Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18431
Title: Coagulation and Redispersion of CO2-Switchable Polymer Latexes of Low Glass Transition Temperatures
Authors: Gariepy, Steven Daniel
Advisor: Zhu, Shiping
Department: Chemical Engineering
Keywords: chemical engineering, acrylic latexes, latex redispersion, surfactant-free emulsion polymerization
Publication Date: Nov-2015
Abstract: In this thesis, copolymer latexes comprised of various fractions of methyl methacrylate (MMA) and butyl acrylate (BA) were synthesized through surfactant-free emulsion polymerization. A carbon dioxide responsive comonomer, 2-(diethyl)aminoethyl methacrylate (DEAEMA) was also used with an equimolar amount of hydrochloric acid (HCl) to promote its partitioning into the water phase. Changing the MMA/BA fraction gave control over the resulting glass transition temperature of the particles. Following polymerization, the particles from the resulting latexes could be effectively coagulated be adding a small amount of caustic soda, and could be easily separated from water. After washing the particles with deionized water, CO2-redispersibility of the latex particles was evaluated as a function of their respective glass transition temperature. It was determined that coagulated particles higher in MMA content could be easily redispersed into carbonated water with the aid of ultrasonication, preparing stable latexes of the same solids content. For latex particles with a glass transition temperature below ambient conditions, coagulation led to the fusion of individual particles, which inhibited their ability to be redispersed. By conducting the coagulation and redispersion cycles at temperatures cold enough for the BA-rich particles to be below their glass transition temperature, these same latex particles could be effectively redispersed. The relationship between the glass transition temperature of the latexes and their CO2-redispersibility provides guidance from a practical sense for the applicability of CO2-sensitive amine-functionalized molecules in developing industrially useful CO2-redispersible latex products.
URI: http://hdl.handle.net/11375/18431
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gariepy-RevisedThesis.docx
Open Access
Thesis1.79 MBMicrosoft Word XMLView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue