Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18239
Title: 2D AND 3D ANALYSIS ON THE DEFORMATION AND FRACTURE OF COMMERCIALLY PURE MAGNESIUM
Authors: Nemcko, Michael J.
Advisor: Wilkinson, David S.
Department: Materials Science and Engineering
Publication Date: Nov-2015
Abstract: Carbon dioxide emissions from the transportation sector contribute 25% of Canada’s total greenhouse gas emissions. As a result, the automotive industry aims to reduce emissions by reducing vehicle weight. Magnesium is an excellent candidate for a lightweight structural material. However, the lack of active deformation modes at room temperature limits its formability. This research uses several approaches to examine the deformation and fracture behavior of commercially pure magnesium to help guide the development of materials with acceptable properties. The first approach uses in-situ tensile testing coupled with electron microscopy, applied to thin sheet samples with pre-drilled holes in the gage section. The results reveal the heterogeneous nature of deformation leading to fracture dominated by twin and grain boundary related failure. This is qualitatively different from the damage processes observed in FCC materials such as aluminum and copper. As a consequence, classical theories cannot be used to predict ductile fracture in magnesium. The second approach involves in-situ tensile testing under optical microscopy. Here digital image correlation is used to determine the strain distribution on the surface. Localized deformation is observed at twin and grain boundaries. The results introduce a length scale which is not present in classical continuum theories. Therefore, a crystal plasticity finite element approach is employed to understand the role of the deformation mechanisms during deformation. The last approach couples in-situ tensile testing with x-ray microtomography to observe the fracture processes in sheet materials without pre-drilled holes. Twin and grain boundaries again dominate damage nucleation. Once nucleated voids show rapid growth and linkage. The final fracture occurs by a macroscopic shearing process related to the crystallographic texture. In summary, this project demonstrates how fracture in magnesium is fundamentally different from that in non-HCP metals and what approaches can be used to fully understand this.
URI: http://hdl.handle.net/11375/18239
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Nemcko_Michael_J_2015July_PhD.pdf
Open Access
15.02 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue