Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18265
Title: COLLECTIVE CELL MIRATION DURING HEART MORPHOGENESIS IN DROSOPHILA REQUIRES GUIDANCE SIGNALING AND EXTRACELLULAR MATRIX REMODELLING
Other Titles: COLLECTIVE CELL MIGRATION OF CARDIOBLASTS DURING HEART MORPHOGENESIS
Authors: Raza, Qanber
Advisor: Jacobs, Roger
Department: Biology
Keywords: Collective cell migration guidance signalling extracellular matrix metalloproteinases mmp slit robo netrin frazzled uncoordinated5 metastasis congenital heart disease heart development morphogenesis filopodia lamellopodia
Publication Date: Nov-2015
Abstract: Collective cell migration is a defining feature of many morphogenetic processes. Diseases such as congenital heart diseases and cancer arise due to mis-regulation of collective migratory behaviour and animal models have played a pivotal role in dissecting the molecular mechanisms which underlie this process. During embryonic heart development, cardiac precursors undergo a stage of collective migration in both vertebrates and invertebrates. We developed a paradigm to quantitatively assess collective cell migration of cardiac precursors in live embryos of Drosophila, which is the simplest genetic model organism with a heart. Therefore, we studied processes which are commonly observed in most collective cell migration models such as guidance signalling and extracellular matrix remodelling. Our results demonstrate that leading edge of migrating cardioblasts is highly active and that this behaviour is regulated by guidance cues, Slit and Netrin and their respective receptors Robo/Robo2 and Frazzled/Uncoordinated5. These molecules cooperatively promote leading edge motility and epithelial characteristics of the cardioblasts. Next, we determined that matrix restructuring around the cardioblasts requires proteases Mmp1 and Mmp2, which are members of the highly conserved Matrix Metalloproteinase family. We demonstrate that Mmp1 and Mmp2 have distinct roles during lumen formation, however, both Mmp1 and Mmp2 are required for collective motility of the cardioblast leading edge. Hence, we propose that embryonic heart development in Drosophila is an effective and amenable model of collective cell migration which can be applied to discover unique mechanisms which coordinate cell movement in groups.
URI: http://hdl.handle.net/11375/18265
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Raza_Qanber_S_2015_September_PhD.pdf
Access is allowed from: 2016-09-30
Doctor of Philosophy Thesis in Developmental Biology and Genetics5.92 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue