Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18449
Title: Kinetic modelling for the formation of Magnesium Aluminate Inclusions in the Ladle Metallurgy Furnace
Authors: Galindo, Alan
Advisor: Irons, Gordon A.
Department: Materials Science and Engineering
Keywords: Spinel inclusions;Kinetics;Ladle metallurgy;Modelling;Steelmaking
Publication Date: Nov-2015
Abstract: Magnesium aluminate spinel inclusions are a concern in the steelmaking industry since these particles affect the processing and the properties of steel. During the refining of low carbon aluminum killed steel in the ladle furnace; the initial alumina inclusions shift their composition towards higher contents of MgO and eventually they become magnesium aluminate spinel inclusions. This research developed a kinetic model for the transformation of alumina inclusions to spinel in liquid steel. The aspects of simultaneous deoxidation and of solid state cation counterdiffusion were addressed in the model. Coupling the model for spinel inclusions to a kinetic model for the slag-steel reactions in the ladle furnace allowed verifying the modeled concentrations in the inclusions with the plant data measurements of ArcelorMittal Dofasco operations. Good agreement between the experimental and calculated Mg contents in the inclusions was obtained for most of the industrial heats analyzed. Finally, a sensitivity analysis of the coupled kinetic model was performed to compare the effect of the different processing conditions and mass transfer rates on the amount of Mg and spinel in the inclusions. Several results from this work indicate that the rate limiting step on the formation of magnesium aluminate spinel inclusions is the supply rate of dissolved [Mg] from the slag-steel reaction; the supply of [Mg] is in turn controlled by the changes at the slag-steel interface.
URI: http://hdl.handle.net/11375/18449
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Master's Thesis - Alan Galindo.pdf
Open Access
Master's Thesis25.23 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue