-adjoint extension.gr.

Proof: Consider the fractional-linear transformation of the

operator S:
A = (E - S)(E +8)1L
S= (E- MG+ s)"L,

The operator A exists because f 4+ Sf = O implies f = 0 in view
.of the fact that {f,f) & {f,f) +{sf,f) ={f+5f,f) holds
for £ € SS’ By proposition V on page 89 the operator A is

Hermitian.
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Using formulas (10) and (9) given on page 86 we obtain
g = f +Sf, Ag = f - Sf (fé%s,ge%).
Since S is positive we have
2 2
{Agyhg) = {g-81,0-5t p = ||£|| - 24st,e)+ listl] <
2 2

ZIfl] + 2 (Sf,f>+ Isgl] = <f+Sf,f—l—Sf> ={eed

and therefore the operator A is bounded: || A}| £ 1.

By Lemma I (see page 120) the operator A has at least one
Na
self-adjoint extension A with norm £ 1. By Lemma IV,

the self-adjoint operator
N -
s =E-NE+DT

will be a self-adjoint extension of the operator S. Since
~ Z ~

A Il £1, the operator S 1is positive; if f €& %,g, we

find an element g & %K’ such that

~

~ND ~
f =g+ A g and Sf=pg=-Ag

and therefore

<gf,f> =<g-Tg,g+Tg>=uguz- llfgllz' = 0.

This proves the theorem.
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3.4 Examples of Kernel Spaces and Applications

Let V denote a vector space whose elements are certa'in
complex-valued continuous functions on (- 0O, OO ); the
algebraic operations in V are defined as usual. Let W
denote the linear hull of the set of all functions f g,
where f,g € V.

We shall call a linear (i.es, additive and homogeneous)
functional W acting on W positive if for f & V we have
that P (£ f) 2 O.

We observe that the form (f,g) = P (f g) acts like an

inner product, except that (f,i‘> = 0 does not imply that

f = 0. To see this we only have to verify that (f,g):{g,—f;
holds for f,g € V. Taking any complex number N and expanding

P UL +Xg) (£+Xg)) 20
we obtain thai: the exXpression
APt + AP (D)

is a real number, Choosing A= 1 and X\ = i, successively,

we get that

Plgf) = F(£e) or PGE= Pk .
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Since

O£ (f-%g,f->\8> =<f’f> - N<g,t> '—>-‘.<f’8> + | X 2<g,8>

we arrive at the inequality of Schwartz:

1<e,e0) © & ot Lared s

indeed, if (g,f) = 0, then the Schwartz inequality holds
trivially and if £ g,f£) 3 O, then we may take h 8

N = L5/ L8ty

In view of the foregoing observation we are permitted to

define in V the inner product
(f,g> = {/(f g);

we identify in V any two vectors f and g for which
{f-gyf-g > =0,

Completion of V with respect to the noi'm induced by this
inner product gives a Hilbert space ‘5 in which V is dense.

Given g € V let % be the function defined by
’g\(s)=sg(s), -0 <& s 00,

We impos'é on V the following restriction: We require that
the set F of all functions g € V for which 2 belongs to V

be dense in V and therefore dense in "5 "



- 134 -

Under these conditions we can introduce in “5 the operator
of multiplication by the independent variable s, having
defined it initially on the set F. This operator is
symmetric since the set F is dense in ‘5 and

<f9g> = ?(f%): <?’8>

for any f,g € F., Therefore we can close the operator in -
question; this closure we shall denote by the operator D.
To see that the operator D is well defined we have to show
. &

that {f,fD> = O implies { f,g » = 0. It is sufficient to
show this for f € F. However {f,f) = O implies that

~
{fyg) = 0 for any g € V and in particular for any g = h,
h € F. Thus for any h ¢ F we have

{t,n) = (£, ) =o.

Hence, by virtue of the fact that F is dense in V, the
A A
required equation ( f,f >= O follows.

LEMMA: A sufficient condition that a given positive

functional P defined on W permit an integral representation -
of the form

0o
Fp) = [ d@)a o (pew
- 00
with non-decreasing bounded function ¢ on (-~ 00, 00 ) is that

the following threefold requirement be satisfied: The function

1 belong to V, the set F of all functions g € V for which
€ € V be dense in V with the norm
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hen = (P ¢ TF (£ €V,

and from f€ V it follow that for any real t the function

of s
(£(s)-£(t))/(s-1%)
belong to V.

Proof: We construct the Hilbert space "5 as was done fﬁrther
above and in it we introduce the closed symmetric operator D
of multiplication by the independent variable s.

We note that the function f appears in two roles. On the one
hand f is an element of the space “§ and on the other hand f
is an element of the space LZG_ of square-integrable |
functions with weight function o .

We wish to apply the theorem stated on page 118. To facilitate
the presentation we rewrite the condition f- P (t) = (D-tE)g(t)
appearing in the mentioned theorem as follows:

£ - P (t)h = (D-tE)g,.

We note that gy € &)D' We take as element h the function 1€ V :

and as value of the function @ at t the value of f€V at t.

The requirement f- P(t)h =(D-tE)gt then assumes the form
C£(8)-2(£)1 = (s-t)g, (s)

and is satisfied because both functions of s

8t(s) = (f(s)-f(t))/(s-t), sgt(s) — tgt(s)+f(s)-f(t)l
belong t6 V. In the foregoing we chose to indicate by writing
f(s) that £ € ‘5 . This completes the proof of the lemma.
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THEOREM (S. Bochner): Let k denote a continuous function
on (-A,A), 0 < A £ 00 . In order that the representation

eo Cixt
k(x) = _{ e 4o (%) (- 2 x < A)
- 00

holds, it is necessary and sufficient that k be a positive

definite function, i.e., for any numbers O -;—__xl £ 400 & 'xn £ A
(n £ ©0) and any complex numbers >‘1,..., >\n we have

n
E k(xj-xm) >\J Am > o.
Jym=1

Proof: To see the necessity of the condition we observe that
n

- St ix.t] 2
) _ § J
E k(:c:l xm) A;j >\m = S I >‘j e I d g (t) = 0.
- 00 j=1 :

jym=1

To verify the sufficiency of the condition we make use of the
foregoing lemma., For V we take the set of all functions of
the form - )
i itx
£f(t) = 5 e d‘o (x),

oy
where [d,(%] C (-A,A) and P is an arbitrary, in general
complex function of bounded variation. We then construct W
and for a start define the functional ‘P by
ixlt -ixzt
J (e e ) = k(xl-xz) (x;,%x, € (=A,A)).

We verify that the conditions stated in the lemma are
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fulfilled. It is clear that 1 €V. As the set F we take the

family of functions of the form
&

itx
v(t) = f e g(x) dx,
oK

where g is continuous. To show that the set F is dense in V

with norm |I£]] = (P (£ _f_))%
ict

, it suffices to establish that
the function fo(t) = e 4 for c€(-A,A), can be approximated

by a function véF. For this purpose we take

c
2
-1 itx
vo(t) = (cz-cl) S e dx €&F,
%1
where ¢ é(cl,cz) and cy=Cy is as small as we please. We get

P (e v VD) =

5 2 % ict itx ~-ict =ity
= (cz-cl) S S Plle =-e e -e )) dx dy =
Cl cl

¢ Cy

o e ‘
= (eymc;) S S- (k(0)-k(c-y)=k(x-c) + k(x~y)) dx dy
c

1 %

and it remains to take into account the continuity of the

function k. To verify the last part of the requirement in

the lemma it suffices also to do this for the function eict

for any c€ (-A,A). But we have

ict ics

ixt dis(c-x)
(e =e )/ (s=t) = 1

e e dx € V.

o~ 0o
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Remark:

In the foregoing we based the proof of the representation
theorem concerning positive definite functions on the lemma
. stated on page 134%. In a completely analogous manner'one can
deduce from the same lemma a theorem of S. N, Bernstein
concerning the representation of exponentially convex

functions. The theorem in question states:

Let k be a continuous function on the interval (Al’Az)’ where

- o0 éAl<A2gw and A; € 0 < A,. In order that
kx)= § e ao(t) (A, < x<A)
- oo - <

hold, where ¢~ is a certain non-decreasing bounded function

on (- 0O, 0O ), it is necessary and sufficient that for

1? **c 2 xn, where Alé x1< see L an An, (n< 00 )

and any complex numbers )\l, PRI >\n the relation

X

n
> kx+x) X X 20
: J m 1 m ™
Jym=1.

hold.,

We give one more application of the lemma.,
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THEOREM (H., Hamburger): Let (am):io be a sequence of real

numbers. A necessary and sufficient condition that .

(s o]

a = § t7do(t) (m=0,1,2y000)
m - 00 )

where ¢ denotes a certain non-decreasing bounded function is

the reguiréments:

n

Z vk kj—;\;

Jyk =0

v
(@]

Proof: We show the sufficiency of the condition. Suppose
that V consists of all polynomials in the indeterminate t,
then the unit function belongs to V. We apply the lemma
given on page 13%. We observe that the set W coincides with
V and the conditions of fhe mentioned lemma are fulfilled.
Hence there exists a non-decreasing bounded function 0 on

(=00 ,00) so that

' (00a]

M = § Pao ) (= 0,1,2,00.)
- 0O :

.00
However, any sequence of reals ("‘s‘xm)m'= o defines on V a linear
functional P when we let P (t%) =a_  (m= 0,1,2,...) and
this linear functional will be positive on W.;-L"V if for
n < 09
n
> | R =
a P ' 2
i+ T3 e =PI N )% > o

It is easy to verify the necessity of the condition.
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Let E be some Hilbert space in which the inner product
of two vectors u and v is denoted by <u,v> « Let with each
point t of some closed interval [a,b]l (finite or infinite)

be associated a certain bounded self-adjoint operator Ft’

acting in E « We call Ft a non-decreasing operator function
it
£ for t; < t, (ty,t,¢€ [a,b] ).

For a non-decreasing operator function F,_ the limit operators

t

Ft—o and Ft+0 exist in the sense that for any u €€ we have

Ft_ou = 1dum Fsu y F u = lim Fsu_.
, S'rt t+0 sbt

We shall consider integrals of the form

S
g5 0 - alt) 4@

’
b4 t

where g is some continuous function on [a,b] , and assume

that Fa = Qand F, = Ft— for a < t < b, We shall understand

t 0
the above integral in the sense that
8
auv> = § g8) a LFu,v) (u,v € E ).
(= N

As illustration of the analytical significance of the lemma
on page 120 and the theorem on page 130 we shall prove two

theorems.
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THEOREM: In order that the sequence S, Sl," see 3 Szn‘gg
bounded self-adjoint operators in a Hilbert space ¥
satisfy the representation
- k
8 = § ta F, (k = 0y1,40052n) (1)

it is necessary and sufficient that for any xi = ‘€

(i = O,l,...,Zn) the Conditiozlg

n
E <Sj+kx;]’xk> >0 ( (I

Jsk=0

n=-1

§ (( -~ j+k+2)xj.,xk\> >0 (II)

Jyk=0
hold.

Proof: From the integral representation we obtain

Z <s JrK g 1:> S Z:- d<th:l’xk>;:

Jyk=0 Jyk=0

N —> 00

N
= lim Z <Am Fo Vs ¥y D
m=1

where
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n
A = - — j
nFe =T =P 5 Ty ? L
j=0
t = "'l+ 'im“ (m: 1,2,...,N).

m N

Hence we get the necessity of condition I.

The necessity of condition II follows from a similar

considerations
n-1
S - S X X —
Z: <« j+k ;j+k+2). 3’ k>
Jrk=0
= 1lim _S_ (1-t)<AFy,Y>-
A , m m t m m
I =i 253 n=1 '

Next we show the sufficiency of the conditions I and II.

Consider the linear set Q) of polynomials of the form

n - |
.P(t) = 2: tj :c‘_I (:cJ €€ 5 i= 0y1y00eyn).
j=0

Let
n
k
QL) = Z 6y, (yké‘f 5 k= 0,1,.04,n)
k=0 '

and define on \(P a bilinear Hermitian functional (P,Q) by
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By condition I we have for any P
(p,P) 2 O.

Assume first that formula I is strictly positive, i.e.iy if
not all coefficients x j are zero, then (P,P) > Ou

In this case the bilinear functional (P,Q) can be taken as
inner product in \9). Completion of :F) under the norm

induced by this inner product produces a certain Hilbert
space \5 ©

Denote by R the set of all polynomials Q 6-6p of degree
not larger than n-1; -
n=-1
J .
u) = > t) y (yjef 5 3= 0y1,0s0,n-1),
J=0

P

on R we define an operator A by

n-1

i 1
AQ(t) = tQ(t) = Z t Ty
j=0

But for any Ql,Qzé-Cﬁ: we have (th,Qz) = (Ql,th); hence

the operator A is Hermitian. Moreover, by condition II,

(AQ,4Q) = (tQ,tQ) £ (Q,Q) (Q € R ). (2)
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It follows that ||A]] £ 1.

We now apply the lemma stated on page 120. Let E, be the

N
spectral function of A :

t

§ taE

= § t

Then for any X,y € € we will have

X ~J*k
<sj ,y>_(txty)—(A x,A y)——(A X,¥7) =

| (3)

3 +k

={ ¢ a (B.x,7) (I+k = 0y1,¢s0y2n).
el |

We note that the operators E,, =1 € t £ 1, act in é and

t’
not in f 3 Since

l (E X X)\ (x,x) = <Sox,x >E£ SO I (x,x> ?

we have that the bilinear Hermitian functional (Etx',y) is
continuous. For any x € € the functional (Etx,x) is
non-decreasing. Using a theorem of F. Riesz (see for example
§ 5, section 3 of Neumark's book on normed algebras) we get
that to each E_ there corresponds a bounded self-adjoint

t
operator F £ acting in f y Such that

(Bx,7) = <F.x,7> (x,y € € ); - (%)

I

Ft’ -1 £t £1, is a nondecreasing operator function. Since
(3) and (4 ) imply (1 ) the theorem is proved for the case

when formula I is strictly positive.
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If formula I is not strictly poSi’ciVe, we regard the

polynomials P,Q € P as equivalent whenever
(P"'Q;P"'Q) =0

is satisfied. By (2 ) the operator A transforms equivalent
polynomials into equivalent polynomials. If we identify
equivalent polynomials, then we have reduced the case '
under consideration to the case considered further above,

This completes the proof of the theorem.

THEOREM: In order that the sequence S, Sl’ Soy eee Of

bounded self-adjoint operators in a Hilbert space ‘(€_
have a representation of the form

tk dFt (k=0,1,2,ooo), (5)

[ 4]
B
i
otng

where Ft (0 £ t <« ) is some non-decreasing operator-

function, it is necessary and sufficient that for any

uj e € (j= 0,1,2,...) the following two conditions
hold:

E < u.j 9 uk> ; 0 (n =O,l,ooo)’ (I>

+k
j k=0

n
E <S;j:+k+1. u u > 20 (n =0,1,...),  (II)

J)k=0



- 146 =

Proof: From the integral representation ( 5) we see that

- conditions I and II are necessary:

P

. |
_S_ <sj+kuj,uk>= 1lim lim Z(An-lFtvm,vm ,

n p
E <Sj+k+luj’%i>= lim lim Z tm<AmFtvm,vm>,

Jsk=0 N—=>00 p—>® p=31 -,
where
n
2 J
t = (mN v = tu DN F, =F - F
Mkt Z i’ mET e Yy
J=0

for m = 1425c0e9De

Next we show that conditions I and II are sufficient. We.

assume first that formula 1 is strictly positive, i.e.,

n .
§ <Sj+kuj’uk>= O implies u‘_l =0 for J= 0y1lyeeeyDs
Jyk=0
We denote by R the set of all polynomials of 'the form

n
P(t) = Z tjuj (uj&g y = O,l,ooo)o
=0
" Let

‘ m
Q(t)= Z tkvk (Vke g y M= 0,1,0..)0
k=0
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We define

n m
(P,Q) = 7 ;— <8y i BV ) (6)
=0 k=0 ‘

It is straightforward to vérify that (P,Q) has all properties
of an inner product (here we use that the operators Sj are
Hermitian and that formula I is strictly positive). Let ‘5
be the completion of R relative to the norm induced by this
inner product. We define on di the operator H by
Iif(t): tP(t) = — ¥, :
2 U
Since the 6perators Sj are Hermitian and since R is dense
in Ts we have that H is a symmetric operator in 35 . From

condition II we get

. ‘
(HP,P) = (tP,P) = E <Sj+k+1uj’uk> 2 05
- Jyk=0 e

this means that H is a positive operator.

By virtue of the theorem on page 130 the operator H has a
positive self-adjoint extension ?I’.. Let Et be the spectral
~~
function of the operator H 3
- 00

T=S§tas .
4 %
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Then for any u,v € & we have
— >@)
(Sku,v> = (HEu g ¥ ) == _g £ q (Etu,v) (7)

(k= 0y1,4..)s We note that the operators E, act in."s but

t
not in 'f 3 however (Etu,v) is a Hermitian bilinear functional

in f and it is continuous:
0 & (Etu,u) L {u.4) = (Sou,u> <0 8o |l Lu,uy .

Thus there corresponds to it a bounded self-adjoint operator

F,, acting in € and such that
(B u,v) = <Ftu,V> (u,v € &) (8)

Ft will be a non-decreasing operator-function. Hence (7 ) and

(8) imply (5).
In case the form I is not strictly positiv‘e, we shall say that
the polynomials P,Q € R are equivalent if and only if
(P-Q,P-Q) = .07
where (P,Q) is the bilinear functional defined by (6). The
operator H (multiplying by t) maps equivalent polynomials
into equivalent polynomials. To see this it suffices to
verify that (P,P) = O implies that (tP,tP) = O. But this is
clear from (tP,tP)2 = (P,t2P)2 < (P,P)(t2P,t2P). By
identification of equivaient polynomials we have reduced
the case in which the form I is not strictly positive to

the case in which the form I was assumed to be strictly

positive and the proof of the theorem is finished.
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 APPENDIX

Spectral Theorem for Self-adjoint Operators:

' For any self-adjoint operator H in a Hilbert space ‘5 there
exists one and only one operétcr function Et (=00« t £0Q)
satisfying

1) E; is a projection operator;

2) E.E =Etfortés;

t s
3) Et permutes with every bounded operator A which permutes
with Hj
L) lin  Ef = 0, lm  EBf = ¢ forallfé‘g;
t—> -0 t —> 00 _

5) E.f is left-continuous for all f € ‘5 ;
6) f€ o‘bH if and only if

o 2
% allg gl < 0o .

- 00
In this case
' oo
B = § tdECTf.
- 0o t

The convergence involved in the integral representation is

the strong operator convergence.

The foregoing version of the spectral theorem is due to

V. Neumann; before him D, Hilbert had cast the foundation



- 150 =

for spectral theory but Hilbert's work in connection with
linear integral equations was essentially restricted to the
study of completely continuous linear operators (taking

bounded sets into sequentially compact sets).

Following ideas of F. Riesz a modernisation of spectral
theory was given by H. Freudenthal (Teilweise geordnete
Moduln, Proc. Acad. Wet. Amsterdam, 39, 641-651 (1936))
and S. W. P. Steen (An introduction to the theory of
operators, Proc. London Math. Soc. 41, 361-392 (1936)).
Commencing in 19%1, H. Nakano published a long series of
papers in which he went substantially beyond his
predecessors both in terms of results and in methods.

A systematic account of these matters can be found in
Nakano's treatises listed in the Bibliography. Here we
want to consider the Freudenthal - Steen - Nakano theory
in relation to J. von Neumann's version of the spectral
theorem for self—adjoiht operators. To this end we shall
first survey some of the basic information concerning
vector lattices and partially ordered rings whiéh is

relevant to abstract spectral theory.

1. Let E denote a vector space over the field of real
numbers. Suppose that in E there is given a certain set

of elements of which it 1s asserted that they are "larger
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than zero"; this is signified by writing x > © , where 6
denotes the zero vector in E. We call all elements which
are larger than zero and the element © positive and denote
by E+the collection of all positive elements of E. We put
XDy if x=y> O . As usuai, X 2 y means that either x > y

O X= Yo

The vector space E is said to be a vector lattice if the
ordering introduced above satisfies the requirements:

A) if x> 6, then xF ©;

B) if x> O and y> ©, then x+y > O

C) for any two elements x,y € E the supremum, x V y, exists;

D) if x> © and X is a real larger than O, then xx > &,

Another definition, equivalent to the foregoing one, is the
following: A vector space E over the real numbers is called
a vector lattice if E is a lattice and the relation x > y
implies that (a): x+2z2 > y+z for any z € E and (b); for
any real o larger than O we have X X > &Y.

2, E is called a complete vector lattice (resp, 9 -complete

vector lattice) if every bounded (resp. bounded and countable)

subset of the vector lattice E has a supremum and an infimum,

3¢ Let E be a vector lattice. If xt ¢ E (t €T and if

y = sup (-xt) exists, then -y = inf x_. In particular we have

t'

XAy = - [(-x) v (-y)] . (1)
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Moreover, in a vector lattice the following identities always

hold:

EVY+2z=((x+2)V(y+2) (2)
(xAY)+z =&+ 2)A(y +2). (3)
A special case of formula (2) is: '

[x - »VvO]+y= xvy. ()
4L, Let E be a vector lattice, X, € BE(t€ T) and sup xt
exist. Then y 4 sup X, = sup (y+ xt) for any y € E and

sup (X xt) for any real x > O,
e Tt T inf (X xt) for any real X £ O.

Using formula (%), the first part of the foregoing statement.
and formula (1), we get |

xXVy= [(x—y)VGJ-c- V= x+y+[(-y)v (-x)] = x+y - XAYy.
Hence we obtain

EVH+EAY)= x4+7. (5)

5. Let E be a vector lattice and x € E. We define the
following elements:

+
x = x VO (positive part of x);

x = (-x) VO (negative part of x);
+ -
Ix|= x +x (modulus of x).

6., If E is a vector lattice and x € E, then x =x+ -X o

+ -
If xX=y - 2z, where y,2€ E , thenx+§ya.ndx < z.
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7« The following relationships hold in a vector lattice E:

— s

(x+y) =x +y 3

+ -
+ xx 1if«2=20 - xx if x =20
(xx) = _ (xx) = "
-Xx if x £ 0O - X if x ¢ 0;

IxV € x £0x) 5 \x+y) £ Ixl + 1yl 5 (\xx) = () )zl ;

[xl: © only wvhenx =86 . If x £y, then x+4=-y and x—__>= ¥ &

8. Let E be a vector lattice and Xy ¢E (t€T), If

X = sup X, exists, then

t

+ " e -
X = sup X, x = inf x . (6)

9. In any vector lattice E the infinite distributive laws
X N\ sup y, = sup (xl\yt) and x V inf v, = inf (xV yt)

are satisfied.

10, The elements x and y of a vector lattice E are said to
be disjunct (in symbols xdy) if IxlA lyl = &. Two subsets
of E are called disjunct if every element of the first
subset is disjunct from every element of the second subset.
It is clear that xdx only if x = © ; two disjunct subsets

of E can therefore have only one ‘common element, namely © .
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11. Let E be a vector lattice. For any x € E we have X d X .

+ = -
If x = y-z, where y,z€ E and ydz, then y=x and z=x .
For any x € E we have that |x|= x V (-x). If -y.‘.x <y,

then |x| £ y. If z4 x and y £ u, then |x-y| £ u-z.

12, Let E be a vector lattice. Suppose that in E for some
+

element u we have @ £ u £ x+y, where X,y € E , Then u can

be represented in the form u = v+w, where © £ v<£ x and

& cv&vy.

13. 1If the sets E; and E, in a vector lattice E are disjunct, |

then so are their linear hulls.
+

1%, If E is a vector lattice, x, &€ E (j = 1,2, ces »n) and .

xjdxk for j # k, then

X, + X, + oo +x, = %V xz‘\l eoe V X o (8)

J

15, If E is a vector lattice, x,y € E and xdy, then we have
+ +

— s

(x+y) =% +7 and |x+yl £ \x|+ l\yl.

16, Ifx=x+x+ ., + X, where Xy belongs to the
vector 1at’cice E for J =132, ees 30 and xjdxk for j#k
andx&E,thenxjeE for j = 1,2y eeo yne If

. ¥ X see +xn=9 and x,dx, for j # k, then x

s Rl =6

J
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for j =l,2, eee ,n. If xl,xz, eee ,Xn #: e and dexk, then

xl, Xy eee xn are linearly independent.

17. Let E be a vector lattice. If X, €EE (t€T), yCEBE
and > dy for all t € T and if x = sup X, (or x = inf xt)
exists, then xdy.

18. Let L be a lattice. A sequence (xn), n =12y eee 4 Oof
elements of L is said to be order-convergent ((o)-convergent
for short) to the limit x € L, if there exist two monotone
sequences of elements in L, where (yn) is decreasing and
(zn) is increasing, such that x = inf y_ = sup z, and

Znénln. éyn for n= 1,2, see o

The (o)-limit is unique, provided it exists. The algebraic
and lattice theoretic operations in a vector lattice E are .
(o)-continuéus and from this follow the statements:

(o) : w0 4 (0
(a): x —> x implies X, —> X, X —> X and

n
(o)
|z | —> \xl;

(o) (o)
(b)s | x | —> © implies x, —> © ;
(o) | (o)
(c)s x ~—> X is equivalent with {xn-x\ —> 6 ;
' (0) ' {02 1 ' © 4 : '
(d)s X, —> X X} —> x. and x dx! for all n implies xdx';
(o)

(e)s X, —> X if and only if there exists a monotone
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sequence vn 4 © in the sense of (o)-convergence such that

{x -x|< v_ for all n.
n n

19. A subset El of a vector lattice is said to be pormal,
if it is stable under the formation of linear combinations
of its elements and if x € El, vyE€E and |yl £ (x| imply

that y € E. .

A normal subset of a vector lattice is itself a vector

lattice.

20, Let E be a vector lattice and El be normal in E. If

X, € By (t € T) and x = sup X, (x = inf x ) exists in E.»
then x is the supremum (infimum) of the set {xt: t € T}

in E.

21.( %-et E be a vector lattice and El be normal in E. Then
o .

X -Z-;-;; X in El’ where x, € El for all n, if gnd only if
x, — x in B and {x;: n=1,2, «e.$ is bounded in E,e
22, A vector lattice E is called Archimedean, if from x(—E+
and the boundedness of the set { nx: n=1,2, «..§ it
follows that x = &,

If E is an Archimedean vector lattice, then

(a): if nx £y for alln =1,2, «es , thenx £ O 3
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(b): if o« = sup o(t (X = inf 0<t), where °<t are real

numbers, and x € E+, then X x = suplxtx (xx = inf xtx);

(e): if Ix | <y (n=1,2, ¢e.) and X_—> O, then
(o) n n .

X X —> 0

nn

(o) (o)
(a):s if X —> X and o(n——->0( , then o(nxn — O X

23. A positive element of a vector lattice E is called unit
and is denoted by 1, if x A L > O for any x > © and
X € B; in other words, if x € E and xd1 , then x= 6 ,

If 1 is a unit of a vector lattice E and if E contains
elements different from © , then 1 > © ; if E consists of
© only, then © is the unit element.

24, Let E be a vector lattice with unit 4. . An element

e € E is called unitary, if e A (71 - e) = © ., The set of
all unitary elements is called basis of the vector lattice E
and is denoted by I (E).

From the definition of unitary element it follows that e = &
and 4 - e 2 © ; this means that & < e < ] . The elements
© and 1 belong to the basis. If e € & (E), then

1 - e € & (E) and conversely.

25, The basis & (E) of a vector lattice E is a sublattice

of E, If for any set of unitary elements e, (t € T)

t
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e =sup e, OF e = inf e, exists, then e € & (E). The basis,

t
under the ordering already existing in it, represents a
Boolean algebra and for any e € o& (E) the element e'=1 - ¢

is the complement of e.

26. Let e 1792 € & @), If e 1de,, then e, + e, € & (B).
If e; 2 e,, then ej-e, € & (E). The element e, is disjunct
from the element el-(ell\ 92)'

27, If E is a vector lattice with unit 1 , then every
element x € E for which |x| £ § 1 for a certain real §
(dependent on x) is called bounded. A vector lattice with
unit, all‘elements of which are bounded, is called a vector

lattice of bounded elements. All bounded elements of a

vector lattice with unit form a normal set in the vector
lattice. The notion of bounded element depends on the choice

of unit in a given vector lattice.

28, For any Boolean algebra o>~ there exists an Archimedean
vector lattice of bounded elements, the basis of which is

isomorphic to the algebra L .

29, If in a vector lattice E each non-empty bounded set of
positive elements has a supremum, then E is a complete

vector lattice,
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30. A normal subset E, of a complete vector lattice E is a

complete vector lattice also.

31. If in a vector lattice E for every countable, hounded
set of positive elements there exists a supremum, then E is

a @ -complete vector lattice.

32. A normal subset of a ¢ -complete vector lattice is a

¢- =-complete vector lattice.
33. Any 0 -complete vector lattice is Archimedean.

34, The basis o (E) of a complete ( o -complete) vector
lattice E with unit 4 is a complete ( O~ -complete) Boolean
algebra.

35. If E is a 0 -complete vector lattice with unit 41 , then
+ ‘
for any x€ E and n = 1,2, .es

sup (nl A x) = x. (9)
n

36. A normal subset El of a g -complete vector lattice E is
called a component of E provided that the following condition

is satisfied: if X C El and sup X (inf X) exists in E, then

sup X € El (inf X € El).
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37. If X is an arbitrary subset of a @ - complete vector
lattice E, then the set 4o consisting of all x € E which are
disjunct from the set X is called the dis;junét complement
of X,

38. The disjunct complement of any X € E is a component of

the 0 -complete vector lattice E.

39. Let El be a component of a 0"=complete vector lattice E

+
and x€ E . If in the set of all elements y € El satisfying
the inequality © &£ y £ x there exist a largest element, then
this element is called the projection of the element x onto

the component E. and is denoted by pr. x. For an arbitrary

1 Eq
element x € E we define the projection of x onto El by the

formula '

+
prElx = prElx -~ prElx

provided that pr x+ énd pr x exist., By definition, if er+

Ep L+
and prElx exists, then © % prElx < x, For an arbitrary
= +
X € E, if the projection exists, we have 8 & pr, X £ > Jan
1 =
therefore
+ +

‘prElx_J = prElx + prElx Lx +xi =|xl, (10)

40, Let El be a component of a G -complete vector lattice E

d
and El its disjunt complement. In order that prE x exist for
.
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an element x € E, it is necessary and sufficient that x be
representable in the form x =y +z,‘ where y€& El and zéE?_.
If such a representation exists, then it is unique and we
have

X = pr_ x + pr_j X. (11)

E
1 B,

Therefore, if the projection of the element x onto E. exists,

1
then its projection onto the disjunct complement Eg exists

as well,

41. If E is a complete vector lattice, then for any x € B

the projection onto any component El of E exists.

42, The component E, of a ¢’ -complete vector lattice E is
called essential component if Ej is a 0 -complete vector
lattice with unit.

43. In a g”-complete vector lattice E the projection of any
X €E onto any essential component exists. If u is a unit of

E, and x(—E+, then for n = 1,2, ee0 ¢

1

Prp X = sup (x A nu). (12)
1 n .

44, Suppose that X is an arbitrary subset of a @ -complete

vector lattice E. It is clear that X944 = (Xd)d is a component

and X C de holds. The component 'de is called the component

‘generated by the set X. If a component is generated by a
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single element u, we write E (= {u}dd).

45, x94 i the smallest component of the complete vector
lattice E containing the set X; if X itself is a component,
then X = x44,

12X, C E and X dX,, where E is a complete

vector lattice, then the components generated by X

46, If the sets X

and X

1 2

are disjunct., If | vl £ |u|, then Evc E, .

47, For a 4 -complete vector lattice E the notion of
essential component and the notion of component generated
by an element are equivalent; in the component Eu the

element lu| plays the role of unit.

48, For the projection onto an essential component the
following notation is customary: if Eu is the component
generated by the element u, one writes (u)x for prEux. It
is clear that (1)x = x for all x ¢E. By formula (12) the
projection onto the component Eu for x(-E-'— becomes

(Wx = sup (x A nu). ‘(13)
n :

49, In a complete vector lattice E with unit 41 all

components are essential.
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50. Let E be ¢"-complete vector lattice and El a component

such that for every x € E the projection prp X exists, If B
1

is a complete vector lattice, then E. can be any of its

1
components. The projection mapping satisfies the properties:
(a) prEl(ocx +PRY) = & prElx + 3 prEly (linearity);

+ +
(b) (pr_, x) = pr. x_ pr. x| = pr. Ix\ ;
By E5 0 l Ey ‘ L T

x if and only ifxéEl

(e) prp X = { ,
1 © if and only if xdE, ;

(d) if x 2y, then Pry, X = prEly;

(o) (o)

(e) if X, —> X, then prElxn —> pr_, X.

Eq

51. If E is a vector lattice, if the elements X €E (teT)

are mutually disjunct and if sup x: and sup x,;- exist in E,
then the element S X defined by
t .
S x, = i N
; X, = Sup X; = Sup X

is called the union of the elements x, (teT).

5%, The union of a finite number of elements x, (k= Lije santl)y

of a vector lattice E exists. Moreover,
n :
n
g B2
k=1 e k=1 "k

holds. If E is a complete vector lattice, the union of any
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bounded set of pairwise disjunct elements xt (t€T) exists

because in this case we have the existence of sup x: and

« In a 0 ~complete vector lattice the union of any

t
bounded, countable set of pairwise disjunct elements exists,

sup x

53. Let E be a vector lattice and Xy €E (t€T) be such

+ . -
that their union exists. Since xtdxs for t s, then X, d X

+
t

Sx) = sup x . Hence
y, GR ) P X

for any t,s € T; therefore by Number 17: sup x_ d sup x. and

L -

by Number 11: (S x,.) = sup x
. t
we get '

—

# + -
- =4 V = [ ]
| i xtl sup X V sup X, = sup (x, Vx ) =suplx.|

54, If S x; exists and x.dy for all x (t€T) in a vector
t

lattice E, then (8 x.)dy.
t

55. The associative law holds for unions; in a complete
vector lattice E the associative law reads: If the set
{xt: te‘l‘}“is bounded and consists of pairwise disjunct
elements and the set T of indices t is representable in

terms of disjoint subsets T (a € A) (T = J 7 ), then
_ e ' a€h B -

S x.) (1)

S x. = S (
teT v gea LT
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56. The set of elements {xte Bs téT} is called complete
in a vector lattice E, if in E there is no element, except

© , which is disjunct from x, for all t€T.

t

- In Number 36 the notion of component of a (r'-complet'e vector
lattice was defined; in the same manner one defines the
concept of component of a vector lattice. Replacing in the
above definition the elements x

by components E_ of E, we

t t
can define completeness of the set of components EtC- E

(teD.

57. We say that the set of components Et (t€T) of a
g~ -complete vector lattice E form a decomposition of E,
if the following is satisfied: (1) these components are
pairwise disjunct, (2) the set {Et: téT} is complete in
E and (3) for any x €E the projection onto each of the
components E’c (teT) e;cists. An example of a system.of two
components forming a decomposition of a ¢ -complete vector
lattice is any essential component and its disjunct
complement. |
58. If two components El and E2 form a decomposition of a
g” -complete vector lattice E, then El = Eg.
59. If in a ¢ -complete vector lattice E there is given a
complete set of pairwise disjunct elements X, (t&T), then

the components E., generated by these elgments (By = Ext),
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form a decomposition of E.

60. If the components B, (t€T) form a decomposition of a
complete vector lattice E, then any element x€E is.
representable uniquely in the form of the union

X = > (15)

S
t€T
- vhere x € E, and X = prEtx.

6l. Given a family (B, )y ¢ p of complete vector lattices, let
E be the cartesian product of the sets Et; define addition
and scalar multiplication in E componentwise and let

+ 4= ,
B' = {(x)yeqp? Xc € B, for all t&€T§. With these
definitions E is a complete vector lattice, called the union

of the vector lattices Et’ and denoted by . S Et' Note that
€T '

ifx= (xt)te‘l' € E, j:hen Izl = (\Xt\)t Y
If t, &€ T is fixed, then the set Z, of all x € E for which
(e]

xto & Eto, and x, = © for t F to, will be a component in E.

This component is algebraically and lattice theoretically

isomorphic to E_ . Moreover, if each element X € By is
0 o

%o

identified with the family (x). ., where x; = Jttoxto

(Kroenecker delta), then E, is identified with Zy o Therefore
o

%o
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the Et's form a de'composition of E and prEtx = X for

X = (xt)téT' We can write the elements of E as x = . GS-T xt

and call x the union of the elements xt.

62. The union E= S Et of the complete vector lattices Et
with units 1‘0 is a complete vector lattice with unit; as

unit in E we can take S 1,0.

63. If the complete vector lattice E is decomposed into

components E then E is algebraically and lattice

i .
theoretically isomorphic to a certain normal sublattice

of the complete vector lattice Y= S Et'

6%, Let E be a @ -complete vector lattice with unit 4. and

> (E) be its basis. Then

(3) It 1=5 e, (e € % (B); t€D), then the set (a,)g ¢

is complete.

d

F E B = kB .
(b) For any e & & (E), . e
(e) Ife=S$ ey (ete - (E), t €T), then for any x€E we
have that |
(e)x = 8 (ey)x.
teT
(d) 1If eye'€ ;f'-(E), then for any x €BE
(e') [(e)x] =(eNe")x. (16)
(o)

(e) 1If enJ,e (e € - (E)), then (e )x —> & for any x€E.
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65. Let E be a O -complete vector lattice with unit 1 and
Y (E) its basis. Then every unitary element is a projection
of the uni.t onto a certain essential component. Conversely,
the projection of the unit element onto any essential
component is a unitary element, acting in this component

as unit element.

66. The basis &r (E) is isomorphic with the set of all
essential components of the 0 -complete vector lattice E
with unit g ) s ordered by inclusion. If E is a complete
vector lattice, the basis o6& (E) is isomorphic with the

set of all its components.

67. Let E be a ¢ -complete vector lattice with unit 1 and
let O (E) denote its basis. For any e,e' &€ o (E) we have
(e')e = e N e'., (17)

68. Let E be a 0 -complete vector lattice with ur;it 1 and
let & (E) denote its basis. The projection of the unit
onto the essential component Ex’ generated by the element
X € E, is called the trace of the element x and is denoted

by e ;3 thus
X

e. = (x)1 = sup (1 A n|x|).
X n

By Number 65 the trace ey € L (B), for any x € E, is a

unit in the component E_, that is E, = Ex. Thus, if x ¥+ 6,
X
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then ey =%+ 6 . Moreover, since Ex =Elx\’ we have e, =¢©

| x|
69. The trace satisfies the following properties:
(a) =xdy if and only if exdey;
(M)  |x| £ |y| implies e_ £ e ;
X y
(e) (e )x = x;
x
+- — —
@ (e x=x , (L=-edx=-x , (e )x=-x ,
x x x
.‘-
(L -e_)x=x 3
x
(e) e = e + e 3
x xt x~’

£
s where x, € E (t &€T), then e = sup e_ ;
t x xt

(f) if x =sup Xy

£ :
if x =1inf x., where X, €E (tE&T), then for t €T

we have e £ e
x x,

70, Let E be a (0 -complete vector lattice with unit 1 .

For each X € E and each real number X\ we put

/

X

T (21 -mt]

X

e 1s the trace of the positive part of the element A1 - x ;

X ! x
N € 4 (E). For fixed x € E the system of elements (e

N
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where A runs through (- 00 , OO ) is called the resolution

of x.

From the definition of resolution it follows that

X < p

(e>\)x & e>\ and (18)
x . X | :

(1 - ey )X 2 N4 - ex). (19)

71. Let E be a 0" -complete vector lattice with unit 21 .

For each x € E the resolution of the element x has the

properties;
x X
(a) % Z ey for mz\;
x
(b) supe, =1 ]
A
x
(e) inf e, = 8 ;
A . -
(d) for each A the resolution is left-continuousi
x x
sup e. = e, 3
(e) if > > > then
LB P 2N 2 A

(6 =8 d)dle, -0

e =8 d (e, =-&¢ I

/"’: /"2 >‘l >‘2_

72. Let E be a 0" =-complete vector lattice with unit 4 .
For any M 2 A we have the formulas:
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X X _ b o X
er*/\(i-e%)—-e/“-ex (20)
Ris =@, )&l =8 ( ) T (e
e - e e e e - °
2N Ve s

73. Ina o;l;-complete vector lattice E one can introduce
00

the notion of infinite series Z_ X (x & E) with the
n=0

help of (o)-convergence, where (0)=1im (é':. xn) is
p — oo n=0

taken to be the sum of the series under consideration. The

(o)=convergence of the series under consideration implies

(o)
that x —> & as n — 00 , For the (o)=convergence of a

pos:.tive series (where all X, S E ) it is necessary and
sufficient that the sequence of its partial sums be
bounded; in this case the sum of the series coincides
with the supremum of its partial sums. If © £ x £ ¥,
for all n > B then from the (o)-convergence of the series

> ¥, follows the (o)-convergence of > X o If the
series Z:_ \xn\ is (o)=-convergent, then Z x is

likewise (o)=convergent and the latter series is said to

be absolutely convergent.

Let all terms of the series _S_ xn be pairwise disjunct
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and suppose that the set {xn: n:l,2,...3 is bounded. In

this case the union S Xn exists and
n

oo oo
S xn = Z:, X

n=1 n=7] o

holds.
00 .
The sum of the two-sided infinite series 2 _ x  is defined
q -0
as the (o)=-limit of the partial sums Z. x, for
n=p

Pp—> -00 and q —= 00O,

7%, The integral representation theorem of H, Freudenthal:

Let E be a 0 -complete vector lattice with unit 41 . Then

each element x € E is representable in the form
- 00
. >
x = S A d ey
=03

where the integral sign signifies the (o0)=-limit of the

integral sums
oo

X X

e 1

formed for an arbitrary partition of (- OO, OO ) by the
points |

-m< o.o< >\ < >\ < >\4 OOQLw
-1l 0 "y
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where )\ £t £ N for all n and the (o)=limit is
n-l — B ~— 1

taken under the condition that & = sup ( >\n - >\n l) —> 0,
n R

75. A o -complete vector lattice E with a binary multi-

plication is called a partially ordered ring provided the

following conditions hold: ' .

(A) (xy)z =x(yz);

(B) x(y+32) =xy+xz, (y+2)x= yx+zx3

(€) (xx)y =x(xXy) =  (xy) for every real number oX ;

" (D) there is a multiplicative unit 4 ( > © ) such that
for all x€E we have x1 =1 x = x (hence there is
only one unit);

(E) x 26 and y 2 6 implies xy = 6 ;

(F) x AN 1L=6 impliesx =6 .

Remark: If x 2 y and z > © , then xz 2 yz and zx 2 zy.

76. Let e,e' € £—(E), the basis of the partially ordered
ring E. Then we have

(e')e = (e)e! = ee' — e'e.

77. If E is a partially ordered ring, x € E,+'and y €E,
then
vl £ xlyl ana (x| £ [v]x.
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78. If x and y belong to a partially ordered ring E and
6sx£ 3 1 , then the products xy and yx, for fixed X,

are continuous in the sense of the (o)=limit.

79. From the Numbers 74 & 78 follows that for any,unitary
element e in a partially ordered ring E we have the formula
(e)x = ex = xe (24)

for any x € E.

This completes our survey of basic information concerning

vector lattices and partially ordered rings.
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We now return to the consideration of linear operators in

Hilbert space.

Let Nz denote the set of all bounded linear operators in
a Hilbert space % « If £150.0,f € "5 and &£ > 0, then
N (Ao;fl,...,fn; €) is to denote the set of operators A
in B satisfying the system of inequalities

Il - At <& (5= 1325 e000)

for a given A in P . The set MU (Ao;fl,...,fn; €) is
called a strong neighborhood of the operator Ao. The set
_ of strong neighborhoods generates a topology of \9-2—‘ .
The convergence of a sequence (A ), n = 1,2,.00 5 to an
operator A in this topology means that for every f € “%
A f - Afll —> 0asn—> 00 ;A is called the strong
limit of the sequence (A ).

The operations o A, A + B, AB (in the product one factor
is ‘kept fixed) are continuous relative to the strong
operator convergence. Passage from A to A* is not
necessarily continuous with respect to the strong operator

convergence,

We recall that an arbitrary linear operator A in a Hilbert
space G 1is said to permute with a bounded linear operator
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B in ' if BA C AB holds, that is if BA = AB on 52>BA.
If both A and B are bounded linear operators, then we say
that they permute if they commute. We shall use the symbol
AvB to signify that the operator A permutes with the

operator B.

A self-adjoint operator A is said to be positive, if
{Af,£> 2 0 holds for all f€ SZA; we signify this by
writing A 2 0, If A is a bounded self-adjoint operator,

then A2 is a self-adjoint positive operator.

" We now take up several elementary propositions which will

turn out to be usefull at a later stage of the discussion.

I3 If the bounded linear operators A; and A, are self-adjoint,

if A2 2 0 and A1VA2’ then the self-adjoint operator A12A2 is
positive.

Proof: (Alezf,f> - <A1A2f,Alf> =<A2Alf,Alf> > o.

II: If the bounded linear self-adjoint operators A and B are _
positive and permutable, then the self-adjoint operator

AB = BA 1s also positive.

Proof: We may assume that A = O and hence |l All > 0. We
define a sequence (A ), n = 1,2,... , of self-adjoint

operators by putting
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- A = 5 -4A°%
n

o nm—— nN=1l1;25c00
17 an’ ntl n ( gyes)
<

and we show that O n =

the identity operator. For n = 1 we have

0 £ {ar,ey =ar,e) /Ul £ {8t

and therefore 0 & Al < E. Since

A_ £ E for every n; here E denotes

E - A = (E-A)+4°
n n

.
i
>
]
b
il

2 2 3 e 3
n+1 n n An An + n ?J'n * n
we have that

— 2 2

By the inductive assumption An > 0Oand E - An 2 0 so that

o e
- —

by proposition I above we obtain E - An +1 2 0 and

A > 0 and therefore 0 £ A £ E, From
n+l = n+l

o g B 2 2
AL =ASHASH oo FATHA L oand A L2

v

0

it follows that

é\f <Ajf,AJf>= i <A32f,f>=<Alf,f> - (A ) &
i=! j= _
£ (ahe)
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holds; this means that the series S>_ | AJfII - converges
and therefore lim || AT Il = 0. It follows that
i (e R = Diw (b4 f . ot o A
= % 1T " Anta o

Since BvA by assumption, we see that BvA, for every j; hence

J
n
Bar,£> /Al =<BAlf,f> = lin '325 (BAJZf’f> =

:limz: A BA.f,T :limZ: BA f,A T >0
j=1<33’> J=1<J’J>=
and this shows that BA is positive.

III: If all operators of an increasing sequence (An) of
bounded linear self-adjoint operators are mutually permutable
and if there exists a self-adjoint bounded linear operator B
such that AAVB“ and A £ B for all n, then the sequence (An)
converges to a self-adjoint operator A satisfying AnvA and

A _4; A £ B. A similar statement holds for decreasing

n
sequences.

Proof: We consider the decreasing sequence of positive
operators Hn = B =~ 'An. They are mutually permutable; for
m > n the operators Hm(Hn-Hm) and (Hn-I-Im)HI1 are positive
by proposition II above. Hence, for every f € “% H

(ij,f} < L, £ (BPhe),
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from which we infer that the non-increasing sequence of

. 2 _ 2
non-negative numbers <Hm f,f> = || H f |~ has a limit,
dependent on f, and that <Hman,f> has the same limit for

myn —> 60 , Thus we have
lim || (E -E ):t‘”2 = lim<(H - )2f f>'—
m n vy i) T -

= lim E<Hm2f,f> -2 <Hman,.f> r <Hn2f,f>] = o. |

By the coﬁpleteneés of the space “5 the sequence an
converges for every f € "% so that the same is: true of
the sequence Anf. We define Af = lim Anf and note that A
is linear and self-adjoint. The relations An < An-t-l and
A < B, for all n, imply A £ A £ B and the relations

Anv.l\. 3 and lim A 3 = A imply AnvA.

IV: If A is a bounded linear self-adjoint positive operator,
then there exists a uhique bounded self-adjoint positive

operator B such that 32 = A,

Proof: Evidently we may assume that A é E, since we may
replace A by A/l All. We define a sequence of self-adjoint

operators Bn as follows

o —— 2 —
Bo- 0, Bn+1 — Bn+ (1/2)(A - B.7) (n = 0,1,25000e)0

It is seen by induction that if a bounded self-adjoint
operator C permutes with A, then it permutes with all Bn;
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hence we have AVB_ (because AvA). Next, B vA, for all m,
implies Bman for all m and n.
Since

— - 2
E-Bn 1 = E-Bn-(l/2)(A-Bn ) = (1/2)(E-Bn) + (1/2) (E—A‘)

we have that E-B. =2 O for all n. Since B VB we have
n = n n=1

2)__

-B_ = B_+(1/2)(A-B 2)-B_ _-(1/2)(8-B__ %)=

B
n+1l

. 2y = &=
= BB o~ (1/2)(B p-1 ) = (BB 1) (E-(1/2)(B +B  .))=

I

(/2) [(B-B )+ (E-Bn_l)] (8 -B_.)

which means that B = B_. Indeed, for n = 0 we have
n+1l n

B = (1/2)A =2 0=B_.
L = W 2 3

By the inductive assumption Bh-B 0, so that by

>
n=lL =
proposition II above Bn4-1-Bh = 0 holds as well because
Bn-+1 - Bn is the product of the permutable and positive
operators (1/2) [(E~B )+ (E-B__;)] and B_ - B__,.

The sequence (B ), satisfying therefore 0 = B, £B] & e <E,
converges by force of proposition III to a positive operator B.
Hence, taking n —» 00 in B =B + (1/2)(A - B.2), we
n+1 n n
get that
2

B = B + (1/2)(A=B>) or B2 = A.

To see that B is uniquely determined, we observe first that
every bounded self-adjoint operator C, permutable with A, is

also permutable with B since CvA implies Can, and this in
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. turn implies CvB. If therefore C is bounded and positive,
and 02 = A, we get that CvB holds because AC = CA = C3. Let

8% ana H2_3p

be two positive operators satisfying (B
and (C’éh)2 = C (their existence is assured by the first part
of the proof), let f € “g be arbitrary and g = (B-C)f.

Then we get, since CvB,
I 8% 112 + Ncte = {Beyg) + {Cg ) =
= {(B+C)(B-C)f,g> = <(B’2-c2)f,g> = 03

Hence B%g = C%g = 0 and therefore Bg = 0 and Cg = 0.
. But this implies

2 .
(B-C)E 112 =&(B-0)°F,£> = {(B-C)g,£> = 0
or Bf = Cf. Since f is arbitrary, we have that B =C.

Ve Given an unbounded self-adjoint operator A in a Hilbert
space “% o« Then the positive bounded self-adjoint operator
B = (BE + A2)~! exists, A permutes with B, and ||B|| £ 1.

Proof: Let T denote a linear operator whose domain of
‘definition is dense in “5 (a self-adjoint operator satisfies
!this condition). We show that the operator B = (E + T*T)-l
and the operator C = T(E + 0 are defined everywhere

and I B|| £1 and: || Cll £ 15 moreover B is symmetric and
positive, ‘ |
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The graph of T, denoted by GT’ is the set of all pairs (f,Tf),
where f runs through the elements of %T’ in the Hilbert
space “"a @% « 30 %@% we consider the following
two mappings

U(f,g) = (g,£), V(f,g) = (g,=f).

We note that these mappings are uhitary operators and that

UV = -VU and U° = -V° = I,

where I stands for the identity mapping on % ® \% . With
this notation the equation {Tf,g) ={£,g%) , which

*
defines the adjoint operator T g = g*, can be put into the

form

<V(f,Tf),(g,g*)> = o,

This means that G

is made up of those.elements of %@\%
o .

*

which are orthogoné.l to VGT. GT* is therefore a subspace of
"% @ % , namely the orthogonal complement of the closure
of the set VGT (that is VGT)°» Since VGT =¥ GT » We can
write

G — V G °
=5 @®fHreve
The graph of a linear operator is closed if and only if the
operator is closed. Thus, if T is a closed linear operator

with dense domain of definition in "5 , then GT and G , are
T

orthogonal complements of each other in % @® \g « Let h be

"an arbitrary element of % « One then can decompose the
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element (h,0) of ‘5,65“‘)3 into the sum of an element of GT

and an element of VG
T

& in a unique manner:
*
(h,0) = (£,Tf) + (T g,-g).

By passing to the components, we can write the system of
equations

Bext +’1‘*g and 0 =Tf - g
with unique solution f in éZ)T and g in §Z)T % By putting

f=Bh and g=~Ch
we define two mappings on “5 into itself which are linear.,

We can write the system of equations in the form
>
E=B+TC and 0=T1B - C,

*
whence C = TB and E =B+ T TB = (E + T*_T)B. From the
decomposition of (h,0) we get that

2 2 2 2 2
Hhll = llih,0)l] = lJ<£, 200l + |l (T gy=8)l| =
2 2 o 2 g
=\ £il + NE]] + 0 Tell +1] el
so that
2 2 2 2 2
IBa| + \ca|| =N£l + ||gl] £l -
Thus || B|| £ 1 and |l C|| £ 1.

*
For an element u in the domain of definition of T T we have

{E+ T*T)u,u> usie <u,u> + <Tu,Tu> > <u,u>
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_ " A
and therefore (E + T T)u = 0 implies u = O. Consequently, the
* * -
inverse (E + T T)~% exists. It is clear that (E+TT) 1 is
defined everywhere and equals B because of the equation

* *
E=B+ T TB =(E + T T)B which appeared further above. Since
{Bu,vy = (Bu,(B + T 1BVY = (Bu,Bv> + {Bu, T TBV) =

={Bu,Bvy + {T¥Bu,Bvd = ((E+ T MBu,Bv) = u,Bv )

and
{Bu,u) = {Bu,(E+ T*T)Bu> = {Bu,Bu) + {TBu,TBu) > 0
it follows that B is symmetric and positive.

Finally, we consider the self-adjoint operator A and let
B=(E+ A%)™1 and ¢ =aB=A(E + 42)"L. By what has been
proved already, B is symmetric and bounded; in fact

0 £ B £ E. Multiplying both members of the equation

—

AGE + A2) = (E+ A%)A by B on the left and on the right
and keeping in mind that (E+ 42)B =E and B(E+42) < E
we get at once that BA € AB; this means that A permutes
with B.

VI: Let Ml’ 142, eee 3 M.y oos be a sequence of subspaces of

j’
a Hilbert space “5 which are mutually orthogonal and whose

direct sum is the entire space "5 . For an arbitrary

element f in “% let £, denote the projection of f onto MJ'

J
Let Al, A2, cee Aj’ +ee bDe a sequence of given linear
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operators such that the component of A 3 in M;] is a bounded
self-adjoint operator mapping Mj into itself. Under these
condition's' there exists one and only one self-adjoint
operator A on “% s in general not bounded, whose coxhponent
on Mj is Aj,for J=1y2) eee o %A consists of all elements

f for which the series
o)

> &
Af
NA,f,
i=1
converges, and for these f we have

(0 <]

Af = é: Ajf‘.

j=1 ’
Proof: First we note that the mapping A defined above is
linear. @A is dense in ‘5 because it contains all elements

K 8 2
since for all elements f,g€ 3A we have

gy = 2 <af,ed =2 <tphe S = dEhe) s

of the form f. + £+ ... +fn. In addition, A is symmetric:

Let g € §Z)A* s then for all f € %A we get <Af,g>=<f,A*g>
o) s 3 ‘

and therefore Z_ <Ajfj’g:j>= Z_ <fj,(A g)j> .
j=1 ji=1

Choosing as f an arbitrary element of M., then f = 0 for j# 1

- J=
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and
<X E (fi,(A*g)i> R

When Ai is assumed to be self-adjoint in Mi’ then

(A*) A
873 =T 4484¢
We obtain
o0 . (o)e)
2 * 2 * , 2
> llagl = 2 lwe I =14a%l ;
i=1 i=1

thus g also belongs to ;b and we have

A
OO cO
ae= S ag = O & -5
g = W8y = g), =4e.
i1=1 i=1

) * #
This shows that A = A, But A is symmetric, hence A = A,

It remains to verify that A is unique. Let A' be any
self-adjoint operator which has component-Aj in Mj' Since
A' is closed, it is necggfarily defined for all elements f

converges; the sum of this

J

series will also be equal to A'f, Since A'fj =:Ajfj, and

since the convergence of a series of orthogonal elements

for which the series 22:_ A'f
J=1

is equivalent with the convergence of the series of squares
of the norms, the set of these elements f coincides with ﬁZL
and for these f one has A'f = Afj thus A' 2 A, But A is

—

selfadjoint and therefore maximally symmetric; hence A' = A,
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Let ‘¥ denote the set of all linear bounded self-adjoint
operators in a Hilbert space- ‘5 . If A,B € ¥, then the
product AB € 0 if and only if AB = BA, Let A € ¥ and «
be a scalar, then « A € Y if and only if « is a real
number. Motivated by these observations, we call a set OU
of bounded linear operators in § a ring, if for any

A,B € Ol and any real number o« the operators A + B, AB,
and o A also belong to UL,

In the set ¥ we can introduce a partial order by writing
A Z 0 if and only if A is positive; A > O means that

-

{Af,£> Z 0 for all £ €4 and A % O. R. V. Kadison
(Order properties of bounded self-adjoint operators, Proc;.
Amer, Math, Soc. 2. 505=510 (1951)) showed that under this
ordering the set U does not form a lattice (since AV B

exists in 0" if and only if A £ B or B £ A).

We give some definitidns before going on with the consider-

ations.

A partially ordered set R is said to be directed upward
(downward), if for any two elements a,b € R there exists

an element ¢ € R such that ¢ 2 a and ¢ 2b (¢c £ a and ¢ £ b).
An upward directed set R is called a path if for any a € R
there is an element b € R such that b >a (i.e., R has no
greatest element). By a path of operators will be meant a

family of operators (At)t e where T is a path. A path of
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self-adjoint operators will be called increasing (decreasing)
if and only if s £ t implies Ay £ A, (A, = A, A path

(A t)téT of bounded operators is said to converge to the
operator A in the sense of the strong operator topology, if
given any neighborhood U of A in the topological space N~

(see page 175), then A, is eventually in U, that is, if

t
there exists an index t, such that At € U for each t ;_to.

A subset of the set 4 is said to be strongly closed, if it
is closed in the sense of the strong operator topology,
that is the limit of any strongly convergent path of
operators of the subset also belongs to ,the subset,

If At —> A in the sense of the strong operator topology,

At and A belong to ¥ and if A, permutes with B €Y for

each t €T, then A permutes with B as well. Indeed, for any

£ e §ZB we have BA.f = ABf —> ABf. But A.f —> Af and,

since B is closed, Af € (%B and BAf = ABf.

The proof of the follbwing proposition is completely
analogous to the proof of proposition III further above.

VII: Let (At) be an increasing path of pairwise permuting

teT

self-adjoint operators such that At < B for all © €T and.

BE . Then sup A, = A exists in U and A is the strong

t
operator limit of (At)t& e

Proof: Let H, = B = HIBIIE and E is

T | 1
the identity operator on ‘% . It is clear that H, 2 0 andi

- Ay (t €T), where B



- 189 =

that the operators H_form a decreasing path. If s = ¢ for

t

s,t € T, ﬁhen Hs < H, and therefore (H’c-Hs)Ht and Hs(Ht'Hs)
are positive by proposition II above. Just as in the proof

of proposition III we obtain

¢ (B%6) £ {EHSE) £<BPE,1) for any £ €Y .
Thus lim <Ht2f,f> = lin {HHL,f ) . Therefore

lin |B - F 1|2 = lin (HS - HL,HSL - BE) =

= lin [ {82f,1) -2 (B HL,T) + (826,2>] = o

this means that for each f & ‘g the strong limit of Htf
exists and therefore the strong limit of Atf exists. In other
words, there exists a bounded linear operator A such that
Af —> Af for all £ € Y . The operator A is symmetric
and therefore A € 7, Since the path A, (o
for any £ € G we have L £ & ag, ) £ B,
Hence A, & A for all t € T and A £ B. Since B can be
taken as any upper bound of the set {At: te Ti we have

that A= sup A

is increasing,

t.

VIII: Let OU be any strongly closed ring of bounded self-
adjoint operators, then C\V 0 exists for any C € OC ,

Proof: Let ¢ € OU , Since Ol is a ring, c? € 0L . 1t is

clear that C° = 0, From the proof of proposition IV above
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concérning the existence and uniqueness of the square root
of a positive bounded self-adjoint linear operator we know
that this square root can be represented as the strong limit
of a certain sequence of polynomials in terms of the
"radical" operator without free term. We recall that the
sequence of approximating polynomials for the square root

of the operator A was of the forms:

‘ 2
A -
BO = 0, B 15 B_+ (1/2)(A - B_7),

where we assumed that Il A1] £ 1. Since ¢ € UL , then any
polynomial in terms of c2 without free term is also

contained in Ol , and since Ol is strongly closed,
B = (¢2)F € OL . We put

A = (1/2)(B + C) (A€ Ot )
and show that A= C V 0,

Let D = A-C = (1/2)(B-C) € UL . Let ¥  denote the null-
space of the operator D, that is the subspace consisting of
all £ € ") such that Df = 0, Let fB’Zz denote the ofthogonal
complement of ’Zzl in “% o It is easy tq see that ml is
invariant for any operator Q@ € UU ; indeed, if f & ’a’ll,v, then
D(QRF) = QPf = QW= 0
(because UT is a commutative ring) and therefore Qf & ’CYZl.
From the invariance of AT 1 also follows the invariance 6f

AT 5 for any operator Q & Ul ., From the definition of Wl
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we have that C =B = A on ’3’?1. Moreover,
DA = (1/%)(B=C)(B+C) = (1/%)(B% - ¢%) = o.

Thus DAf = O for any f € \5 and therefore Af & rD'Zl for
all £ € '§ . On the other hand, if f € ’3’22, then Af € ’3‘22
because of the invariance of the subspace ’d’lz. Thus A =0

on ’ﬁz. But D = B-A and therefore B =D on ’6'22.

Any f é"g can be represented in the form f = f. + f,, where

1
£, € ’37k (k = 1,2). By the invariance of the subspace ’JZK
(k = 1,2) we have for any operator Q € ot .
Qf,t) = <Qfl,fl‘> + (sz,fz) . (25)
But Af2 —— Dfl = 0, We therefore get
{ag,t) = (AR ,T ) = (BE ) ‘ (26)
and

{oe,e)> = Dy, = CBE,,1,) .

By the definition of square root B = O; thus A > O and

—

D = O implying A 2 C.

Suppose now that H is an arbitrary operator of OU satisfying
H > 0 and H = C. Then for any f € ‘% we have by virtue of

—_—

the fact that C =B on /7 1 and by force of the equations

(25) and (26) that {Af,f) = <Bfl,fl> = <c:fl,fl> <

2 Lar ey £ ury,£,) + <EE,,f,) = <Hf,£). This means
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that A é H and consequently A =C V0,

Remark: It is easy to see that Ul is a vector lattice; we
only need to verify that A,B € OU implies the existence

of AV 'B. The foregoing proposition VIII gives that (A-B) V O
exists. But it can be seen that [(A-B) V O] + B = AVB,

IX: Any strongly closed ring OU of bounded self-adjoint
linear operators on a Hilbert space forms a complete vector

lattice.

Proof: By the foregoing remark it remains to show that an
arbitrary subset C of Ul which is bounded from above has

a supremum. We adjoin to € the suprema of all its finite
subsets. We can then regard € as an upward directed set.

If in € there is a largest operator, then it will be the
supremum of the set 'f . If however there is no such

operator in f s then the operators making up f form an
increasing path and by proposition ViI above this path has

a strong limit A, where A= sup £ in ¥~ . since the ring
Ol is strongly closed, A € OL y and A = sup 'f in the lattice
Ot as well. This completes the proof.

Let ¢V = CVO,C =(C)Voand ICl= ¢t +¢7. In the
proof of proposition VIII we showed that C+__—_ A= (1/2)(B +C).

- - ' “+ -
Thus ¢ =C - ¢ =(1/2)(B-C) =D, |¢|=Cc +C =B,
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1g] = (02)% , C =0on ml and ¢ = 0 on ’322; the
space "é -decomposes into the orthogonal subspaces /321 and
gq4 5« Each operatpr of OU is invariant on Wl and- on %2.
This means that /371 and /&2 reduce OZ. ¢ =lcl=¢T on

ml and ¢ ==-|C| = =C~ on Wa. Therefore for any f & "g

+ _
we get Cf=C f, - C f,, where £, € fa'zk for k =1,2

i

o ——
(£, =pr £ k=1,2) and C £, € fa'Zl and C 1, ¢ I,
k

+ -
On the other hand |C| f = C £, + C f, and therefore for

any £ € “5
| 1cl 2]l =leel. ' (27)-

By (27) we get that the null-spaces of the operators A and
|A| coincide and, moreover, that for any A & OU

. (28)

hal = |14l ]

Xs: Let AJ éUZ,(;j:l,.?,...,n) and A‘——'-AlvAzV‘.. VAnO
Then "5 can be decomposed into mutually orthogonal subspaces

"53 reducing O, such that A = Aj on %,j for each j.

Proof: First we verify the statement for n =2, Then
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— ' + —
A=A+ (oA = Ay + (1/2) [(A-8y) + | A-hy )| =

= (1/2) [(A + A5+ |4 \]

By what has beeh said above, ‘g decomposes into the orthogonal

subspaces 31 and 5 oy Teducing Ol , such that |4 -Az\ =

= A=A, on ‘51 and \Al—Azl = A,-A, on 'ﬁz. Then A = A

on ﬁlandA=A2 on %2.

We now proceed: by induction and suppose that the proposition

1

is true for n operators. Let A = AlV - \/A V A .

(A, € Ul). We put B=A1-V ...\/An so that A =B V A

J nel.

As in the case of two operators, we decompose 5 into two

subspaces & and W, reducing UU, such that

_-{ Bon &
; A onm'.

n +1

For each operator Q € Ul, we signify by Q' its component
in the subspace Sﬁ . The operators Q' also form a strongly
closed ring which we denote by O(' and by proposition IX

OrL' forms a complete vector lattice. The modulus of each
operator Q' of Ot' is defined by ((Q')Z)% , that is the
component of the operator | Q| in the subspace ¥ . Then
(Q')+ and (Q') are the components of Q+and Q—,

- respectively. We see that the analogous statement for bounds
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of finite sets of operators of O(' holds as well and in

oL we haYe the equality B' = A"V ... \V An'. By the
inductive assumption there exists a decomposition of the
subspace L into mutually orthogonal subspaces ’51, vee 5n’
reducing UL', and therefore also reducing UU, such that

B! :Aj on \Ce)j' Thus we have that B = A, on g;j' If we put

J
*5 b = "d’a’Z, then we see that the subspaces ‘ﬁl’ eoe

gn and 5 n+1 form the required decomposition.

Remarks A similar proposition holds for infimum.

XI: In order that the operators A,B € O be disjunct as
elements of the complete vector lattice OUl, it is necessary.
and sufficient that the space 5 decomposes into orthogonal
o d B= Q
subspaces g 1 and ‘g 5 such that A = 0 on 31 an B 0

on G

Proof: Since the null-space of any operator A of UL coincides
with the null-space of the modulus | A| , it is enough to.
consider the case when 4,B Z O,

If AN B = 0, then by the above remark the condition is seen
to be necessary.

Conversely, suppose that the condition holds. We put

C= A N B. We observe that U,VE U and 0 £ U & V imply
Jlut || < |l vE|| for any f € ﬁ . Using this fact, we see that
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from 0 £ C £ A we get at once C =0 on ﬁl' In the same
manner we show that C = 0 on 52. Thus Cf = O for all
£ € \3 and therefore A A B = 0.

XII: If the strongly closed ring OU contains the identify
operator E of "5 s then one can take E as unit of the complete
vector lattice OC . In this case the basis o& ( UT) of the
complete vector lattice will consist of all projection
operators, contained in Ul , and OU itself will be a complete

vector lattice of bounded elements.

Proof: First we verify that E acts as unit in OCU , Let
A€E€Ul, A 2 0and AA E = 0. By proposition XI above there
exist mutually orthocomplemented subspaces ‘5 1 and g 5 such
that A =0 on bp 1 and E = 0 on ﬁ 5 But the latter means
that % 5 contains the zero element of \5 only. Hence 31 = g
and Af = 0 on all of 5 .

Let E be taken as unit' in the complete vector lattice 0T .

If A is an arbitrary operator in Ol and m = " int LAf,£D>
T)=1
and M= ! nsup <Af,f> , then for any f 6-“5 we have
flil=1 }

(uEf,£) = ndf,£) £ (Ar,e) £ uds,£) = {MEf,L) .

Thus mE £ A £ ME which means that A is a bounded element
of the complete vector lattice UL,
Let the operator P &€ OU{ project the space ‘5 onto the.

subspace Ef . Then E~P projects ‘f) onto the subspace
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W = Lg ® &L . Hence, by proposition XI above, we get that
P A (E-P) = 0; this means that P belongs to the basis & (Ot).

Conversely, let P be an arbitrary unitary element of UT,

‘51 the null-space of P and §, = 5 © 51. Since

P A (E-P) = 0, then by proposition XI above we get that
E-P = 0 on 52,-01' P =E on §2’ and P =0 on 51. This

means that P is the projection operator of “5 onto ‘5 o

The proof of the proposition is finished.

Let A denote an arbitrary (not necessarily bounded) self-
adjoint linear operator in a Hilbert space “5 . Let Z be
the set of all bounded self-adjoint linear operators in 5
which permute with A. The set 'E is strongly closed, but
might not be a ring because the operators permutablé with A
might not commute with each other. Select from Z the

subset OC s consisting of all operators contained in Z and
permuting with any operator from "é . It is clear that Ut is
not empty because it contains the identity operator E. UU is
a ring. In fact, it is enough to verify that multiplication
does not lead outside of O, If U,V € UL, then U,V € &
and therefore UV = VU and this product belongs to OC ., U7 is
strongly 'ciosed. By proposition IX OU is a complete vector
lattice. We take E as unit in this vector lattice (see

proposition XII).
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If the operator A is bounded, then A € UL and by the integral
representation theorem of H. Freudenthal we have

o0
A= td4E_,
o t

where Et = ei s that is (Et)’ - 00 < £ £ 00, is the
resolution of the operator A. By proposition XII the
resolution (Et) consists of projection operators. From
Number 71 (see page 170) we get the basic properties of
the resolution. In particular, the left-continuity of the

resolution means that

E, = 1lim Eg (29)
s — t=0
is in the sense of strong convergence. Indeed, by proposition

VII we have that lim E, in ¥ is the strong limit of the
s <t o

path (E_), and since all Eg € Ul , this limit also: belongs
to UL , because the ring Ol is strongly closed. This limit
has to be the supremum of the set {Es: s < t} in OL; by

Number 71! it coincides with E, and we have formula (29). The

t
resulting representation of the operator A forms the: content

of the spectral theorem for bounded self-adjoint operators.

We now suppose that A is unbounded. By proposition V the
positive bounded self-adjoint linear operator B = (E +A2)"l‘
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exists, A permutes with B, and lIB|| £ 1. We show that B € UZ .
’ Let C be any operator in b « Then CA2 < A2C and therefore
C(E +A2) € (B +A%)C. From the latter we obtain BC(E+A%)B <
c B(E+A2)CB. But (E+A42)B = E and B(E+A2) C E. Thus
BC C CB. Since @, =5, we get BC =CB. Thus B &€ €
and B commutes with any C € € 3 this means fhat B €0UL.

Let (Et) be the resolution of the operator B. Since

0 £ B £ E, we have that E, = 0 for t £0 and E, = E for

t > 1. We verify that the resolution (Et) is continuous at
t = 0 and to the right. Let EO = Iinf Et' Then EO is a

t >0
projection operator and by formula (18) (see pagel70 ) it

follows that 0 & (E))B £ tE,

for any t > O and therefore (Ey)B = O. By Number 79 (see

for t > 0; but this is true

page 174) the projection onto a component is equivalent

with multiplication by the unitary element generating this -
OB = 0, that is B = O on the subspaice XL
onto which the Opérator EO projects "5 . Since, however,

component. Thus E

the operator B has an inverse, oL has to consist of the

zero element of ‘g only and therefore Ej = 0.

Let P =E-E., and P, = E - B for .k = li2s5ses »
0 1 kT Tk 1/(k+1) ”

By the continuity of the resolution (Et) at t = O we have

8 P = E Pk = E. (30)
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We denote by Ulk (k 0,1,2,....) the component of the

complete vector lattice Ol generated by the operator P, and

vy § , the subspace of the Hilbert space '§ , on which the

projection operator P, is realized. By properties of the

k
resolution, the operators Pk (k = 0,1,2,...) are pairwise

disjunct; from proposition XI it follows that the subspaces
%k (k = 0,1,2,...) are pairwise orthogonal. Formula (36)

implies that the system ( %k) is complete in "é; and that

the componeqts Ulk generate a decomposition of the complete
vector lattice OU (see Number 59, pagesl65 -166 ), For, if
we suppose that the system of subspaces %Lk’ generating the
subspace oL , were different from § and P be the projection

operator onto L s then by proposition VII it would follow
o0

that P = 2 Pk in the sense of strong convergence and
k=0 ‘

thus P € OU and P = sup Pk in OC . But this would contradict

formula (30).

Since P € Ot , all subspaces \5 ,c 8Te invariant relative to

the operator A and relative to any operator of O,

The range of the operator B coincides with the domain of

definition of the operator A° and D y 2 ) o We have

4 A

BP, = (Py)E = (1/(x +1))Pk; therefore the operator BP, has

on ‘g'k a positive infimum and thus maps \%’k onto ‘gk which
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means that ﬁk S . Thus the operator A is symmetric on

A
‘5 I’ mapping all of ‘gk into itself. Hence the operator A
is bounded and self-adjoint on 5 . and the operator A, = AP,

is bounded and self-adjoint on all of ‘5 .

It is clear that all A _€ € . We verify that AkE T , Let
C € ‘¢, then taking into account that P, € UL, we have

- [ <57 = — is’
CAk CAP ACP APkC AkC. This means that Ak commutes

k k
with any C € € and therefore A, € Ot.

The operators A.K are pairwise disjunct as elements of the
complete vector lattice Ot y and Ak is disjunct from P;j for

k F j. From the latter we get that A € Uzk for each k.

We form the union X of the complete vector lattices O ,c* Bach
. 00 |

element x € X has the form x = . =So Q> where Q € Uz, . From
the set of bounded self-adjoint operators Qk we construct the
self-adjoint Operatorl Q@ in the space “5 s coinciding on each
“5 K with the operator Qk (see proposition VI). Let Y be the
set of all self-adjoint operators obtained by this method.

We have Ul cC Y. Moreover, if x = S A‘k’ then the correspond-

ing operator coincides with A and therefore A € Y.

By this construction one establishes a one-to-one correspond=-
ence between the elements of the complete vector lattice X
and the operators of Y, and therefore, with the usual

definitions for the algebraic operations and ordering, Y is
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turned into a complete vector lattice. By Number 62 (see
page 167) we note that © can be taken as unit in Y and then
by Number 63 (see page 167) we get that the two bases

& (UL) and ';G-(Y) coincide.

Thus we have an imbedding of the operator A into a certain
conplete vector lattice with unit, the basis of which
consists of projections. Then the spectral resolution of
the operator A is gotten in the same way as for bounded
self-adjoint operators further above. From the very method
for getting the spectral resolution it directly follows
that the spectral family of a self-adjoint operator A
consists of projection operators Et’ permuting with any

operator C € ‘J which permutes with A.
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