Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18488
Title: A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc
Authors: Kerr-Lawson , Angus Carmichael
Advisor: Banaschewski, B.
Department: Mathematics
Keywords: filter, homomorphisms, algebra, bounded, analytic, unit disc, complex
Publication Date: Aug-1963
Abstract: For any filter F defined on the unit disc D, F* is the filter generated by ∈-neighbourhoods of the sets of F, using hyperbolic distance. Any complex homomorphism I of β, the algebra of bounded analytic functions on D, is given by I(g) = lim g(F*) for some maximal closed filter F. The homomorphisms can be classified according to the direction of approach to the boundary of the corresponding filters. For those which are obtained by oricycle or non-tangential approach, the *-filters are in 1-1 correspondence with the homomorphisms; and into these subsets, one can analytically embed discs. On the Silov boundary of β, the above correspondence fails to be 1-1, and smaller filters are considered.
URI: http://hdl.handle.net/11375/18488
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kerr-Lawson_Angus_C._1963Aug_Ph.D..pdf
Open Access
6.83 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue