Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18145
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFazeli, Fateh-
dc.contributor.advisorBotton, Gianluigi-
dc.contributor.advisorLo, Jason-
dc.contributor.authorSaragosa, James-
dc.date.accessioned2015-09-24T18:33:57Z-
dc.date.available2015-09-24T18:33:57Z-
dc.date.issued2015-11-
dc.identifier.urihttp://hdl.handle.net/11375/18145-
dc.description.abstractHigh carbon bainitic steel plates could surpass quench and tempered martensitic counterparts for fabrication of ammunition- and blast-resistant armours. Mechanical properties, microstructure and reaction kinetics of a commercially available carbide-free nanoscale bainite alloy were characterized. Based on the initial characterization and a comprehensive review of the literature a new alloy with lower carbon, higher silicon and cobalt additions was designed and processed into hot-rolled plates (10x10mm and 300x300mm) using CanmetMATERIALS pilot-scale facilities. The heat treated plates achieved strength above 2 GPa with elongation of 14%. Thorough analysis with electron backscattered diffraction revealed that the microstructure consisted of bainitic ferrite laths, islands of retained austenite, areas of mixed martensite-austenite (MA). Transmission electron microscopy confirmed the fine scale of bainitic ferrite and the presence of thin films of retained austenite encompassing bainite laths. Dilatometric study of the new alloy revealed that forming bainite at higher transformation temperatures, 275°C versus 250°C and 225°C, led to faster overall reaction kinetics and higher final fractions of bainite within 18 hours of isothermal holding. Although it is expected that the fraction of bainite increases at lower temperatures, substantial prolonged holding time is required for completion of the reaction. Microstructural features and particularly bainite lath thickness depended on bainite formation temperature. Ausforming, deformation of austenite at 600°C for 25-45% strain prior to decomposition to bainite, however led to a decrease in reaction rate and final fraction of bainite. Tensile testing of austempered specimens showed that higher transformation temperature yielded a stronger microstructure, which was attributed to the formation of thinner bainitic ferrite laths. Higher transformation temperatures led to an increase in ductility. Tensile testing of the ausformed specimens showed a reduction in both strength and ductility. A negative correlation was seen between the amount of MA areas in the microstructure and total elongation.  en_US
dc.language.isoenen_US
dc.subjectSuper bainiteen_US
dc.subjectBainite kineticsen_US
dc.subjectAusformingen_US
dc.subjectDilatometric studyen_US
dc.subjectElectron Backscattered Diffractionen_US
dc.titleDesign and Characterization of a Nanoscale Carbide-Free Bainite Alloyen_US
dc.typeThesisen_US
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science in Materials Science and Engineering (MSMSE)en_US
dc.description.layabstractThis project has adopted the science of bainite transformation to develop a suitable alloy and processing method for the fabrication of very strong armour plates at a lower cost compared to commercially available grades. The pilot-scale casting and processing facility at CanmetMATERIALS centre was used to produce full sized, 1ft (304.8mm) by 1ft (304.5mm), prototype armour plates. The plates were subsequently characterized using a variety of techniques to determine interplay between processing parameters, microstructure and the ensuing final performance. The optimized alloy, tailored processing parameters, and characterization information constitute the contribution of the present work to the current state of research.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
saragosa_James_p_2015september_m.sc..pdf
Open Access
Master's Thesis9.45 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue